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The quantification of probabilistic uncertainties in the outputs of physical,
biological, and social systems governed by partial differential equations with
random inputs require, in practice, the discretization of those equations.
Stochastic finite element methods refer to an extensive class of algorithms
for the approximate solution of partial differential equations having random
input data, for which spatial discretization is effected by a finite element
method. Fully discrete approximations require further discretization with
respect to solution dependences on the random variables. For this purpose
several approaches have been developed, including intrusive approaches such
as stochastic Galerkin methods, for which the physical and probabilistic de-
grees of freedom are coupled, and non-intrusive approaches such as stochastic
sampling and interpolatory-type stochastic collocation methods, for which
the physical and probabilistic degrees of freedom are uncoupled. All these
method classes are surveyed in this article, including some novel recent devel-
opments. Details about the construction of the various algorithms and about
theoretical error estimates and complexity analyses of the algorithms are pro-
vided. Throughout, numerical examples are used to illustrate the theoretical
results and to provide further insights into the methodologies.

∗ Colour online for monochrome figures available at journals.cambridge.org/anu.
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PART ONE

Introduction

Mathematical modelling and computer simulations are tools widely used
to predict the behaviour of scientific and engineering systems and to as-
sess risk and inform decision making in manufacturing, service, economic,
public policy, military, and many other venues. Such predictions are ob-
tained by constructing mathematical models whose solutions describe the
phenomenon of interest and then using computational methods to approx-
imate the outputs of the models. Thus, the solution of a mathematical
model can be viewed as a mapping from available input information onto
a desired output of interest; predictions obtained through computational
simulations are merely approximations of the images of the inputs, that is,
of the output of interest.

There are several causes for possible discrepancies between observations
and approximate solutions obtained via computer simulations. The math-
ematical model may not, and usually does not, provide a totally faithful
description of the phenomenon being modelled. In many, if not most ap-
plications, a hierarchy of models of increasing fidelity is available. In the
partial differential equation (PDE) setting of this article, errors also arise
because the mathematical models must be discretized to enable a computer
simulation. Again, hierarchies of discretization methods having increasing
fidelity are also available. It is usually the case that higher-fidelity models
require larger computational resources to obtain the same discretization er-
ror. Because of limits in time, hardware capability, and costs, a user usually
has to strike a balance between the fidelity of the model and the accuracy
of the discretization method used.

Discretization errors can be controlled and reduced by using sophisticated
techniques such as a posteriori error estimation coupled with mesh adap-
tivity (Ainsworth and Oden 2000, Babuška and Strouboulis 2001, Eriks-
son, Estep, Hansbo and Johnson 1995, Moon, von Schwerin, Szepessy and
Tempone 2006, Verfürth 1996, Johnson 2000). Modelling errors are more
difficult to quantify and control and are thus usually identified by com-
parison with observations, although analytical approaches have been de-
veloped for some settings (Oden and Vemaganti 2000, Oden, Prudhomme,
Hammerand and Kuczma 2001, Oden and Prudhomme 2002, Braack and
Ern 2003, Romkes and Oden 2004, Oden et al. 2005a, Oden, Prudhomme
and Bauman 2005b). Of course, one should always make sure that discretiza-
tion errors are sufficiently small that they do not dominate and therefore
obscure possible modelling errors. These and other efforts at identifying and
controlling modelling and discretization errors have increased the accuracy
of computational predictions as well as our confidence in them.
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However, other critical issues involving the mathematical modelling/com-
putational simulation combination have not been so adequately addressed.
Perhaps foremost among these are the ever-present uncertainties in model
inputs, that is, even if the form of a mathematical model is accepted as being
correct, the model inputs are not known with exactitude. Thus, model input
uncertainty is a third source of discrepancy between simulation outputs
and observations. Algorithms that can be used to help account for output
uncertainties is the central subject of this article.

In the PDE setting, model input uncertainties appear in coefficients, forc-
ing terms, boundary and initial condition data, geometry, etc. (Babuška
and Chleboun 2002, Babuška and Chleboun 2003, Tartakovsky and Broyda
2011, Fichtl, Prinja and Warsa 2009, Babuška and Oden 2006). Input un-
certainties may be due to incomplete knowledge that, in principle, could
be remedied through additional measurements or improved measuring de-
vices but for which such remedies are too costly or impractical to apply.
For example, the highly heterogeneous subsurface properties in groundwa-
ter flow simulations can only be measured at relatively few locations, so
at other locations these properties are subject to uncertainty. Incomplete
knowledge can also be forced into a model due to lack of computational re-
sources. For example, although turbulent flows are generally thought of as
being adequately modelled by the Navier–Stokes equations, in many prac-
tical situations one cannot use that model because the grids necessary to
adequately approximate solutions are so fine that the resulting computa-
tional cost is prohibitive; in such cases, the unresolved scales are sometimes
modelled via the addition of uncertainties into the model. Uncertainties
due to incomplete knowledge are referred to as being epistemic. Additional
examples of such uncertainties include the mechanical properties of many
biomaterials, polymeric fluids, or composite materials and initial data for
weather forecasting.

In other situations, uncertainty is due to an inherent variability in the
system that cannot be reduced by additional experimentation or improve-
ments in measuring devices. Such uncertainties are referred to as being
aleatoric. Examples include unexpected fluctuations induced in a flow field
around an aircraft wing by wind gusts or on a structure by seismic vibra-
tions. When sufficient data are available, probability distributions can be
used to fully characterize such uncertainties in a statistical manner so that
the uncertainty can be modelled as a random process.

Discussions about both types of sources of uncertainties are given in a gen-
eral setting by Cullen and Frey (1999), and for some applications to solid
mechanics, climate modelling, and turbulent flow by Ben-Haim (1996), Mr-
czyk (1997), Elishakoff (1999), Melchers (1999), Elishakoff and Ren (2003),
Oden, Belytschko, Babuška and Hughes (2003), Reilly et al. (2001), Lucor,
Meyers and Sagaut (2007), Cheung et al. (2011) and Pope (1981, 1982).
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In practice we have to deal with both types of uncertainty, that is, we are
faced with the task of uncertainty quantification (UQ), which is a broadly
used term that encompasses a variety of methodologies including uncer-
tainty characterization and propagation, parameter estimation/model cali-
bration, and error estimation. Simply put, the goal of UQ is to learn about
the uncertainties in system outputs of interest, given information about the
uncertainties in the system inputs. Given that this task is crucial to assess-
ing risks, robust design, and many other areas of scientific and engineer-
ing enquiry, it is not surprising that the development of UQ methodologies
within those communities, as well as among computational mathematicians,
has been and remains a very active area of research. There are, in fact, sev-
eral approaches being followed for quantifying uncertainties, including the
following.

• Worst-case-scenario (or anti-optimization) methods (Hlaváček, Chle-
boun and Babuška 2004, Babuška, Nobile and Tempone 2005a), which
are useful in cases where we know only a little information about the
uncertainty in the input data, namely that the input data lie in a
functional set that might well be infinite-dimensional.

• Probabilistic methods, which use statistical characterizations of un-
certainties, such as probability density functions or expected values,
variances, correlation functions, and statistical moments (Ghanem and
Spanos 2003, Kleiber and Hien 1992, Benth and Gjerde 1998a, Benth
and Gjerde 1998b, Ghanem and Red-Horse 1999, Glimm et al. 2003,
Xiu and Karniadakis 2002a, Schwab and Todor 2003b, Schwab and
Todor 2003a, Xiu and Karniadakis 2003, Soize 2003, Lucor, Xiu, Su and
Karniadakis 2003, Lucor and Karniadakis 2004, Le Mâıtre, Knio, Najm
and Ghanem 2004a, Le Mâıtre, Najm, Ghanem and Knio 2004b, Soize
and Ghanem 2004, Babuška, Tempone and Zouraris 2004, Narayanan
and Zabaras 2004, Zabaras and Samanta 2004, Lu and Zhang 2004, Xiu
and Tartakovsky 2004, Regan, Ferson and Berleant 2004, Babuška,
Tempone and Zouraris 2005b, Keese and Matthies 2005, Matthies and
Keese 2005, Frauenfelder, Schwab and Todor 2005, Soize 2005, Rubin-
stein and Choudhari 2005, Narayanan and Zabaras 2005b, Narayanan
and Zabaras 2005a, Mathelin, Hussaini and Zang 2005, Roman and
Sarkis 2006, Webster 2007, Lin, Tartakovsky and Tartakovsky 2010,
Xiu 2009, Nobile and Tempone 2009, Doostan and Iaccarino 2009, Ma
and Zabaras 2009, Beck, Nobile, Tamellini and Tempone 2011, Elman,
Miller, Phipps and Tuminaro 2011, Gunzburger, Trenchea and Webster
2013, Eldred, Webster and Constantine 2008, Burkardt, Gunzburger
and Webster 2007, Nobile, Tempone and Webster 2008a, Nobile, Tem-
pone and Webster 2008b, Nobile, Tempone and Webster 2007, Agarwal
and Aluru 2009, Barth, Schwab and Zollinger 2011, Gunzburger and
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Labovsky 2011, Doostan, Ghanem and Red-Horse 2007, Dauge and
Stevenson 2010, Stoyanov and Webster 2014, Gunzburger, Jantsch,
Teckentrup and Webster 2014, Zhang and Gunzburger 2012, Zhang,
Webster and Gunzburger 2014).

• Bayesian inference and optimization (Webster, Zhang and Gunzburger
2013, Zhang et al. 2013, Box 1973, Lemm 2003, Beck and Au 2002,
Yuen and Beck 2003, Ching and Beck 2004, Wang and Zabaras 2005,
Marzouk and Xiu 2009, Cheung et al. 2011, Marzouk, Najm and Rahn
2007, Babuška, Nobile and Tempone 2008, Cheung and Beck 2010,
Muto and Beck 2008), estimating calibration parameters from noisy ex-
perimental data (Kennedy and O’Hagan 2001, Higdon et al. 2004, Qian
et al. 2006, Bayarri et al. 2007, Qian and Wu 2008, Joseph and Melkote
2009, Chang and Joseph 2013, Joseph 2013, Tuo and Wu 2013).

• Measure-theoretic approaches, which approximate densities through
closed systems of PDEs (Breidt, Butler and Estep 2011, Tartakovsky
and Broyda 2011, Pope 1981, Pope 1982).

• Knowledge-based methods, which characterize uncertainties using fuzzy
sets (Bernardini 1999, Dubois and Prade 2000), evidence theory (Ober-
kampf, Helton and Sentz 2001, Kramosil 2001, Ferson et al. 2003), and
subjective probability (Vick 2002, Helton 1997).

All five approaches can be applied directly or indirectly to PDEs with un-
certain input data. Despite the large effort represented by these citations,
it is widely recognized that we have not reached the end of research in UQ.
New, more effective methods for treating uncertainty are still needed and
will become increasingly important in virtually all branches of engineering
and science (Babuška, Nobile and Tempone 2007b, Phipps, Eldred, Salinger
and Webster 2008, Dongarra et al. 2013).

A crucial, yet often complicated, ingredient that all approaches to UQ
must incorporate is a proper description of the uncertainty in system param-
eters and external environments. All such uncertainties can be included in
mathematical models adopting the probabilistic approach, provided enough
information is available for an accurate statistical characterization of the
data. The mathematical model may depend on a set of distinct uncer-
tain parameters that may be represented as random variables with a given
joint probability distribution. In other situations, the input data may vary
randomly from one point of the physical domain to another and from one
time instant to another. In these cases, uncertainty in the inputs should
rather be described in terms of random fields. Approaches to describ-
ing correlated random fields include Karhunen–Loève expansions (Loève
1977, 1978) (or Fourier–Karhunen–Loève expansion: Li et al. 2007) and ex-
pansions in terms of global orthogonal polynomials (Wiener 1938, Ghanem
and Spanos 2003, Xiu and Karniadakis 2002b). Both types of expansion
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represent a random field in terms of an infinite number of random vari-
ables and require that the random field has a bounded second statisti-
cal moment. Other nonlinear expansions (Grigoriu 2002) and transfor-
mations (Matthies and Keese 2005, Winter and Tartakovsky 2002) have
been considered. Whereas all these expansions are infinite, realizations
often vary slowly in space and time, and thus only a few terms are typ-
ically needed to accurately approximate the random field (Babuška, Liu
and Tempone 2003, Frauenfelder et al. 2005). Therefore, in this article,
we consider probabilistic representations of uncertainties in mathematical
models consisting of a system of stochastic partial differential equations1

(SPDEs) having coefficients and source terms that are described by a finite-
dimensional random vector, either because the problem itself can be de-
scribed by a finite number of random variables or because inputs are mod-
elled as truncated expansions of random fields.

The outline of this article is as follows. In the rest of Part 1 we provide
a brief discussion of uncertainty quantification in the SPDE setting and an
overview of numerical methods for SPDEs.

In Part 2 we provide a generalized mathematical description of SPDEs,
establish the notation used throughout, and introduce stochastic finite ele-
ment methods and stochastic Galerkin methods. We also introduce the no-
tions of semi-discrete and fully discrete stochastic approximation and state
assumptions about the parametrization of random inputs which prove useful
for transforming a given SPDE into a deterministic parametric one.

In Part 3 we consider sampling-based SFEMs by introducing a general
framework that incorporates all stochastic sampling methods, and also ex-
plain how stochastic sampling methods fit into the framework of stochastic
Galerkin methods. This part also includes an error analysis of both the dis-
cretization and sampling errors associated with the use of classical Monte
Carlo sampling methods. Also shown is how the overall computational com-
plexity can be reduced through the use of multilevel Monte Carlo methods.
The part ends with an overview of other stochastic sampling methods.

In Part 4 we consider problems for which the solution of the SPDE has
very smooth dependence on the input random variables. We present SFEMs
that approximate solutions using global approximations in parameter space.
We first introduce several choices of multivariate polynomial spaces that
result in global stochastic Galerkin methods and global stochastic collo-
cation methods. A generalized sparse grid interpolatory approximation is
presented, followed by a detailed convergence analysis with respect to the

1 In some circles, the nomenclature ‘stochastic partial differential equations’ is reserved
for a specific class of PDEs having random inputs, driven by uncorrelated stochastic
processes. Here, for the sake of economy of notation, we use this terminology to refer
to any PDE having random inputs.
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total number of collocation points. We conclude the part with a numerical
example that provides a setting for the comparison of the total compu-
tational complexity of global stochastic Galerkin and stochastic colloca-
tion methods.

In Part 5 we consider problems for which the solution of the SPDE may
have irregular dependence on the input random variables, as a result of
which the global approximations discussed in Part 4 are usually not appro-
priate. As an alternative, we present SFEMs that use locally supported
piecewise polynomial spaces for both spatial and stochastic discretization.
We then extend this concept to include adaptive hierarchical stochastic col-
location methods and provide a novel acceleration technique to reduce the
computational complexity of obtaining fully discrete approximations. We
also provide a detailed error estimate and complexity analysis for our new
approach.

In the Appendices we provide a brief review of the essential concepts,
definitions, and results from probability theory and stochastic processes.

Three comments about the content of this article are called for. First,
throughout, we ignore the temporal dependence of solutions of SPDEs,
that is, we assume that coefficients, forcing functions, etc., and therefore
solutions, only depend on spatial variables and random parameters. We
do this merely for economy of notation. Almost all discussions extend to
problems that also involve temporal dependences. Second, throughout, we
only consider finite element methods for effecting the spatial discretization
of SPDEs. Most of the discussions also apply to finite difference, finite vol-
ume, and spectral methods for spatial discretization. Third, throughout,
we treat problems having random inputs that consist of a finite number of
parameters or are correlated random fields. So as not to completely ignore
the important class of problems having white noise inputs, we provide, in
the last Appendix, a brief discussion about how a white noise random field,
which is an infinite stochastic process, can be discretized.

1.1. Uncertainty quantification

In the SPDE setting, uncertainty quantification is the task of determining,
given statistical information about the inputs of an SPDE, statistical in-
formation about an output of interest that depends on the solution of the
SPDE. Outputs of interest could be the solution of the PDE itself, but
more often take the form of functionals of that solution. If u(x,y) denotes
the solution of the SPDE, where y denotes a vector of random parameters,
examples of outputs of interest include the spatial average of u over the
spatial domain D,

Gu(y) =
1

|D|

∫

D
u(x,y) dx,
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where |D| denotes the volume of D, or the maximum value of u over D,

Gu(y) = max
x∈D

u(x,y).

The desired statistical information comes in the form of expected values,
variances, or higher statistical moments of the output of interest. In the
first case, we would then have the quantity of interest

E[Gu(y)] =

∫

Γ
Gu(y)ρ(y) dy, (1.1.1)

where Γ denotes the parameter domain and ρ(y) the joint probability den-
sity function for the random vector y of input parameters. Another quantity
of interest is event probabilities. For example, one might want to determine
the probability that a scalar output of interest Gu(y) is greater than some
threshold value τ . This probability can be expressed as∫

Γ
1Gu(y)>τρ(y) dy,

where we have the indicator function

1Gu(y)>τ =

{
1 if Gu(y) > τ ,

0 otherwise.

In practice, one cannot determine the exact solution of the SPDE, so ap-
proximate solutions are used instead when evaluating an output of interest.
A further approximation step occurs because integrals over the parameter
domain Γ usually have to be approximated using a quadrature rule.

Given that for us the outputs of interest depend on the solution of an
SPDE, estimating the accuracy of approximations of those solution is re-
quired to ascertain information about the accuracy of approximations of a
quantity of interest. Thus, in this article, we focus on the approximation
of solutions of SPDEs. It is then a straightforward matter, at least con-
ceptually, to obtain information about the accuracy of approximations of
quantities of interest.

1.2. An overview of numerical methods for SPDEs

Monte Carlo methods (see, e.g., Fishman 1996) are the most popular ap-
proach for approximating expected values and other statistical moments of
quantities of interest of the solution to an SPDE. Monte Carlo methods
are based on independent realizations of the input parameters; approxi-
mations of the expectation or other quantities of interest are obtained by
averaging over the corresponding realizations of that quantity. Thus, the
method requires a deterministic PDE solution for each realization. The
resulting numerical error is proportional to 1/

√
M , where M denotes

the number of realizations, thus requiring a very large number of SPDE
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solutions to achieve small errors. In particular cases, convergence can be
improved with the use of important sampling (Jouini, Cvitanić and Musiela
2001, Novak 1988, Traub and Werschulz 1998), multilevel methods (Barth
and Lang 2012, Barth, Lang and Schwab 2013, Barth et al. 2011, Cliffe,
Giles, Scheichl and Teckentrup 2011, Giles 2008), and other means.

Other ensemble-based methods such as quasi-Monte Carlo sequences,
Latin hypercube sampling, lattice rules, and orthogonal arrays (see, e.g.,
Niederreiter 1992, Helton and Davis 2003 and the references therein) have
been devised to produce ‘faster’ convergence rates, for example, proportional
to (log(M)r(N)/M), where r(N) > 0 grows with the number N of random
variables. Another sampling approach is provided by centroidal Voronoi tes-
sellations (Du, Faber and Gunzburger 1999, Romero, Gunzburger, Burkardt
and Peterson 2006, Saka, Gunzburger and Burkardt 2007, Du, Gunzburger
and Ju 2002, Du and Gunzburger 2002a, Du and Gunzburger 2002b, Du,
Gunzburger and Ju 2003a, Du, Gunzburger and Ju 2003b, Du and Gunz-
burger 2003, Romero et al. 2003a, Romero, Gunzburger, Burkardt and
Peterson 2003b, Romero, Burkardt, Gunzburger and Peterson 2005, Du,
Gunzburger, Ju and Wang 2006, Burkardt, Gunzburger and Lee 2006a,
Burkardt, Gunzburger and Lee 2006b, Ju, Gunzburger and Zhao 2006,
Ringler, Ju and Gunzburger 2008, Nguyen et al. 2009, Du, Gunzburger
and Ju 2010, Jacobsen et al. 2013, Womeldorff, Peterson, Gunzburger and
Ringler 2013)

In the past decade, other approaches have been proposed that, in some sit-
uations, often feature much faster convergence rates. These include spectral
(global) stochastic Galerkin methods (Ghanem and Spanos 2003, Ghanem
and Red-Horse 1999, Xiu and Karniadakis 2002a, Babuška et al. 2004,
Babuška et al. 2005b, Deb 2000, Deb, Babuška and Oden 2001, Frauen-
felder et al. 2005, Matthies and Keese 2005, Le Mâıtre et al. 2004a, Ro-
man and Sarkis 2006), stochastic collocation methods (Babuška, Nobile and
Tempone 2007a, Tatang 1995, Mathelin et al. 2005, Xiu and Hesthaven
2005, Nobile et al. 2008a, Nobile et al. 2008b), and perturbation, Neumann,
and Taylor expansion methods (Gaudagnini and Neumann 1999, Winter
and Tartakovsky 2002, Babuška and Chatzipantelidis 2002, Karniadakis
et al. 2005, Todor 2005, Winter, Tartakovsky and Guadagnini 2002, Lu
and Zhang 2004, Kleiber and Hien 1992). These approaches transform the
original stochastic problem into a deterministic one with a large number of
parameters and differ in the choice of polynomial bases and the correspond-
ing approximating spaces used to effect approximation in the probability do-
main. Additional details can be found in recent work by Le Mâıtre and Knio
(2010), Xiu (2009) and Nobile and Tempone (2009). These methods use
standard approximations in physical space, such as a finite element method,
and globally defined polynomial approximation in the probability domain,
either by full polynomial spaces (Xiu and Karniadakis 2002a, Matthies and
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Keese 2005, Ghanem 1999), tensor product polynomial spaces (Babuška
et al. 2004, Frauenfelder et al. 2005, Roman and Sarkis 2006), or sparse
tensor product polynomials (Cohen, DeVore and Schwab 2011, Xiu and
Hesthaven 2005, Webster 2007, Nobile et al. 2008a, Nobile et al. 2008b, Beck,
Nobile, Tamellini and Tempone 2014, Beck, Tempone and Nobile 2012).

In Ghanem and Red-Horse (1999) and Ghanem and Spanos (2003), formal
Wiener chaos expansions in terms of Hermite polynomials are used. A simi-
lar approach using general orthogonal polynomials, sometimes referred to as
polynomial chaos, is described in Xiu and Karniadakis (2002a). Generally,
these techniques are intrusive in the sense that they are non-ensemble-based
methods, that is, they require the solution of discrete systems that couple
all spatial and probabilistic degrees of freedom. Variations, including non-
intrusive polynomial chaos methods (Acharjee and Zabaras 2007, Hosder
and Walters 2007, Eldred et al. 2008), have been developed that decouple
the stochastic and spatial degrees of freedom by exploiting the orthogonality
of the basis and using appropriate quadrature rules.

Recently, global stochastic collocation methods based on either full or
sparse tensor product approximation spaces (Babuška et al. 2007a, Ganap-
athysubramanian and Zabaras 2007, Nobile et al. 2008a, Nobile et al. 2008b,
Mathelin et al. 2005, Xiu and Hesthaven 2005) have gained considerable at-
tention. As shown in Babuška et al. (2007a), stochastic collocation methods
can essentially match the fast convergence of intrusive polynomial chaos
methods, even coinciding with them in particular cases. The major dif-
ference between the two approaches is that stochastic collocation methods
are ensemble-based, non-intrusive approaches that achieve fast convergence
rates by exploiting the inherent regularity of PDE solutions with respect
to parameters. Compared to non-intrusive polynomial chaos methods, they
also require fewer assumptions about the underlying SPDE. Stochastic col-
location methods can also be viewed as stochastic Galerkin methods in
which one employs an interpolatory basis built from the zeros of orthogonal
polynomials with respect to the joint probability density function of the
input random variables. For additional details about the relations between
polynomial chaos methods and stochastic collocation methods see Le Mâıtre
and Knio (2010) and Xiu (2010), for example, and for computational com-
parisons between the two approaches see Elman et al. (2011), Beck et al.
(2011) and Jantsch, Webster and Zhang (2014).

To achieve increased rates of convergence, most polynomial chaos and
stochastic collocation approaches described above are based on global poly-
nomial approximations that take advantage of smooth behaviour of the
solution in the multi-dimensional parameter space. Hence, when there
are steep gradients, sharp transitions, bifurcations, or finite discontinuities
(e.g., piecewise processes) in stochastic space, these methods converge very
slowly or even fail to converge. Such problems often arise in scientific and
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engineering problems due to the highly complex nature of most physical or
biological phenomena. To be effective, refinement strategies must be guided
by accurate estimations of errors (both local and global) while not expending
significant computational effort approximating an output of interest within
each random dimension. The resulting explosion in computational effort as
the number of random parameters increases is referred to as the curse of
dimensionality ; not surprisingly, there have been many methods proposed
to counteract this curse.

The first type involves domain decomposition approaches, such as the
‘multi-element’ method presented in Foo and Karniadakis (2010), Wan and
Karniadakis (2009) and Foo, Wan and Karniadakis (2008), which decom-
poses each parameter dimension into subdomains and then uses tensor prod-
ucts to reconstruct the entire parameter space. This method has been suc-
cessfully applied to moderate dimension problems, but the tensor product
decomposition inevitably falls prey to the curse of dimensionality. Simi-
larly, a tensor-product-based multi-resolution approximation, by virtue of
a Galerkin projection onto a Wiener–Haar basis, is developed in Le Mâıtre
and Knio (2010) and Le Mâıtre et al. (2004a). This approach provides sig-
nificant improvements over global polynomial chaos expansions. However,
in terms of robustness, dimension scaling is not possible due to the result-
ing dense coupled system and the lack of any rigorous criteria for triggering
refinement.

Elman and Miller (2011), Ma and Zabaras (2009, 2010) and Jakeman,
Archibald and Xiu (2011) apply an adaptive sparse grid stochastic colloca-
tion strategy that follows the work of Griebel (1998), Gerstner and Griebel
(2003) and Klimke and Wohlmuth (2005); piecewise multi-linear hierarchi-
cal h-type finite elements basis functions are used, similar to those con-
structed in the physical domain. These approaches utilize the hierarchical
surplus as an error indicator to automatically detect regions of importance
(e.g., discontinuities) in the stochastic parameter space and adaptively re-
fine the collocation points in this region. To this end, grids are constructed
in an adaptation process steered by the indicator in such a way that a pre-
scribed global error tolerance is attained. This goal, however, might be
achieved using more points than necessary due to the instability of this
multi-scale basis. To address this issue, Gunzburger, Webster and Zhang
(2014) have introduced a novel multi-dimensional multi-resolution adaptive
wavelet stochastic collocation method, with the desirable multi-scale sta-
bility of the hierarchical coefficients guaranteed as a result of the wavelet
basis having the Riesz property. This property provides an additional lower-
bound estimate for the wavelet coefficients that are used to guide the adap-
tive grid refinement, resulting in the approximation requiring a significantly
reduced number of deterministic simulations for both smooth and irregular
stochastic solutions.
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PART TWO
Stochastic finite element methods

2.1. Partial differential equations with random input data

We begin by focusing our attention on a possibly nonlinear elliptic operator
L, defined on a domain D ⊂ Rd, d = 1, 2 or 3, having boundary ∂D. The
operator L has a coefficient a(x, ω) with x ∈ D and ω ∈ Ω, where (Ω,F ,P)
denotes a complete probability space. Here, Ω is the set of outcomes, F ⊂ 2Ω

is the σ-algebra of events, and P : F → [0, 1] is a probability measure.
Analogously, the forcing term f = f(x, ω) can be assumed random as well.

Consider the following stochastic elliptic boundary value problem. Find
a random function u : D × Ω → R such that P-almost everywhere in Ω,
that is, almost surely, we have that

L(a)(u) = f in D (2.1.1)

equipped with suitable boundary conditions.
We let W (D) denote a Banach space of functions v : D → R and define

the stochastic Banach spaces

LqP
(
Ω;W (D)

)
:=
{
v : Ω→W (D) | v is strongly measurable and
∫

Ω
‖v(·, ω)‖qW (D) dP(ω) < +∞

}

for q ∈ [1,∞) and

L∞P
(
Ω;W (D)

)
:=
{
v : Ω→W (D) | v is strongly measurable and

P− ess sup
ω∈Ω
‖v(·, ω)‖2W (D) < +∞

}
.

Of particular interest is the space L2
P(Ω;W (D)) consisting of Banach-valued

functions that have finite second stochastic moments.
We make the following assumptions.

Assumption 2.1.1.

(a) The solution to (2.1.1) has realizations in the Banach space W (D),
that is, u(·, ω) ∈W (D) almost surely and, for all ω ∈ Ω,

‖u(·, ω)‖W (D) ≤ C‖f(·, ω)‖W ∗(D),

where W ∗(D) denotes the dual space of W (D) and C denotes a con-
stant having value independent of the realization ω ∈ Ω.

(b) The forcing term f ∈ L2
P(Ω;W ∗(D)) is such that the solution u is

uniquely defined and bounded in L2
P(Ω;W (D)).
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Two examples of problems posed in this setting are as follows.

Example 2.1.2. The linear second-order elliptic problem

−∇ ·
(
a(x, ω)∇u(x, ω)

)
= f(x, ω) in D × Ω,

u(x, ω) = 0 on ∂D × Ω,
(2.1.2)

with a(x, ω) uniformly bounded from above and below, that is,

there exist amin, amax ∈ (0,∞) such that

P
(
ω ∈ Ω : a(x, ω) ∈ [amin, amax] ∀x ∈ D

)
= 1,

and f(x, ω) square-integrable with respect to P, that is,
∫

D
E[f2] dx =

∫

D

∫

Ω
f2(x, ω) dP(ω) dx <∞,

such that Assumptions 2.1.1(a,b) are satisfied with W (D) = H1
0 (D); see

Babuška et al. (2007a).

Example 2.1.3. Similarly, for s ∈ N+, the nonlinear second-order elliptic
problem

−∇ ·
(
a(x, ω)∇u(x, ω)

)
+ u(x, ω)|u(x, ω)|s = f(x, ω) in D × Ω,

u(x, ω) = 0 on ∂D × Ω,
(2.1.3)

with a(x, ω) uniformly bounded from above and below and f(x, ω) square-
integrable with respect to P such that Assumptions 2.1.1(a,b) are satisfied
with W (D) = H1

0 (D) ∩ Ls+2(D); see Webster (2007).

2.2. Parametrization of random inputs

Because the two sources of stochasticity, namely the random fields a(x, ω)
and f(x, ω), are seldom related to each other, it is reasonable to assume
that they are defined on two independent probability spaces (Ωa,Fa,Pa)
and (Ωf ,Ff ,Pf ), respectively. Then the solution u is defined on the product
probability space (Ω,F ,P) = (Ωa×Ωf ,Fa×Ff ,Pa×Pf ) and ω = (ωa, ωf ) ∈
Ω, where ωa ∈ Ωa and ωf ∈ Ωf . Thus, a and f are essentially functions of
ωa and ωf , respectively.

In many applications, the source of randomness can be approximated
using just a finite number of uncorrelated, or even independent, random
variables. As such, similar to Babuška et al. (2007a), Nobile et al. (2008a)
and Nobile et al. (2008b), we make the following assumptions regarding the
stochastic input data, that is, the random coefficient a(x, ωa) in L and the
right-hand side f(x, ωf ).

Assumption 2.2.1. The random input data of the PDE in (2.1.1) satisfy
the following.
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(a) The functions a(x, ωa) and f(x, ωf ) are bounded from above and below
with probability 1, that is, for the right-hand side f(x, ωf ), there exists
fmin > −∞ and fmax <∞ such that

P
(
ωf ∈ Ωf : fmin ≤ f(x, ωf ) ≤ fmax ∀x ∈ D

)
= 1, (2.2.1)

and similarly for the random coefficient a(x, ωa).

(b) The input data a(x, ωa) and f(x, ωf ) have the form

a(x, ωa) = a
(
x,ya(ωa)

)
in D × Ωa,

f(x, ωf ) = f
(
x,yf (ωf )

)
in D × Ωf ,

(2.2.2)

where, with Na ∈ N+, ya(ωa) =
(
ya,1(ωa), . . . , ya,Na(ωa)

)
is a vector

of real-valued uncorrelated random variables and likewise for yf (ωf ) =(
yf,1(ωf ), . . . , yf,Nf (ωf )

)
with Nf ∈ N+.

(c) The random functions a
(
x,ya(ωa)

)
and f

(
x,yf (ωf )

)
are σ-measurable

with respect to ya and yf , respectively.

We next provide two examples of random input data that satisfy As-
sumption 2.2.1. Without lost of generality, we only consider the coefficient
a(x, ωa) in the examples.

Example 2.2.2 (piecewise constant random fields). Assume that the
spatial domain D is the union of non-overlapping subdomains Dn, n =
1, . . . , Na. Then consider a coefficient a(x, ωa) that is a random constant in
each subdomain Dn, that is, a(x, ωa) is the piecewise constant function

a(x, ωa) = a0 +

Na∑

n=1

anya,n(ωa)1Dn(x),

where an, n = 0, . . . , N , denote constants, 1Dndenotes the indicator function
of the set Dn ⊂ D, and the random variables ya,n(ωa), n = 1, . . . , N , are
bounded and independent. Note that Assumption 2.2.1 requires restrictions
on the constants an and the bounds on the random variables ya,n(ωa); in
practice, such restrictions would be deduced from the physics of the problem.

Example 2.2.3 (Karhunen–Loève expansions). According to Mercer’s
theorem (Theorem B.1), any second-order correlated random field a(x, ωa)
with continuous covariance function COV(x1,x2) can be represented as an
infinite sum of random variables. One commonly used example is the Kar-
hunen–Loève expansion discussed in Appendix B.1. In this case, the ran-
dom field a(x, ωa) can be approximated by a truncated Karhunen–Loève
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expansion having the form

a(x, ωa) ≈ aNa(x, ωa) = E[a(x, ·)] +

Na∑

n=1

√
λnbn(x)ya,n(ωa),

where λn and bn(x) for n = 1, . . . , Na are the dominant eigenvalues and
corresponding eigenfunctions for the covariance function and ya,n(ωa) for
n = 1, . . . , Na denote uncorrelated real-valued random variables. Note that
if the process is Gaussian, then the random variables {ya,n}Nan=1 are standard
independent identically distributed random variables. In addition, we would
like to keep the property that a random input coefficient is bounded away
from zero. To do this, we instead expand the logarithm of the random filed
so that aNa(x, ω) has the form

aNa(x, ωa) = amin + e
∑Na
n=1

√
λnbn(x)ya,n(ωa), (2.2.3)

where amin > 0 is the lower bound on a.

Assumption 2.2.1 and the Doob–Dynkin lemma (Lemma A.12) guarantee
that a(x,ya(ωa)) is a Borel-measurable function of the random vector ya and
likewise for f with respect to yf . As mentioned above, the random fields a
and f are independent because of their physical properties, so that ya and yf
are independent random vectors. Thus, we relabel the elements of the two
random vectors and define y = (y1, . . . , yN ) = (ya,yf ), where N = Na+Nf .
By definition, the random variables {yn}Nn=1 are mappings from the product
sample space Ω to the real space RN , so we let Γn = yn(Ω) ⊂ R denote the

image of the random variable yn, and set Γ =
∏N
n=1 Γn, where N ∈ N+.

If the distribution measure of y(ω) is absolutely continuous with respect
to the Lebesgue measure, there exists a joint probability density function
(PDF) for {yn}Nn=1 denoted by

ρ(y) : Γ→ R+ with ρ(y) ∈ L∞(Γ).

Thus, based on Assumption 2.2.1, the probability space (Ω,F ,P) is mapped
to (Γ,B(Γ), ρ(y) dy), where B(Γ) is the Borel σ-algebra on Γ and ρ(y) dy
is the finite measure.

Remark 2.2.4. What is the form of the joint density function ρ : Γ→ R+?
According to the definition of P = Pa × Pf , for some element A ∈ F ,
it is not true that P(A) = Pa(A)Pf (A). However, in the image space
(Γ,Bd, ρdy), if we denote ρ = ρa × ρf , because of Fubini’s theorem, it
is true that for any y = (ya,yf ) ∈ Γ we have ρ(y) = ρa(ya)ρf (yf ). In fact,
in the product probability space (Ω,F ,P), by Fubini’s theorem, a multiple
integral can be converted to an iterative integral, that is, for a function
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ϕ(ω) = ϕ
(
ya(ωa),yf (ωf )

)
with ω ∈ Ωa × Ωf , we have

E[ϕ] =

∫

Ωa×Ωf

ϕd(Pa × Pf ) =

∫

Ωa

∫

Ωf

ϕ(ωa, ωf ) dPf (ωf ) dPa(ωa).

Then, mapping the right-hand side to the space (Γ,Bd, ρdy), we obtain

E[ϕ] =

∫

Ωa

∫

Ωf

ϕ(ωa, ωf ) dPf (ωf ) dPa(ωa) =

∫

Γ
ϕρaρf dy,

so that indeed ρ(y) = ρa(ya)ρf (yf ).

2.3. Stochastic finite element methods

We present a generalized framework for stochastic finite element methods
(SFEMs), which are finite-element-based spatial semi-discretizations of an
SPDE.2 We also prepare the way for the discussion in Section 2.4 of stochas-
tic Galerkin methods (SGMs) which, in our context, are SFEMs for which
parameter space discretization is also effected using a Galerkin method.
Both discussions rely on a weak formulation for SPDEs.

2.3.1. Galerkin weak formulation of stochastic partial differential equations

Analogous to LqP
(
Ω;W (D)

)
and L∞P

(
Ω;W (D)

)
, we define Lqρ

(
Γ;W (D)

)
and

L∞ρ
(
Γ;W (D)

)
as

Lqρ
(
Γ;W (D)

)
:=
{
v : Γ→W (D) | v is strongly measurable and
∫

Γ
‖v(·,y)‖qW (D)ρ(y) dy < +∞

}
(2.3.1)

and

L∞ρ
(
Γ;W (D)

)
:=
{
v : Γ→W (D) | v is strongly measurable and

ρ(y) dy − ess sup
y∈Γ
‖v(·,y)‖2W (D) < +∞

}
. (2.3.2)

Based on the discussions in Section 2.2, the solution u of an SPDE can
be expressed as u(x, ω) = u

(
x, y1(ω), . . . , yN (ω)

)
. Then, it is natural to

treat u(x,y), a function of d spatial variables and N random parameters,
as a function of d+N variables. This leads us to consider a Galerkin weak
formulation of the SPDE, with respect to both physical and parameter

2 Recall that, to economize notation, we refer to any partial differential equation with
random inputs as a stochastic partial differential equation (SPDE).
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space, in the following form. Seek u ∈W (D)⊗ Lqρ(Γ) such that

K∑

k=1

∫

Γ

∫

D
Sk(u;y)Tk(v)ρ(y) dx dy (2.3.3)

=

∫

Γ

∫

D
vf(x,y)ρ(y) dx dy for all v ∈W (D)⊗ Lqρ(Γ),

where Sk(·, ·), k = 1, . . . ,K, are in general nonlinear operators and Tk(·, ·),
k = 1, . . . ,K, are linear operators.

Example 2.3.1. A weak formulation of the stochastic PDE in (2.1.3) is
given by

∫

Γ

∫

D

(
a(y)∇u

)
· ∇vρ(y) dx dy +

∫

Γ

∫

D

(
u(y)|u(y)|s

)
vρ(y) dx dy

=

∫

Γ

∫

D
f(y)vρ(y) dx dy for all v ∈ H1

0 (D)⊗ Lqρ(Γ),

where we omit reference to the dependence of a, f , u, and v on the spatial
variable x for the sake of economizing notation. For the first term on the left-
hand side, we have the linear operators S1(u,y) = a(y)∇u and T1(v) = ∇v;
for the second term, we have the nonlinear operator S2(u,y) = u(y)|u(y)|s
and the linear operator T2(v) = v.

For our purposes, and without loss of generality, it suffices to consider the
single term form of (2.3.3), that is,

∫

Γ

∫

D
S(u;y)T (v)ρ(y) dx dy (2.3.4)

=

∫

Γ

∫

D
vf(y)ρ(y) dx dy for all v ∈W (D)⊗ Lqρ(Γ),

where T (·) is a linear operator and, in general, S(·) is a nonlinear operator
and where again we have suppressed explicit reference to dependences on
the spatial variable x.

2.3.2. Spatial finite element semi-discretization

Any method for the approximate solution of an SPDE that uses a finite
element method to effect discretization with respect to the spatial variable
x is referred to as a stochastic finite element method (SFEM). We assume
that all methods discussed in this work use the same finite element method
for this purpose. Details about the finite element methods discussed in this
article may be found in Brenner and Scott (2008) and Ciarlet (1978), for
example.
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Let Th denote a conforming triangulation of D with maximum mesh size
h > 0 and let Wh(D) ⊂ W (D) denote a finite element space, parametrized

by h→ 0, constructed using the triangulation Th. Let {φj(x)}Jhj=1 denote a

basis for Wh(D) so that Jh denotes the dimension of Wh(D). We introduce
the semi-discrete approximation uJh(x,y) ∈Wh(D)⊗Lqρ(Γ) having the form

uJh(x,y) =

Jh∑

j=1

cj(y)φj(x). (2.3.5)

At each point in y ∈ Γ, the coefficients cj(y), and thus uJh , are determined
by solving the problem

∫

Γ

∫

D
S

( Jh∑

j=1

cj(y)φj(x);y

)
T (v)ρ(y) dx dy (2.3.6)

=

∫

Γ

∫

D
vf(y)ρ(y) dx dy for all v ∈Wh(D)⊗ Lqρ(Γ)

or, equivalently,

∫

D
S

( Jh∑

j=1

cj(y)φj(x);y

)
T (φj′) dx (2.3.7)

=

∫

D
φj′f(y) dx for j′ = 1, . . . , Jh.

What this means is that to obtain the semi-discrete approximation uJh(x,y)
at any specific point y0 ∈ Γ, one only has to solve a deterministic finite
element problem by fixing y = y0 in (2.3.7). The subset of Γ in which (2.3.7)
has no solution has zero measure with respect to ρdy. For convenience, we
assume that the coefficient a and the forcing term f in (2.1.1) admit a
smooth extension on ρ dy-zero measure sets. Then, (2.3.7) can be extended
a.e. in Γ with respect to the Lebesgue measure, instead of the measure ρ dy.

2.4. Stochastic Galerkin methods

Stochastic Galerkin finite element methods, which we will refer to simply
as stochastic Galerkin methods (SGMs), are SFEMs for which discretization
with respect to the parameter vector y ∈ Γ is effected using a Galerkin
method. Coupled with the spatial finite element discretization in the domain
D, this results in a full discretization of the Galerkin weak formulation
(2.3.4) in the product domain D × Γ.

To this end, let P(Γ) ⊂ Lqρ(Γ) denote a finite-dimensional subspace and
let {ψm(y)}Mm=1 denote a basis for P(Γ) so that M = the dimension of
P(Γ). We seek a fully discrete approximation of the solution u(x,y) of
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(2.3.4) having the form

uJh,M (x,y) =
M∑

m=1

Jh∑

j=1

cjmφj(x)ψm(y) ∈Wh(D)× P(Γ), (2.4.1)

where the coefficients cjm, and thus uJh,M , are determined by solving the
problem

∫

Γ

∫

D
S(uJh,M ;y)T (v)ρ(y) dx dy (2.4.2)

=

∫

Γ

∫

D
vf(y)ρ(y) dx dy for all v ∈Wh(D)× P(Γ)

or, equivalently,

∫

Γ

∫

D
S

( M∑

m=1

Jh∑

j=1

cjmφj(x)ψm(y),y

)
T
(
φj′(x)

)
ψm′(y)ρ(y) dx dy

=

∫

Γ

∫

D
φj′(x)ψm′(y)f(x,y)ρ(y) dx dy (2.4.3)

for j′ ∈ {1, . . . , Jh} and m′ ∈ {1, . . . ,M},
where we have used the fact that T (·) is linear and contains no derivatives
with respect to y.

In general, the integrals in (2.4.3) cannot be evaluated exactly, so quadra-
ture rules must be invoked to effect the approximate evaluation of both the
integrals over Γ and D. However, because we assume that all methods dis-
cussed treat all aspects of the spatial discretization in the same manner, we
focus on the integral over Γ and do not explicitly write down quadrature
rules for the integral over D. As such, for some choice of quadrature points
{ŷr}Rr=1 in Γ and quadrature weights {wr}Rr=1, we have that(2.4.3) is further
discretized, resulting in

R∑

r=1

wrρ(ŷr)ψm′(ŷr) (2.4.4)

×
∫

D
S

( M∑

m=1

Jh∑

j=1

cjmφj(x)ψm(ŷr), ŷr

)
T
(
(φj′(x)

)
dx

=

R∑

r=1

wrρ(ŷr)ψm′(ŷr)

∫

D
φj′(x)f(x, ŷr) dx

for j′ ∈ {1, . . . , Jh} and m′ ∈ {1, . . . ,M}.
In general, the discrete problem (2.4.4) is a fully coupled system of JhM

equations in JhM degrees of freedom cjm, j = 1, . . . , Jh and m = 1 . . . ,M .
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Thus, the fully discrete approximation uJh,M (x,y) of the solution u(x,y)
of the SPDE can be obtained by solving the single deterministic problem
(2.4.4).

All approaches discussed in Parts 3, 4 and 5 can be viewed as being
special cases of SGMs; they differ in the choices made for the parameter
domain approximating space, P(Γ), for the basis {ψm(y)}Mm=1, and for the
quadrature rule {ŷr, wr}Rr=1.

PART THREE

Stochastic sampling methods

3.1. General stochastic sampling methods

Stochastic sampling methods (SSMs) for determining statistical information
about solutions of SPDEs with parametrized random inputs proceed by first

– choosing M points {ym}Mm=1 in the parameter domain Γ ⊆ RN

and then

– determining a spatial finite element approximate solution uJh(x;ym)
of the SPDE for each chosen parameter point ym.

To be precise, with {φj(x)}Jhj=1 denoting a finite element basis used for
spatial approximation, for each parameter point ym, m = 1, . . . ,M , we
have the approximation

uJh(x;ym) =

Jh∑

j=1

cjmφj(x) (3.1.1)

of the solution u(x,ym) of the SPDE at the parameter point ym. For
m = 1, . . . ,M , the coefficients cjm, j = 1, . . . , Jh, are determined from the
M uncoupled finite element systems

∫

D
S

( Jh∑

j=1

cjm(ym)φj(x);ym

)
T
(
φj′(x)

)
dx (3.1.2)

=

∫

D
f(x,ym)φj′(x) dx for j′ = 1, . . . , Jh.

The attraction of SSMs as embodied by (3.1.1) and (3.1.2) is that, clearly,
they are embarrassingly easy to implement: one merely wraps a parame-
ter sampling method around a deterministic legacy code for a deterministic
partial differential equation, resulting in a code that is also embarrassingly
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easy to parallelize. Clearly, after a spatial approximation method is cho-
sen, an approximation of the type (3.1.1) is completely defined by simply
specifying how one samples the parameter points {ym}Mm=1 in Γ.

As always, there are three types of inputs to consider: a finite set of ran-
dom parameters, correlated random fields, and uncorrelated random fields.
The last two are infinite stochastic processes that require the additional step
of approximation in terms of a finite number of random parameters. For
the sake of economy of exposition, in this section, we lump the first two into
the same discussion. Uncorrelated random fields cannot be lumped into the
same discussion, so they are treated separately in Appendix C.

Specifically, under the assumptions discussed in Section 2.2, we consider
direct sampling approximations of the solution u(x,y) of an SPDE with
parametrized stochastic inputs when the number N of parameters is finite
and is not dependent on the spatial grid size. Clearly, such a situation arises
in problems defined in terms of a finite number of random input parame-
ters. It can seemingly also arise whenever infinite representations, such as
Karhunen–Loève expansions, of correlated random field inputs are trun-
cated after the first N terms. However, because both spatial and temporal
approximations are present, the value of N may have to be adjusted as spa-
tial grids are refined, to ensure that the error due to truncation of infinite
stochastic representations is commensurate with the errors due to spatial
approximation. We refer to this case as ‘weakly dependent’, in contrast to
the white noise case considered in Appendix C, for which the dependence
of N on the spatial grid size is much more direct. In this section, we ignore
the weak dependence completely and assume that N is fixed independent
of the spatial grid.

The most used class of SSMs is that of Monte Carlo methods (MCMs),
which correspond to drawing independent and identically distributed (i.i.d.)
random samples ym ∈ Γ from the probability density function (PDF) ρ(y).
As is well known, MCMs result in errors that are statistically O

(
1/
√
M
)
,

that is, Monte Carlo methods converge very slowly; this is a significant
disadvantage in light of the need to solve the SPDE for every sample point
ym taken. However, the O

(
1/
√
M
)

convergence behaviour of MCMs holds
true for any N , that is, the performance of MCMs is insensitive to the
dimension of the parameter space. In contrast, the convergence behaviour
of most methods, including most methods discussed in Section 3.5 as well
as those of Parts 4 and 5, deteriorate as the dimension N of the parameter
space increases; this is a stark manifestation of the curse of dimensionality.
As a result, if N is sufficiently large, MCMs require a smaller computational
effort for the same accuracy than do most other methods discussed in this
article. Thus, one can view most efforts to develop new methods, including
most of those in Section 3.5 and Parts 4 and 5, as attempts to increase the
value of N at which MCMs start winning.
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MCMs have the additional important advantage over all other methods
of near-universal applicability in the sense that their performance is not
affected by the smoothness – or lack thereof – of u(x,y) or uJh(x,y). This
is in contrast to the polynomial-based methods discussed in Parts 4 and 5,
which do require some degree of smoothness with respect to y to achieve
their advertised accuracy. Thus, in some cases, for example when u(x,y)
or uJh(x,y) are discontinuous functions of y, MCMs may converge as fast
or faster than other methods. Note that the slow convergence of MCMs,
even for smooth dependences on y, is, in fact, a negative consequence of
the insensitivity of the method to smooth dependence on y, that is, MCMs
converge in the same way irrespective of that smoothness.

The very slow convergence of MCMs has given rise to extensive efforts
directed at inventing other simple sampling strategies that improve on the
O(1/

√
M) behaviour of MCMs, and for which the growth of the error with

respect to increasing N is manageable for at least moderately large values
of N . We briefly consider some such methods in Section 3.5. Of course,
it also gives rise to an interest in developing more complex discretization
strategies such as those discussed in Parts 4 and 5, which include, among
other methods, additional examples of SSMs.

Before moving on to the discussion of specific methods, we first discuss
the connection between SSMs and stochastic Galerkin methods (SGMs)
discussed in Section 2.4. Despite the connection between them, which is es-
tablished in Section 3.2, we will then take the more traditional and straight-
forward approach discussed so far for defining SSMs, that is, simply choose
a set of sample parameter points in the parameter domain Γ and then solve
the SPDE for each of these points.

3.2. The relation between stochastic sampling and
stochastic Galerkin methods

There are insights to be gained, especially in comparing SSMs to other
approaches for approximately solving SPDEs, by showing that SSMs can
be placed into the SGM framework, albeit for a specific choice of basis
functions.

We begin by choosing, in Lqρ(Γ), the approximating parameter space to
consist of global polynomials. For a basis, we choose the Lagrange fun-
damental polynomials {`m(y)}Mm=1 based on a set of interpolating points
{ym}Mm=1 in Γ. These basis functions satisfy the ‘delta property’

`m(ym′) = δmm′ for m,m′ = 1, . . . ,M. (3.2.1)

Thus, the parameter approximating space is now P(Γ) := span{`m(y)}Mm=1
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and the Lagrange polynomial interpolant is given by

uJh,M (x,y) =
M∑

m=1

uJh(x,ym)`m(y) =

Jh∑

j=1

M∑

m=1

cjmφj(x)`m(y), (3.2.2)

where, as always, {φj(x)}Jhj=1 denotes the finite element basis used to effect

spatial discretization. The discrete system (2.4.4) from which the coeffi-
cients cjm, j = 1 . . . , Jh and m = 1, . . . ,M , are determined is now given by

R∑

r=1

wrρ(ŷr)`m′(ŷr) (3.2.3)

×
∫

D
S

( M∑

m=1

Jh∑

j=1

cjmφj(x)`m(ŷr), ŷr

)
T
(
(φj′(x)

)
dx

=
R∑

r=1

wrρ(ŷr)`m′(yr)

∫

D
φj′(x)f(x, ŷr) dx

for j′ ∈ {1, . . . , Jh} and m′ ∈ {1, . . . ,M}.
At this juncture, we have two sets of points:

– the set {ym}Mm=1 of interpolation points used to construct the Lagrange
interpolant of the solution of the SPDE (see (3.2.2));

– the set {ŷr}Rr=1 of quadrature points used to approximate parameter
integrals appearing in the discretization of the SPDE (see (3.2.3)).

Suppose we choose the two sets to be the same. In this case, because of the
delta property of the Lagrange fundamental polynomials, it is easy to see
that (3.2.3) reduces to (3.1.2). Thus, we have shown that SSMs are SGMs
for which:

– approximation with respect to the random parameters is effected using
interpolatory polynomial approximations with Lagrange fundamental
polynomial bases;

– the interpolation points are also used as quadrature points for approx-
imating parameter integrals in the stochastic Galerkin equations.

3.3. Classical Monte Carlo sampling

The classical MCM approximation uMC
Jh,M

(x) of the solution of an SPDE is
defined by

uMC
Jh,M

(
x; {ym}Mm=1}

)
=

1

M

M∑

m=1

uJh(x,ym) for all x ∈ D,
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where the i.i.d. sample points {ym}Mm=1 in Γ are drawn from the PDF
ρ(y) and, for each sample point ym ∈ Γ, uJh(x,ym) denotes the solu-
tion (3.1.1) of the deterministic finite element system (3.1.2). Note that
uMC
Jh,M

(
x; {ym}Mm=1}

)
is itself random, in fact, it is a function of MN ran-

dom parameters, namely the N components of the M random vectors ym;
each of these vectors also has the PDF ρ(y). We then have that, for each3

x ∈ D,

E
[
uMC
Jh,M

]
= E

[
1

M

M∑

m=1

uJh(ym)

]
=

1

M

M∑

m=1

E
[
uJh(ym)

]
= E

[
uJh(y)

]
,

that is, the Monte Carlo approximation is unbiased. The goal is to derive an

estimate for E
[
‖uMC

Jh,M
− E[u(y)]‖

W̃ (D)

]
, where W̃ (D) is a spatial function

space that is appropriate for the SPDE considered. We have that
∥∥uMC

Jh,M
− E[u(y)]

∥∥
W̃ (D)

(3.3.1)

≤
∥∥E[uJh(y)]− E[u(y)]

∥∥
W̃ (D)︸ ︷︷ ︸

error due to spatial discretization

+
∥∥uMC

Jh,M
− E[uJh(y)]

∥∥
W̃ (D)︸ ︷︷ ︸

error due to Monte Carlo sampling

.

Thus, the error is estimated by separately estimating the errors due to
spatial discretization and Monte Carlo sampling.

3.3.1. Spatial discretization error

We have assumed that for any chosen y, the spatial approximation uJh(y) of
the solution of the SPDE is obtained using a finite element method. Then,
for any y ∈ Γ, the spatial error ‖u − uJh‖W (D) can often be approximated
by means of traditional finite element analyses. For second-order elliptic
partial differential equations (PDEs) with homogeneous Dirichlet boundary
conditions, under standard assumptions on the spatial domain D and the
data, one can choose

W̃ (D) = W (D) = H1
0 (D) or W̃ (D) = L2(D) = H0(D) ⊂W (D),

that is, we can measure the error in either the H1
0 (D)- or L2(D)-norms. One

can then construct uJh(·,y) ∈ Wh(D) ⊂ H1
0 (D), where Wh(D) denotes a

standard finite element space of continuous piecewise polynomials of degree
at most p based on a regular triangulation Th of the spatial domain D with
maximum mesh spacing parameter h := maxτ∈Th diam(τ). We then have
the error estimate (Brenner and Scott 2008, Ciarlet 1978)

‖uJh(·,y)− u(·,y)‖Hs(D) ≤ Cfhp+1−s‖u(·,y)‖Hp+1(D) (3.3.2)

3 Again, when there is no danger of ambiguity, we suppress explicit reference to depen-
dences on the spatial variable x. For the same reason, we sometimes simply write
uMC
Jh,M

for uMC
Jh,M

(
x; {ym}Mm=1}

)
.
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for s = 0, 1 and for a.e. y ∈ Γ, where Cf > 0 can be chosen independent of
y and h. For finite element error estimates under less rigid conditions, see
Grisvard (1985), for example.

We also have that, with ∇1 = ∇ and ∇0 = the identity operator,

‖E[uJh(y)]− E[u(y)]‖2Hs(D) =

∫

D

∣∣∣∣∇s
∫

Γ

(
uJh(y)− u(y)

)
ρ(y) dy

∣∣∣∣
2

dx

≤
∫

D

∣∣∣∣
∫

Γ
∇s
(
uJh(y)− u(y)

)
ρ(y) dy

∣∣∣∣
2

dx

≤
∫

D

∫

Γ

∣∣∇s
(
uJh(y)− u(y)

)∣∣2ρ(y) dy dx

=

∫

Γ

(∫

D

∣∣∇s
(
uJh(y)− u(y)

)∣∣2 dx

)
ρ(y) dy

= E[‖uJh(y)− u(y)‖2Hs(D)]

for s = 0 or 1. Then, combining with (3.3.2), we have that, for s = 0, 1,

‖E[uJh(y)]− E[u(y)]‖Hs(D) ≤ Cfhp+1−s(E
[
‖u‖2Hp+1(D)

])1/2
. (3.3.3)

3.3.2. Monte Carlo sampling error

We introduce the shorthand uJh = E[uJh(y)] and ũJh,m = uJh(ym). Then

E
[
‖uMC

Jh,M
− E[uJh(y)]‖2H1(D)

]
= E

[
‖uMC

Jh,M
− uJh‖2H1(D)

]

= E

[∥∥∥∥
1

M

M∑

m=1

ũJh,m − uJh
∥∥∥∥

2

H1(D)

]

= E

[∫

D

∣∣∣∣
1

M

M∑

m=1

∇
(
ũJh,m − uJh

)∣∣∣∣
2

dx

]

=
1

M2
E

[∫

D

( M∑

m=1

∇
(
ũJh,m − uJh

))
·
( M∑

m′=1

∇
(
ũJh,m′ − uJh

))
dx

]

=
1

M2
E

[∫

D

M∑

m=1

∇
(
ũJh,m − uJh

)
· ∇
(
ũJh,m − uJh

)
dx

]

+
1

M2
E



∫

D

M∑

m=1
m6=m′

M∑

m′=1

∇
(
ũJh,m − uJh

)
· ∇
(
ũJh,m′ − uJh

)
dx
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=
1

M2

∫

D
E

[
M∑

m=1

∣∣∇
(
ũJh,m − uJh

)∣∣2
]

dx

+
1

M2

∫

D

M∑

m=1
m 6=m′

M∑

m′=1

E
[
∇
(
ũJh,m − uJh

)
· ∇
(
ũJh,m′ − uJh

)]
dx

=
1

M2

∫

D
E

[
M∑

m=1

∣∣∇
(
ũJh,m − E[ũJh,m]

)∣∣2
]

dx

+
1

M2

∫

D

M∑

m=1
m 6=m′

M∑

m′=1

E
[
∇
(
ũJh,m − E[ũJh,m]

)
· ∇
(
ũJh,m′ − E[ũJh,m′ ]

)]
dx

=
1

M2

∫

D
E

[
M∑

m=1

∣∣∇
(
ũJh,m − E[ũJh,m]

)∣∣2
]

dx

=
1

M

∫

D
E
[∣∣∇

(
uJh(y)− E[∇uJh(y)]

)∣∣2
]

dx

=
1

M

∫

D
E
[∣∣∇uJh(y)− E[∇uJh(y)]

∣∣2
]

dx =
1

M

∫

D
σ
(
∇uJh(y)

)
dx.

In a similar but simpler manner, we have that

E
[
‖uMC

Jh,M
− E[uJh(y)]‖2L2(D)

]
=

1

M

∫

D
σ
(
uJh(y)

)
dx.

Then, for s = 0 or 1, we have

E
[
‖uMC

Jh,M
−E[uJh(y)]‖Hs(D)

]
(3.3.4)

≤
(
E
[
‖uMC

Jh,M
− E[uJh(y)]‖2Hs(D)

])1/2

=
1√
M

(∫

D
σ
(
∇suJh(y)

)
dx

)1/2

.

Substituting (3.3.3) and (3.3.4) into (3.3.1), we obtain the estimate for the
combined spatial discretization and sampling error given by

E
[
‖uMC

Jh,M
− E[u(y)]‖Hs(D)

]
≤ Cfhp+1−s(E

[
‖u‖2Hp+1(D)

])1/2
(3.3.5)

+
1√
M

(∫

D
σ
(
∇suJh(y)

)
dx

)1/2

for s = 0 or 1,

where, again, ∇1 = ∇ and ∇0 denotes the identity operator.
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To illustrate how the estimate (3.3.5) is used to relate the number of MC
samples M to the spatial grid size h, we assume that:

– for each y ∈ Γ, u(y) ∈ Hp+1(D);

– a finite element space consisting of piecewise polynomials of degree p
is used for spatial discretization;

– for s = 0 or 1, the variance of ∇suJh(y) is bounded.

Then, it follows that there exist constants Cspace(p, s, u) and Csampling(s, uJh)
such that

E
[
‖uMC

Jh,M
− E[u(y)]‖Hs(D)

]
≤ Cspaceh

p+1−s +
Csampling√

M
. (3.3.6)

Then, if we wish the spatial discretization error and sampling error con-
tributions to the total error to be balanced, we would arrange things such
that

Csampling√
M

≈ Cspaceh
p+1−s,

and, to achieve that balance, we would need

M = O(h−2(p+1−s))

samples.
For example, for h = 0.01, if we choose p = 1 (a piecewise linear finite

element space) and s = 1 (we are interested in H1(D) errors), we need
M ≈ 104. On the other hand, if we choose p = 2 (a piecewise quadratic
finite element space) and s = 0 (we are interested in L2(D) errors), we need
M ≈ 1012.

Of course, the values of Cspace and Csampling influence the error, so that
good estimates for these constants are important for minimizing the number
of samples needed to render the sampling error to be balanced with the
spatial discretization error. However, it is clear that the slow convergence
of MCMs can result in a large value of M , that is, a large number of PDE
solves, for even moderate values of the grid size h.

Note that even if we choose s = 1 and p = 2, we need M ≈ 108 so
that just by using quadratic instead of linear finite element spaces, the
number of MCM samples needed to balance the spatial and sampling errors
is squared. This rapid growth with respect to spatial accuracy has the
consequence that, in practice, usually an insufficient number of samples are
taken to render the sampling error comparable to the spatial discretization
error; this is certainly true if one uses higher-order accurate finite element
spatial approximations.

From (3.3.4) and (3.3.6), it is clear that smaller
∫
D σ
(
∇suJh(y)

)
dx means

that a smaller number of samples is needed to make the sampling error
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commensurate with the spatial discretization error, that is, smaller variances
require less sampling.

The estimate (3.3.5) is in terms of expectations. In practice, the error
behaves erratically as M increases; for example, it is certainly not monotone
with increasing M and may, in fact, at times increase dramatically as M is
incremented upwards.

3.4. Multilevel Monte Carlo methods

The sampling error estimate (3.3.4) involves the number of samples M and
an average variance determined from the finite element approximation of
the solution of the SPDE. To obtain smaller errors, one can attempt to
devise methods that converge faster with respect to M or one can try to
do something to reduce the variance. The former approach is considered in
Section 3.5, whereas the latter is the subject of this section. There have been
many efforts (e.g., Hammersley and Handscomb 1964, Kahn and Marshall
1953, Press, Teukolsky, Vetterling and Flannery 2007, Ripley 1987, Rubin-
stein 1981, Smith, Shafi and Gao 1997, Srinivasan 2002) devoted to variance
reduction in the MCM framework. Here, we briefly discuss multilevel Monte
Carlo methods (MLMCMs) (Barth et al. 2011, Barth et al. 2013, Barth and
Lang 2012, Charrier, Scheichl and Teckentrup 2013, Giles 2008, Ketelsen,
Scheichl and Teckentrup 2013, Cliffe et al. 2011), which are intimately con-
nected to spatial discretizations.

Starting with a coarse spatial grid with grid size h0, we determine a set
of increasingly finer spatial grids by subdivision so that, for some integer
K > 1,

hl = hl−1/K or hl = K−lh0 for l = 0, . . . , L.

At each level l, we have a spatially approximate solution uhl(y) of the
SPDE. Obviously, the approximate solution uhL(y) on the finest grid can
be written as

uhL(y) = uh0(y) +

L∑

l=1

(
uhl(y)− uhl−1

(y)
)
. (3.4.1)

We express this more economically as

uhL(y) =

L∑

l=0

∆hl(y), (3.4.2)

where

∆h0(y) = uh0(y) and ∆hl(y) = uhl(y)− uhl−1
(y) for l = 1, . . . , L.

For each l = 1, . . . , L, we determine an MCM approximation of ∆uhl(y)
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using Ml samples, that is, we have

∆MC
hl,Ml

(
{yml}Ml

ml=1

)
=

1

Ml

Ml∑

ml=0

∆hl(yml).

The MLMCM approximation of uhL(y) is then defined as

uMLMC
hL,M

(
∪Ll=0{yml}Ml

ml=1

)
=

L∑

l=0

∆MC
hl,Ml

(
{yml}Ml

ml=1

)
, (3.4.3)

where the total number of samples taken is M =
∑L

l=0Ml. Note that we
do not apply the MCM to any uhl(y) for l > 0, but rather to the differences
∆hl(y) = uhl(y)− uhl−1

(y).
As for the MCM, we split the error into spatial and sampling errors so

that

E
[
‖uMLMC

hL,M
− E[u(y)]‖Hs(D)

]

≤ ‖E[uhL(y)]− E[u(y)]‖Hs(D)︸ ︷︷ ︸
error due to

spatial discretization

+E
[
‖uMLMC

hL,M
− E[uhL(y)]‖Hs(D)

]
︸ ︷︷ ︸

error due to
multilevel Monte Carlo sampling

.

The spatial error does not depend on what sampling method we use, so it
is the same as that for the MCM method, and again we have, from (3.3.3),
that

‖E[uhL(y)]− E[u(y)]‖Hs(D) = O(hαL) with α = p+ 1− s
for s = 0 or 1, where p denotes the degree of the piecewise polynomials used
to effect the spatial finite element discretization. If we want half the error
ε/2 to be due to spatial discretization, we have that

hL = O(ε1/α). (3.4.4)

The sampling error is now the sum of the errors due to the (L+ 1) MCM
approximations, that is, noting that

E[uhL(y)] = E

[
L∑

l=0

∆hl(y)

]
=

L∑

l=0

E[∆hl(y)],

using (3.3.4) and (3.4.2) and setting

σl =

∫

D
σ
(
∇s∆hl(y)

)
dx for l = 0, . . . , L,

we have
(
E
[
‖uMLMC

hL,M
− E[uhL(y)]‖Hs(D)

])2

≤ E
[
‖uMLMC

hL,M
− E[uhL(y)]‖2Hs(D)

]
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= E

[∥∥∥∥
L∑

l=0

(
∆MC
hl,Ml

− E[∆hl(y)]
)∥∥∥∥

2

Hs(D)

]

≤ (L+ 1)

L∑

l=0

E

[∥∥∥∥
1

Ml

Ml∑

ml=1

∆hl(yml)− E
[
∆hl(y)

]∥∥∥∥
2

Hs(D)

]

≤ (L+ 1)

L∑

l=0

σl
Ml

.

We next consider how to choose the number of samples Ml, l = 0, . . . , L,
to use for each of the L + 1 MCM calculations. We do this by minimizing
the total cost of those L+ 1 calculations. Let Cl denote the cost incurred to
determine the approximate solutions of the PDE using the grid of size hl.
Then, the total sampling cost is given by

Csampling =
L∑

l=0

MlCl. (3.4.5)

We also want roughly half the total error to be due to the sampling error,
so we want

E
[
‖uMLMC

hL,M
− E[uhL(y)]‖Hs(D)

]
≈ ε

2
,

which we can guarantee by setting

(L+ 1)
L∑

l=0

σl
Ml

=
ε2

4
. (3.4.6)

Thus, we choose {Ml}Ll=0 by minimizing the total sampling cost (3.4.5)
subject to the constraint (3.4.6). This results in the choice

Ml =

[
4(L+ 1)

ε2

(
σl
Cl

)1/2 L∑

l=0

√
Ciσl

]+

,

where [·]+ denotes rounding to the nearest larger integer, and the total
sampling cost

Csampling =
4(L+ 1)

ε2

( L∑

l=0

√
Ciσl

)2

.

We assume that the cost of solving the PDE increases and the average
variance decreases as the grid size decreases. Specifically, we assume that
for some positive constants β, γ, C, and Cσ, we have

Cl = Ch−γl and σl = Cσ h
β
l (3.4.7)



552 M. D. Gunzburger, C. G. Webster and G. Zhang

so that, for some positive constant C,

Csampling ≈
C

ε2

( L∑

l=0

h
β−γ
2

l

)2

.

If β > γ, that is, if, as l increases, the variance integral σl decreases faster
than the cost Cl increases, then the l = 0 term in the right-hand side of
(3.4.7) dominates and

Csampling = O(ε−2). (3.4.8)

On the other hand, if γ > β so that σl decreases more slowly than Cl
increases, then the l = L term dominates and we have

Csampling = O(ε−2hβ−γL ) = O(ε−2− γ−β
α ), (3.4.9)

where we have used (3.4.4) to relate hL to ε. Because we have equili-
brated the sampling and spatial discretization errors, the relations (3.4.8)
and (3.4.9) also hold for the total cost, that is, we have

CMLMC = Cspatial + Csampling =

{
O(ε−2) if β > γ,

O
(
ε−2− γ−β

α

)
if β < γ.

For the MCM applied on the finest grid with grid size hL, the cost CMC =
O(ε−2− γ

α ) so that

CMLMC

CMC
=




O
(

ε−2

ε−2−γ/α

)
= O(εγ/α) if β > γ,

O
(
ε−2−(γ−β)/α

ε−2−γ/α

)
= O(εβ/α) if β < γ.

Thus, we see that in either case, the MLMCM results in a reduction in cost
compared to the MCM.

Thus, we have seen that the key to the greater efficiency of the multilevel
Monte Carlo method compared to the Monte Carlo method is writing the
approximate solution of the SPDE as the telescoping sum (3.4.1), which
is based on a set of successively refined grids. As a result, we have the
following:

– one has to do relatively lots of sampling when the realizations of the
solution of the PDE are relatively cheap, that is, Ml is large when hl
is large;

– one has to do relatively little sampling when the realizations of the
solution of the PDE are relatively expensive, that is, Ml is small when
hl is small.
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3.5. Other sampling methods

The slow convergence of the Monte Carlo method has led to a huge effort
aimed at defining sampling methods that result in faster convergence. Here,
we give a very brief review of some of these sampling methods, many of
which, unlike the Monte Carlo approach, are purely deterministic. Among
the sampling methods we do not describe are stratified, orthogonal, im-
portance, and lattice sampling. Descriptions of these methods are read-
ily available in the literature: see, for example, Hammersley and Hand-
scomb (1964), Kahn and Marshall (1953), Press, Teukolsky, Vetterling and
Flannery (2007), Ripley (1987), Rubinstein (1981), Smith, Shafi and Gao
(1997) and Srinivasan (2002). We will also encounter additional sampling
approaches elsewhere in this article.

3.5.1. Uniform sampling in hypercubes

Quasi-Monte Carlo sequences (QMC). The descriptor ‘sequences’ refers to
the fact that the QMC points are sampled one at a time so that an M -point
set retains all the points of the M − 1 point set; in this regard, QMC and
MC sampling are alike. Unlike MC, the QMC samples are deterministically
defined. Many QMC sequences have been defined, including the Faure, Hal-
ton, Niederreiter, and Sobol sequences, to name just a few. As an example,
consider Halton sequences, which are determined according to the follow-
ing procedure. Given a prime number p, any m ∈ N can be represented
as m =

∑
imip

i for some mi. Define the mapping Hp from N to [0, 1] by
Hp(m) =

∑
imi/p

i+1. Then the Halton sequence of of M points in N di-
mensions is given by {Hp1(m), Hp2(m), . . . ,HpN (m)}Mm=1, where {pn}Nn=1 is
a set of N prime numbers.

Hammersley sampling. Hammersley sampling is also deterministic, but al-
though it relies on the Halton sequence, it is not itself sequential; thus, it
does not fall within the class of QMC methods. Hammersley sampling in
the unit hypercube in RN proceeds as follows. The first coordinate of the
sample points is determined by a uniform partition of the unit interval; the
remaining coordinates are determined from an (N − 1)-dimensional Halton
sequence.

Latin hypercube sampling. Many variations of LHS sampling have been de-
veloped; here we describe the basic technique. A set of LHS sample points
in the unit hypercube in RN are determined probabilistically and non-
sequentially by the following process. First, the unit cube is divided into
MN cubical bins, that is, into M bins in each of the N coordinate directions.
Then, M of the cubical bins are chosen according to N random permuta-
tions of {1, 2, . . . ,M}. Finally, a random point is sampled within each of the
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(a) (b)

Figure 3.5.1. M = 4 point LHS samples in N = 2 dimensions. (a) The cubical bins
are determined from the permutations {3, 2, 4, 1} and {4, 2, 1, 3}. (b) The cubical
bins are determined from the permutations {1, 2, 3, 4} and {1, 2, 3, 4}.

(a) (b)

Figure 3.5.2. (a) Ten randomly selected points in a square (dots) and the centres
of mass (circles) of the corresponding Voronoi regions. (b) A 10-point CVT in a
square. The circles are simultaneously the generators of the Voronoi tessellation
and the centres of mass of the corresponding Voronoi cells.

M cubical bins so chosen; alternatively, one can simply choose the centre
points of those bins. Two sample LHS sample sets are given in Figure 3.5.1.

Centroidal Voronoi tessellations. CVTs are a non-sequential and determin-
istic sampling technique. A CVT point set has the property that each point
is simultaneously the generator of a Voronoi tessellation and the centre of
mass of its Voronoi cell. General point sets do not have this property,
so CVT point sets have to be constructed. The simplest construction algo-
rithm, known as Lloyd’s method, is an iterative method that proceeds as fol-
lows. First, select M points in the unit hypercube; for example, they could
be any of the other point sets discussed. Then construct the Voronoi tes-
sellation of the unit hypercube corresponding to the selected points. Then,
the point set is replaced by the centres of mass of the Voronoi cells. These
two steps, that is, Voronoi tessellation construction followed by centre of
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(b) (c)

(d) (e) (f)

Figure 3.5.3. M = 100 point samples. (a) Monte Carlo, (b) tensor product, (c) Hal-
ton, (d) Hammersley, (e) Latin hypercube, and (f) centroidal Voronoi tessellation.

mass determination, are repeated until convergence is achieved. Both steps
within an iteration of Lloyd’s method are very difficult to achieve, even for
N = 3 or 4. Fortunately, purely probabilistic, embarrassingly paralleliz-
able algorithms have been devised for constructing CVTs. Note that the
end product is still deterministic: the probabilistic aspect is restricted to
the construction of the CVT. Regardless, CVT point sets are considerably
more expensive to determine than most others. However, the cost remains
negligible compared to the cost of even a single typical computational so-
lution of a PDE. Figure 3.5.2 first illustrates that general point sets do not
possess the CVT property, that is, the generators of the Voronoi cells do
not coincide with the centres of mass of the cells. The figure also illustrates
the CVT property of CVT point sets.

Figure 3.5.3 illustrates uniform point sets for five sampling methods dis-
cussed so far, along with a Cartesian tensor product arrangement. The
‘uniform’ MCM point set is determined by sampling from the uniform PDF;
of course, actual realizations of MCM point sets are far from uniform,
as illustrated by Figure 3.5.3(a). The tensor product, Halton, Hammers-
ley, LHS, and CVT point sets are ‘uniform’ by construction, although the
actual uniformity varies between the various choices. Certainly, the tensor
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product set is the most ‘uniform’, but of course, the number of points M is
restricted to be an integer power of the parameter dimension N . Note that
Hammersley looks more uniform than Halton, which is why this variant of
Halton was developed. Visually, the CVT point set is second in ‘uniformity’,
a fact that is confirmed by using quantitative measures of uniformity such
as the variance in the spacing between points.

Do any of these point sets improve on the convergence rate of the MCM
method for integration? For example, for QMC sequences, it can be shown
that the error estimate ‘improves’ from 1/

√
M to (logM)N/M . Here, we see

another manifestation of the curse of dimensionality. For low-dimensional
problems, that is, for N small, one does indeed see an improvement from
1/
√
M to close to 1/M convergence. But, for large enough N , the loga-

rithmic term dominates the M term, so that the estimate predicts that the
QMC method will lose to MCM in such cases.

3.5.2. Non-uniform sampling in hypercubes

So far we have considered uniformly distributed point sets. For any of the
sampling methods, sets of points according to a given joint PDF ρ(y) can
be constructed from the uniform point sets by appropriate mapping.

For MCM sampling, the sampling itself can incorporate the density func-
tion, for instance by using a rejection method. One such method proceeds
as follows. We set ρmax = maxy∈Γ ρ(y). We then sample a point y ∈ Γ
according to the uniform PDF. We also sample a point ŷ ∈ [0, 1] according
to the one-dimensional uniform PDF. If ŷ < ρ(y)/ρmax, then y is accepted
as one of the M desired sample points. Otherwise it is rejected, and we con-
tinue the process until we obtain M sample points. The rejection method
may also be applied to QMC and Hammersley sampling.

For LHS sampling, the PDF can also be incorporated into the construction
algorithm. Suppose the parameters are independent so that the joint PDF

ρ(y) =

N∏

n=1

ρn(yn)

for N one-dimensional PDFs {ρn(yn)}Nn=1. Then, for each coordinate direc-
tion n ∈ {0, 1, . . . , N}, we partition the unit interval [0, 1] into the subinter-
vals ∪Mm=1[yn,m−1, yn,m], where 0 = yn,0 < yn,1 < · · · < yn,M−1 < yn,M = 1.
Standard LHS sampling as described in Section 3.5.1 uses uniform parti-
tions of the unit interval. However, one could also choose a partition that
respects the PDF. For example, for each n = 1, . . . , N , we should choose
the subintervals {[yn,m−1, yn,m]}Mm=1 so that

∫ yn,m

yn,m−1

ρ(yn) dyn
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is independent of n′, that is, so the probability that a sample point is in a
subinterval is the same for all subintervals.

For CVT sampling, the PDF can be easily incorporated into the construc-
tion process. In fact, by definition, the CVT sample points are centres of
mass of their Voronoi cells, so that one need only incorporate the PDF into
the centre of mass calculation.

3.5.3. Latinization of point sets

By construction and as illustrated in Figure 3.5.1, LHS sample points have
the desirable feature that there is exactly one sample point in each subinter-
val in each of the N coordinate directions. As a result, the projection of the
M sample points onto any lower-dimensional face of the hypercube results
in M distinct points. Contrast this with the tensor product point set, as
illustrated in Figure 3.5.3. Note that for this two-dimensional illustration,
projecting the 100 points to any side of the square results in only 10 distinct
points. The other point sets illustrated in Figure 3.5.3 fall somewhere in
between the LHS and tensor product cases. In fact, QMC and Hammers-
ley sampling were partly devised to prevent the type of serious coalescence
that occurs in the tensor product case. CVT point sets, on the other hand,
do suffer from the clustering (although not from the total coalescence) of
points when projected to lower-dimensional faces. The clustering of point
sets when projected onto lower-dimensional faces is considered undesirable
because it may result in a loss of accuracy in quadrature rules, for example.

On the other hand, LHS point sets usually have inferior volumetric cover-
age: see the ‘holes’ in the coverage of the LHS point set in Figure 3.5.3, es-
pecially compared to the CVT point set. Ideally, we would like both, that is,
the LHS property and good volumetric coverage. This can be achieved be-
cause any point set can be transformed into an LHS by a simple procedure
referred to as Latinization (Saka et al. 2007, Romero et al. 2006). Thus, for
example, a CVT point set can be transformed into an LHS point set. We
now describe the Latinization procedure for arbitrary point sets.

Suppose we are given a point set P = {ym}Mm=1 in the unit hypercube.
For any n ∈ {1, 2, . . . , N}, we define:

• the nth reordering of P to be the point set {Rnym}Mm=1 obtained by
reordering P according to the value of the nth coordinates of the ym
(ties can be arbitrarily broken);

• the nth shift of P to be the point set {Snym}Mm=1 such that

Snym,n′ =

{
ym,n′ if n′ 6= n,
m−Un′m

M if n′ = n,
(3.5.1)

where ym,n denotes the nth component of the vector ym and Un′m
denotes a uniform random variable taking values on the unit interval.



558 M. D. Gunzburger, C. G. Webster and G. Zhang

(a) (b) (c)

(d) (e) (f)

Figure 3.5.4. 100 points in the square. (a) Halton, (b) Hammersley, and (c) cen-
troidal Voronoi sample points. (d,e,f) Latinized versions of the corresponding sam-
ple points in (a,b,c).

Then, starting with any point set {ym}Mm=1, the corresponding Latinized
point set {Lym}Mm=1 is given by

Lym =

( N∏

n=1

(SnRn)

)
ym for m = 1, . . . ,M.

By construction, the Latinized point set is an LHS. The nth shift moves the
reordered points parallel to the nth axis while preserving the nth coordinate
ordering of the points. Latinization is the result of applying the shift to all
coordinates.

Illustrations of three Latinized point sets are provided in Figure 3.5.4.
We see that Latinization does somewhat harm the ‘uniformity’ of the point
sets. This is the cost of transforming the point sets into Latinized versions.
On the other hand, the harm does not appear to be great, especially for the
CVT point set.
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PART FOUR
Global polynomial stochastic approximation

4.1. Preliminaries

For certain classes of problems, the solution of a partial differential equation
(PDE) may have a very smooth dependence on the input random variables,
and thus it is reasonable to use a global polynomial approximation in the pa-
rameter space L2

ρ(Γ). For example, it is known (Babuška et al. 2007a, Beck
et al. 2012, Cohen et al. 2011) that the solution of a linear elliptic PDE with
diffusivity coefficient and/or forcing term, described as truncated expan-
sions of random fields, depends analytically on the input random variables
yn ∈ Γn, n = 1. . . . , N . In general, throughout this section we make the
following assumption concerning the regularity of the solution to (2.3.4).

Assumption 4.1.1. For n = 1, . . . , N , let

Γ∗n =
N∏

j=1

j 6=n

Γj ,

and let y∗n denote an arbitrary element of Γ∗n. Then there exist constants
λ and τn ≥ 0 and regions Σn ≡ {z ∈ C, dist(z,Γn) ≤ τn} in the complex
plane for which

max
y∗n∈Γ∗n

max
z∈Σn

∥∥u(·,y∗n, z)
∥∥
W (D)

≤ λ,

that is, the solution u(x,y∗n, yn) admits an analytic extension u(x,y∗n, z),
z ∈ Σn ⊂ C.

Example 4.1.2. It has been proved (Babuška et al. 2007a) that the linear
problem (2.1.2) satisfies the analyticity result stated in Assumption 4.1.1.
For example, if we take the diffusivity coefficient as the truncated nonlinear
expansion

a(x, ω) ≈ amin + exp

{
b0(x) +

N∑

n=1

√
λnbn(x)yn(ω)

}
, (4.1.1)

where VAR[yn] = λn and (λn, bn) are eigenpairs of the covariance operator
associated to the random field a(x, ω) (see Nobile et al. 2008a for details),
then a suitable analyticity region Σ(Γn; τn) is given by

τn =
1

4
√
λn‖bn‖L∞(D)

. (4.1.2)

Observe that, because
√
λn‖bn‖L∞(D) → 0 for a regular enough covariance

function (Frauenfelder et al. 2005), the analyticity region increases as n
increases. This fact naturally introduces an anisotropic behaviour with
respect to yn, n = 1, . . . , N .
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The analytic dependence of the solution with respect to the random in-
put parameters, required by Assumption 4.1.1, has also been verified for the
nonlinear elliptic problem (2.1.3) (Webster 2007) and even for the Navier–
Stokes equations (Tran, Trenchea and Webster 2012). In such situations,
global stochastic Galerkin (SGM) or stochastic collocation (SCM) methods,
with the former involving a projection onto an orthogonal basis and the lat-
ter involving a multi-dimensional interpolation, feature faster convergence
rates than do classical sampling methods.

4.2. Stochastic global polynomial subspaces

We seek to further approximate the semi-discrete spatial finite element ap-
proximation uJh(x,y) given in (2.3.5) by discretizing with respect to y using
global polynomials. Motivated by the goal of reducing the curse of dimen-
sionality, here we follow Beck et al. (2011) in defining several choices for
the multivariate polynomial spaces as alternatives to the standard isotropic
tensor product space. Each choice is realized through a particular choice
for the basis {ψm(y)}Mm=1 used to define the fully discrete approximation
uJhM (x,y) given in (2.4.1) and which is determined by solving (2.4.3).

Let p ∈ N denote a single index denoting the polynomial order of the asso-
ciated approximation and consider a sequence of increasing multi-index sets
J (p) such that J (0) = {(0, . . . , 0)} and J (p) ⊆ J (p + 1). Let PJ (p)(Γ) ⊂
L2
ρ(Γ) denote the multivariate polynomial space over Γ corresponding to the

index set J (p), defined by

PJ (p)(Γ) = span

{ N∏

n=1

ypnn

∣∣∣p ∈ J (p), yn ∈ Γn

}
. (4.2.1)

We set Mp = dim
{
PJ (p)

}
. The fully discrete global polynomial approxima-

tion is now denoted by uJhMp ∈Wh(D)
⊗PJ (p)(Γ).

Several choices for the index set and the corresponding polynomial spaces
are available (Beck et al. 2011, Cohen et al. 2011, Todor 2005, Frauenfelder
et al. 2005). The most obvious one is the tensor product (TP) polynomial
space, defined by choosing J (p) =

{
p ∈ NN | maxn pn ≤ p

}
. In this case

MTP
p = (p + 1)N , which results in an explosion in computational effort

for higher dimensions. For the same value of p, the same nominal rate of
convergence is achieved at a substantially lower costs by the total degree
(TD) polynomial spaces, for which

J (p) =

{
p ∈ NN

∣∣∣
N∑

n=1

pn ≤ p
}
,

and MTD
p = (N + p)!/(N ! p!). Table 4.2.1 provides a comparison of the

TP and TD choices and also provides stark evidence of the curse of dimen-
sionality.
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Table 4.2.1. A comparison of the Mp = dim{PJ (p)} degrees of freedom for the
total degree (TD) and tensor product (TP) polynomial spaces, where N = dim(Γ)
is the number of random variables and p is the maximal degree of polynomials.

N p Mp using TD basis Mp using TP basis

3 3 20 64
5 56 216

5 3 56 1 024
5 252 7 776

10 3 286 1 048 576
5 3 003 60 046 176

20 3 1 771 > 1× 1012

5 53 130 > 3× 1015

100 3 176 851 > 1× 1060

5 96 560 646 > 6× 1077

Other subspaces having dimension smaller than the TP subspace include
hyperbolic cross (HC) polynomial spaces, for which

J (p) =

{
p ∈ NN

∣∣∣
N∑

n=1

log2(pn + 1) ≤ log2(p+ 1)

}
,

and sparse Smolyak (SS) polynomial spaces, for which

J (p) =

{
p ∈ NN

∣∣∣
N∑

n=1

γ(pn) ≤ γ(p)

}
(4.2.2)

with γ(p) =





0 for p = 0,

1 for p = 1,

dlog2(p)e for p ≥ 2.

SS polynomial spaces are not typically used in SGMs but are the natural
choice in sparse grid SCM methods, as first described in Smolyak (1963) and
used in Nobile et al. (2008a, 2008b). Finally, as illustrated by Example 4.1.2,
it is often the case that the stochastic input data exhibits anisotropic be-
haviour with respect to the ‘directions’ yn, n = 1, . . . , N . To exploit this
effect, it is necessary to approximate uJhMp in an anisotropic polynomial
space. Following Nobile et al. (2008b), we introduce a vector

α = (α1, . . . , αN ) ∈ RN+
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(a)

(b)

Figure 4.2.1. For a finite-dimensional Γ with N = 2 and a fixed polynomial index
p = 8, we plot (a) the indices (p1, p2) ∈ J (8) corresponding to the isotropic TP, TD,
HC, and SS polynomial spaces, and (b) the indices (p1, p2) ∈ Jα(8) with α1/α2 = 2
corresponding to the anisotropic TP, TD, HC, and SS polynomial spaces.

of positive weights and define αmin = minn=1,...,N αn. The anisotropic ver-
sions Jα(p) of the aforementioned polynomial spaces are described in Beck
et al. (2011). Here, we consider the anisotropic SS polynomial space given by

Jα(p) =

{
p ∈ NN

∣∣∣
N∑

n=1

αn γ(pn) ≤ αmin γ(p)

}
.

For N = 2 dimensions, Figure 4.2.1 provides examples of both isotropic and
anisotropic TP, TD, HC, and SS polynomial spaces, where we chose p = 8
and α = (2, 1).

In Sections 4.3 and 4.4 we provide the generalized construction of global
SGMs and the global SCMs, respectively, of the approximation uJhMp . In
Section 4.5 we use an example to compare the computational complexity of
the two approaches.

4.3. Global stochastic Galerkin methods

In this section we focus on the fully discrete approximation (2.4.3) in the
subspace Wh(D)

⊗PJ (p)(Γ), where both spatial and stochastic approxi-
mation are effected by a Galerkin method. We use standard locally sup-
ported piecewise polynomial finite element bases in Wh(D) but, taking ad-
vantage of Assumption 4.1.1, we use global (orthonormal) polynomial bases
in PJ (p)(Γ). As such, it is entirely natural to call these approaches global
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Table 4.3.1. Relationship between standard continuous probability density
functions and the Askey scheme of continuous hyper-geometric polynomials.

Distribution PDF Polynomial family Support

normal
1√
2π

e
−y2

2 Hermite Hp,n(y) [−∞,∞]

uniform
1

2
Legendre Pp,n(y) [−1, 1]

beta
(1− y)α(1 + y)β

2α+β+1B(α+ 1, β + 1)
Jacobi P

(α,β)
p,n (y) [−1, 1]

exponential e−y Laguerre Lp,n(y) [0,∞]

gamma
yαe−y

Γ(α+ 1)
generalized Laguerre L

(α)
p,n(y) [0,∞]

stochastic Galerkin finite element methods, which we abbreviate to global
stochastic Galerkin methods (gSGMs), and to treat the solution as a func-
tion of d + N variables, that is, of the d spatial variables and N random
parameters. Generally, these techniques are intrusive in the sense that they
are non-ensemble-based methods, requiring the solution of a discrete system
that couples all spatial and probabilistic degrees of freedom.

Specifically, let
{
ψp,n(yn)

}∞
p=0
⊂ L2

ρn(Γn)

denote a set of L2
ρn-orthonormal polynomials in Γn. That is, recalling that

ρ(y) =
∏N
n=1 ρn(yn), we have, for all n = 1, . . . , N and p, p′ = 0, 1, 2, . . . ,

∫

Γn

ψp,n(yn)ψp′,n(yn)ρn(yn) dyn = δpp′ .

Table 4.3.1 lists examples of polynomial families that provide orthonormal
bases with respect to several continuous PDFs. The listed families are de-
rived from the family of hypergeometric orthonormal polynomials known as
the Askey scheme (Askey and Wilson 1985), of which the Hermite polyno-
mials employed by Wiener (1938) are one member.

Multivariate L2
ρ(Γ)-orthonormal polynomials are defined as tensor prod-

ucts of the univariate polynomials with p ∈ J (p), that is,

ψp(y) =

N∏

n=1

ψpn,n(yn).
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Figure 4.3.1. For (N = 1)-dimensional Γ and −4 ≤ y ≤ 5, we plot the first six
Hermite polynomials H0(y) = 1, H1(y) = y, H2(y) = y2 − 1, H3(y) = y3 − 3y,
H4(y) = y4 − 6y2 + 3, and H5(y) = y5 − 10y3 + 15y.

H(2,2) H(0,5), H(5,0) H(1,4), H(4,1) H(2,3), H(3,2)

H(0,3), H(3,0) H(1,2), H(2,1) H(0,4), H(4,0) H(1,3), H(3.1)

H(0,0) H(0,1), H(1,0) H(0,2), H(2,0) H(1,1)

Figure 4.3.2. The two-dimensional Hermite
polynomials Hp(y) such that p1 + p2≤5.
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One- and two-dimensional Hermite polynomials are shown in Figures 4.3.1
and 4.3.2, respectively.

Having chosen the bases {φj(x)}Jhj=1 ∈Wh(D) and

{ψp(y)}p∈J (p) ∈ PJ (p)(Γ),

the gSGM approximation is defined by

ugSGJhMp
(x,y) =

∑

p∈J (p)

up(x)ψp(y) =
∑

p∈J (p)

Jh∑

j=1

up,jφj(x)ψp(y), (4.3.1)

where, after a reordering of the index set J (p), is of the form (2.4.1) with
M = Mp. Solving for the coefficients {up,j}, p ∈ J (p), j = 1, . . . , Jh,
requires the substitution of the approximation (4.3.1) into the weak for-
mulation (2.4.3), resulting in a (possibly nonlinear) coupled system of size
JhMp× JhMp. Given that {ψp}p∈J (p) is an orthonormal basis, it is easy to
show that the first two moments are given by

E
[
ugSGJhMp

]
(x) = u0(x) and

VAR
[
ugSGJhMp

]
(x) =

∑

p∈J (p)

u2
p(x)− E

[
ugSGJhMp

]2
(x).

Example 4.3.1. This example provides a detailed description of the con-
struction of a gSGM for the linear elliptic problem (2.1.2) with f(x, ω) =
f(x) and a(x, ω) = a(x,y(ω)) for y ∈ Γ. For Wh ⊂ H1

0 (D), the gen-
eral semi-discrete approximation (2.3.5) is given as follows. Find uJh ∈
Wh(D)

⊗
L2
ρ(Γ) such that

∫

D
a(x,y)∇uJh(x,y) · ∇vJh(x) dx (4.3.2)

=

∫

D
f(x)vJh(x) dx ρ-a.e. in Γ

for all vJh ∈ Wh(D). The solution uJh(x,y) of (4.3.2) satisfies Assump-
tion 4.1.1 and is uniquely defined for almost every y ∈ Γ.

Let {φj}Jhj=1 denote a finite element basis for Wh(D) such that φj(xj′) =

δjj′ for all j = 1, . . . , Jh, where {xj}Jhj=1 denotes the grid nodes, and consider

the semi-discrete approximation given by uJh(x,y) =
∑Jh

j=1 uj(y)φj(x). For

any y ∈ Γ, let u(y) = [u1(y), u2(y), . . . , uJh(y)]T be the vector of nodal
values of uJh(x,y). Then the semi-discrete problem (4.3.2) can be written
algebraically as

A(y)u(y) = f ρ-a.e. in Γ,
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where fj =
∫
D f(x)φj(x) dx for j = 1, . . . , Jh and, for j, j′ = 1, . . . , Jh,

Aj,j′(y) =

∫

D
a(x,y) ∇φj(x) · ∇φj′(x) dx. (4.3.3)

The fully discrete approximation of (2.1.2) directly follows from (2.4.2),

as follows. Find ugSGJhMp
∈Wh(D)

⊗PJ (p)(Γ) such that
∫

Γ

∫

D
a(x,y)∇ugSGJhMp

(x,y) · ∇vJhMp(x,y)ρ(y) dx dy (4.3.4)

=

∫

Γ

∫

D
vJhMp(x,y)f(x)ρ(y) dx dy

for all vJhMp ∈ Wh(D)
⊗PJ (p)(Γ). Let up = [up,1, . . . , up,Jh ] denote the

vector of nodal values of the finite element solution corresponding to the pth
stochastic mode. Then, substituting (4.3.1) into (4.3.4), i.e., performing a
Galerkin projection onto the span of {ψp}p∈J (p), yields the following linear
algebraic system: for all p ∈ J (p),

∑

p′∈J (p)

(∫

Γ
A(y)ψp(y)ψp′(y)ρ(y) dy

)

︸ ︷︷ ︸
Kp,p′

up′ =

∫

Γ
fψp(y)ρ(y) dy

︸ ︷︷ ︸
Fp

. (4.3.5)

Note that coefficient matrix K of the system (4.3.5) consists of (Mp)
2 block

matrices, each of size Jh × Jh, that is, the size of A(y). In some cases,
such as when a(x,y) can be represented as a linear function of the random
variables yn, n = 1, . . . , N , the matrix K can have an extremely sparse
block structure. However, in other cases for which a(x,y) is a nonlinear
function of the random variables, for example for lognormal random fields,
K is extremely dense. As such, the preconditioning of the system (4.3.5) is a
very active area of research (Desceliers, Ghanem and Soize 2005, Eiermann,
Ernst and Ullmann 2007, Elman, Ernst and O’Leary 2001, Elman et al.
2011, Ernst, Powell, Silvester and Ullmann 2009, Ernst and Ullmann 2010,
Ghanem and Kruger 1996, Ghanem and Spanos 1991, Gordon and Powell
2012, Jin, Cai and Li 2007, Parks et al. 2006, Pellissetti and Ghanem 2000,
Powell and Elman 2009, Powell and Ullmann 2010, Simoncini and Szyld
2007, Ullmann 2010, Ullmann, Elman and Ernst 2012).

Even in the case of a sparse gSGM matrix K, it is impractical to form
and store the matrix explicitly. Typically, matrix-free methods are applied
to solve the linear system without ever having to store K in memory, as
described in Pellissetti and Ghanem (2000). Depending on the form of the
coefficient a(x,y), certain choices can be made to reduce this complexity by
decoupling the stochastic and spatial components, by writing K as a series
of random variables multiplied by several deterministic stiffness matrices.
Even so, this approach requires us to rewrite the Galerkin solver for each
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new choice of a(x,y). A more convenient and robust choice is to perform
an ‘offline’ projection of a(x,y) onto span{ψp(y)}p∈J (p), and then exploit
the three-term relation of orthonormal polynomials (Ghanem and Spanos
1991, Gautschi 2004) when constructing K. This approach can be used
regardless of the form of the stochastic coefficient and is used to compare
the computational complexity of gSGMs with the methods discussed in
Section 4.5.

4.4. Global stochastic collocation methods

Similar to Section 4.3, we again focus our attention on the construction of
the fully discrete approximation (2.4.3) in the subspace Wh(D)

⊗PJ (p)(Γ).
However, rather than making use of a Galerkin projection in both the de-
terministic and stochastic domains, in this section we instead collocate the
semi-discrete approximation uJh(·,y) given in (2.3.5) on an appropriate set
of points {ym}Mm=1 ∈ Γ to determine M solutions {uJh(·,ym)}Mm=1 ∈ Γ. One
can then use these solutions to construct a global, possibly interpolatory,
polynomial to define the fully discrete approximation ugSCJhM

(x,y). We refer
to this process as global stochastic collocation finite element methods, or in
short, as global stochastic collocation methods (gSCMs).

Clearly, gSCMs are non-intrusive in that the solution of (2.4.3) naturally
decouples into a series of M deterministic solves, each of size Jh × Jh. In
this sense, gSCMs are another example of stochastic sampling methods.

In Sections 4.4.1 and 4.4.3 we describe the construction of two gSCMs, one
based on Lagrange interpolation and the other on non-intrusive projections
onto an orthonormal basis.

4.4.1. Global Lagrange interpolation in the parameter space

Interpolatory approximations in the parameter space start with the selec-
tion of a set of distinct points {ym}Mm=1 ∈ Γ and a set of basis functions4

{ψm(y)}Mm=1 ∈ PJ (p)(Γ). Then, we seek an approximation

ugSCJhM
∈Wh(D)

⊗
PJ (p)(Γ)

of the form

ugSCJhM
(x,y) =

M∑

m=1

cm(x)ψm(y). (4.4.1)

4 In general, the number of points and number of basis functions do not have to be the
same, e.g., for Hermite interpolation. However, because here we only consider Lagrange
interpolation, we let M denote both the number of points and the cardinality of the
basis.
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The Lagrange interpolant is defined by taking M realizations uJh(x,ym) of
the finite element approximation of the solution u(x,ym) of (2.1.1), that is,
one solves the finite element approximation for each of the interpolation
points in the set {ym}Mm=1. Then, the coefficient functions {cm(x)}Mm=1 are
determined by imposing the interpolation conditions

M∑

m=1

cm(x)ψm(ym′) = uJh(x,ym′) for m′ = 1, . . . ,M. (4.4.2)

Thus, each of the coefficient functions {cm(x)}Mm=1 is a linear combination
of the finite element data {uMh

(x,ym)}Mm=1; the specific linear combinations
are determined in the usual manner from the entries of the inverse of the
M ×M interpolation matrix L having entries Lm′,m = ψm(ym′), m,m

′ =
1, . . . ,M . The sparsity and conditioning of L heavily depend on the choice
of basis; that choice could result in matrices that range from fully dense to
diagonal and from highly ill-conditioned to perfectly well-conditioned.

The main attraction of interpolatory approximations of parameter depen-
dences is that it effects a complete decoupling of the spatial and probabilis-
tic degrees of freedom. Clearly, once the interpolation points {ym}Mm=1 are
chosen, we can solve M deterministic finite element problems, one for each
parameter point ym, with total disregard to what basis {ψm(y)}Mm=1 we
choose to use. Then, the coefficients {cm(x)}Mm=1 defining the approxima-
tion (4.4.1) are found from the interpolation conditions in (4.4.2); it is only
in this last step that the choice of stochastic basis enters into the picture.
Note that this decoupling property makes the implementation of Lagrange
interpolatory approximations of parameter dependences almost as trivial as
it is for Monte Carlo sampling. However, if that dependence is smooth,
as described by Assumption 4.1.1, because of the higher accuracy of global
polynomial approximations in the space PJ (p)(Γ), interpolatory approxima-
tions require substantially fewer sampling points to achieve a desired error
tolerance.

Given a set of interpolation points, to complete the set-up of a Lagrange
interpolation problem, one has to choose a basis. The simplest and most
popular choice is to use Lagrange fundamental polynomials, that is, poly-
nomials that possess a delta property ψm′(ym) = δm′m, where δm′m denotes
the Kronecker delta. In this case, the interpolating conditions (4.4.2) re-
duce to cm(x) = uJh(x,ym) for m = 1, . . . ,M , that is, the interpolation
matrix L is simply the M ×M identity matrix. In this sense, the use of
Lagrange polynomial bases can be viewed as resulting in pure sampling
methods, much the same as Monte Carlo methods, but instead of randomly
sampling in the parameter space Γ, the sample points are deterministically
structured. Mathematically, using the Lagrange fundamental polynomial
basis {ψm}Mm=1, this ensemble-based approach results in the fully discrete
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approximation of the solution u(x,y) of the PDE given by

ugSCJhM
(x,y) =

M∑

m=1

uJh(x,ym)ψm(y). (4.4.3)

We note that the construction of multivariate Lagrange fundamental poly-
nomials for a general set of interpolations points is not an easy matter.
Fortunately, there exist means for so doing: see Sauer and Xu (1995).

4.4.2. Generalized sparse grid construction

We follow Beck et al. (2011) and Nobile et al. (2008a, 2008b) to describe
a generalized version of the Smolyak sparse grid gSCM first described in
Smolyak (1963) for interpolation and quadrature. For each n = 1, . . . , N ,
let ln ∈ N+ denote the one-dimensional level of approximation and let

{y(ln)
n,k }

m(ln)
k=1 ⊂ Γn denote a sequence of one-dimensional interpolation points

in Γn. Here, m(l) : N+ → N+ is such that m(0) = 0, m(1) = 1, and
m(l) < m(l + 1) for l = 2, 3, . . . , so that m(l) strictly increases with l;
m(ln) defines the the total number of collocation points at level ln. For a
univariate function v ∈ C0(Γn), we introduce, for n = 1, . . . , N , a sequence

of one-dimensional Lagrange interpolation operators U
m(ln)
n : C0(Γn) →

Pm(ln)−1(Γn) given by

U m(ln)
n [v](yn) =

m(ln)∑

k=1

v
(
y

(ln)
n,k

)
ψ

(ln)
n,k (yn) for ln = 1, 2, . . . , (4.4.4)

where ψ
(ln)
n,k ∈ Pm(ln)−1(Γn), k = 1, . . . ,m(ln), are Lagrange fundamental

polynomials of degree pln = m(ln)− 1 such that

ψ
(ln)
n,k (yn) =

m(ln)∏

k′=1
k′ 6=k

(
yn − y(ln)

n,k′
)

(
y

(ln)
n,k − y

(ln)
n,k′
) .

Using the convention that U m0
n = 0, we introduce the difference operator

given by

∆m(ln)
n = U m(ln)

n −U
mln−1
n . (4.4.5)

For the multivariate case, we let l = (l1, . . . , lN ) ∈ NN+ denote a multi-
index and let L ∈ N+ denote the total level of the sparse grid approximation.
Then, for each n = 1, . . . , N , we exploit the operator (4.4.5) to form the
N -dimensional hierarchical surplus operator defined by

∆m =
N⊗

n=1

∆m(ln)
n (4.4.6)
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and, from (4.4.5) and (4.4.6), the Lth level generalized sparse grid operator
given by

Im,g
L =

∑

g(l)≤L

N⊗

n=1

∆m(ln)
n , (4.4.7)

where g : NN+ → N is another strictly increasing function that defines the
mapping between the multi-index l and the level L used to construct the
sparse grid. Finally, given the functions m and g and a level L, we can
construct the generalized sparse grid approximation of uJh as

ugSCJhML
= Im,g

L [uJh ] (4.4.8)

=
∑

L−N+1≤g(l)≤L

∑

k∈{0,1}N
g(l+k)≤L

(−1)|k|
N⊗

n=1

U m(ln)
n [uJh ].

The fully discrete gSCM (4.4.8) requires the independent evaluation of the
finite element approximation uJh(x,y) on a deterministic set of distinct
collocation points given by

H m,g
L =

⋃

g(l)≤L

N⊗

n=1

{
y

(ln)
n,k

}m(ln)

k=1

having cardinality ML, that is, we have M = ML in (2.4.3). Moreover,
the construction of the sparse grid approximation naturally enables the
evaluation of moments through simple sparse grid quadrature formulas, for
example,

E
[
ugSCJhML

]
(x) =

ML∑

m=1

uJh(x,ym)

∫

Γ
ψm(y)ρ(y) dy

︸ ︷︷ ︸
precomputed weights

=

ML∑

m=1

uJh(x,ym)wm

and

VAR
[
ugSCJhML

]
(x) =

ML∑

m

w̃mu
2
Jh

(x,ym)− E
[
uSCJhML

]2
(x),

where w̃m = VAR[ψm(y)], m = 1, . . . ,ML.
To compare the gSCM based on the generalized sparse grid construction

with the gSGM approximation (4.3.1), Beck et al. (2011) constructed the
underlying polynomial space associated with the approximation (4.4.8) for
particular choices of m, g, and L. Let m−1(k) = min{l ∈ N+ | m(l) ≥ k}
denote the left inverse of m such that m−1

(
m(l)

)
= l and m

(
m−1(k)

)
≥ k.

Then, let s(l) =
(
m(l1), . . . ,m(lN )

)
and define the polynomial index set

Jm,g(L) =
{
p ∈ NN : g

(
m−1(p+ 1)

)
≤ L

}
.

With this definition in hand, we recall the following proposition, whose proof
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can be found in Beck et al. (2011, Proposition 1), which characterizes the
underlying polynomial space of the sparse grid approximation Im,g

L [uJh ].

Proposition 4.4.1. Let m : N+ → N+ and g(l) : NN+ → N denote strictly
increasing functions, as described above, and let

{y(l)
n,k}

m(l)
k=1 ⊂ Γn

denote arbitrary distinct points used in (4.4.4) to determine U
m(l)
n , l =

1, 2, . . . . Then,

(1) for any function v ∈ C0(Γ), the approximation Im,g
L [v] ∈ PJm,g(L)(Γ);

(2) for all v ∈ PJm,g(p)(Γ), we have Im,g
L [v] = v.

With Proposition 4.4.1 in hand, we are in position to relate the sparse grid
approximation Im,g

L with the corresponding polynomial subspaces defined
in Section 4.2, that is, PJm,g(L)(Γ) with m(l) = l and

g(l) = max
n=1,...,N

(ln − 1) ≤ L,

g(l) =
N∑

n=1

(ln − 1) ≤ L,

g(l) =
N∑

n=1

log2(ln) ≤ log2(L+ 1)

for the tensor product, total degree, and hyperbolic cross polynomial sub-
spaces, respectively. However, the most widely used polynomial subspace
is the sparse Smolyak given by (4.2.2), which, in the context of the sparse
grid approximation, is defined by

m(1) = 1, m(l) = 2l−1 + 1, and g(l) =

N∑

n=1

(ln − 1). (4.4.9)

Moreover, similar to the anisotropic polynomial spaces described in Sec-
tion 4.2, the generalized gSCM enables anisotropic refinement with respect
to the direction yn by incorporating a weight vector α = (α1, . . . , αN ) ∈ RN+
into the mapping g : NN+ → N, for example, g(l) =

∑N
n=1 αn(ln−1) ≤ αminL

in (4.4.9). Anisotropic refinement will be discussed further in the sections
that follow but first, we describe two choices of points used for (4.4.8),
namely the Clenshaw–Curtis and Gauss points. See Trefethen (2008) for an
insightful comparison of quadrature formulas based on these points.

Remark 4.4.2. Recall that the number of distinct nodes on the sparse
grid H m,g

L is denoted by ML, which corresponds to the number of basis
functions in (4.4.8) and the number of evaluations of the finite element ap-
proximation, that is, M = ML in (2.4.3). However, in general, the number
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of probabilistic degrees of freedom Mp = dim(PJm,g(L)(Γ)), in the approxi-

mation ugSGJhMp
, is much smaller. Nonetheless, as we describe in Section 4.5,

in order to compare gSCMs and gSGMs fairly we have to take into account
the total computational cost required to achieve a desired tolerance. As
we will show, our cost analysis is based entirely on the total number of
matrix–vector products required by the conjugate gradient solution of the
underlying Galerkin and collocation systems.

Clenshaw–Curtis points on bounded hypercubes

Without loss of generality, assume that Γn = [−1, 1]. The Clenshaw–Curtis
points are the extrema of Chebyshev polynomials (CC) (see Clenshaw and
Curtis 1960) given by, for any choice of m(l) > 1,

y
(l)
k = − cos

(
π(k − 1)

m(l)− 1

)
for k = 1, . . . ,Ml. (4.4.10)

In addition, we set y
(l)
1 = 0 if m(l) = 1 and choose the multi-index map g as

well as the number of points m(l), l > 1, at each level as in (4.4.9). We note
that this particular choice corresponds to the most commonly used sparse
grid approximation, because it leads to nested sequences of points, i.e.,

{
y

(l)
k

}m(l)

k=1
⊂
{
y

(l+1)
k

}m(l+1)

k=1
,

so that the sparse grids are also nested, that is, H m,g
L ⊂H m,g

L+1 .
It is important to note that we are interested in optimal approximation for

relatively large parameter space dimension N . However, even though this
CC choice of points results in a significantly reduced number of points used
by Im,g

L , that number of points eventually increases exponentially fast with
N . With this in mind, we consider an alternative to the standard Clenshaw–
Curtis (CC) family of rules, which attempts to retain the advantages of
nestedness while reducing the excessive growth described above. To achieve
this, we use the fact that the CC interpolant is exact in the polynomial space
Pm(l)−1 to drop, in each direction, the requirement that the function m be
strictly increasing. Instead, we define a new mapping m̃(l) : N+ → N+ such
that m̃(l) ≤ m̃(l + 1) and m̃(l) = m̃(k), where k = argmin{k′ | 2k′−1 ≥ L}.
In other words, we simply re-use the current rule for as many levels as
possible, until we properly include the total degree subspace. Figure 4.4.1
shows the difference between the standard CC sparse grid and the ‘slow
growth’ CC (sCC) sparse grid for l = 1, 2, 3, 4. Figure 4.4.2 shows the
corresponding polynomial accuracy of the CC and sCC sparse grids when
used in a quadrature rule approximation (as opposed to an interpolant) of
an integral in C0(Γ). Note that the concept of ‘slow growth’ can also be
applied to other nested one-dimensional rules, including, for example, the
Gauss–Patterson points (Gerstner and Griebel 1998).
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(a)

(b)

Figure 4.4.1. For Γ = [−1, 1]× [−1, 1], the sparse grids corresponding to levels L =
1, 2, 3, 4 with (a) standard Clenshaw–Curtis points and (b) slow-growth Clenshaw–
Curtis points.

(a)

(b)

Figure 4.4.2. For Γ = [−1, 1] × [−1, 1], the polynomial subspaces associated with
integrating a function u ∈ C0(Γ), using sparse grids corresponding to levels L =
3, 4, 5, 6 with (a) standard Clenshaw–Curtis points and (b) slow-growth Clenshaw–
Curtis points.
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Gaussian points in bounded or unbounded hypercubes

The Gaussian points {y(ln)
n,k }

m(ln)
k=1 ⊂ Γn are the zeros of the orthogonal poly-

nomials with respect to some positive weight function. In general, they are
not nested. The natural choice for the weight function is the PDF ρ(y) of
the random variables y. However, in the general multivariate case, if the
random variables yn are not independent, the PDF ρ(y) does not factorize,
that is,

ρ(y) 6=
N∏

n=1

ρn(yn).

As a result, we first introduce an auxiliary probability density function
ρ̂(y) : Γ→ R+ defined by

ρ̂(y) =
N∏

n=1

ρ̂n(yn) for all y ∈ Γ, and such that

∥∥∥∥
ρ

ρ̂

∥∥∥∥
L∞(Γ)

<∞.

Note that ρ̂(y) factorizes so that it can be viewed as a joint PDF for N
independent random variables,

For each parameter dimension n = 1, . . . , N , let them(ln) Gaussian points
be the roots of the m(ln) degree polynomial that is ρ̂n-orthogonal to all
polynomials of degree m(ln − 1) on the interval Γn. The auxiliary density
ρ̂ should be chosen as close as possible to the true density ρ so that the
quotient ρ/ρ̂ is not too large.

Selection of the anisotropic weights

The ability to treat the stochastic dimensions differently is a necessity be-
cause many practical problems exhibit highly anisotropic behaviour, for ex-
ample, the size τn of the analyticity region (4.1.2) associated to each random
variable yn increases with n.

We assume that the solution to our problem has analytic dependence
with respect to each of the random variables, that is, it satisfies Assump-
tion 4.1.1. In such a case, we know that if we approximate the dependence
on each random variable with polynomials, the best approximation error
decays exponentially fast with respect to the polynomial degree. More pre-
cisely, for a bounded region Γn and a univariate analytic function, we recall
the following lemma, whose proof can be found in Babuška et al. (2007a,
Lemma 7) and which is an immediate extension of the result given in DeVore
and Lorentz (1993, Chapter 7, Section 8).

Lemma 4.4.3. Given a function v ∈ C0(Γn;W (D)), which admits an
analytic extension in the region of the complex plane

Σ(Γn; τn) = {z ∈ C, dist(z,Γn) ≤ τn}, for some τn > 0,
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then

Em(ln) ≡ min
w∈Pm(ln)

‖v − w‖C0
n
≤ 2

e2rn − 1
e−2Mlnrn max

z∈Σ(Γn;τn)
‖v(z)‖

W (D)

with

0 < rn =
1

2
log

(
2τn
|Γn|

+

√
1 +

4τ2
n

|Γn|2
)
. (4.4.11)

A related result with weighted norms holds for unbounded random vari-
ables whose probability density decays like the Gaussian density at infinity:
see Babuška et al. (2007a)

In the multivariate case, the size τn of the analyticity region depends, in
general, on the direction n. As a consequence, the decay coefficient rn will
also depend on the direction. The key idea of the anisotropic sparse gSCM
in Nobile et al. (2008a) is to place more points in directions having slower
convergence rate, that is, with smaller value for rn. In particular, we link the
weights αn with the rate of exponential convergence in the corresponding
direction by

αn = rn for all n = 1, 2, . . . , N. (4.4.12)

Let

α = r = min
n=0,1,...,N

{rn} and R(N) =
N∑

n=1

rn. (4.4.13)

As we observe in Remark 4.4.8, the choice α = r is optimal with respect to
the error bound derived in Theorem 4.4.4. Note that we have now trans-
formed the problem of choosing α into one of estimating the decay coeffi-
cients r = (r1, . . . , rN ). Nobile et al. (2008a, Section 2.2) have given two
rigorous estimation strategies: the first uses a priori knowledge about the
error decay in each direction, whereas the second uses a posteriori informa-
tion obtained from computations and fits the values of r.

An illustration of the salubrious effect on the resulting sparse grid by
taking this anisotropy into account is given in Figure 4.4.3.

Sparse grid gSCM error estimates
Global sparse grid Lagrange interpolation gSCMs can be used to approxi-
mate the solution u ∈ C0(Γ;W (D)) using finitely many function values. By
Assumption 4.1.1, u admits an analytic extension. Furthermore, each func-
tion value is computed by means of a finite element technique. Recall that
the fully discrete approximation is defined as ugSCJhMp

= Im,g
L [uJh ], where the

operator Im,g
L is defined in (4.4.7). Our aim is to provide a priori estimates

for the total error

ε = u−Im,g
L [uJh ].
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Figure 4.4.3. For Γ = [0, 1]×[0, 1] and L = 7, we plot (a) the anisotropic sparse grids
with α2/α1 = 1 (isotropic), α2/α1 = 3/2, and α2/α1 = 2 utilizing the Clenshaw–
Curtis points, and (b) the corresponding indices (l1, l2) such that α1(l1 − 1) +
α2(l2 − 1) ≤ αminL.

We will investigate the error5

∥∥u−Im,g
L [uJh ]

∥∥ ≤
∥∥u− uJh

∥∥
︸ ︷︷ ︸

(I)

+
∥∥uJh −Im,g

L [uJh ]
∥∥

︸ ︷︷ ︸
(II)

(4.4.14)

evaluated in the natural norm L2
ρ(Γ;W (D)). By controlling the error in this

natural norm, we also control the error in the expected value of the solution,
for example,

‖E[ε]‖W (D) ≤ E
[
‖ε‖W (D)

]
≤ ‖ε‖L2

ρ(Γ;W (D)).

5 If the stochastic data, i.e., a and/or f , are not an exact representation but are instead
an approximation in terms of N random variables, e.g., arising from a suitable trunca-
tion of infinite representations of random fields, then there would be an additional error
‖u − uN‖ to consider. This contribution to the total error was considered in Nobile
et al. (2008b, Section 4.2).
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The quantity (I) accounts for the error with respect to the spatial grid
size h, that is, the finite element error. It is estimated using standard
approximability properties of the finite element space Wh(D) and the spatial
regularity of the solution u; see, for example, Brenner and Scott (2008) and
Ciarlet (1978). Specifically, we have

‖u− uJh‖L2
ρ(Γ;W (D)) ≤ hs

(∫

Γ
Cπ(y)C(s;u(y))2ρ(y) dy

)1/2

.

Our primary concern will be to analyse the approximation error (II),
that is, ∥∥uJh −Im,g

L [uJh ]
∥∥
L2
ρ(Γ;W (D))

, (4.4.15)

for the Clenshaw–Curtis points using the anisotropic sparse grid approxi-
mation with m(l) and g defined as follows:

m(1) = 1, m(l) = 2l−1 + 1, and g(l) =

N∑

n=1

αn(ln− 1) ≤ αminL. (4.4.16)

Convergence for other isotropic and anisotropic choices for m(l) and g, as
well as for the sparse grid generated from the Gaussian points, are considered
in Nobile et al. (2008a, 2008b).

Under the very reasonable assumption that the semi-discrete finite ele-
ment solution uJh admits an analytic extension as described in Assump-
tion 4.1.1, with the same analyticity region as for u, the behaviour of the
error (4.4.15) will be analogous to

∥∥u−Im,g
L [u]

∥∥
L2
ρ(Γ;W (D))

.

For this reason, in the following analysis we consider the latter.
Recall that even though in the global estimate (4.4.14) it is enough to

bound the approximation error (II) in the L2
ρ(Γ;W (D))-norm, we consider

the more stringent L∞(Γ;W (D))-norm. In our notation the norm ‖ · ‖∞,n
is shorthand for ‖ · ‖L∞(Γn;W (D)) and similarly, ‖ · ‖∞,N is shorthand for
‖ · ‖L∞(Γ;W (D)).

The multi-dimensional error estimate
∥∥u−Im,g

L [u]
∥∥ is constructed from

a sequence of one-dimensional estimates and a tight bound on the number
of distinct nodes on the sparse grid H m,g

L . To start with, we again let Em
denote the best approximation error, as in Lemma 4.4.3, to functions u ∈
C0(Γn;W (D)) by polynomial functions w ∈ PM . Because the interpolation

formula U
Mln
n , n = 1, . . . , N , is exact for polynomials in Pm(ln)−1, we can

apply the general formula
∥∥u−U m(ln)(u)

∥∥
∞,n ≤

(
1 + Λm(ln)

)
Em(ln)−1(u), (4.4.17)
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where Λm denotes the Lebesgue constant for the points (4.4.10). In this
case, it is known that

Λm ≤
2

π
log(m− 1) + 1 (4.4.18)

for Mln ≥ 2; see Dzjadyk and Ivanov (1983). On the other hand, using
Lemma 4.4.3, the best approximation to functions u ∈ C0(Γn;W (D)) that
admit an analytic extension as described by Assumption 4.1.1 is bounded by

Em(ln)(u) ≤ 2

e2rn − 1
e−2m(ln)rnθ(u), (4.4.19)

where

θ(u) = max
1≤n≤N

max
y∗n∈Γ∗n

max
z∈Σ(Γn;τn)

‖u(z)‖
W (D)

.

For n = 1, 2, . . . , N , let

In : C0(Γn;W (D))→ C0(Γn;W (D))

denote the one-dimensional identity operator, and use (4.4.17)–(4.4.19) to
obtain the estimates

∥∥(In −U m(ln)
n )(u)

∥∥
∞,n ≤

4

e2rn − 1
ln e−rn2ln θ(u)

and
∥∥(∆m(ln)

n )(u)
∥∥
∞,n ≤

8

e2rn − 1
ln e−rn2ln−1

θ(u). (4.4.20)

Because the value θ(u) affects the error estimates as a multiplicative con-
stant, from here on we assume it to be one without any loss of generality.

The next theorem provides an error bound in terms of the total number
ML of Clenshaw–Curtis collocation points. The details of the proof can be
found in Nobile et al. (2008a, Section 3.1.1) and are therefore omitted. A
similar result holds for the sparse grid Im,g

L using Gaussian points, and can
found in Nobile et al. (2008a, Section 3.1.2).

Theorem 4.4.4. Let u ∈ L2
ρ(Γ;W (D)) and let the functions m and g

satisfy (4.4.16) with weights αn = rn. Then, for the gSCM approximation
based on the Clenshaw–Curtis points, we have the following estimates.

• Algebraic convergence
(
0 ≤ L ≤ R(N)

r log(2)

)
:

‖(IN −Aα(L,N))(u)‖L∞(ΓN ;W (D)) ≤ Ĉ(r, N)M−µ1L (4.4.21)

with µ1 =
r (log(2) e− 1/2)

log(2) +
∑N

n=1 r/g(n)
.
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• Sub-exponential convergence
(
L > R(N)

r log(2)

)
:

‖(IN −Aα(L,N))(u)‖L∞(ΓN ;W (D)) (4.4.22)

≤ Ĉ(r, N)M
µ2
2
L exp

(
−R(N)M

log(2)
R(N)

µ2

L

)

with µ2 =
r(

log(2) +
∑N

n=1 r/g(n)
) ,

where the constant Ĉ(r, N), defined in Nobile et al. (2008a, (3.14)), is
independent of ML.

Remark 4.4.5. The estimate (4.4.22) may be improved when L → ∞.
Such an asymptotic estimate is obtained using the better counting result
described in Nobile et al. (2008a, Remark 3.7).

Remark 4.4.6. We observe that sub-exponential rate of convergence is
always faster than the algebraic one when L > R(N)/(r log(2)). However,
this estimate is of little practical relevance since in practical computations
such high L is seldom reached.

Remark 4.4.7 (on the curse of dimensionality). Suppose the stochas-
tic input data are truncated expansions of random fields and that we are able
to estimate the values {rn}∞n=1. Whenever the sum

∑∞
n=1 r/rn is finite, the

algebraic exponent in (4.4.21) does not deteriorate as the truncation dimen-
sion N increases. This condition is satisfied, for example, by the problem
discussed in Section 4.5. This is a clear advantage compared to the isotropic
Smolyak method studied in Nobile et al. (2008b) because we have rn → +∞
and we can show that Ĉ(r, N) does not deteriorate with N , that is, it is
bounded, and therefore the method does not suffer from the curse of dimen-
sionality. In fact, in such a case, we can work directly with the anisotropic
Smolyak formula in infinite dimensions, that is,

∑∞
n=1(ln − 1)rn ≤ Lr.

The condition
∑∞

n=1 r/rn < ∞ is clearly sufficient to break the curse of
dimensionality. In that case, even an anisotropic full tensor approximation
also breaks the curse of dimensionality.

The algebraic exponent for the convergence of the anisotropic full ten-
sor approximation again deteriorates with the value of

∑∞
n=1 r/rn, but the

constant for such convergence is

N∑

n=1

2

e2rn − 1
.

This constant is worse than the one corresponding to the anisotropic Smolyak
approximation Ĉ(r, N).

On the other hand, by considering the case where all rn are equal, and
using the results derived in Nobile et al. (2008b), we see that our estimate of
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the algebraic convergence exponent is not sharp. We expect the anisotropic
Smolyak method to break the curse of dimensionality for a wider set of prob-
lems, that is, the condition

∑∞
n=1 r/rn <∞ does not seem to be necessary to

break the curse of dimensionality. This is in agreement with Remark 4.4.5.

Remark 4.4.8 (optimal choice of weights α). Looking at the expo-
nential term e−h(l,d), where h(l, d) =

∑
n=1 rn2ln−1, which determines the

rate of convergence, we can try to choose the weight α as the solution to
the optimization problem

max
α∈RN+
|α|=1

min
g̃(l)≤αL

h(l, N),

where g̃(l) =
∑N

n=1 αn(ln − 1). This problem has the solution α = r and
hence our choice of weights (4.4.12) is optimal.

4.4.3. Non-intrusive spectral projection onto an orthonormal basis

The interpolatory approaches described in Section 4.4.1 evaluate the semi-
discrete approximation uJh(·,ym) given by (2.3.5) on an appropriate set of
points {ym}Mm=1 ∈ Γ and then apply a global, possibly interpolatory, poly-

nomial to construct the approximation ugSCJhML
(x,y). However, the resulting

interpolant is not L2
ρ-optimal with respect to the selected function basis and

only seeks to match the value of uJh(·,ym) at the collocation points. On the
other hand, the Galerkin projection methods described in Section 4.3 pro-
duce an optimal approximation, but require the solution of a fully coupled
JhMp × JhMp system of equations.

Given a set of basis functions ψp(y), the non-intrusive orthonormal ap-
proximation approach6 (Reagana, Najm, Ghanem and Knio 2003, Ghanem
and Spanos 2003, Migliorati, Nobile, Von Schwerin and Tempone 2013, El-
dred et al. 2008) seeks to construct a fully discrete approximation, denoted
by uSCJhM (x,y), similar to (4.3.1), but which uses fewer samples from the
semi-discrete approximation. As such, it is a variation of the stochastic col-
location approach for which the coefficients up(x) are chosen to minimize
the L2

ρ(Γ;Wh(D)) error norm∥∥∥∥u(x,y)−
∑

p∈J (p)

up(x)ψp(y)

∥∥∥∥
L2
ρ(Γ;W (D))

, (4.4.23)

and hence they must satisfy the linear system of equations
∑

p∈J (p)

∫

Γ
up(x)ψp(y)ψp′(y)ρ(y) dy =

∫

Γ
u(x,y)ψp′(y)ρ(y) dy (4.4.24)

6 This approach is often referred to as the non-intrusive polynomial chaos (NIPC)
method.
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for all p′ ∈ J (p). If the system (4.4.24) is written in matrix form, the
left-hand side corresponds to the mass matrix associated with the basis and
furthermore, if {ψp(y)}p∈J (p) are L2

ρ-orthonormal, that is,
∫

Γ
ψp(y)ψp′(y)ρ(y) dy = δpp′ ,

then (4.4.24) decouples so that

up(x) =

∫

Γ
u(x,y)ψp(y)ρ(y) dy ≈

∫

Γ
uJh(x,y)ψp(y)ρ(y) dy

=

Jh∑

j=1

( M∑

m=1

wmu(xj ,ym)ψp(ym)

)
φj(x), (4.4.25)

where {wm,ym}Mm=1 are the selected quadrature weights and points. The
main challenge of this non-intrusive approach is that the integral for the
coefficients up(x), given by (4.4.25), can be very high-dimensional. However,
we can make use of the sampling methods described in Sections 3.3–3.5 or
the sparse grid methods described in Section 4.4.1, which combat the curse
of dimensionality and produce accurate high-dimensional quadrature rules.
Thus, using only a set of samples from the semi-discrete approximation, we
obtain the ‘near-optimal7’ L2

ρ(Γ) projection.

Least-squares methods

The least-squares method (LS) (see, e.g., Le Mâıtre and Knio 2010 and the
references therein) is a statistical approach for minimizing the discrepancy
between an approximation and a set of samples. Given a number of samples
from u(x,ym) ≈ uJh(x,ym), m = 1, . . . ,M , the LS approach seeks an
approximation that solves the optimization problem

min
up(x)

F (up(x)) = min
up(x)

M∑

m

(
u(x,ym)−

∑

p∈J (p)

up(x)ψp(ym)

)2

. (4.4.26)

The minimum is attained at up(x), which satisfies the system of linear
equations

0 =
∂F (up(x))

up′
= −2

M∑

m

(
u(x,ym)−

∑

p∈J (p)

up(x)ψp(ym)

)
ψp′(ym)

(4.4.27)
for p′ ∈ J (p). If the number of samples and the number of basis functions
are equal, then (4.4.27) is equivalent to the interpolation problem of finding

7 The approximation is optimal only if the right-hand side integrals are computed ex-
actly. In practice, the quadrature error will contaminate the approximation and can
potentially dominate all other sources of numerical error.
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up(x) that satisfy

uSCJhM (x,ym) =
∑

p∈J (p)

up(x)ψp(ym). (4.4.28)

However, in order to avoid the potential ill-conditioning of the interpola-
tion matrix, the LS approach utilizes more samples than basis functions,
that is, it over-determines the system. On the other hand, if the samples
are taken according to a Monte Carlo strategy, then the corresponding LS
approximation is asymptotically equivalent to (4.4.24) (Pukelsheim 1993).
Other sampling techniques can be utilized as well: see, for example, Hardin
and Sloane (1993) and Pukelsheim (1993). In effect, the LS approach is a
compromise between the pointwise interpolation approach and the global
optimal projection method.

Compressed sensing

Compressed sensing (CS) (see, e.g., Doostan and Owhadi 2011, Mathelin
and Gallivan 2010 and the references therein) is a model reduction approach
that assumes u(x,y) can be well approximated by only a small number of
basis functions. In other words, given an approximation of the form (4.3.1),
there are two sets of coefficients uε0p (x) and uε1p (x) such that

∑

p∈J (p)

up(x)ψp(y) =
∑

p∈J (p)

uε0p (x)ψp(y) +
∑

p∈J (p)

uε1p (x)ψp(y),

where ‖uε0p (x)‖L0
ρ(Γ) is small (i.e., most of the uε0p (x) are zero) and

‖uε1p (x)‖W (D) < ε for all p ∈ J (p).

The CS approach considers a set of samples u(x,ym) and seeks to find the
coefficients uε0p (x). The optimization problem can be written as





min
u
ε0
p (x)
‖uε0p (x)‖L0

ρ(Γ)

subject to

M∑

m

(
u(x,ym)−

∑

p∈J (p)

uε0p (x)ψp(y)

)2

≤ ε.
(4.4.29)

The L0
ρ(Γ)-optimization problem is NP-hard and hence infeasible in many

circumstances. The common practice is to replace (4.4.29) with an equiva-
lent L1

ρ(Γ) problem, that is,




min
u
ε0
p (x)
‖uε0p (x)‖L1

ρ(Γ)

subject to
M∑

m

(
u(x,ym)−

∑

p∈J (p)

uε0p (x)ψp(y)

)2

≤ ε.
(4.4.30)
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If sufficiently sparse uε0p (x) exists, then a solution to (4.4.30) exists for a very
small number of samples and hence the dominant coefficients can be found
at a cost that is highly reduced when compared to the previous methods
described above.

4.5. Computational complexity comparisons

We now focus our attention on a comparison of gSGM, using an orthogonal
basis, with gSCM, using a Lagrange basis, for solving the stochastic linear
elliptic problem described in Example 2.1.2 in two spatial dimensions. We
consider the problem first used in Nobile et al. (2008a, 2008b) and used in
many subsequent research papers.

The problem is to solve

−∇ · (a(·, ω)∇u(·, ω)) = f(·, ω) in D × Ω,

u(·, ω) = 0 on ∂D × Ω,
(4.5.1)

with D = [0, b]2. We choose the deterministic load

f(x1, x2, ω) = cos(x1) sin(x2)

and the random coefficient a(x, ω) with one-dimensional spatial dependence
given by

log(a(x, ω)− 0.5) = 1 + y1(ω)

(√
πC

2

)1/2

+

N∑

n=2

ζn ϕn(x) yn(ω), (4.5.2)

where

ζn :=
(√
πC
)1/2

exp

(−
(
bn2 cπC

)2

8

)
if n > 1 (4.5.3)

and

ϕn(x) :=





sin

(bn2 cπx1

Cp

)
if n even,

cos

(bn2 cπx1

Cp

)
if n odd.

(4.5.4)

For x1 ∈ [0, b], let Cl denote a desired physical correlation length for the
random field a, meaning that the random variables a(x1, ω) and a(x′1, ω)
become essentially uncorrelated for |x1 − x′1|�Cl. Then, the parameter Cp
in (4.5.4) can be taken as Cp = max{b, 2Cl} and the parameter C in (4.5.2)
and (4.5.3) is given by C = Cl/Cp. Expression (4.5.2) represents a possible
truncation of a one-dimensional random field with stationary covariance

COV[log(a− 0.5)](x1, x
′
1) = exp

{
−(x1 − x′1)2

C2
l

}
.
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In this example, the random variables {yn(ω)}∞n=1 are independent, have
zero mean and unit variance, that is, E[yn] = 0 and E[ynyn′ ] = δnn′ for
n, n′ ∈ N+, and are uniformly distributed in the interval [−

√
3,
√

3].
Because the random variables yn are uniformly distributed, the orthog-

onal polynomials in the gSGM correspond to the Legendre polynomials.
Moreover, due to the boundedness of yn, we can use the Gauss–Legendre
or the Clenshaw–Curtis points. The finite element space for the spatial
discretization is the span of continuous functions that are piecewise poly-
nomials of degree two over a uniform triangulation of D with 4 225 spatial
unknowns.

We next compare the cost associated with setting up and solving the fully
discrete approximations ugSGJhMp

and ugSCJhML
described in Sections 4.3 and 4.4,

respectively.

4.5.1. The cost of constructing the Galerkin and collocation systems

In order to construct a highly sparse, symmetric, and positive definite cou-
pled system of algebraic system of equations (4.3.5), describing the gSGM
approximation of (4.5.1), we first need to project a(x,y) onto the orthonor-
mal basis, that is, use the non-intrusive spectral projection described in
Section 4.4.3, and by letting εSG be the error in SG approximation, we
must choose q ∈ N such that

∣∣∣∣a(x,y)−
∑

q∈J (q)

aq(x)ψq(y)

∣∣∣∣ < εSG, (4.5.5)

where

aq(x) =

∫

Γ
a(x,y)ψq(y)ρ(y) dy.

This requires the evaluation of an N -dimensional quadrature due to the ex-
ponential expansion of a(x,y). Substituting a(x,y) =

∑
q∈J (q) aq(x)ψq(y)

into (4.3.3) yields, for all j, j′ = 1 . . . , Jh,

Aj,j′(y) =
∑

q∈J (q)

ψq(y)

∫

D
aq(x) ∇φj(x) · ∇φj′(x) dx (4.5.6)

=
∑

q∈J (q)

ψq(y)[Aq]j,j′ ,

where [Aq]j,j′ =
∫
D aq(x) ∇φj(x) ·∇φj′(x) dx can be computed component-

wise by utilizing a quadrature rule over Jh elements on the mesh Th.
Given a sufficiently resolved stochastic finite element stiffness matrix

A(y) =
∑
q∈J (q)[Aq]ψq(y), we substitute A(y) into (4.3.5) and obtain,
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Figure 4.5.1. Structure of the matrix K in (4.5.9), where we use a p = 4 approx-
imation in the sparse Smolyak polynomial subspace but increase the order of the
data projection, that is, q = 0, 1, 2, 4, 5, 9. In each case, the matrix is a 145 × 145
block matrix, but the sparsity ratio decreases until the matrix is full at order q = 9.

Figure 4.5.2. Structure of the matrix K in (4.5.9), where we use a p = 3 approxi-
mation in the total degree polynomial subspace but increase the order of the data
projection, that is, q = 0, 1, 2, 4, 5. In each case, the matrix is a 165 × 165 block
matrix, but the sparsity ratio decreases until the matrix eventually becomes full.

for all p′ ∈ J (p),

∑

p∈J (p)

∑

q∈J (q)

[∫

Γ
[Aq]ψq(y)ψp′(y)ψp(y)ρ(y) dy

]
up = Fp′ , (4.5.7)

where up and Fp are introduced in Example (4.3.1). By defining

[Gq]p′,p =

∫

Γ
ψqψp′ψpρ(y) dy and K =

∑

q∈J (q)

[Gq]
⊗

[Aq], (4.5.8)

where [Gq]
⊗

[Aq] denotes the Kronecker product of [Gq] and [Aq], we
obtain the gSGM coupled system of equations, namely,

Ku = F , (4.5.9)

with K symmetric and positive definite.
Figures 4.5.1 and 4.5.2 display the effect of fixing the projection order p

of the solution but increasing the order q of the data projection: the matrix
K loses its sparsity as q increases. These increases would be required if the
data were highly nonlinear in order to minimize the error of the projection
as in (4.5.5).

Each coefficient matrix [Aq] in the expansion of the operator A(y) re-
quires NeNq ∗ Na evaluations of the coefficient a(x,y), where Ne is the
number of finite elements (i.e., the cardinality of τh for a given h), Nq is
the number of quadrature points per element, and Na denotes the number



586 M. D. Gunzburger, C. G. Webster and G. Zhang

of quadrature points used to approximate the integral
∫

Γ
a(x,y)ψq(y)ρ(y) dy.

In the case that a(x, ω) is affine, Na ≈ (N + 1) ∗ Na1 , where Na1 is the
number of quadrature points used in one dimension. Then, the set-up cost
for constructing the non-zero entries of the matrix K is given by

WSG
set-up ≈MpNeNq ∗Na, (4.5.10)

where we recall that Mp = dim{PJ (p)}.
On the other hand, for the gSCM, we must construct ML finite element

systems, requiring work on the order of

WSC
set-up ≈MLNeNq. (4.5.11)

Note that even set-up costs can dramatically affect the total computational
cost; we do not take this into account in the results shown in Figure 4.5.3.

4.5.2. Cost of solving the Galerkin and collocation systems

For the solution of the stochastic Galerkin system, we use a preconditioned
conjugate gradient (CG) method. Previous efforts (Elman et al. 2011, Beck
et al. 2011) have performed similar computational comparisons, and use
the work of solving one deterministic finite element problem as a metric for
measuring the total computational cost of both the gSGM and gSCM. On
the other hand, our cost analysis is based entirely on the number of matrix–
vector products involved per CG iteration of the gSGM and gSCM solutions.
This metric enables a truly fair comparison of the overall computational
complexity associated with both approaches.

Given an expansion of the form (4.5.6) of the operator A(y) and the
Kronecker product form of the SG operator K, we define

NG =
∑

q∈J (q)

number of non-zeros in [Gq]

to be the total number of non-zeros in the matrices {[Gq]}q∈J (q). At each
iteration of the preconditioned CG (PCG) method, each non-zero block in
K in (4.5.9) implies a matrix–vector product of the form (4.3.5). Therefore,
our cost estimate for the stochastic Galerkin method, based on the sparsity
of the spectral Galerkin system, is then given by

WSG
solve ≈ NGNiter, (4.5.12)

where Niter is the number of PCG iterations. As the density of the Galerkin
system K increases, more matrix–vector products are required in order to
iterate the PCG method.
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On the other hand, for the gSCM, the total cost of constructing the fully
discrete approximation uSCJhMp

is defined as

WSC
solve ≈

ML∑

k=1

Nk,

which is the number of iterations required by the PCG method to solve all
ML distinct required finite element simulations; here Nk denotes the number
of iterations the PCG method requires to solve the kth realization.

To study the convergence of both the gSGM and the sparse grid gSCM,
we consider a problem with a fixed dimension N = 8 and correlation length
C = 1/64, and investigate the behaviour as the order p (Galerkin) and the
level L (collocation) increase, respectively. We note that this is essentially
an isotropic problem, that is, almost all yn, n = 1, . . . , 8, have equal weight
in the solution. Thus, we will only consider the behaviour with respect to
the isotropic polynomial subspaces described in Section 4.2.

Because we do not know the exact solution for this problem, we check the
convergence of the expected value of the solution with respect to a ‘highly
enriched’ solution, which we consider close enough to the exact one. To
construct this ‘exact’ solution uex, we make use of the isotropic sparse grid
gSCEM in the sparse Smolyak subspace with L = 8, which uses more than
20 000 Clenshaw–Curtis points. We approximate the computational error
for the gSGM with p = 0, 1, . . . and for the gSCM with L = 0, 1, . . . , as

‖E[εSG]‖ ≈ ‖E[uex−ugSGJhMp
]‖ and ‖E[εSC ]‖ ≈ ‖E[uex−ugSCJhML

]‖, (4.5.13)

where ugSGJhMp
and ugSCJhML

are given by (4.3.1) and (4.4.8), respectively. For

the solution of the stochastic Galerkin and collocation systems, we used pre-
conditioned conjugate gradient (PCG). To ensure that we are fair to both
methods and that we do not over-resolve either system, we set the tolerance
in the solvers to be ‖uex − uSGJhMp

‖/10 and ‖uex − uSCJhML
‖/10 respectively.

Figure 4.5.3(a) displays the convergence of the stochastic Galerkin and col-
location methods against the total number of stochastic degrees of freedom
(SDOF) for both methods. For the stochastic Galerkin method, we take the
SDOF to be the dimension of the stochastic spectral polynomial basis Mp

for a given solution projection order. For the stochastic collocation method,
we take the SDOF to be the total number of sample points ML used to ob-
tain the solution at a given level. For the Galerkin case, we considered two
polynomial subspaces, described in Section 4.2. In particular, we project
the SG approximation onto both the total degree subspace and the sparse
Smolyak subspace, using an orthonormal expansion in the Legendre basis.
For this particular example, the Smolyak subspace is impractical due to the
fast growth of the SDOF. In the collocation approximation, we approximate
Im,g
L [uJh ] usingm and g defined by (4.4.9) using the Clenshaw–Curtis (CC),



588 M. D. Gunzburger, C. G. Webster and G. Zhang

(a)

(b)

Figure 4.5.3. For Γ = [0, 1]8 so that N = 8 and for correlation length C = 1/64,
(a) convergence of the gSGM and gSCM versus the stochastic degrees of freedom
(DOF), and (b) convergence of the gSGM and gSCM versus the total computa-
tional cost. The SG approximation uses projections onto the isotropic total degree
(TD) and sparse Smolyak (SS) polynomial subspaces spanned by the Legendre
polynomials. For the sparse grid SC approximation, the Gauss–Legendre (GL),
Clenshaw–Curtis (CC), and slow-growth CC (sCC) sparse grid points are used.



SFEMs for SPDEs 589

Gauss–Legendre (GL), and the slow-growth CC (sCC) sparse grid points.
As we expect, as the tolerance increases, the gSGM approximations in the
TD subspace require less SDOF than any of the gSCM approximations.

However, Figure 4.5.3(b) compares the total computational cost as de-
scribed above. The results reveal that all three sparse grid gSCM approx-
imations dramatically outperform the gSGM, even the widely used gSGM
based on TD subspaces. Of course, this is for one particular example and
choice of stochastic input data. However, as the problems become ever
more nonlinear, we expect the results to become even more favourable to
the gSCM.

PART FIVE
Local piecewise polynomial stochastic approximation

To realize their high accuracy, the stochastic Galerkin and stochastic col-
location methods in Part 4, based on the use of global polynomials as
discussed, require high regularity of the solution u(x,y) with respect to
the random parameters {yn}Nn=1. They are therefore ineffective for the ap-
proximation of solutions that have irregular dependence with respect to
those parameters. Motivated by finite element methods (FEMs) for spa-
tial approximation, an alternative and potentially more effective approach
for approximating irregular solutions is to use locally supported piecewise
polynomial approaches for approximating the solution dependence on the
random parameters. To achieve greater accuracy, global polynomial ap-
proaches increase the polynomial degree; piecewise polynomial approaches
instead keep the polynomial degree fixed but refine the grid used to define
the approximation space.

To set the stage, in Section 5.1, we use standard FEMs commonly used
for spatial approximation and apply them to parameter space approxima-
tion. We show that such approaches are especially vulnerable to the curse
of dimensionality, so we then consider more judicious choices of piecewise
polynomial bases.

5.1. Stochastic Galerkin methods with piecewise polynomial
bases

In this section, we consider the use of standard FEMs with locally sup-
ported piecewise polynomial bases for approximation with respect to the
parameters y. Spatial discretization is effected by using a finite element
space defined on D consisting of continuous piecewise polynomial func-
tions on a conforming triangulation Th of D with maximum mesh size
h > 0. Because both spatial and parameter discretizations utilize piecewise
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polynomial bases, such methods can be viewed as direct extensions of stan-
dard FEMs to the product domain D × Γ. For each y ∈ Γ, the spatial
discretization error of the semi-discrete solution uJh(x,y) can be estimated
using standard FEM error analyses. For example, for second-order elliptic
PDEs with homogeneous Dirichlet boundary conditions, under standard as-
sumptions on the spatial domain D and the data, the spatial discretization
error is given by (3.3.2).

To define a finite element space with respect to the parameters y ∈ Γ,
we start by partitioning the domain Γ. For simplicity, we assume Γ is
bounded. For a PDF with unbounded support, for example, a Gaussian
PDF, an appropriate truncation can be applied such that the integral of the
PDF over the domain exterior to Γ is much smaller than the desired error
of the approximate solution. Without further loss of generality, we assume
Γ is the hypercube [−1, 1]N . Then, for a prescribed grid size8 h̃, a partition
T
h̃

of the parameter domain Γ into the finite number of disjoint, covering

N -dimensional boxes γm̃ =
∏N
n=1[am̃n , b

m̃
n ] with m̃ = 1, . . . , M̃ is defined;

we have Γ =
⋃M̃
m̃=1 γm̃ with the number of elements M̃ = (2/h̃)N . Then,

a finite element subspace ZM ⊂ L2
ρ(Γ) consisting of piecewise polynomial

functions of degree less than or equal to p is defined with respect to the
partition T

h̃
.

If functions belonging to ZM are continuous on Γ, basis functions can be
chosen that have support over a small number of the elements γm̃. In this
case, the dimension M of ZM , that is, the number of parameter degrees of
freedom, is given by9

M =
(
pM̃1/N + 1

)N
=

(
p

2

h̃
+ 1

)N
. (5.1.1)

Alternatively, if functions belonging to ZM are discontinuous across the
faces of the elements γm̃, then the basis functions can be chosen to have
support over only a single element. In this case, we have that the number
of parameter degrees of freedom is given by

M = M̃

(
(N + p)!

N !p!

)
=

(
2

h̃

)N((N + p)!

N !p!

)
. (5.1.2)

According to (5.1.2), the number of degrees of freedom associated with the

element γm̃, m̃ = 1, . . . , M̃ , is given by Mm̃ := (N + p)!/(N !p!) and the

8 Of course, h̃ is chosen so that 2/h̃ is an integer; h̃−1 a power of 2 is a common choice.
Also, there are no additional difficulties (other than more complicated notation) en-
gendered by the use of non-uniform grid spacings in each parameter direction.

9 Here, we assume that the finite element space ZM is a Lagrange finite element space,
i.e., a finite element space for which the degrees of freedom are nodal values.
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index set of the basis functions corresponding to that element is given by

Im̃ =
{
m = 1, . . . ,M | supp(ψm(y)) ⊂ γm̃

}
for m̃ = 1, . . . , M̃ ;

the cardinality of Im̃ is Mm̃. Then, due to the fact that

ψm̃′(y) = 0 for m̃′ ∈ Im̃ and y /∈ γm̃,
the coupled JhM × JhM system (2.4.3) uncouples into M̃ systems, each of

size JhMm̃ × JhMm̃, that is, for each m̃ = 1, . . . , M̃ , we have the system

∫

D

∫

γm̃

ρ(y)S

( Jh∑

j=1

∑

m̃∈Im̃

cjm̃φj(x)ψm̃(y),y

)
T
(
φj′(x)

)
ψm̃′(y) dx dy

=

∫

D

∫

γm̃

ρ(y)φj′(x)ψm̃′(y)f(y) dx dy (5.1.3)

for j = 1, . . . , Jh and m̃′ ∈ Im̃.
If ZM is chosen as the piecewise constant finite element space with re-

spect to T
h̃
, that is, p = 0, then M = M̃ and the single basis function

corresponding to the m̃th element is given by

ψm̃(y) =

{
1 if y ∈ γm̃,
0 otherwise.

If, to approximate the integrals with respect to Γ appearing in (2.4.3), we
choose an M -point quadrature rule {ym̃, wm̃}Mm̃=1 such that each element

γm̃, m̃ = 1, . . . , M̃ = M , contains one and only one of the quadrature points
{ym̃}Mm̃=1, we have that Mm̃ = 1, Im̃ = m̃, and

ψm̃(ym̃′) = δm̃m̃′ for m̃, m̃′ = 1, . . . , M̃ = M. (5.1.4)

As a result, with

uJh(x,ym̃) =

Jh∑

j=1

cjm̃φj(x) for m̃ = 1, . . . , M̃ = M,

the decoupled SFEM system (5.1.3) for the element γm̃, m̃ = 1, . . . , M̃ = M ,
reduces to the single Jh × Jh deterministic finite element system

∫

D
S
(
uJh(x,ym̃),ym̃

)
T
(
φj′(x)

)
dx =

∫

D
φj̃′(x)f(ym̃) dx,

for j′ = 1, . . . , Jh, from which the coefficients cjm̃, j = 1, . . . , Jh are de-
termined. Thus, we have a total uncoupling of the spatial and param-
eter degrees of freedom, that is, we merely have to solve a sequence of

M = M̃ deterministic finite element problems of size Jh × Jh to determine

{uJh(x,ym̃)}M̃m̃=1, that is, to determine all the coefficients cjm, j = 1 . . . , Jh
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and m = 1, . . . ,M appearing in the fully discrete approximation (2.4.1).
Clearly, this is an example of another stochastic sampling method.

Although this approach is clearly straightforward to implement using ex-
isting deterministic FEM software as a black box, in practice it is useful
only for problems having a small number of random input parameters,
that is, only if the parameter dimension N is small. In fact, for both
continuous and discontinuous bases, the degrees of freedom given in (5.1.1)
and (5.1.2), respectively, increase exponentially as the N increases. For
example, for the piecewise constant case just discussed, the quadrature or
sample points {ym̃}Mm̃=1 form a tensor product grid, that is, an M = (2/h̃)N -

point Cartesian grid with 2/h̃ points in each parameter direction. As a
means to alleviate the curse of dimensionality while retaining the decou-
pling property that leads to (5.1.3), we next discuss a hierarchical sparse
grid stochastic collocation method based on piecewise hierarchical bases in-
tegrated into the SFEM framework.

5.2. Hierarchical stochastic collocation methods

We now introduce several types of one-dimensional piecewise hierarchical
polynomial bases (Bungartz and Griebel 2004, Griebel 1998) which are the
foundation of hierarchical sparse grid stochastic collocation methods.

5.2.1. One-dimensional piecewise linear hierarchical interpolation

We begin with the one-dimensional hat function having support [−1, 1] de-
fined by

ψ(y) = max{0 , 1− |y|},

from which an arbitrary hat function with support (yl,i − h̃l, yl,i + h̃l) can
be generated by dilation and translation, that is,

ψl,i(y) := ψ

(
y + 1− ih̃l

h̃l

)
,

where l denotes the resolution level, h̃l = 2−l+1 for l = 0, 1, . . . denotes
the grid size of the level l grid for the interval [−1, 1], and yl,i = i h̃l − 1
for i = 0, 1, . . . , 2l denotes the grid points of that grid. The basis function
ψl,i(y) has local support and is centred at the grid point yl,i; the number of
grid points in the level l grid is 2l + 1.

With Z = L2
ρ(Γ), a sequence of subspaces {Zl}∞l=0 of Z of increasing

dimension 2l + 1 can be defined as

Zl = span
{
ψl,i(y) | i = 0, 1, . . . , 2l

}
for l = 0, 1, . . . .



SFEMs for SPDEs 593

The sequence is dense in Z, that is, ∪∞l=0Zl = Z, and nested:

Z0 ⊂ Z1 ⊂ · · · ⊂ Zl ⊂ Zl+1 ⊂ · · · ⊂ Z.
Each of the subspaces {Zl}∞l=0 is the standard finite element subspace of
continuous piecewise linear polynomial functions on [−1, 1] that is defined

with respect to the grid having grid size h̃l. The set {ψl,i(y)}2li=0 is the
standard nodal basis for the space Zl.

An alternative to the nodal basis {ψl,i(y)}2li=0 for Zl is a hierarchical basis,
which we now construct, starting with the hierarchical index sets

Bl =
{
i ∈ N

∣∣ i = 1, 3, 5, . . . , 2l − 1
}

for l = 1, 2, . . .

and the sequence of hierarchical subspaces defined by

Wl = span
{
ψl,i(y) | i ∈ Bl

}
for l = 1, 2, . . . .

Due to the nesting property of {Zl}∞l=0, we have that Zl = Zl−1 ⊕Wl and

Wl = Zl/ ⊕l−1
l′=0 Zl′ for l = 1, 2, . . . . We also have the hierarchical subspace

splitting of Zl given by

Zl = Z0 ⊕W1 ⊕ · · · ⊕Wl for l = 1, 2, . . . .

Then, the hierarchical basis for Zl is given by

{ψ0,0(y), ψ0,1(y)
}
∪
(
∪ll′=1{ψl′,i(y)}i∈Bl′

)
. (5.2.1)

It is easy to verify that, for each l, the subspaces spanned by the hierarchical
and the nodal basis bases are the same, that is, they are both bases for Zl.

The nodal basis {ψL,i(y)}2Li=0 for ZL possesses the delta property, that is,
ψL,i(yL,i′) = δi,i′ for i, i′ ∈ {0, . . . , 2L}. The hierarchical basis (5.2.1) for
ZL possesses only a partial delta property; specifically, the basis functions
corresponding to a specific level possess the delta property with respect to
its own level and coarser levels, but not with respect to finer levels, that is,
for l = 0, 1, . . . , L and i ∈ Bl we have

for 0 ≤ l′ < l, ψl,i(yl′,i′) = 0 for all i′ ∈ Bl′ ,
for l′ = l, ψl,i(yl,i′) = δi,i′ for all i′ ∈ Bl′ , (5.2.2)

for l < l′ ≤ L, ψl,i(yl′,i′) 6= 0 for all i′ ∈ Bl′ .
A comparison between the linear hierarchical polynomial basis and the cor-
responding nodal basis for L = 3 is given in Figure 5.2.1.

For each grid level l, the interpolant of a function g(y) in the subspace Zl
in terms of the its nodal basis {ψl,i(y)}2li=0 is given by

Il
(
g(y)

)
=

2l∑

i=0

g(yl,i)ψl,i(y). (5.2.3)
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Figure 5.2.1. Piecewise linear polynomial bases for L = 3. (a–d) The basis functions
for Z0, W1, W2, and W3, respectively. The hierarchical basis for Z3 is the union of
the functions in (a–d). (e) The nodal basis for Z3.
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Due to the nesting property Zl = Zl−1⊕Wl, it is easy to see that Il−1(g) =
Il
(
Il−1(g)

)
, based on which we define the incremental interpolation operator

∆l(g) = Il(g)− Il−1(g) = Il
(
g − Il−1(g)

)
(5.2.4)

=
2l∑

i=0

[
g(yl,i)− Il−1

(
g)(yl,i

)]
ψl,i(y)

=
∑

i∈Bl

[
g(yl,i)− Il−1

(
g)(yl,i

)]
ψl,i(y) =

∑

i∈Bl

cl,iψl,i(y),

where cl,i = g(yl,i) − Il−1

(
g(yl,i)

)
. Note that ∆l(g) only involves the basis

functions for Wl for l ≥ 1. Because ∆l(g) essentially approximates the
difference between g and the interpolant Il−1(g) on level l−1, the coefficients
{cl,i}i∈Bl are referred to as the surpluses on level l.

The interpolant Il(g) for any level l > 0 can be decomposed in the form

Il(g) = Il−1(g) + ∆l(g) = · · · = I0(g) +

l∑

l′=1

∆l′(g). (5.2.5)

The delta property of the nodal basis implies that the interpolation ma-
trix is diagonal. The interpolation matrix for the hierarchical basis is not
diagonal, but the partial delta property (5.2.2) implies that it is triangular,
so the coefficients in the interpolant can be solved for explicitly. This can
also be seen from the definition (5.2.4) for ∆l(·) and the recursive form of
Il(·) in (5.2.5), for which the surpluses can be computed explicitly.

5.2.2. Multi-dimensional hierarchical sparse grid interpolation

We now consider the interpolation of a multivariate function g(y) defined,
again without loss of generality, over the unit hypercube Γ = [−1, 1]N ⊂ RN .
The one-dimensional hierarchical polynomial basis (5.2.1) can be extended
to the N -dimensional parameter domain Γ using tensorization. Specifi-
cally, the N -variate basis function ψl,i(y) associated with the point yl,i =
(yl1,i1 , . . . , ylN ,iN ) is defined using tensor products, that is,

ψl,i(y) :=

N∏

n=1

ψln,in(yn),

where {ψln,in(yn)}Nn=1 are the one-dimensional hierarchical polynomials as-

sociated with the point yln,in = inh̃ln − 1 with h̃ln = 2−ln+1 and l =
(l1, . . . , lN ) is a multi-index indicating the resolution level of the basis func-
tion. The N -dimensional hierarchical incremental subspace Wl is defined by

Wl =
N⊗

n=1

Wln = span{ψl,i(y) | i ∈ Bl},
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where the multi-index set Bl is given by

Bl :=

{
i ∈ NN

∣∣∣
in ∈ {1, 3, 5, . . . , 2ln − 1} for n = 1, . . . , N if ln > 0

in ∈ {0, 1} for n = 1, . . . , N if ln = 0

}
.

Similar to the one-dimensional case, a sequence of subspaces, again denoted
by {Zl}∞l=0, of the space Z := L2

ρ(Γ) can be constructed as

Zl =

l⊕

l′=0

Wl′ =

l⊕

l′=0

⊕

α(l′)=l′

Wl′ ,

where the key is how the mapping α(l) is defined because it defines the in-
cremental subspaces Wl′ = ⊕α(l′)=l′Wl′ . For example, α(l) = maxn=1,...,N ln
leads to a full tensor product space whereas α(l) = |l| = l1 + · · ·+ lN leads to
a sparse polynomial space. As discussed in Section 5.1, because the full ten-
sor product space suffers dramatically from the curse of dimensionality as
N increases, this choice is not feasible for even moderately high-dimensional
problems. Thus, we only consider the sparse polynomial space obtained by
setting α(l) = |l|.

The level l hierarchical sparse grid interpolant of the multivariate function
g(y) is then given by

gl(y) :=
l∑

l′=0

∑

|l′|=l′
(∆l′1

⊗ · · · ⊗∆l′N
)g(y) (5.2.6)

= gl−1(y) +
∑

|l′|=l

(∆l′1
⊗ · · · ⊗∆l′N

)g(y)

= gl−1(y) +
∑

|l′|=l

∑

i∈Bl′

[
g(yl′,i)− gl′−1(yl′,i)

]
ψl′,i(y)

= gl−1(y) +
∑

|l′|=l

∑

i∈Bl′

cl′,i ψl′,i(y),

where cl′,i = g(yl′,i) − gl′−1(yl′,i) is the multi-dimensional hierarchical sur-
plus. This interpolant is a direct extension, via the Smolyak algorithm, of
the one-dimensional hierarchical interpolant. Analogous to (5.2.4), the def-
inition of the surplus cl′,i is based on the facts that gl(gl−1(y)) = gl−1(y)
and gl−1(yl′,i) − g(yl′,i) = 0 for |l′| = l. In this case, we denote by
Hl(Γ) = {yl,i | i ∈ Bl} the set of sparse grid points corresponding to
subspace Wl. Then, the sparse grid corresponding to the interpolant gl is
given by

HNl (Γ) = ∪ll′=0 ∪|l′|=l′ Hl′(Γ).

We have that HNl (Γ) is also nested, i.e., HNl−1(Γ) ⊂ HNl (Γ). In Figure 5.2.2
we plot the structure of a level l = 2 sparse grid in N = 2 dimensions,
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Figure 5.2.2. (a) Nine tensor product subgrids for level l = 0, 1, 2 of which only
the six subgrids for which l′1 + l′2 ≤ l = 2 are chosen to appear in the level l = 2
isotropic sparse grid H2

2(Γ) (b) containing 17 points. With adaptivity, only points
that correspond to a large surplus lead to two child points added in each direction,
resulting in the adaptive sparse grid H̃2

2(Γ) (c) containing 12 points.

without consideration of boundary points. The nine subgrids Hl′(Γ) in
Figure 5.2.2(a) correspond to the nine multi-index sets Bl′ , where

l′ ∈ {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}.
The level l = 2 sparse grid H2

2(Γ) in Figure 5.2.2(b) includes only six of the
nine subgrids, with the three subgrids depicted in grey not included because
they fail the criterion |l′| ≤ l′ = 2. Moreover, due to the nesting property
of the hierarchical basis, H2

2(Γ) has only 17 points, as opposed to the 49
points of the full tensor product grid.

5.2.3. Multi-dimensional hierarchical sparse grid interpolation

We now use the hierarchical sparse grid interpolation method of Section 5.2.2
to approximate the parameter dependence of the solution u(x,y) of an
SPDE. Specifically, the basis {ψm(y)}Mm=1 entering into the fully discrete
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approximation (2.4.1) is chosen to be the hierarchical basis defined in Sec-
tion 5.2.2. Here, we use the indexing of that section because it more easily
handles the hierarchical nature of the hierarchical basis. In this case, the
fully discrete approximate solution takes the form

uJhML
(x,y) =

L∑

l=0

∑

|l|=l

∑

i∈Bl

cl,i(x)ψl,i(y), (5.2.7)

where the coefficients are now functions of x to reflect that dependence
of the function uJhML

(x,y). In the usual manner, those coefficients are

given in terms of the spatial finite element basis {φj(x)}Jhj=1 by cl,i(x) =∑Jh
j=1 cj,l,iφj(x) so that, from (5.2.7), we obtain

uJhML
(x,y) =

L∑

l=0

∑

|l|=l

∑

i∈Bl

( Jh∑

j=1

cj,l,iφj(x)

)
ψl,i(y) (5.2.8)

=

Jh∑

j=1

( L∑

l=0

∑

|l|=l

∑

i∈Bl

cj,l,iψl,i(y)

)
φj(x).

The number of parameter degrees of freedom ML of uJhML
is equal to the

number of the grid points of the sparse grid HNL (Γ).
We next explain how the coefficients cj,l,i in (5.2.8) are determined. In

general, after running the deterministic FEM solver for all the sparse grid
points, we obtain the dataset

Jh(xj ,yl,i) for j = 1, . . . , Jh and |l| ≤ L, i ∈ Bl.

Then, it is easy to see from (5.2.8) that, for fixed j, {cj,l,i}|l|≤L,i∈Bl
can be

obtained by solving the linear system

uJhML
(xj ,yl′,i′) =

L∑

l=0

∑

|l|=l

∑

i∈Bl

cj,l,iψl,i(yl′,i′) (5.2.9)

= uJh(xj ,yl′,i′) for |l′| ≤ L, i′ ∈ Bl.

Thus, the approximation uJhML
(x,y) can be obtained by solving Jh linear

systems. However, because the hierarchical bases ψl,i(y) satisfy ψl,i(yl′,i′) =
0 if l′ ≤ l (this is a consequence of the one-dimensional partial delta prop-
erty), the coefficient cj,l′,i′ in the the system (5.2.9) corresponding to the
sparse grid point yl′,i′ on level L, that is, for |l′| = L, it reduces to

cj,l′,i′ = uJh(xj ,yl′,i′)−
L−1∑

l=0

∑

|l|=l

∑

i∈Bl

cj,l,iψl,i(yl′,i′) (5.2.10)

= uJh(xj ,yl′,i′)− uJhML−1
(xj ,yl′,i′),
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so that the linear system becomes a triangular system and all the coefficients
can be computed explicitly by recursively using (5.2.10). Note that (5.2.10)
is consistent with the definition of the cl,i(x) given in (5.2.6).

5.3. Adaptive hierarchical stochastic collocation method

By virtue of the hierarchical surpluses cj,l,i, the approximation in (5.2.8)
can be represented in a hierarchical manner, that is,

uJhML
(x,y) = uJhML−1

(x,y) + ∆uJhML
(x,y), (5.3.1)

where uJhML−1
(x,y) is the sparse grid approximation in ZL−1 and

∆uJhML
(x,y)

is the hierarchical surplus interpolant in the subspace WL. According to the
analysis in Bungartz and Griebel (2004), for smooth functions, the surpluses
cj,l,i of the sparse grid interpolant uJhML

in (5.2.8) tend to zero as the
interpolation level l goes to infinity. For example, in the context of using
piecewise linear hierarchical bases and assuming the spatial approximation
uJh(x,y) of the solution has bounded second-order weak derivatives with
respect to y, that is, uJh(x,y) ∈Wh(D)⊗H2

ρ (Γ), then the surplus cj,l,i can
be bounded as

|cj,l,i| ≤ C2−2·|l| for i ∈ Bl and j = 1, . . . , Jh, (5.3.2)

where the constant C is independent of the level l. Furthermore, the
smoother the target function is, the faster the surplus decays. This pro-
vides a good avenue for constructing adaptive sparse grid interpolants using
the magnitude of the surplus as an error indicator, especially for irregular
functions having, for example, steep slopes or jump discontinuities.

We first focus on the construction of one-dimensional adaptive grids and
then extending the adaptivity to multi-dimensional sparse grids. As shown
in Figure 5.3.1, the one-dimensional hierarchical grid points have a tree-
like structure. In general, a grid point yl,i on level l has two children,
namely yl+1,2i−1 and yl+1,2i+1 on level l + 1. Special treatment is required
when moving from level 0 to level 1, where we only add a single child
y1,1 on level 1. On each successive interpolation level, the basic idea of
adaptivity is to use the hierarchical surplus as an error indicator to detect
the smoothness of the target function and refine the grid by adding two
new points on the next level for each point for which the magnitude of
the surplus is larger than the prescribed error tolerance. For example, in
Figure 5.3.1 we illustrate the six-level adaptive grid for interpolating the
function g(y) = exp[−(y− 0.4)2/0.06252] on [0, 1] with error tolerance 0.01.
From level 0 to level 2, because the magnitude of every surplus is larger
than 0.01, two points are added for each grid point on levels 0 and 2; as
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y1 , 1

y0 , 0 y0 , 1

y2 , 1 y2 , 3
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]

Figure 5.3.1. A six-level adaptive sparse grid for interpolating the one-dimensional
function g(y) = exp[−(y − 0.4)2/0.06252] on [0, 1] with the error tolerance of 0.01.
The resulting adaptive sparse grid has only 21 points (the black points) whereas
the full grid has 65 points (the black and grey points).

mentioned above, only one point is added for each grid point on level 1.
However, on level 3, there is only one point, namely y3,3, whose surplus has
magnitude larger than 0.01, so only two new points are added on level 4. If
we continue through levels 5 and 6, we end up with the six-level adaptive
grid with only 21 points (points in black in Figure 5.3.1), whereas the six-
level non-adaptive grid has a total of 65 points (points in black and grey in
Figure 5.3.1).

It is trivial to extend this adaptive approach from one dimension to a
multi-dimensional adaptive sparse grid. In general, as shown in Figure 5.2.2,
in N dimensions a grid point has 2N children which are also its neighbour
points. However, note that the children of a parent point correspond to
hierarchical basis functions on the next interpolation level, so we can build
the interpolant uJhML

in (5.2.8) from level L− 1 to level L by only adding
those points on level L whose parents have surpluses greater than the pre-
scribed tolerance. Because at each sparse grid point yl,i we have j sur-
pluses cj,l,i, the error indicator is set to the maximum magnitude of the j



SFEMs for SPDEs 601

surpluses, that is, to maxj=1,...,Jh |cj,l,i|. In this way, we can refine the sparse
grid locally, resulting in an adaptive sparse grid which is a subgrid of the
corresponding isotropic sparse grid, as illustrated by Figure 5.2.2(c). The
solution of the corresponding adaptive hSGSC approach is represented by

uεJhML
(x,y) =

L∑

l=0

∑

|l|=l

∑

i∈Bεl

( Jh∑

j=1

cj,l,iφj(x)

)
ψl,i(y), (5.3.3)

where the multi-index set Bε
l ⊂ Bl is defined by

Bε
l =

{
i ∈ Bl

∣∣ max
j=1,...,Jh

|cj,l,i| ≥ ε
}
.

Note that Bε
l is an optimal multi-index set that contains only the indices

of the basis functions with surplus magnitudes larger than the tolerance ε.
However, in practice, we also need to run the deterministic FEM solver at
a certain number of grid points yl,i with maxj=1,...,Jh |cj,l,i| < ε in order to
detect when mesh refinement can stop. For example, in Figure 5.3.1, the
points y3,1, y3,5, y3,7, and y5,11 are of this type. In this case, the number of
degrees of freedom in (5.3.3) is usually smaller than the necessary number
of executions of the deterministic FEM solver.

5.3.1. Relation between hierarchical stochastic collocation methods and
stochastic Galerkin methods

For the hSGSC method, the fully discrete approximation is constructed
according to the Lagrange interpolation rule, that is,

uJhML
(x,ym) = uJh(x,ym) for m = 1, . . . ,ML.

Here, we show that hSGSC approximation also satisfies the variational form
(2.4.3).

A quadrature rule is needed to approximate the integrals over Γ in the
variational form (2.4.3). Here, we choose the rule {wr,yr}Rr=1 such that
the quadrature points are the same as the sparse grid points. As such, the
variational form (2.4.3) becomes the JhML × JhML system of equations

R∑

r=1

wrρ(yr)ψm′(yr) (5.3.4)

×
∫

D
S

( Jh∑

j=1

ML∑

m=1

cjmφj(x)ψm(yr),yr

)
T
(
φj′(x)

)
dx

=

R∑

r=1

wrρ(yr)ψm′(yr)

∫

D
φj′(x)(yr)f(x,yr) dx,
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for j′ ∈ {1, . . . , Jh} and m′ ∈ {1, . . . ,ML}, and {wr}Rr=1 denotes a set
of quadrature weights. Note that an appropriate quadrature rule is also
needed to discretize the spatial integral over D, but we do not write it out
explicitly because it is not germane to the current discussion.

In this case, that is, if R = ML and yr = ym for r = m, it is easy to see
that if cjm, j = 1, . . . , Jh and m = 1, . . . ,ML, satisfy

∫

D
S

( Jh∑

j=1

ML∑

m=1

cjmφj(x)ψm(ym′),ym′

)
T
(
φj′(x)

)
dx (5.3.5)

=

∫

D
φj′(x)ψm(ym′)f(x,ym′) dx,

for j′ ∈ {1, . . . , Jh} and m′ ∈ {1, . . . ,ML}, then they also solve (5.3.4).
If the system (5.3.4) has a unique solution, that solution is given by the
solution of (5.3.5). Substituting

ujm′ =

ML∑

m=1

cjmψm(ym′) for j = 1, . . . , Jh and m′ = 1, . . . ,ML (5.3.6)

into (5.3.5), we obtain

∫

D
S

( Jh∑

j=1

ujm′φj(x),ym′

)
T
(
φj′(x)

)
dx (5.3.7)

=

∫

D
φj′(x)ψm(ym′)f(x,ym′) dx for j′ ∈ {1, . . . , Jh}

which is just the deterministic FEM problem at the point ym′ for m′ =
1, . . . ,ML in parameter space. In order to compute ujm′ for j = 1, . . . , Jh
and m′ = 1, . . . ,ML, we need to solve ML systems at each ym′ , each of size
Jh × Jh. After that, since there are only basis functions ψm(y) involved in

(5.3.6), for each j ∈ {1, . . . , Jh}, {ckm}ML
m=1 can be obtained by substituting

the values {ujm′}ML
m′=1 into (5.3.6) and solving the linear system. By noting

the fact that

ujm′ = uJh(xj ,ym′),

it is easy to see that the system (5.3.6) is equivalent to the system (5.2.9)
for computing the coefficients of uJhML

(x,y). Therefore, the solution of the
hSGSC method is also the solution of the variational form in (2.4.2).

Furthermore, with a proper reordering, the property (5.2.9) of the linear
hierarchical basis gives rise to the property that

ψm(ym′) = 0 for m > m′, (5.3.8)
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and then the system (5.3.6) becomes

ujr =

m′−1∑

m=1

cjmψm(ym′) + cjm′ for j = 1, . . . , Jh. (5.3.9)

In this case, the resulting system becomes a lower triangular system so that
all the coefficients cjr can be computed explicitly. This is also consistent
with the formula in (5.2.10).

5.3.2. Other choices of hierarchical basis

High-order hierarchical polynomial basis

One can generalize the piecewise linear hierarchical polynomials to high-
order hierarchical polynomials (Bungartz and Griebel 2004). The goal is to
construct polynomial basis functions of order p, denoted by ψpl,i(y), without

enlarging the support [yl,i− h̃l, yl,i+ h̃l] or increasing the degrees of freedom
in the support. As shown in Figure 5.2.1, for l ≥ 0, a piecewise linear poly-
nomial ψl,i(y) is defined based on three supporting points, that is, yl,i and its

two ancestors which are also the endpoints of the support [yl,i− h̃l, yl,i+ h̃l].
For p ≥ 2, it is well known that we need p+ 1 supporting points to define a
Lagrange interpolating polynomial of order p. To achieve the goal, at each
grid point yl,i we borrow additional ancestors outside [yl,i − h̃l, yl,i + h̃l] to
help build a higher-order Lagrange polynomial; then, the desired polyno-
mial ψpl,i(y) is defined by restricting the resulting polynomial to the support

[yl,i − h̃l, yl,i + h̃l]. The constructions of the cubic polynomial ψ3
2,3(y) and

the quartic polynomial ψ4
3,1(y) are illustrated in Figure 5.3.2(b). For the

cubic polynomial associated with y2,3, we introduce the additional ances-
tor y0,0 to define a cubic Lagrange polynomial; for the quartic polynomial
associated with y3,1, two more ancestors y1,1 and y0,1 are added. After
the construction of the cubic and quartic polynomials, we retain only the
part within the support (solid curves) and cut out the parts outside the
support (dashed curves). Using this strategy, we can construct high-order
bases while retaining the hierarchical structure and, more importantly, the
property (5.1.4) as in the linear case. It should be noted that because a
total of p ancestors are needed, a polynomial of order p cannot be defined
earlier than level p − 1. In other words, at level L, the maximum order of
polynomials is p = L+ 1. For example, a quartic polynomial basis of level 3
is plotted in Figure 5.3.2(a), where linear, quadratic, and cubic polynomi-
als are used on levels 0, 1 and 2 due to the lack of ancestors. We observe
that there are multiple types of basis functions on each level when p ≥ 3
because of the different distributions of supporting points for different grid
points. In general, the hierarchical basis of order p > 1 contains 2p−2 types
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Table 5.3.1. Supporting points for high-order hierarchical bases (p = 2, 3, 4).

Order Grid point yl,i Supporting points of ψpl,i(y)

p = 2 l ≥ 1, mod (i, 2) = 1 yl,i − h̃l, yl,i, yl,i + h̃l

p = 3
l ≥ 2, mod (i, 4) = 1 yl,i − h̃l, yl,i, yl,i + h̃l, yl,i + 3h̃l
l ≥ 2, mod (i, 4) = 3 yl,i − 3h̃l, yl,i − h̃l, yl,i, yl,i + h̃l

p = 4

l ≥ 3, mod (i, 8) = 1 yl,i − h̃l, yl,i, yl,i + h̃l, yl,i + 3h̃l, yl,i + 7h̃l
l ≥ 3, mod (i, 8) = 3 yl,i − 3h̃l, yl,i − h̃l, yl,i, yl,i + h̃l, yl,i + 5h̃l
l ≥ 3, mod (i, 8) = 5 yl,i − 5h̃l, yl,i − h̃l, yl,i, yl,i + h̃l, yl,i + 3h̃l
l ≥ 3, mod (i, 8) = 7 yl,i − 7h̃l, yl,i − 3h̃l, yl,i − h̃l, yl,i, yl,i + h̃l

of pth-order polynomials. In Table 5.3.1 we list the supporting points used
to define the hierarchical polynomial bases of order p = 2, 3, 4.

Wavelet basis
Besides the hierarchical bases discussed above, wavelets form another impor-
tant family of basis functions which can provide a stable subspace splitting
because of their Riesz property. In the following, let us briefly mention the
second-generation wavelets constructed using the lifting scheme discussed
in Sweldens (1996, 1998). Second-generation wavelets are a generalization
of biorthogonal wavelets that is easier to apply for functions defined on
bounded domains. The lifting scheme (Sweldens 1996, 1998) is a tool for
constructing second-generation wavelets that are no longer dilates and trans-
lates of a single scaling function. The basic idea behind lifting is to start
with simple multi-resolution analysis and gradually build a multi-resolution
analysis with specific, a priori defined properties. The lifting scheme can
be viewed as a process of taking an existing wavelet and modifying it by
adding linear combinations of the scaling function at the coarse level. In
the context of the piecewise linear basis, the second-generation wavelet on
level l ≥ 1, denoted by ψw

l,i(y), is constructed by ‘lifting’ the piecewise linear

basis ψl,i(y) as

ψw
l,i(y) := ψl,i(y) +

2l−1∑

i′=0

βi
′
l,iψl−1,i′(y),

where, for i = 0, . . . , 2l−1, ψl−1,i(y) are the nodal polynomials on level l− 1

and the weights βjl,i in the linear combination are chosen in such a way

that the wavelet ψw
l,i(y) has more vanishing moments than ψl,i(y) and thus

provides a stabilization effect. Specifically, in the bounded domain [−1, 1],
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Figure 5.3.2. (a) Quartic hierarchical basis functions, where linear, quadratic, and
cubic basis functions are used on levels 0, 1 and 2, respectively. Quartic basis
functions appear beginning with level 3. (b,c) Construction of a cubic hierarchical
basis function and a quartic hierarchical basis function.
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Figure 5.3.3. (a) Left-boundary wavelet, (b) central
wavelet, (c) right-boundary wavelet.

we have three types of linear lifting wavelets:

ψw
l,i := ψl,i −

1

4
ψl−1, i−1

2
− 1

4
ψl−1, i+1

2
for 1 < i < 2l − 1, i odd,

ψw
l,i := ψl,i −

3

4
ψl−1, i−1

2
− 1

8
ψl−1, i+1

2
for i = 1,

ψw
l,i := ψl,i −

1

8
ψl−1, i−1

2
− 3

4
ψl−1, i+1

2
for i = 2l − 1,

(5.3.10)

where the three equations define the central ‘mother’ wavelet, the left-
boundary wavelet, and the right-boundary wavelet, respectively. We il-
lustrate the three lifting wavelets in Figure 5.3.3. For additional details, see
Sweldens (1996).

Note that the property given in (5.2.2) is not valid for the lifting wavelets
in (5.3.10) because neighbouring wavelets at the same level have overlapping
support. As a result, the coefficient matrix of the linear system (5.2.9) is
no longer triangular. Thus, Jh linear systems, each of size ML ×ML, need
to be solved to obtain the surpluses in (5.2.8). However, note that for the
second-generation wavelet defined in (5.3.10), the interpolation matrix is
well-conditioned. See Gunzburger et al. (2014) for details.

5.4. Hierarchical acceleration of stochastic collocation
methods

In the framework of stochastic finite element methods, the computational
complexity is dominated by the cost of solving the JhM×JhM linear system
(2.4.3) to obtain the coefficients cjm in (2.4.1). When using a non-intrusive
method such as the hSGSC method, the coupled JhM ×JhM linear system
decouples to M smaller linear systems, each of which leads to the solution
of the deterministic PDE at one of the M collocation points in parameter
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space. Because the M linear systems are independent and deterministic,
they can be solved separately using classic FEM solvers, providing an easy
path for parallelization compared to intrusive methods such as the stochastic
Galerkin approach. However, the executions of iterative FEM solvers for
those linear systems still dominate the total computational cost, especially
for some complex physical problems such as turbulence flow models. In
this section, we focus on further improving the computational efficiency of
the hSGSC method by proposing a hierarchical acceleration approach to
reduce the total number of iterations needed for solving the M decoupled
linear systems. The key idea is to exploit the hierarchical structure to take
advantage of the approximation of the current level to predict better initial
guesses for the iterative solvers used to solve the deterministic systems at
the sparse grid points on the next level.

We denote the decoupled linear system at the sparse grid point yl,i by

Al,iul,i = f l,i, (5.4.1)

where Al,i denotes the Jh × Jh finite element system matrix,

fl,i = (f1,l,i, . . . , fJh,l,i)
>

denotes the right-hand side vector, and ul,i = (u1,l,i, . . . , uJh,l,i)
> denotes the

vector of coefficients that serve to define the deterministic FEM solution for
the parameter point yl,i. Specifically, in the rest of this section, we assume
that the linear system in (5.4.1) is symmetric positive definite and, as an
example to provide a concrete context, choose the well-known conjugate
gradient (CG) method for its solution. We then have the well-known error
estimate

‖ekl,i‖Al,i
≤ 2

(√
κl,i − 1
√
κl,i + 1

)k
‖e0

l,i‖Al,i
,

where κl,i denotes the condition number of the system matrix Al,i and
ekl,i = ul,i − ukl,i denotes the error of the output ukl,i from the kth iteration
of the CG simulation. With a prescribed accuracy ε > 0, the semi-discrete
solution uJh(x,yl,i) is approximated by

uJh(x,yl,i) =

Jh∑

j=1

uj,l,iφj(x) ≈ ũJh(x,yl,i) =

Jh∑

j=1

ũj,l,iφj(x),

where

ũl,i = (ũ1,l,i, . . . , ũJh,l,i)
>

is the output of the CG solver that satisfies ‖ul,i − ũl,i‖Al,i
≤ ε. In this re-

spect, the traditional strategy to improve the convergence rate is to develop
preconditioners to reduce the condition number κl,i. However, the quality
of the initial guess also affects the convergence of the CG solver; a good
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prediction of the solution ul,i will dramatically reduce the number of itera-
tions necessary to reduce the error below a prescribed tolerance. From the
formula in (5.2.10) for computing surpluses, we have

uj,l,i = uJh,ML−1
(xj ,yl,i) + cj,l,i for j = 1, . . . , Jh and yl,i ∈WL,

where uJh,ML−1
(xj ,yl,i) can be treated as a prediction of uj,l,i at the new

added grid point yl,i on level L. The corresponding surplus is simply the
error of such prediction. Then, due to the property in (5.3.2) that the
surplus will decay to zero as the level increases, the quality of the prediction
will become better and better. Therefore, at each new added point yl,i on
level L, the initial guess of the linear system (5.4.1) is defined by

ũ0
l,i :=

(
uJh,ML−1

(x1,yl,i), . . . , uJh,ML−1
(xJh ,yl,i)

)>
,

and we expect the necessary number of iterations to become smaller as the
level |l| increases. We denote by ũJh,ML

(x,y) the approximate solution to
uJh,ML

(x,y) obtained by the CG solver. To evaluate the efficiency of the
hSGSC method, we describe the total computational cost for constructing
ũJh,ML

(x,y) by

Ctotal :=
L∑

l=0

∑

|l|=l

∑

i∈Bl

Ml,i, (5.4.2)

where Ml,i is the number of iterations used in the CG simulation to solve
the deterministic FEM problem at the grid point yl,i. So Ctotal is the total
number of iterations for building ũJh,ML

(x,y). Now we apply our method to
solve the second-order elliptic PDE in order to demonstrate the performance
of the acceleration technique.

Example 5.4.1. We consider the two-dimensional Poisson equation with
stochastic diffusivity and forcing term, that is,

∇ · (a(x,y)∇u(x,y)) = f(x,y) in [0, 1]2 × Γ,

u(x,y) = 0 on ∂D × Γ,

where κ and f are the nonlinear functions of the random vector y given by

a(x,y) = 0.1 + exp
[
y1 cos(πx1) + y2 sin(πx2)

]
,

and

f(x,y) = 10 + exp
[
y3 cos(πx1) + y4 sin(πx2)

]
,

where yn for n = 1, 2, 3, 4 are independent and identically distributed ran-
dom variables following the uniform distribution U([−1, 1]). To investigate
the convergence of the approximate solution with respect to the random
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Table 5.4.1. The computational cost and savings of the hSGSC method with ac-
celeration for Example 5.4.1.

Basis type Error # SG points
hSGSC hSGSC+acceleration

cost cost saving

linear
1.0× 10−2 377 13 841 7 497 45.8%
1.0× 10−3 1 893 81 068 38 670 52.2%
1.0× 10−4 7 777 376 287 167 832 55.3%

quadratic
1.0× 10−3 701 29 874 11 877 60.2%
1.0× 10−4 2 285 110 744 36 760 66.8%
1.0× 10−5 6 149 329 294 100 420 69.5%

cubic
1.0× 10−4 1 233 59 344 23 228 60.8%
1.0× 10−5 3 233 172 845 57 777 66.5%
1.0× 10−6 7 079 415 760 129 433 68.8%

variables, the error is measured by

e = E
[∫

D

(
uJh(x,y)− ũJhML

)
(x,y) dx

]
,

where the true solution uJh(x,y) is obtained by using a sufficiently fine
sparse grid with the tolerance for adaptivity set to 10−8; the tolerance for
the CG solver is set to τ = 10−15. The deterministic FEM solver for com-
puting uJh(x,y) for each y is constructed based on a triangulation with
2500 elements. For the hSGSC approximation, we fix L = 20, which is large
enough, and vary the tolerance to increase the accuracy of the interpolant.
The computational cost is measured by the total number of iterations of the
CG solver. In Table 5.4.1, we list the computational costs of the standard
and accelerated hSGSC methods for linear, quadratic, and cubic polynomial
(in y) bases. As expected, the hSGSC provides significant savings in the
cost by using a more accurate initial guess for the CG solver. Note also that
for the same accuracy, approximation with higher-order bases dramatically
reduces the number of sparse grid points, resulting in further savings in the
total cost. In fact, because the solution u(x,y) is analytic with respect to
the random variables yn, n = 1, . . . , N , the acceleration based on sparse grid
interpolation with a global polynomial basis is more accurate and efficient.
Such results can be found in Jantsch et al. (2014).
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5.5. Error estimate and complexity analysis

In this section, we rigorously analyse the approximation errors and the
complexities of the standard and accelerated hSGSC method in order to
demonstrate the improved efficiency of the proposed acceleration technique.
For simplicity, we only consider the isotropic sparse grid interpolation given
in (5.2.8), with a linear hierarchical basis (p = 1), for solving the second-
order elliptic PDE with homogeneous Dirichlet boundary condition given
in (2.1.2). However, the analyses in this section can be extended, without
any essential difficulty, to adaptive hSGSC methods for more complicated
PDEs. The deterministic FEM systems are solved by the conjugate gradient
method.

We start by defining several notations used in the following derivation.
Let ũJh,ML

(x,y) denote the approximation to uJh,ML
(x,y) obtained using

the conjugate gradient method to solve the linear system (5.4.1). At each
sparse grid point yl,i ∈ HNL (Γ), the error from the CG simulation is repre-
sented by

el,i :=




uJh(x1,yl,i)− ũJh(x1,yl,i)
...

uJh(xJh ,yl,i)− ũJh(xJh ,yl,i)


, (5.5.1)

which is a Jh×1 vector. The maximum error of all CG simulations is defined
by

ecg := max
i∈Bl,|l|≤L

‖el,i‖2, (5.5.2)

where ‖ · ‖2 is the l2-norm of the vector el,i. Similarly, we define

κ := max
i∈Bl,|l|≤L

κl,i, τ0 := max
i∈Bl,|l|≤L

‖e0
l,i‖2,

where κl,i and e0
l,i are the condition number of Al,i and the initial error of

the CG simulation at yl,i, respectively.
As mentioned in Section 2, we assume that the coefficient a and the

forcing term f admit a smooth extension on the ρ dy-zero measure sets.
Then (2.3.7) can be extended a.e. in Γ with respect to the Lebesgue measure
(instead of the measure ρ dy). Thus, we estimate the error between u and
ũJh,ML

in the norm ‖ · ‖L2(D×Γ). The error of the approximate solution
ũJh,ML

(x,y) is given in the following lemma.

Lemma 5.5.1. For the second-order elliptic PDE with homogeneous Dir-
ichlet boundary conditions in (2.1.2), the approximate solution ũJh,ML

is
constructed using the hSGSC method and the conjugate gradient solver.
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Then the error e = u− ũJh,ML
is bounded by

‖e‖L2(D×Γ) = ‖u− ũJh,ML
‖L2(D×Γ) (5.5.3)

≤ Cfem · hr+1 + Csg · 2−2L
N−1∑

n=0

(
L+N − 1

n

)
+ 2N

(
L+N

N

)
ecg,

where u ∈ Hr+1(D)⊗L2(Γ), the constant Cfem is independent of h and the
random vector y, the constant Csg is independent of the level L and the
dimension N .

Proof. It is easy to see that the total error can be split into

e = u− ũJh,ML
= u− uJh︸ ︷︷ ︸

e1

+uJh − uJh,ML︸ ︷︷ ︸
e2

+uJh,ML
− ũJh,ML︸ ︷︷ ︸
e3

. (5.5.4)

The first term e1 = u−uJh is the FEM error from the spatial discretization,
which is given by

‖e1‖L2(D×Γ) = ‖u− uJh‖L2(D×Γ) ≤ Cfem · hr+1, (5.5.5)

where u(x,y) ∈ Hr+1(D)⊗ L2(Γ) and the constant Cfem is independent of
the mesh size h and the random vector y. Next, according to the analyses
in Bungartz and Griebel (2004), the error e2 is bounded by

‖e2‖L2(D×Γ) ≤ Csg · 2−2L
N−1∑

n=0

(
L+N − 1

n

)
, (5.5.6)

where the constant Csg is independent of L and N .
We observe from the expression in (5.2.8) that both uJh,ML

(x,y) and
ũJh,ML

(x,y) are linear combinations of continuous basis functions such that
they are in the space L∞(D×Γ) and ‖e3‖L2(D×Γ) ≤ ‖e3‖L∞(D×Γ). Thus, we
instead estimate the e3 in the L∞-norm. By substituting uJh,ML

− ũJh,ML

into (5.2.6) and taking the L∞-norm, we have

‖e3‖L∞(D×Γ) (5.5.7)

≤ max
(x,y)∈D×Γ

∣∣∣∣
L∑

l=0

∑

|l|=l

(
∆l1 ⊗ · · · ⊗∆lN

)
(uJh − ũJh,ML

)

∣∣∣∣

= max
(x,y)∈D×Γ

∣∣∣∣
L∑

l=0

∑

|l|=l

∑

α∈{0,1}N
(−1)|α|

N⊗

n=1

Iln−αn(uJh − ũJh,ML
)

∣∣∣∣

≤
L∑

l=0

∑

|l|=l

∑

α∈{0,1}N
max

(x,y)∈D×Γ

∣∣∣∣
N⊗

n=1

Iln−αn(uJh − ũJh,ML
)

∣∣∣∣,

where α = (α1, . . . , αN ) is a multi-index for which each entry is 0 or 1. So
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there are a total of 2N combinations. Then, for a fixed l with |l| ≤ L and a
fixed α ∈ {0, 1}N , we have the following estimate:

max
(x,y)∈D×Γ

∣∣∣∣
N⊗

n=1

Iln−αn(uJh − ũJh,ML
)(x,y)

∣∣∣∣

= max
(x,y)∈D×Γ

∣∣∣∣
2l1−α1∑

i1=0

· · ·
2lN−αN∑

iN=0

{
Jh∑

j=1

[
uJh(xj ,yl,i)− ũJh(xj ,yl,i)

]
φj(x)

}
ψl,i(y)

∣∣∣∣

≤ max
(x,y)∈D×Γ

∣∣∣∣
2l1−α1∑

i1=0

· · ·
2lN−αN∑

iN=0

[
‖el,i‖∞ ·

Jh∑

j=1

φj(x)

]
ψl,i(y)

∣∣∣∣

≤ max
y∈Γ

∣∣∣∣
2l1−α1∑

i1=0

· · ·
2lN−αN∑

iN=0

‖el,i‖2 · ψl,i(y)

∣∣∣∣

≤ max
|l|≤L,i∈Bl

‖el,i‖2 = ecg.

By substituting the above estimate into (5.5.7), we obtain

‖e3‖L∞(D×Γ) ≤
L∑

l=0

∑

|l|=l

∑

α∈{0,1}N
ecg ≤

L∑

l=0

2N
(
l +N − 1

N − 1

)
ecg

≤ 2N
N−1+L∑

n=N−1

(
L+N

N

)
ecg = 2N

(
L+N

N

)
ecg,

which concludes the proof.

Next, we analyse the cost of constructing ũJh,ML
(x,y) with the prescribed

error being ε > 0. According to the error estimate in Lemma 5.5.1, a
sufficient condition of ‖e‖L2(D×Γ) ≤ ε is that

‖e1‖L2(D×Γ) ≤ Cfem · hr+1 ≤ ε

3
, (5.5.8)

‖e2‖L2(D×Γ) ≤ Csg · 2−2L
N−1∑

n=0

(
L+N − 1

n

)
≤ ε

3
, (5.5.9)

and

‖e3‖L2(D×Γ) ≤ 2N
(
L+N

N

)
ecg ≤

ε

3
. (5.5.10)

Let Cmin in (5.4.2) represent the minimum cost, that is, the minimum num-
ber of CG iterations, to satisfy the inequalities (5.5.8), (5.5.9) and (5.5.10).
The goal is to estimate an upper bound on Cmin. Note that, for fixed di-
mension N , level L and mesh size h, the total cost Ctotal is determined by
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solving the inequality (5.5.10). The bigger are L and 1/h, the higher the
cost is. Thus, the estimation of Ctotal has two steps. Given N and ε, we first
estimate the maximum h to achieve (5.5.8) and the minimum L to achieve
(5.5.9); and then substitute the obtained values into (5.5.10) to obtain an
upper bound on Cmin.

To perform the first step, we need to relate the numbers of degrees of
freedom of ZL and Wl for l ≤ L, denoted by |ZL| and |Wl|, respectively.
The estimation of |ZL| has been studied in Bungartz and Griebel (2004)
and Nobile et al. (2008a), but the estimate in Nobile et al. (2008a) is not
sufficiently sharp and the estimate in Bungartz and Griebel (2004) does not
concern |Wl|. In the following lemma, we provide estimates of |Wl| which
directly lead to an estimate of |ZL|.

Lemma 5.5.2. The dimensions of the subspaces Wl and ZL for N ≥ 2,
that is, the numbers of grid points in ∆HNl and HNL , are bounded by

|Wl| ≤ 2l
(
l +N − 1

N − 1

)
≤ 2l

(
l +N − 1

N − 1

)N−1

eN−1, (5.5.11)

and correspondingly,

|ZL| ≤ 2L+1

(
L+N − 1

N − 1

)
≤ 2L+1

(
L+N − 1

N − 1

)N−1

eN−1, (5.5.12)

where 0 ≤ l ≤ L.

Proof. By using the formula (5.2.6) and exploiting the nested structure of
the sparse grid, the dimension of ZL can be represented by

|ZL| =
L∑

l=0

|Wl| =
L∑

l=0

∑

|l|=l

N∏

n=1

(mln −mln−1), (5.5.13)

where mln = 2ln + 1 is the number of grid points involved in the one-
dimensional interpolant Iln(·) in (5.2.3) and m−1 = 0. In the case of using
the linear hierarchical basis shown in Figure 5.2.1, then mln−mln−1 = 2ln−1

for ln ≥ 1. We now derive an upper bound for |Wl|. Note that there are(
N−1+l
N−1

)
ways to form the sum l with N − 1 + l non-negative integers, so we

have

|Wl| =
N∏

n=1

(min −min−1)

(
N − 1 + l

N − 1

)
≤ 2l

(N − 1 + l)!

(N − 1)! · l! . (5.5.14)

Using Stirling’s approximation of a factorial in the inequality form

dn ≤ n! ≤ dn
(

1 +
1

4n

)
with dn =

√
2πn

(
n

e

)n
, n ∈ N+, (5.5.15)
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we obtain that

|Wl| ≤ 2l
(

1 +
1

4(N − 1 + l)

)
dN−1+l

dN−1 · dl
(5.5.16)

= 2l

(
1 + 1

4(N−1+l)

)√
N − 1 + l

√
2πl(N − 1)

(
N − 1 + l

N − 1

)N−1(N − 1 + l

l

)l

≤ 2l
(
l +N − 1

N − 1

)N−1(
1 +

N − 1

l

)l

≤ 2l
(
l +N − 1

N − 1

)N−1

eN−1.

This concludes the proof for |Wl| and the estimate of |ZL| can be obtained
immediately from the estimate of |Wl|.

Similar to the analyses in Wasilkowski and Woźniakowski (1995), now we
solve the equation (5.5.9) to find an upper bound for L such that the error of
the isotropic sparse grid interpolation uJh,ML

is smaller than the prescribed
accuracy ε/3.

Lemma 5.5.3. For ε < 3Csg in (5.5.9), the accuracy ‖e2‖L2(D×Γ) ≤ ε/3
can be achieved with level L bounded by

L ≤ Lk =
tkN

2 ln 2
+ 1 with s =

2 e

ln 2

(
3Csg

ε

) 1
N

, (5.5.17)

where {tk}∞k=0 is a monotonically decreasing sequence defined by

tk = ln(tk−1s) with t0 =
e

e− 1
ln s. (5.5.18)

Proof. We observe that the value of the minimal solution of the inequality
(5.5.9) has two possibilities, that is, L < N and L ≥ N . In the former case,
all values bigger than N are also solutions of (5.5.9). Hence, we assume the
solution of (5.5.9) is bigger than N . It is also observed that if L ≥ N , then

N−1∑

k=0

(
L+N − 1

k

)
≤ N

(
L+N − 1

N − 1

)
≤ N

(
L+N

N

)
≤ N

(
2L

N

)N
eN .

(5.5.19)
Thus, instead of solving (5.5.9) directly, we solve its sufficient condition as
follows:

Csg2−2LN

(
2L

N

)N
eN ≤ ε

3
and L ≥ N, (5.5.20)

Now we define L = tN/ ln 4 in (5.5.8). Then the inequality has the following
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sufficient conditions:
(

2L

N

)N
eN
(

3NCsg

ε

)
≤ 22L (5.5.21)

⇐=

(
t

ln 2

)N
eN
(

3NCsg

ε

)
≤ 4

t
ln 4

N

⇐=

(
t e

ln 2

)(
3NCsg

ε

) 1
N

≤ 4
t

ln 4

⇐= ln t+ ln

[
e

ln 2

(
3Csg

ε

) 1
N

N
1
N

]
≤ t

⇐= ln t+ ln

[
2 e

ln 2

(
3Csg

ε

) 1
N
]
≤ t.

Then we have

t ≥ ln t+ ln s with s =
2 e

ln 2

(
3Csg

ε

) 1
N

(5.5.22)

where s > 1 under the assumption of this lemma. By defining t0 = e
e−1 ln s,

it is easy to verify that

t0−ln s =
1

e− 1
ln s ≥ 1+ln

(
1

e− 1
ln s

)
= ln

(
e

e− 1
ln s

)
= ln t0, (5.5.23)

such that the inequality (5.5.8) is satisfied. Furthermore, for k ≥ 0, tk =
ln(tk−1s) ≤ tk−1 is also the solution of (5.5.8) due to the fact that

ln tk+ln s = ln(ln tk−1+ln s)+ln s ≤ ln tk−1+ln s = ln(tk−1s) = tk. (5.5.24)

Thus, the sequence {tk}∞k=0 monotonically converges to a unique solution t∗

such that t∗ = ln t∗ + ln s.

To achieve the accuracy required in (5.5.10), we need to estimate the
maximum error ecg of the CG simulations. By definition of ecg, we have

ecg = max
i∈Bl,|l|≤L

‖el,i‖2 ≤ max
i∈Bl,|l|≤L

1√
λl,i
‖eJl,il,i ‖Al,i

(5.5.25)

≤ max
i∈Bl,|l|≤L

2√
λl,i

(√
κl,i − 1
√
κl,i + 1

)Jl,i
· ‖e0

l,i‖Al,i

≤ max
i∈Bl,|l|≤L

2
√
κl,i

(√
κl,i − 1
√
κl,i + 1

)Jl,i
· ‖e0

l,i‖2

≤ 2
√
κ

(√
κ− 1√
κ+ 1

)J
· τ0,
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where λl,i and κl,i are the smallest eigenvalue and the condition number
of the matrix Al,i, respectively, and Jl,i is the iteration number of the CG
simulation conducted at the sparse grid point yl,i ∈ HNL (Γ). The constant
J is defined by

J := min
i∈Bl,|l|≤L

Jl,i. (5.5.26)

It should be noted that the condition numbers κl,i play an important role
in estimating the number of iterations J . The value of J will dramatically
grow as the value κ increases. However, in practice, many types of precon-
ditioners can used to reduce the condition numbers of the M deterministic
FEM system. In general, we assume that the upper bound κ of all the con-
dition numbers κl,i can be bounded or represented by a function of mesh
size h, denoted by κ(h) ≥ κ. On the other hand, to satisfy the condition
(5.5.8), h can be represented by h ≤ ε/(3Cfem), such that κ can be bounded
by a function of ε, that is,

κ ≤ κ
(

3Cfem

ε

)
. (5.5.27)

Note that different preconditioners will lead to different forms of κ(·). Since
estimating the dependence of κ on ε is not our goal in this article, we use κ(·)
in (5.5.27) to represent the dependence of κ on ε in the following derivation.
The estimation of Cmin for standard hSGSC method without acceleration is
given below.

Theorem 5.5.4. Under Lemmas 5.5.2 and 5.5.3, the minimum cost Cmin

for building a standard hSGSC approximation ũJh,ML
satisfying (5.5.8),

(5.5.9) and (5.5.10) can be bounded by

Cmin ≤
α1

N

[
α2 + α3

log2

(3Csg

ε

)

N

]α4N(
3Csg

ε

)α5

(5.5.28)

× 1

log2

(√
κ+1√
κ−1

)
[
α6 log2

(
3Csg

ε

)
+ log2(

√
κτ0) + α7N + α8

]
,

where the constants α1, . . . , α8 are defined by

α1 = 2, α2 =
2 e2

(e− 1)
log2

(
2 e

ln 2

)
, α3 =

2 e2

(e− 1)
, α4 =

3

2
, α5 =

1

2
,

α6 =
e

e− 1
, α7 =

e

e− 1
log2

(
2 e

ln 2

)
+ 1, α8 = log2

(
2

Csg

)
. (5.5.29)

Proof. By definition in (5.4.2), the minimum cost Cmin to achieve (5.5.8),
(5.5.9) and (5.5.10), can be bounded by

Cmin ≤ |ZL|J(τ0, ε, κ, Lk, N), (5.5.30)
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where the Lk are determined from Lemma 5.5.3, and J(τ0, ε, κ, Lk, N) is
the necessary number of iterations of the CG simulation at each sparse grid
point to achieve the accuracy ε/3 in (5.5.10) for fixed N , ε and the initial
CG error τ0. Thus, J(τ0, ε, κ, Lk, N) is represented by substituting (5.5.25)
into (5.5.10),

J(τ0, ε, κ, Lk, N) =
1
2 log2(κ) + log2

[
3·2N+1τ0

ε

(
Lk+N
N

)]

log2

(√
κ+1√
κ−1

) , (5.5.31)

where we temporarily treat J as a positive real number for convenience, and
the desired iteration number is dJe.

As for the initial error τ0, we set u0
l,i = 0 at each point yl,i in the context

of a standard hSGSC method, so that the error is given by

e0
l,i = (uJh(x1,yl,i), . . . , uJh(xJh ,yl,i))

>.

Substituting L0 obtained in Lemma 5.5.3, we have

log2

[
3 · 2N+1τ0

ε

(
L0 +N

N

)]
(5.5.32)

≤ log2

(
3 · 2N+1τ0

ε

)
+ log2

(
ε

3NCsg
22L0

)

= log2

(
2N+1τ0

CsgN

)
+ 2L0

≤ log2

(
2N+1τ0

CsgN

)
+

eN

e− 1
log2

[
2 e

ln 2

(
3Csg

ε

) 1
N
]

≤ N +
eN

e− 1
log2

[
2 e

ln 2

(
3Csg

ε

) 1
N
]

+ log2

(
2τ0

Csg

)

=
e

e− 1
log2

(
3Csg

ε

)
+N

[
e

e− 1
log2

(
2 e

ln 2

)
+ 1

]
+ log2

(
2τ0

Csg

)

= α6 log2

(
3Csg

ε

)
+ α7N + α8 + log2(τ0).

On the other hand, substituting L1 into the upper bound on ZL1 , we have

|ZL1 | ≤ 2L1+1

(
L1 +N − 1

N − 1

)
≤ 2L1+1

(
L1 +N

N

)
(5.5.33)

≤ 2L1+1

(
ε

3NCsg

)
22L1 ≤

(
ε

NCsg

)
2

3t1N
2 ln 2

=

(
ε

NCsg

)
2

3 ln(t0h)N
2 ln 2 =

(
ε

NCsg

)
t
3
2
N

0

[
2 e

ln 2

(
3Csg

ε

) 1
N
] 3

2
N
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=

(
ε

NCsg

)(
e

e− 1
lnh

) 3
2
N( 2 e

ln 2

) 3
2
N(3Csg

ε

) 3
2

=
2

N

(
3Csg

ε

) 1
2
{

2 e2

e− 1
log2

[
2 e

ln 2

(
3Csg

ε

) 1
N
]} 3

2
N

=
2

N

{
2 e2

e− 1
log2

(
2 e

ln 2

)
+

2 e2

e− 1

log2

(3Csg

ε

)

N

} 3
2
N(3Csg

ε

) 1
2

= α1

{
α2 + α3

log2

(3Csg

ε

)

N

}α4N(3Csg

ε

)α5

.

Hence, by substituting (5.5.31), (5.5.32), and (5.5.33) into (5.5.30), the proof
is finished.

Now we analyse the computational cost of the accelerated hSGSC method.
Unlike the standard hSGSC method, where the initial error τ0 is of the same
scale as the maximum value of uJh in D×Γ, in accelerated hSGSC, for each

new added sparse grid point yl,i with L = |i| ≥ 1, the initial guess ujl,i is first

predicted by the interpolated value ũJh,ML−1
(x,yl,i). In this case, the error

bound shown in (5.5.3) is still valid, but we can obtain a sharper bound for
the error uJh(x,yl,i)− ũJh,ML−1

(x,yl,i) at each sparse grid point on level L.
The result is shown in the following lemma.

Lemma 5.5.5. Using the isotropic sparse grid interpolation in (5.2.8), at
a sparse grid point yl,i with L = |l| ≥ 1 and i ∈ Bl, the error uJh(x,yl,i)−
ũJh,ML−1

(x,yl,i) can be bounded by
∥∥uJh(x,yl,i)− ũJh,ML−1

(x,yl,i)
∥∥
L2(D)

≤ Csurp2−2L + 2Necg, (5.5.34)

where Csurp > 0 is independent of L and ecg is the maximum error of the
CG simulations.

Proof. As in (5.5.3), we split the error into two parts, that is,

uJh(yl,i)− ũJh,ML−1
(yl,i) (5.5.35)

= uJh(yl,i)− uJh,ML−1
(yl,i)︸ ︷︷ ︸

e1

+uJh,ML−1
(yl,i)− ũJh,ML−1

(yl,i)︸ ︷︷ ︸
e2

,

where e1 is the definition of the hierarchical surplus, whose bound has been
proved in Lemma 3.6 of Bungartz and Griebel (2004), that is,

‖e1‖L∞(D) ≤ 2−N · ‖uJh‖L∞(D)⊗L2(Γ) · 2−2|i| = Csurp2−2L; (5.5.36)

and e2 measures the error between the exact prediction and the perturbed
one. To estimate e2, we need to extend the formula for calculating surpluses
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given in Bungartz and Griebel (2004) by including the sparse grid points
on the boundary. Based on Lemma 3.2 of Bungartz and Griebel (2004), we
can see that for each grid point (xj ,yl,i) for j = 1, . . . , Jh and |i| ≥ 1, its
surplus wj,l,i can be computed from the solution uJh in the following way:

wj,l,i = Al,i(uJh(xj , ·)) =

( N∏

n=1

Aln,in
)

(uJh(xj , ·)), (5.5.37)

where Al,i(·) is an N -dimensional stencil, which gives us the coefficients for
a linear combination of the nodal values of the solution uJh to compute
wl,i. Specifically, Al,i is product of N one-dimensional stencils Aln,in for
n = 1, . . . , N , defined by

Aln,in(uJh(xj , ·)) =

[
−1

2
1 − 1

2

]

yln,in

(uJh(xj , ·)) (5.5.38)

=− 1

2
uJh(xj ,yl,i − h̃ln1n) + uJh(xj ,yl,i)

− 1

2
uJh(xj ,yl,i + h̃ln1n)

where 1n is a vector of zeros except for the nth entry, which is one, and h̃ln
is a scalar equal to a half of the length of the support of the basis function
ψl,i(y) in the nth direction. It is easy to see that the sum of the absolute
values of the coefficients of Al,i(·) is equal to 2N . Note that all the involved
grid points in (5.5.38) belong to HNL−1(Γ) except for yl,i. Thus, due to the
fact that

|uJh(xj ,yl,i)− ũJh(xj ,yl,i)| ≤ ecg for j = 1, . . . , Jh,

the error e2 can be estimated by

‖e2‖L2(D) =
∥∥Al,i(uJh − ũJh)− (uJh(yl,i)− ũJh(yl,i))

∥∥
L2(D)

(5.5.39)

≤ 2Necg.

Theorem 5.5.6. Under Lemmas 5.5.2 and 5.5.3, the total cost Ctotal in
(5.4.2) for building isotropic sparse grid approximation ũJh,ML

with accu-
racy ε using accelerated hSGSC method is bounded by

Cmin ≤ α1

[
α2 + α3

log2

(3Csg

ε

)

N

]α4N(3Csg

ε

)α5

(5.5.40)

× 1

log2

(√
κ+1√
κ−1

)
[
2N − log2(N) + α9 + log2(

√
κ)
]
,

where the constants α1, . . . , α5 are defined as in Theorem 5.4.2 and α9 is
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defined by

α9 = log2

(
Csurp

Csg

)
+ 3. (5.5.41)

Proof. In the case of L = L1, according to the definition in (5.4.2), Cmin

can be decomposed as

Cmin ≤
L1∑

l=0

|Wl|J(τ l0, ε, κ, L1, N), (5.5.42)

where J is defined as in (5.5.31). Based on Lemma 5.5.5, we define the
initial searching interval τ l0 on level l by

τ l0 = Csurp2−2l + 2Necg, (5.5.43)

where ecg is defined in (5.5.25). For sufficiently small ε, the logarithmic
function in (5.5.42) is positive. By defining

Ĵ(τ l0, ε, L,N) := log2

[
3 · 2N+1τ l0

ε

(
L+N

N

)]
,

we have
Cmin ≤ ζ(C1

min + C2
min),

where

C1
min :=

1

2
log2(κ)|ZL|, C2

min :=

L1∑

l=0

|Wl|Ĵ(τ l0, ε, L1, N),

and ζ :=
1

log2

(√
κ+1√
κ−1

) ,

where C1
min can be obtained directly from the estimate of ZL. Thus we focus

on estimating C2
min. Substituting τ l0 into (5.5.42), we obtain

C2
min ≤

L1∑

l=0

2l
(
l +N − 1

N − 1

)

× log2

[
3 · 2N+1

ε

(
L1 +N

N

)(
Csurp2−2l + 2Necg

)]

=

L1∑

l=0

2l
(
l +N − 1

N − 1

)

× log2

[
3 · 2N+1

ε

(
L1 +N

N

)(
Csurp2−2l +

ε

3
(
L1+N
N

)
)]

=

L1∑

l=0

2l
(
l +N − 1

N − 1

)
log2

[
3 · 2N+1Csurp2−2l

ε

(
L1 +N

N

)]
+N
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≤
L1∑

l=0

2l
(
l +N − 1

N − 1

)
log2

[
2N+1Csurp22(L1−l)

ε

ε

NCsg

]
+N

=

L1∑

l=0

2l
(
l +N − 1

N − 1

)[
2(L1 − l) + log2

(
Csurp

Csg

)
+ 2N + 1− log2(N)

]

≤
(
L1 +N

N

) L1∑

l=0

(L1 − l)2l

+ 2L1+1

(
L1 +N

N

)[
log2

(
Csurp

Csg

)
+ 2N + 1− log2(N)

]

≤ 2L1+1

(
L1 +N

N

)[
log2

(
Csurp

Csg

)
+ 2N + 3− log2(N)

]

≤ α1

[
α2 + α3

log2

(3Csg

ε

)

N

]α4N(3Csg

ε

)α5[
2N − log2(N) + α9

]
.

Thus, substituting the estimates of C2
min and |ZL| into (5.5.42), the proof is

complete.

Remark 5.5.7. Theorems 5.5.4 and 5.5.6 tell us that the cost of the
hSGSC method is mainly determined by the number of sparse grid points
ML, the condition numbers of the relevant finite element system, and the
initial guesses of the CG simulations. Asymptotically, the growth rate of
ML is characterized by the constants α4 and α5, and the cost due to inac-
curate initial guesses is of order log2(1/ε). Note that the use of acceleration
techniques with accurate initial guesses will reduce the total cost by a fac-
tor log2(1/ε) asymptotically, which is consistent with the numerical results
given in Example 5.4.1.

APPENDIX

A. Brief review of probability theory

Essential concepts and definitions of probability theory required in this work
are reviewed in this section. Following Rudin (1987), Loève (1977, 1978)
and Rao and Swift (2006), we first provide a very brief introduction to the
measure-theoretic foundations of probability theory and then explore several
important concepts such as real-valued random variables and vectors, the
notion of moment operators, and stochastic processes. Further concepts
in probability theory can be found in several references: see, for example,
Taylor (1997), Loève (1977) and Grigoriu (2002).
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A.1. The notion of measurability

The class of continuous functions plays a fundamental role in topological
theory. It has several elementary properties in common with measurable
functions that play an essential role in integration theory. In what follows,
we present an abstract setting to emphasize the analogies between the con-
cepts topological spaces, open sets and continuous functions with measurable
spaces, measurable sets and measurable functions. Here Ω is defined as a
non-empty set with a finite or infinite (countable10 or uncountable) number
of elements ω.

Definition A.1 (topological space). A topology F on a non-empty set
Ω is a collection of subsets of Ω such that

(i) ∅ ∈ F and Ω ∈ F ,

(ii) if Ai ∈ F for i = 1, . . . , n, then
⋂n
i=1Ai ∈ F ,

(iii) if Aα ∈ F for α ∈ A, for an arbitrary index set A, then
⋃
α∈AAα ∈ F ,

where the members of F are called the open sets of Ω and the ordered pair
(Ω,F) is called a topological space.

Definition A.2 (σ-algebra and measurable space). A collection F of
subsets of a non-empty set Ω is called a σ-algebra of Ω if F satisfies

(i) Ω ∈ F ,

(ii) if A ∈ F , then Ac∈ F , where Ac= Ω\A is the complement of A in Ω,

(iii) if {An}∞n=1 ⊂ F , then
⋃∞
n=1An ∈ F ,

in which case the ordered pair (Ω,F) is called a measurable space and the
members of F are called the measurable sets in Ω.

Definition A.3 (measurable function). Let (Ω,F) and (Υ,Σ) denote
measurable spaces. Then, a function µ : Ω → Υ is measurable if, for every
A ∈ Υ, the pre-image of A under µ is in F , that is,

µ−1(A) ≡
{
ω ∈ Ω | µ(ω) ∈ A

}
⊂ F .

Definition A.4 (positive measure and measure space). Let (Ω,F) be
a measurable space. A function µ : F → [0,∞] is called a positive measure11

if µ satisfies the following.

10 A set S is countable if all its elements can be indexed by natural numbers in a one-
to-one fashion, i.e., there exists a function f : N → S such that S =

{
f(n) : n ∈ N

}
and, if f(n1) = f(n2), then n1 = n2. A set is at most countable if it is either finite,
that is, it can be ‘counted’ using {1, 2, . . . , n} for some n, or countable, that is, it can
be counted using N.

11 What we call a positive measure is usually just referred to as a measure. If µ(A) = 0
for every A ∈ F then, by our definition, µ is a positive measure.
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(i) Non-negativity: for all A ∈ F , µ(A) ≥ 0.

(ii) Null empty set: µ(∅) = 0.

(iii) Countable additivity: if A1, A2, . . . ∈ F and Ai∩Aj = ∅ for i 6= j, then

µ

( ∞⋃

i=1

Ai

)
=
∞∑

i=1

µ(Ai).

The triple (Ω,F , µ) is called a measure space.

Remark A.5. Measure spaces are often referred to as ‘ordered triples’
(Ω,F , µ), where Ω is a set, F is a σ-algebra in Ω, and µ is a measure de-
fined on F . Similarly, measurable spaces are often referred to as ‘ordered
pairs’ (Ω,F). These conventions make common sense and are logically cor-
rect, even though they are somewhat redundant. For example, given the
aforementioned ordered pair, the set Ω is merely the largest member of F ;
hence, given F , we can construct Ω. Moreover, by definition, every measure
takes a σ-algebra as its domain so that, given a measure µ, we can deduce
the σ-algebra F in which µ is defined and we also know the set Ω in which
F is a σ-algebra. It is therefore admissible to use the expressions ‘let µ be
a measure’ or ‘let µ be a measure on Ω’ if we choose to emphasize the set,
or even ‘let µ be a measure on F ’ if we want to emphasize the σ-algebra.
The customary approach, which is logically rather meaningless, is to say ‘let
Ω be a measure space’, even though it is understood that there is a mea-
sure defined on F in Ω and it is the measure that we are mathematically
interested in.

Borel σ-algebras

The Borel σ-algebra is an important example of a σ-algebra that is used in
the theory of functions, Lebesgue integration, and probability. Before giving
a definition, we state a classical theorem showing that σ-algebras exist in
great profusion.

Theorem A.6. Let Ω be a set and V is a non-empty collection of subsets
of Ω. There exists a smallest σ-algebra, denoted by σ(V), in Ω such that
V ⊂ σ(V), namely

σ(V) :=
⋂{
F : F is a σ-algebra of Ω,V ⊂ F

}
,

which is also called the σ-algebra generated by V.

We now let Ω be a topological space. By Theorem A.6, if V is a collection
of all open sets (or, equivalently, all closed sets) of Ω, then the smallest
σ-algebra B = σ(V) called the Borel σ-algebra on Ω. The elements of
B ∈ B are called the Borel sets, which can be formed from open sets (or,
equivalently, from closed sets) through operations of countable intersection,
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countable union, and relative complement. Because B is a σ-algebra, we
may regard (Ω,B) as a measurable space, with the Borel sets playing the
role of the measurable sets. If µ : Ω → Υ is a continuous mapping of Ω,
where Υ is another topological space, then from the definitions we obtain
that µ−1(A) ∈ B for every open set A ∈ Υ. In conclusion, every continuous
mapping of Ω is Borel-measurable. Borel-measurable mappings are often
referred to as Borel mappings or Borel functions.

A.2. Probability spaces and random variables

Probability measure

Basically, probability is the numerical measure of uncertainty of outcomes
of an action or experiment. The actual assignment of these values should
be based on experience and should generally be verifiable when the exper-
iment is, if possible, repeated under essentially the same conditions. To
build an axiomatic representation we first represent all possible outcomes of
an experiment as distinct points of a non-empty set. Since the collection of
all such possibilities can be infinitely large, various combinations of them,
useful to the experiments, have to be considered. We then define combina-
tions of such outcomes as events and consider an algebra of events as the
primary datum which includes everything of conceivable use for an experi-
ment. Finally, each event is assigned a numerical measure corresponding to
the ‘quantity’ of uncertainty in such a way that this uncertainty has natural
additive and consistency properties. Mathematically, this axiomatic formu-
lation was created by Kolmogorov; the analytical structure is what we next
describe.

Definition A.7 (probability measure and probability space). Let
(Ω,F) be a measurable space representing all possible outcomes of an ex-
periment, where the members of the σ-algebra F , called events, are collec-
tions of outcomes of the experiment. P : F → [0, 1] is called a probability
measure, or simply a probability, if it is a measure on (Ω,F) satisfying

P(A) ≥ 0 for all A ∈ F and P(Ω) = 1.

A probability space is the triple (Ω,F ,P).

Thus, a probability space is a finite measure space whose measure function
is normalized so that the entire space has measure one. The space (Ω,F ,P)
is called a complete probability space if F contains all the subsets A of Ω
with P-outer measure zero, that is, with

P∗(A) = inf
{
P(F ) : F ∈ F , A ⊂ F

}
= 0.

Any probability space can be made complete by adding to F all the sets
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with outer measure being zero and by extending P accordingly.12 Similarly,
the subsets A of Ω which belong to F are called F-measurable. However,
in the probability context, the interpretation of these events is different.
For example, when we write P(A), what we mean is ‘the probability that
the event A occurs’. In particular, if P(A) = 1 we say that ‘A occurs with
probability 1’ or ‘almost surely’ (a.s.).

Conditional probability

Let (Ω,F ,P) denote a probability space and let A1, A1 ∈ F be events with
P (A1) > 0 and P (A2) > 0. Denote the intersection A1∩A2 by the ‘product’
A1A2. Then the ratio P (A1A2)/P (A1) is called the conditional probability
of A2 given A1, or simply the probability of A2 given A1, and is denoted by
P (A2|A1) so that

P (A1A2) = P (A1)P (A2|A1). (A.1)

Then, by induction, for A1, A2, . . . , AN ∈ F we obtain the chain rule

P

( N⋂

i=1

Ai

)
= P (A1)P (A2|A1) · · ·P (A1A2 · · ·AN−1|AN ). (A.2)

Moreover, if
⋃
iAi = Ω with AiAj 6=i = ∅ and Ai and B ∈ F , we have that

P (B) = P (ΩB) =
∑

i

P (AiB). (A.3)

Then, the total probability rule follows from (A.1), namely

P (B) =
∑

i

P (Ai)P (B|Ai). (A.4)

Finally, using (A.1)–(A.4), we arrive at Bayes’ theorem:

P (Aj |B) =
P (Aj)P (B|Aj)∑
i P (Ai)P (B|Ai)

.

Random variables and their probability distributions

Definition A.8 (random variables). Let (Ω,F ,P) denote a probability
space. A function X : Ω→ R is a random variable if X satisfies

X−1(B) ⊂ F or X−1(A) := {ω ∈ Ω | X(ω) ∈ A} ∈ F ,
where B is the Borel σ-algebra of R, and A = (−∞, x), x ∈ R.

Thus, a random variable is a function from the abstract set Ω to the real
space, where each outcome ω ∈ Ω is assigned a real number X(ω) ∈ R.

12 In this article, we assume that all probability spaces are complete.
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A random variable is of real interest when related to its image measure or
to the distribution function in the context of probability theory.

Definition A.9 (image measure). Let (Ω,F ,P) denote a probability
space and X : Ω → R denote a random variable. The image measure of
X, denoted by PX , is a measure on the Borel space (R,B) defined by

PX(A) := P(X−1(A)) = P({ω ∈ Ω|X(ω) ∈ A}) for all A ∈ B,
where PX is also a probability measure.

Note that the σ-algebra {X−1(A) | A ∈ B} is a subset of F and only
characterizes the probabilistic events related to the random vector. Thus,
such a σ-algebra is usually referred to as the σ-algebra generated by X,
and is denoted by σ(X). The restriction of P on σ(X), that is, PX , only
describes the probability law related to X. Moreover, PX determines a
unique distribution function in R.

Definition A.10 (distribution functions). If X : Ω → R is a random
variable on (Ω,F ,P), then its distribution function is a mapping FX : R→
R+, defined by

FX(x) = PX(X ≤ x) = P({ω ∈ Ω|X(ω) ≤ x}) for all x ∈ R,

which is right-continuous and monotonically increasing and satisfies

lim
x→+∞

FX(x) = 1, lim
x→−∞

FX(x) = 0,

PX(a < x ≤ b) = FX(b)− FX(a) ≥ 0, for all a ≤ b ∈ R,
PX(a ≤ x < b) = FX(b)− FX(a) + PX(x = a)− PX(x = b).

From Definitions A.9 and A.10, we see that a random variable uniquely
determines its image measure PX and the distribution function FX . Con-
versely, FX uniquely determines a measure PX , but there exist multiple
random variables having the same image measure PX . Those random vari-
ables are called identically distributed random variables.

Definition A.11 (probability density functions). LetX denote a ran-
dom variable in (Ω,F ,P) and let FX be its probability distribution function
which is absolutely continuous in R. Then, there exists an integrable func-
tion fX(x), referred to as the probability density function of X such that

FX(b)− FX(a) =

∫ b

a
fX(x) dx, a ≤ b.

fX(x) is, in fact, the Radon–Nikodym derivative of FX .

The Doob–Dynkin lemma
The following measurability result is extremely useful; it is a special case of
a result usually referred to as the Doob–Dynkin lemma.



SFEMs for SPDEs 627

Lemma A.12 (Doob–Dynkin). Let (Ω,F) and (Θ,A) denote measure
spaces and let X : Ω → Θ be measurable. Then, a function Y : Ω → R is
σ(X)-measurable if and only if there exists a function g : Θ→ R such that
Y = g(X).

A number of specializations of this result are possible. If the measure
space Θ = R and we use the Borel σ-algebra A = B of R, then there is a
Borel-measurable g : R → R, which satisfies the requirements. This yields
the following result.

Corollary A.13. Let Ω be a measure space. If X,Y : Ω → R are two
given measurable functions, then Y is σ(X)-measurable if and only if there
exists a Borel-measurable function g : R→ R such that Y = g(X).

If A is replaced by the larger σ-algebra of all (completion of A) Lebesgue-
measurable subsets of R, then g will be a Lebesgue-measurable function.

A.3. Integration and moment operators of random variables

Integrability
For a random variable X : (Ω,F) → (R,B), the integral of X with respect
to P over a subdomain D ⊂ Ω is defined by

∫

D
X(ω)P(dω) =

∫

Ω
ID(ω)X(ω)P(dω),

where ID(ω) is the characteristic function of D. If such an integral exists
and is finite, then X is P-integrable over D.

Moments of a random variable

Definition A.14 (expectation). Let X denote a random variable on a
probability space (Ω,F ,P). Then

E(X) :=

∫

Ω
X(ω)P(dω)

is called the expectation of X. If X is P-integrable over Ω, then the expec-
tation of X is finite.

Based on this definition, we see that for any Borel-measurable function
Y : R→ R which is PX -integrable, we have

E(Y ◦X) =

∫

R
Y dPX .

In particular, when Y = X, the expectation of X can be represented by an
integral over R, that is,

E(X) =

∫

R
X PX(dX).
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Definition A.15 (the space Lq(Ω)). In the probability space (Ω,F ,P),
for q > 1, we denote by Lq(Ω) the collection of random variables X defined
on (Ω,F ,P) such that

E
[
|X|q

]
≤ ∞.

Definition A.16 (moments of order q). Let X denote a random vari-
able on a probability space (Ω,F ,P) and Y = Xq for q ≥ 1. The expectation
of Y is called the moment of order q of X, and is given by

E(Xq) :=

∫

Ω
Xq(ω)P(dω) =

∫

R
xq dFX(x), (A.5)

where x ∈ R. If X ∈ Lq(Ω), then its moment of order q is finite.

A.4. Random vectors and their probability distributions

Similar to the definition of a random variable, a random vector defined
on the probability space (Ω,F ,P) is a vector of scalar random variables,
denoted by X(ω) = (X1(ω), . . . , XN (ω)), whose components are defined on
the same probability space (Ω,F ,P). The image measure of X, denoted by
PX , is a measure on the Borel space (RN ,BN ) defined by

PX(A) := P(X−1(A)) = P({ω ∈ Ω|X(ω) ∈ A}) for all A ∈ BN .

Definition A.17 (joint and marginal distribution functions). The
joint distribution function of X is the direct extension of the distribution
function of the scalar random variable, that is,

FX(x) = P({ω ∈ Ω|X1(ω) ≤ x1, . . . , XN (ω) ≤ xN}) for all x ∈ RN . (A.6)

The marginal distribution function of Xn, denoted by FXn(xn), is defined
by

FXn(xn) = FX(∞, . . . ,∞, xn,∞, . . . ,∞).

Definition A.18 (joint and marginal density functions). The joint
density function of X is the direct extension of the definition of the den-
sity function of the scalar random variable, that is, the Radon–Nikodym
derivative of FX represented by

fX(x) :=
∂NFX(x)

∂x1 · · · ∂xN
.

The marginal density function of Xn, denoted by fXn(xn), is defined by

fXn(xn) :=

∫

RN−1

FX(x1, . . . , xN ) dx1 · · · dxn−1 dxn+1 · · · dxN .
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A.5. Independence and correlation of random variables

Definition A.19 (independent events). A family of events {Ai}i∈I in
F is called independent with respect to the measure P if, for every non-
empty, finite index set {i1, . . . , in} ⊂ I, we have

P(Ai1 ∩ · · · ∩Ain) = P(Ai1)× · · · × P(Ain).

Definition A.20 (independent random variables). Let {Xn}Nn=1 de-
note N random variables in (Ω,F ,P). If, for any x = (x1, . . . , xN ) ∈ RN ,

P
( N⋂

n=1

{
Xn ≤ xn

})
=

N∏

n=1

P(Xn ≤ xn), (A.7)

then {Xn}Nn=1 are called independent random variables.

An equivalent definition of independent random variables is that Xn for
n = 1, . . . , N are independent if and only if their joint distribution is the
product of their marginal distributions, that is,

FX(x) =
N∏

n=1

FXn(xn).

On the other hand, if the joint density function fX(x) exists, then it also
satisfies the product rule, that is,

fX(x) :=
N∏

n=1

fXn(xn).

Definition A.21 (covariance). Let X = (X1, . . . , XN )> denote an N -
dimensional random vector on a probability space (Ω,F ,P). Then the ma-
trix

COV(X) := E
[
(X − E(X))(X − E(X))>

]
∈ RN×N

is called the covariance matrix of the random vector X. The covariance
COV(X) < ∞ if and only if X is square-integrable. Each of the diagonal
entries of COV(X)(X) is called the variance of Xn for n = 1, . . . , N and is
denoted by

VAR(Xn) := E
[
(Xn − E(Xn))2

]
= E(X2

n)− E(Xn)2.

Each of the off-diagonal entries

cij = E[(Xi − E(Xi))(Xj − E(Xj))]

is the covariance of (Xi, Xj). If cij = 0 for i 6= j, then Xi and Xj are said
to be uncorrelated.
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A.6. Product probability space

We now consider of a family of probability spaces (Ωk,Fk,Pk) for k =
1, . . . ,Kd, from which we would like to build a product space (Ω,F ,P)
represented by

(Ω,F ,P) :=
d∏

i=1

(Ωi,Fi,Pi),

where Ω, F , and P are the product sample spaces, product σ-algebra, and
product measure, respectively. Their definitions are given below.

Definition A.22 (product sample space). The product space Ω is de-
fined by

Ω := Ω1 × · · · × ΩK = {(ω1, . . . , ωK)| ωk ∈ Ωk for k = 1, . . . ,K}.

Definition A.23 (product σ-algebra). Let (Ωk,Fk), for k = 1, . . . ,K,

denote K measure spaces and define the collection of subsets C in
∏K
k=1 Ωk

by

C :=

{ d∏

i=1

Ak

∣∣∣Ak ∈ Fk for k = 1, . . . ,K

}
.

Then, the product σ-algebra is the σ-algebra generated by C, that is,

F := F1 × · · · × Fd = σ(C).

Theorem A.24 (product probability measure). Let (Ωk,Fk,Pk), for
k = 1, . . . ,K, denote K probability spaces. Then there exists a unique
product probability measure P defined on the product σ-algebra ⊗Kk=1Fk
satisfying

P
( K∏

k=1

Ak

)
= P1(A1) · · ·PK(AK) for Ak ∈ Fk, k = 1, . . . ,K.

For a general event A ∈ F = ⊗Kk=1Fk, P(A) is defined by

P(A) =

∫

ΩiK

(
· · ·
(∫

Ωi1

IA(ω1, . . . , ωK)Pi1(dωi1)

)
· · ·
)
Pid(dωid).

where (i1, . . . , iK) is an arbitrary reordering of (1, . . . ,K) and IA is the
characteristic function of the event A.

Theorem A.25 (Fubini’s theorem). Let (Ωk,Fk,Pk), for k = 1, . . . ,K,
denote K probability spaces and let (Ω,F ,P) be the product probability
space. If f is a measurable function on F = F1×· · ·×FK and is integrable
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with respect to the product measure P = P1 × · · · × PK , then
∫

Ω1×···×ΩK

f(ω1, . . . , ωK) d(P1 × · · · × PK)

=

∫

ΩiK

(
· · ·
(∫

Ωi1

f(ω1, . . . , ωK)Pi1(dωi1)

)
· · ·
)
Pid(dωiK ),

where (i1, . . . , iK) is an arbitrary reordering of (1, . . . ,K).

B. Random fields

In this article we consider numerical methods for partial differential equa-
tions with random input data whose solutions are functions of spatial and
random variables. Thus, the notion of random variables need to be ex-
tended by incorporating a spatial dependence. For convenience, we use the
notations D to represent the spatial domain and x = (x1, . . . , xd) to rep-
resent the spatial coordinates. Then, in the probability space (Ω,F ,P), a
stochastic process is a collection of random variables

{a(x, ω),x ∈ D,ω ∈ Ω}. (B.1)

The term ‘random field’ usually refers to a stochastic process taking values
in a Euclidean space13 Rd, d = 1, 2, 3. Because x is used to represent the
spatial coordinates, we use ‘random field’ to refer to the process defined in
(B.1). A random field can be viewed in two ways:

– for a fixed x ∈ D, a(x, ·) is a random variable in Ω;

– for a fixed ω ∈ Ω, a(·, ω) is a realization of the random field in D.

It is natural and useful to study the statistics of a random field. For
example, the expectation of a random field a(x, ω) is given by

a(x) := E[a(x, ·)] for each x ∈ D
and the covariance function is given by

COV(x,x′) := E
[
(a(x, ·)− a(x))(a(x′, ·)− a(x′))

]

for each pair x,x′ ∈ D.

B.1. Karhunen–Loève expansions

Given a collection of real-valued functions {bn(x)}∞n=1 defined for x ∈ D
and a collection of uncorrelated random variables

{ξ̂n(ω)}∞n=1

13 Time-dependent random fields are in even greater use.



632 M. D. Gunzburger, C. G. Webster and G. Zhang

with, for convenience, mean zero and variances {σ2
n}∞n=1, the linear combi-

nation

a(x, ω) =
∞∑

n=1

bn(x)ξ̂n(ω) (B.2)

is a random field that can be used as a simple way to represent a given
correlated random field as an infinite sum involving uncorrelated random
variables. The covariance function of the random field (B.2) is given by

COVa(x,x
′) =

∞∑

n=1

σ2
nbn(x)bn(x′). (B.3)

The above structure is attractive because the random variables ξn are un-
correlated or independent so they are easy to handle in practice.

If we set ξn(ω) = 1
σn
ξn(ω), then {ξn(ω)}∞n=1 are a collection of uncorre-

lated random variables having mean zero and variance 1. Also, (B.2) is now
given by

a(x, ω) =

∞∑

n=1

σnbn(x)ξn(ω).

If the functions {bn(x)}∞n=1 are orthonormal, that is, if
∫

D
bn(x)bn′(x) dx = δnn′ ,

then ∫

D
COVa(x,x

′)bn(x′) dx =

∫

D

( ∞∑

n′=1

σ2
n′bn′(x)bn′(x

′)

)
bn(x′) dx

=

∞∑

n′=1

σ2
n′bn′(x)

∫

D
bn′(x

′)bn(x′) dx

=

∞∑

n′=1

σ2
n′bn′(x)δnn′ = σ2

nbn(x).

Thus, we see that σ2
n and bn(x), n = 1, 2, . . . , are the eigenpairs of the

correlation function COVa(x,x′).
What we have shown is that, given the covariance function COVa(x,x′)

of a random field a(x, ω), random field can be expressed as the infinite sum

a(x, ω) =

∞∑

n=1

√
λnbn(x)ξn(ω), (B.4)

where {λn, bn(x)}∞n=1 denote the eigenpairs of the given covariance function
and {ξn(ω)}∞n=1 are uncorrelated random variables with mean zero and unit
variance. The expansion (B.4) is well known as the Karhunen–Loève (KL)
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expansion (Loève 1977) of a random field. KL expansions are also known as
proper orthogonal decompositions (POD) and principal component analyses
(PCA) in finite-dimensional settings.

Truncated KL expansions provide a means for approximating random
fields, that is, we have

a(x, ω) ≈ aN (x, ω) =

N∑

n=1

√
λnbn(x)ξn(ω).

We have that

COVaN (x,x′) =
N∑

n=1

λnbn(x)bn(x′).

The convergence of COVaN to COVa as N → ∞ is guaranteed by Mercer’s
theorem.

Theorem B.1 (Mercer’s theorem). Let D ⊂ Rd be closed, let µ be
a strictly positive Borel measure on D, let COVa(x,x′) be a continuous
function on D ×D which is symmetric,

COVa(x,x
′) = COVa(x

′,x) for all x,x′ ∈ D,
non-negative definite,

∫

D

∫

D
COVa(x,x

′)v(x′)v(x) dx′ dx ≥ 0 for all v(x),

and square-integrable,
∫

D

∫

D
Ca(x,x

′)2 dµ(x) dµ(x′) <∞.

Then, we have that

lim
N→∞

max
(x,x′)∈D×D

∣∣∣∣COVa(x,x
′)−

N∑

n=1

λnbn(x)bn(x′)

∣∣∣∣ = 0,

where λn and bn(x) are the eigenpairs of COVa(x,x′).

Moreover, the truncation error decreases monotonically with the number
of terms in the expansion and the convergence is inversely proportional to
the correlation length and depends on the regularity of the covariance kernel.
The decay of the eigenvalues λn is given in the following theorem.

Theorem B.2. Let COVa(x,x′) ∈ L2(D × D) be piecewise analytic on
D × D and let {λn}∞n=1 be the eigenvalue sequence. Then, there exist
constants c1 > 0 and c2 > 0 that are independent of n such that

0 ≤ λn ≤ c1 exp(−c2 n
1/N ) for all n ≥ 1.
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Theorem B.3. Let COVa(x,x′) ∈ L2(D×D) be piecewise Hk
0 with k > 0

and let {λn}∞n=1 be the eigenvalue sequence. Then, there exists a constant
c3 > 0 that is independent of n such that

0 ≤ λn ≤ c3 n
−k/N for all n ≥ 1.

C. White noise inputs

The value of a white noise random field at every point in space is indepen-
dently chosen according to a centred14 Gaussian PDF with variance σ2. The
covariance function corresponding to a white noise random field is given by

COVwhite(x,x
′) = σ2δ(x− x′), (C.1)

where δ(·) denotes the Dirac delta function. Thus, the variance VARwhite(x)
of white noise is infinite, so white noise cannot describe a real process.
Notwithstanding this observation, white noise random fields are the most
common random inputs used in the partial differential equation (PDE) set-
ting. White noise random fields are infinite stochastic processes so that, in
any computer simulation, they have to be approximated in terms of a finite
number of random parameters. Among the means available for defining
discretized white noise in the PDE setting, the most popular are grid-based
methods.

To define a single realization of grid-based discretized white noise, we first
subdivide the spatial domain15 D into N non-overlapping, covering subdo-
mains {Dn}Nn=1. Then, for some constants {bn}Nn=1, we seek a piecewise
constant approximation of a white noise random field of the form

ηNwhite(x;y) =

N∑

n=1

bn1n(x)yn, (C.2)

where, for each n = 1, . . . , N , 1n(x) denotes the indicator function corre-
sponding to the subdomain Dn, yn denotes an i.i.d. random number drawn
from a standard Gaussian PDF, and y = (y1, y2, . . . , yN )> denotes the vec-
tor or random samples.

The covariance of ηNwhite(x;y) is given by

COVNwhite(x,x
′) =

∫

Γ
ηNwhite(x;y)ηNwhite(x

′;y)ρG(y) dy

=

∫

Γ

N∑

n=1

N∑

n′=1

bn1n(x)ynbn′1n′(x
′)yn′ρG(y) dy

14 We assume, without loss of generality, that the random field has zero expected value.
15 Defining discretized white noise with respect to spatial subdomains is well suited to

finite element and finite volume spatial discretizations of PDEs. For finite difference
methods, a node-based discretization is more appropriate.
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=
N∑

n=1

N∑

n′=1

bn1n(x)bn′1n′(x
′)

∫

Γ
ynyn′ρG(y) dy

=
N∑

n=1

N∑

n′=1

bn1n(x)bn′1n′(x
′)δnn′

=
N∑

n=1

b2n1n(x)1n(x′),

so that, for n = 1, . . . , N ,

COVNwhite(x,x
′) =

{
b2n if x,x′ ∈ Dn,

0 if x ∈ Dn and x′ 6∈ Dn.
(C.3)

Because pointwise values of the covariance (C.1) are not defined, we de-
termine, for n = 1, . . . , N , the coefficient bn by matching the averages of
(C.1) and (C.3) over Dn. This results in b2n|Dn| = σ2, where |Dn| denotes
the volume of Dn. Then, from (C.2), the discretized white noise random
field is given by

ηNwhite(x;y) = σ
N∑

n=1

1√
|Dn|

χn(x)yn,

so that, via discretization, white noise has been reduced to the case of
N random parameters. Note that the number of random parameters N
is intimately tied to the spatial grid size. In fact, for ordinary meshes in
domains D ⊂ Rd, we have that N = O( 1

hd
). This should be contrasted

with the coloured noise case, for which there is at most a weak connection
between the number of parameters and the spatial grid size.

In one dimension, for a uniform grid of size h, we have the well-known
formula

ηNwhite(x;y) =
σ√
h

N∑

n=1

χn(x)yn

for approximating a white noise random field. This formula is especially
well known when x is interpreted as a time variable.

The variance of the discretized white noise random field ηNwhite(x;y) is
given by, for n = 1, . . . , N ,

VARNwhite(x) =
σ2

|Dn|
for x ∈ Dn

so that, unlike for white noise itself, the variance of discretized white noise
is finite. However, note that as the grid size is reduced, that is, as |Dn| → 0,
we do have that VARNwhite(x) → ∞. Furthermore, although a white noise
random field is uncorrelated, the discretized white noise is a correlated
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random field. In fact, we have that

COVNwhite(x,x
′) =

{
σ2

|Dn| if x,x′ ∈ Dn,

0 if x ∈ Dn and x′ 6∈ Dn,

so that the correlation function for the discretized white noise random field
ηNwhite(x;y) is given by, for n = 1, . . . , N ,

CORNwhite(x,x
′) =

COVNwhite(x,x
′)√

VARNwhite(x)VARNwhite(x
′)

=

{
1 if x,x′ ∈ Dn,

0 if x ∈ Dn and x′ 6∈ Dn.

Thus, all pairs of points within a subdomain Dn are perfectly correlated,
whereas any two points in different subdomains are uncorrelated.

In what sense is the discretized white noise field ηNwhite(x;y) an approx-
imation to a white noise field? Certainly, pointwise convergence or even
L2(D) convergence is out of the question because a white noise field is not
square-integrable. What can be shown is convergence of the covariance
function in the sense that

lim
N→∞,maxn=1,...,N |Dn|→0

COVNwhite(x,x
′) = σ2δ(x− x′) = COVwhite(x,x

′).

This result follows because, for any function g(x) that is continuous over
D, we have that

lim
N→∞

σ2

|DnN |

∫

DnN

g(x) dx = σ2g(x′),

where {DnN }N→∞ denotes a sequence of subdomains that contain a point
x′ ∈ D and such that maxn=1,...,N |Dn| → 0.
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