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We will talk about three of the many practical applications of matrices:

Application in Google web search engine

Application in finance

Application in image processing
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Application in Google
The PageRank algorithm
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If one goes to a website, it might find some links on that page which points to
other websites. If there are many websites which points to a specific webpage,
then that website must be pretty important.

The page rank algorithm gives each page a rating of its importance. The
importance of a page is defined recursively by the importance of the pages which
points to it.

One way to think about it is to start surfing on the internet through the links from
one page to another. The page rank of a website is proportional to the probability
that we end up on that website after a specific very long time.

Application of random matrices 4 / 17



If one goes to a website, it might find some links on that page which points to
other websites. If there are many websites which points to a specific webpage,
then that website must be pretty important.

The page rank algorithm gives each page a rating of its importance. The
importance of a page is defined recursively by the importance of the pages which
points to it.

One way to think about it is to start surfing on the internet through the links from
one page to another. The page rank of a website is proportional to the probability
that we end up on that website after a specific very long time.

Application of random matrices 4 / 17



If one goes to a website, it might find some links on that page which points to
other websites. If there are many websites which points to a specific webpage,
then that website must be pretty important.

The page rank algorithm gives each page a rating of its importance. The
importance of a page is defined recursively by the importance of the pages which
points to it.

One way to think about it is to start surfing on the internet through the links from
one page to another. The page rank of a website is proportional to the probability
that we end up on that website after a specific very long time.

Application of random matrices 4 / 17



Mathematically, we represent the web as a directed graph with vertices
P1,P2, ..,Pn for some n and we say that (Pi ,Pj) is an edge iff the webpage Pi

links to Pj .

The PageRank algorithm generates a vector π which satisfy that the rank of the
page Pi is the sum of the ranks of the pages that point to it, divided by their
degree.
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For example, one might check that for the following graph, the PageRank
algorithm will generate π = (1/6, 1/2, 1/6, 1/6).

P1 P3

P2

P4
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To write this in terms of matrices, let A be the adjacency matrix of the directed
graph. Let dout(Pi ) be the out-degree of the vertex Pi and let

D := diag(dout(P1), dout(P2), ..., dout(Pn)).

Assume that dout(Pi ) 6= 0 for all i so we can continue surfing at any time. Let

W := ATD−1.

Then π satisfies:
π = Wπ,

So π is an eigenvector of W with eigenvalue 1.
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Application in finance
The covariance matrix
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A useful term in finance is that of a stock, which, simplified represents a
proportion of the value of a company. This is not a rigorous definition, but it is
enough to understand the example.

Let’s suppose we have some money and we want to invest it in stocks
A1,A2, ..,A10. We do not want to take too much risk, so we decide that we want
the variance of our portfolio to be upper bounded by some c > 0. From the past
data, we can estimate the covariance matrix of the stocks A1, ...,A10, call this
matrix V and note that V has to be positive definite, i.e. all eigenvalues are
positive. We can also compute the estimated returns of the stocks, call them
r1, .., r10 and let r = (r1, .., r10).
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In terms of matrices, we want to find the proportion of the portfolio, x ∈ R10 such
that

xT · r is maximized

xTVx ≤ c

Let the singular value decomposition of V be:

V = UTΣU,

where Σ := diag(σ2
1 , ..., σ

2
10) and the columns of U are ui , where σ2

i ’s and vi ’s are
the eigenvalues and the associated eigenvectors of V .
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Let y = x · U · Σ1/2 and r ′ = Σ1/2 · U · r . Our task becomes to find y with
‖y‖2 ≤ c which maximizes

yT · r ′.

This implies that y ′ is collinear with r ′ and so we can compute x .
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Application to Image Processing
Principal Component Analysis
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An image can be view as an m × n matrix, where each entry of the matrix
correspond to a pixel. In general, every color can be computed by a mixture of red
blue and green, so we can associate each color with a triplet in which each
coordinate is the amount of red, green and respectively blue in that color.

The problem with a picture which has high resolution is that it contains a lots of
informations which need to be stored, so it will take a lot of space. In many
situations we do not necessarily need the high resolution, but a very good
approximation of it.
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For simplicity of the argument, let’s suppose we are working with a square black
and white picture, so the entries of our matrices can be seen as real numbers, 0
meaning white and 1 black. Let A be the associated matrix. In general A is full
ranked, so if we want to store the image, we have to store n2 bits.

Let

A :=
n∑

i=1

σiv
∗
i vi ,

be the singular value decomposition of A. Define

Ak :=
k∑

i=1

σiv
∗
i vi .

The idea is that if the eigenvalues of A are far from each other, then the matrix
Ak is a good approximation for A.
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For example

A− Ak =
n∑

i=k+1

σiv
∗
i vi ,

which implies:

‖A− Ak‖2Fr =
n∑

i=k+1

σ2
i .

Note that in order to store Ak we only need kn + k bits as we only store the first
k eigenvalues and eigenvectors.
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The following example appears in it Principal Component Analysis (PCA) by
Vaclav Hlavac and it uses only the first 4 eigenvectors to reconstruct a 231× 261
pixels image.
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Questions?
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