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DIFFUSION WITH NONLOCAL ROBIN BOUNDARY

CONDITIONS

WOLFGANG ARENDT, STEFAN KUNKEL, AND MARKUS KUNZE

Abstract. We investigate a second order elliptic differential operator Aβ,µ on

a bounded, open set Ω ⊂ Rd with Lipschitz boundary subject to a nonlocal
boundary condition of Robin type. More precisely we have β ∈ L∞(∂Ω) and

µ : ∂Ω → M (Ω), and boundary conditions of the form

∂A
ν u(z) + β(z)u(z) =

∫
Ω

u(x)µ(z)(dx), z ∈ ∂Ω,

where ∂A
ν denotes the weak conormal derivative with respect to our differen-

tial operator. Under suitable conditions on the coefficients of the differential
operator and the function µ we show that Aβ,µ generates a holomorphic semi-
group Tβ,µ on L∞(Ω) which enjoys the strong Feller property. In particular,

it takes values in C(Ω). Its restriction to C(Ω) is strongly continuous. We
also establish positivity and contractivity of the semigroup under additional
assumptions and study the asymptotic behavior of the semigroup.

1. Introduction

The aim of this paper is to prove existence and uniqueness of solutions to diffusion
equations with non-local Robin boundary conditions. Let us describe this in more
detail. We consider a bounded, open set Ω ⊂ Rd with Lipschitz boundary. As far
as our boundary condition is concerned, we make the following assumptions.

Hypothesis 1.1. We are given a real-valued function β ∈ L∞(∂Ω), where ∂Ω
is endowed with surface measure σ. Moreover, we are given a map µ : ∂Ω →
M (Ω), the space of complex-valued measures on Ω, which satisfies the following 3
conditions.

(a) For every function f ∈ Bb(Ω), the space of all bounded and Borel measur-
able functions on Ω, the map z 7→ 〈f, µ(z)〉 :=

∫

Ω f(x)µ(z)(dx) is measur-
able;

(b) for some p > d− 1 with p ≥ 2 we have
∫

∂Ω
‖µ(z)‖p dσ(z) < ∞ and

(c) there exists a positive and bounded measure τ on Ω such that for every
z ∈ ∂Ω the measure µ(z) is absolutely continuous with respect to τ .

In (a) it actually suffices to assume that the map z 7→ 〈f, µ(z)〉 is measurable
for all f ∈ C(Ω). The measurability for those f which are merely bounded and
measurable follows by a monotone class argument, cf. the proof of Lemma 6.1 in
[21]. We will see later on that if instead of (a) we assume

(a′) For every f ∈ Bb(Ω) the map z 7→ 〈f, µ(z)〉 is continuous

then parts (b) and (c) in Hypothesis 1.1 are automatically satisfied.
Assuming Hypothesis 1.1 we can define the operator ∆β,µ on L∞(Ω) by

D(∆β,µ) := {u ∈ H1(Ω) ∩C(Ω) : ∆u ∈ L∞(Ω),

∂νu(z) + βu(z) = 〈u, µ(z)〉 ∀ z ∈ ∂Ω}

∆β,µu = ∆u.
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Here we have used the following weak definition of the normal derivative ∂νu.

Definition 1.2. For a function u ∈ H1(Ω), we write tr u for its trace in L2(∂Ω).
Let u ∈ H1(Ω) be such that ∆u ∈ L2(Ω) and let h ∈ L2(∂Ω). We say that ∂νu = h
if Green’s formula

∫

Ω

∆uv dx+

∫

Ω

∇u∇v dx =

∫

∂Ω

h tr v dσ

holds for all v ∈ H1(Ω).

In what follows we will not distinguish between a function u ∈ H1(Ω) and its
trace tru in integrals over the boundary ∂Ω.

With this definition of the normal derivative the operator ∆β,µ is well-defined.

Indeed, if u ∈ D(∆β,µ) then u ∈ C(Ω) whence

h(z) := 〈u, µ(z)〉 − β(z)u(z)

defines a function h ∈ L2(∂Ω). Since furthermore u ∈ H1(Ω) and ∆u ∈ L∞(Ω) ⊂
L2(Ω) it makes sense to say that ∂νu = h. This condition is the Robin boundary
condition we are interested in with local part β tru and non-local part 〈u, µ(·)〉.

We also consider the part ∆C
β,µ of ∆β,µ in C(Ω) given by

D(∆C
β,µ) := {u ∈ H1(Ω) ∩ C(Ω) : ∆u ∈ C(Ω),

∂νu+ βu|∂Ω = 〈u, µ(·)〉}

∆C
β,µu = ∆u.

We will prove the following generation theorem.

Theorem 1.3. Assuming Hypothesis 1.1, the operator ∆β,µ generates a holomor-
phic semigroup (Tβ,µ(t))t>0 on L∞(Ω) which satisfies the strong Feller property. In

particular, this semigroup leaves the space C(Ω) invariant. Its restriction to C(Ω)
is a strongly continuous semigroup whose generator is ∆C

β,µ.

We refer to Section 2 for the definition of holomorphic semigroups which are
not strongly continuous at 0 and for an explanation of the strong Feller property.
We will actually prove Theorem 1.3 in more generality, replacing the Laplacian
with a general second order strictly elliptic differential operator with measurable
coefficients.

We will also establish positivity and contractivity of the semigroup Tβ,µ under
additional assumptions on β and µ. In the case of Theorem 1.3, where we consider
the Laplacian, the conditions are as follows. If the measures µ(z) are positive for
all z ∈ ∂Ω then the semigroup Tβ,µ is positive; i.e. each Tβ,µ(t) leaves the positive
cone L∞(Ω)+ of L∞(Ω) invariant. If additionally we have that

(1.1) µ(z,Ω) ≤ β(z) for almost all z ∈ ∂Ω,

then the semigroup Tβ,µ is sub-Markovian, i.e. Tβ,µ is positive and Tβ,µ(t)1 ≤ 1 for
all t > 0. If equality holds in (1.1) then Tβ,µ is Markovian, i.e. Tβ,µ(t) is positive
and Tβ,µ(t)1 = 1. In these situations we will also study the asymptotic behavior
of the semigroup Tβ,µ. In the sub-Markovian, non-Markovian case the semigroup
converges in operator norm to 0, whereas in the Markovian case the orbits converge
to an equilibrium.

The proof of Theorem 1.3 is based on a perturbation result by Greiner which we
explain in Section 2. We actually present a slight generalization of Greiner’s result
which establishes additional properties of the perturbed semigroup. In a previous
paper [8] we had treated non-local Dirichlet boundary conditions. It should be
said that the techniques we use here are different from the case of Dirichlet bound-
ary conditions where the maximum principle plays an essential role and Greiner’s
perturbation result cannot be applied.
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Non-local Robin boundary conditions of the above form occur in several concrete
situations, for example in heat control, where the heat is measured in the interior
and the control is via the boundary.

The present article is part of an ongoing project to understand boundary con-
ditions which yield realizations of differential operators that generate Markovian
semigroups. This project was initiated by Feller [17, 18] in dimension one and Vent-
cel [29] in higher dimensions. Boundary conditions of the form considered here were
studied by Galakhov and Skubachevskĭı [19] and Taira [28] with different techniques
and under more restrictive assumptions.

The structure of this article is as follows. In Section 2 we present Greiner’s
boundary perturbation theory along with our modifications. Section 3 contains
results on elliptic differential operators with local Robin boundary conditions which
are needed later on. In Section 4 we prove our main generation result. Section
5 contains our results concerning the asymptotic behavior of the semigroups and
Section 6 is devoted to the special situation where all measures µ(z) are absolutely
continuous with respect to Lebesgue measure. In the concluding Section 7 we give
some examples where Hypothesis 1.1 is satisfied, in particular, we prove that it
is satisfied whenever condition (a′) is fulfilled. In the appendix we present some
general results on the asymptotic behavior of positive semigroups, which we use in
Section 5.

2. Greiner’s boundary perturbation revisited

An important tool in this article is boundary perturbation of the generator of
an analytic semigroup, established by Greiner in his seminal article [20]. As a
matter of fact, we need some extensions of Greiners results whose proofs follow
along the lines of Greiners article with minor modifications. More precisely, we
will consider semigroups which are not necessarily strongly continuous. Besides
being interesting in its own right, this will allow us to establish under appropriate
assumptions the strong Feller property for the perturbed semigroup. Likewise, other
modifications allow us to prove compactness, positivity and domination for the
perturbed semigroup. In an effort of being self contained and for the convenience
of the reader we provide complete proofs.

Before addressing the perturbation results themselves, let us recall some proper-
ties of not necessarily strongly continuous analytic semigroups. For more informa-
tion we refer the reader to [6, Section 3.7] or [24, Section 2.1].

A semigroup on a Banach spaceX is a strongly continuous mapping T : (0,∞) →
L (X) such that (i) T (t + s) = T (t)T (s) for all t, s > 0, (ii) sup0<t<1 ‖T (t)‖ < ∞
and (iii) if T (t)f = 0 for all t > 0, then f = 0. If T (t)f → f as t → 0 for every
f ∈ X , then T is called strongly continuous. In this case, if we set T (0) = I, the
identity operator, we obtain a strongly continuous mapping even on the interval
[0,∞). The semigroup is called analytic if the map T has a holomorphic extension
to some sector Σϑ := {z ∈ C : | arg z| < ϑ} which is bounded on {z ∈ Σϑ : |z| ≤ 1}.

It follows that given a semigroup T we find constantsM,ω > 0 such that ‖T (t)‖ ≤
Meωt for all t > 0. It can be proved, see [6, Equation (3.13)], that there exists a
unique operator G such that (ω,∞) ⊂ ρ(G) and

R(λ,G)f =

∫ ∞

0

e−λtT (t)f dt

whenever λ > ω. The operator G is called the generator of the semigroup T .
An operator G on X generates an analytic semigroup if and only if there is an

ω ∈ R such that {λ ∈ C : Reλ > ω} ⊂ ρ(G) and the holomorphic estimate

sup
Reλ>ω

‖λR(λ,G)‖ < ∞
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holds true. A proof of this fact can be found in [24, Proposition 2.1.11] or [6,
Corollary 3.7.12 and Proposition 3.7.4].

For an analytic semigroup it follows from [24, Proposition 2.1.4] that T (t)f → f

as t → 0 if and only if f ∈ D(G). In particular, T is strongly continuous if and only
if its generator is densely defined. Moreover, since the semigroup T leaves D(G)

invariant, it also leaves D(G) invariant and its restriction to D(G) is a strongly
continuous semigroup.

We now return to our main topic, Greiners boundary perturbation. Throughout
this section, we make the following assumption.

Hypothesis 2.1. We are given complex Banach spaces (X, ‖ · ‖X), (D, ‖ · ‖D) and
(∂X, ‖ · ‖∂X), where D is continuously embedded into X . We identify D with its
image in X and frequently consider the closure D of D in X . Moreover, we are
given a continuous maximal operator A : D → X , a continuous boundary operator
B : D → ∂X and a boundary perturbation Φ : D → ∂X . We assume that all of
these mappings are linear and continuous. Moreover, we assume the following.

(a) The boundary operator B is surjective;
(b) the boundary perturbation Φ is compact;
(c) the operator A0 := A|kerB generates an analytic semigroup on X and we

have D(A0) = D. We denote by ω a real number such that any λ ∈ C with
Reλ > ω belongs to ρ(A0).

In comparison to Greiner’s original work, the main difference in our assumption
is that we do not assume the operator A0 to be densely defined in X . Consequently,
the semigroup T generated by A0 need not be strongly continuous. However, since

D(A0) = D, for every f ∈ D the orbit t 7→ T (t)f is strongly continuous on [0,∞)
and T restricts to a strongly continuous analytic semigroup on D. For us, the main
motivation to allow semigroups which are not strongly continuous lies in the fact
that we can treat semigroups on the space L∞(Ω) where Ω is a bounded open subset
of Rd. This is important to establish the strong Feller property of semigroups. By a
result of Lotz [23] (see also [6, Corollary 4.3.19]), a strongly continuous semigroup on
L∞(Ω) necessarily has a bounded generator. Thus, to study semigroups generated
by differential operators, one has to allow for semigroups which are not strongly
continuous.

Given the above maps, we define the perturbed operator AΦ by

D(AΦ) := {u ∈ D : Bu = Φu}, AΦu = Au.

We can now formulate our version of Greiner’s result.

Theorem 2.2. Assuming Hypothesis 2.1, the operator AΦ generates an analytic
semigroup on X which restricts to a strongly continuous semigroup on D.

We prepare the proof of Theorem 2.2 with some preliminary results.

Lemma 2.3. Assume that λ ∈ ρ(A0). Then D = D(A0)⊕ ker(λ −A).

Proof. If u ∈ D(A0)∩ker(λ−A), then u ∈ D(A0) satisfies A0u = λu. As λ ∈ ρ(A0)
we must have u = 0. Now let u ∈ D be arbitrary. As λ − A0 is surjective, we find
u0 ∈ D(A0) with (λ−A)u = (λ−A0)u0. Consequently u−u0 ∈ ker(λ−A) whence
u = u0 + (u − u0) ∈ D(A0) + ker(λ−A). �

In our framework we can formulate well-posedness of the following boundary
value problem (2.1).

Lemma 2.4. Let λ ∈ ρ(A0). Then for every h ∈ ∂X the problem

(2.1)

{

λu−Au = 0

Bu = h
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has a unique solution u =: Sλh in D. The operator Sλ : ∂X → D is continuous,
BSλ = I∂X and SλB is the projection onto ker(λ−A) along D(A0).

Proof. By Lemma 2.3 the map B defines a continuous bijection between ker(λ−A)
and ∂X . As a consequence of the open mapping theorem Sλ := (B|ker(λ−A))

−1 is
a continuous linear operator from ∂X to ker(λ − A). Obviously, u := Sλh solves
(2.1). If ũ was another solution, we must have u − ũ ∈ kerB ∩ ker(λ − A) = {0}
by Lemma 2.3. This proves uniqueness. The last assertions are obvious from the
definition. �

Lemma 2.5. Let λ ∈ ρ(A0). Then for u ∈ D one has u ∈ D(AΦ) if and only if
(I − SλΦ)u ∈ D(A0). In this case

(λ−AΦ)u = (λ−A0)(I − SλΦ)u

for every u ∈ D(AΦ). In particular, if (I − SλΦ) : D → D is invertible, we have
λ ∈ ρ(AΦ) and

(2.2) R(λ,AΦ) = (I − SλΦ)
−1R(λ,A0).

Proof. Let us first assume that u ∈ D(AΦ), i.e. u ∈ D and Bu = Φu. Since
BSλ = I∂X by Lemma 2.4, we find B(I − SλΦ)u = Bu − BSλΦu = Bu − Φu = 0.
Thus (I − SλΦ)u ∈ kerB and consequently (I − SλΦ)u ∈ D(A0).

Conversely, if we assume that u−SλΦu ∈ D(A0), then u = (I−SλΦ)u+SλΦu ∈
D, as Sλ takes values in D, and Bu = BSλΦu = Φu since BSλ = I∂X . Thus
u ∈ D(AΦ).

Let us now assume that u ∈ D(AΦ) or, equivalently, that (I − SλΦ)u ∈ D(A0).
Then

(λ −A0)(I − SλΦ)u = (λ−A)u − (λ−A)SλΦu = (λ−A)u

since Sλ takes values in ker(λ−A). This implies (2.2). �

We now obtain the following criterion to prove that AΦ generates an analytic
semigroup.

Proposition 2.6. Assume that there is some ρ > ω such that for λ ∈ C with
Reλ > ρ the map I − SλΦ is invertible with

C := sup
Reλ>ρ

‖(I − SλΦ)
−1‖

L (D) < ∞.

Then AΦ generates an analytic semigroup on X.

Proof. Set

M := sup
Reλ>ρ

‖λR(λ,A0)‖ < ∞

since A0 generates an analytic semigroup. As a consequence of Lemma 2.5, for
Reλ > ρ we have λ ∈ ρ(AΦ) and

‖λR(λ,AΦ)‖ = ‖λ(I − SλΦ)
−1R(λ,A0)‖ ≤ ‖(I − SλΦ)

−1‖‖λR(λ,A0)‖ ≤ CM.

This implies that AΦ generates an analytic semigroup on X . �

We can now prove the main result of this section.

Proof of Theorem 2.2. In view of Proposition 2.6, making use of the Neumann se-
ries, it suffices to prove that SλΦ → 0 in L (D) as Reλ → ∞. Since Φ : D → ∂X
is compact it suffices to prove that Sλh → 0 as Reλ → ∞ for every h ∈ ∂X .

To prove this, let h ∈ ∂X and fix µ ∈ ρ(A0). We put

uλ := Sλh, uµ := Sµh and u = uλ − uµ.
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Note that uλ, uµ, u ∈ D and that u ∈ D(A0). Since uλ ∈ ker(λ − A) and uµ ∈
ker(µ−A) we have

(λ−A0)u = −(λ−A)uµ = (µ− λ)uµ

and hence u = (µ− λ)R(λ,A0)uµ. Consequently,

uλ = uµ − λR(λ,A0)uµ + µR(λ,A0)uµ → uµ − uµ + 0 = 0

as Reλ → ∞, since λR(λ,A0)f → f for every f ∈ D(A0) = D. �

We can now establish some additional properties of the operator AΦ and the
semigroup generated by it. We start with compactness.

Corollary 2.7. In the situation of Theorem 2.2, if A0 has compact resolvent, then
so does AΦ.

Proof. This follows immediately from the identity (2.2) and the ideal property of
compact operators. �

Next we address positivity of the semigroup. Most often we will be concerned
with Banach lattices such as C(Ω) or L∞(Ω). However, we will occasionally (for
example in the following corollaries) also consider closed subspaces of such spaces
and therefore need the notion of positivity also in a more general setting. To
that end, we assume that our Banach space X is the complexification of a real
ordered Banach space XR. This means that in the real Banach space XR a positive,
proper, closed cone X+ is given, i.e. we have X+ +X+ ⊂ X+, R+ ·X+ ⊂ X+ and
X+∩(−X+) = {0}. For u ∈ X we write u ≥ 0 if u ∈ X+. An operator S : X → X is
called positive if SX+ ⊂ X+, we write S ≥ 0. Given two operators S1, S2 : X → X ,
we write S1 ≤ S2 if S2 − S1 ≥ 0. A semigroup T on X is called positive if T (t) ≥ 0
for all t > 0.

If Y ⊂ X is a closed subspace of X , then Y+ := Y ∩ X+ is a closed, proper
cone, such that YR := Y ∩ XR becomes an ordered Banach space. Note that we
do not assume that our cone is generating, i.e. we do not necessarily have that
X+ −X+ = XR.

Corollary 2.8. Assume in addition to Hypothesis 2.1 that X is the complexification
of a real ordered Banach space and that A0 generates a positive semigroup. If there
is a ρ > ω such that for λ ∈ R with λ > ρ the operator SλΦ is positive, then also
the semigroup generated by AΦ is positive.

Proof. If the semigroup T generated by A0 is positive then we have R(λ,A0) ≥ 0
for λ > ω, as the resolvent is given as the Laplace transform of the semigroup.
For sufficiently large λ ∈ R we have ‖SλΦ‖ < 1 and SλΦ positive. Thus, by the
Neumann series,

(I − SλΦ)
−1 =

∞
∑

n=0

(SλΦ)
n

is a positive operator. It follows from (2.2) that R(λ,AΦ) is positive for sufficiently
large λ. It follows from the Post–Widder inversion formula [6, Theorem 1.7.7] that
the semigroup generated by AΦ is positive. �

Next we want to compare different perturbations of our operator A. We can
obtain different perturbations by either using different boundary operators B or by
using different boundary perturbations Φ.

Corollary 2.9. Let X,D, ∂X and A be as in Hypothesis 2.1 and assume that X
and ∂X are complexifications of real ordered Banach spaces. Moreover, assume that
we are given maps B1, B2 : D → ∂X and Φ1,Φ2 : D → ∂X such that Hypothesis
2.1 is satisfied for the operators A,B1,Φ1 and the operators A,B2,Φ2. We write
Aj

0 := A|kerBj
and Sj

λ := (Bj |ker(λ−A))
−1 for j = 1, 2. Finally, we assume that
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(a) The semigroup generated by Aj
0 is positive for j = 1, 2;

(b) 0 ≤ Φ1 ≤ Φ2;
(c) For some ρ > ω and all λ > ρ we have 0 ≤ S1

λ ≤ S2
λ;

(d) If u ∈ D is positive, then B2u ≤ B1u.

Then for the semigroups T1 generated by A1
Φ1

and T2 generated by A2
Φ2

we have
0 ≤ T1(t) ≤ T2(t) for all t > 0.

Proof. Let us first note that since the operators Φj and Sj
λ are positive for λ > ρ

and j = 1, 2, it follows from Corollary 2.8 that T1 and T2 are positive semigroups.
It follows from (b) and (c) that

(I − S1
λΦ1)

−1 =

∞
∑

n=0

(S1
λΦ1)

n ≤
∞
∑

n=0

(S2
λΦ2)

n = (I − S2
λΦ2)

−1

for all λ > ω. Now fix f ≥ 0 and λ > ρ. We put uj := R(λ,Aj
0)f . Then

(λ−A)(u1 − u2) = 0 and B1u1 = B2u2 = 0. Using our assumption (d) and the fact
that u1 ≥ 0, we see that

B2(u1 − u2) = B2u1 −B1u1 ≤ 0.

Consequently, as u1 − u2 = S2
λ(B2(u1 − u2)) and S2

λ is positive u1 − u2 ≤ 0. This
proves R(λ,A1

0) ≤ R(λ,A2
0). Combining this with the above and Equation (2.2),

we find

R(λ,A1
Φ1

) = (I − S1
λΦ1)

−1R(λ,A1
0) ≤ (I − S2

λΦ2)
−1R(λ,A2

0) = R(λ,A2
Φ2

)

for all sufficiently large λ. By the Post–Widder inversion formula [6, Theorem 1.7.7]
it follows that T1 ≤ T2. �

We next address the strong Feller property. To that end, we consider the situ-
ation where X = L∞(Ω) for some bounded open set Ω ⊂ Rd and D = C(Ω). A
strong Feller operator (on L∞(Ω)) is a bounded linear operator T on L∞(Ω) taking
values in C(Ω) such that whenever fn is a bounded sequence in L∞(Ω) converging
pointwise almost everywhere to f , we have Tfn → Tf pointwise. Classically, given
a Polish state space E, a strong Feller operator is defined as an operator on Bb(E),
the space of all bounded Borel measurable functions on E, which are given through
a transition kernel and take values in the space Cb(E). It follows from [8, Lemma
5.5] that a strong Feller operator on L∞(Ω) can be extended to a classical strong

Feller operator T̃ on the state space E := Ω by setting T̃ f = T [f ], where [f ] denotes
the equivalence class modulo equality almost everywhere. We refer to [8, Section
5] for a more thorough discussion of the relationship of these two concepts. In con-
nection with differential operators it is more natural to identify functions which are
equal almost everywhere, whence in this article we will work exclusively with the
concept of a strong Feller operator on L∞(Ω).

Corollary 2.10. Assume in addition to Hypothesis 2.1 that X = L∞(Ω) and D =
C(Ω). If A0 generates a strong Feller semigroup on X, then so does AΦ.

Proof. By the proof of [8, Corollary 5.8] it suffices to prove that for sufficiently large
Reλ the operator R(λ,AΦ) is a strong Feller operator. But this follows from (2.2):
The hypothesis implies that R(λ,A0) is a strong Feller operator, in particular it
maps L∞(Ω) to C(Ω). Since U := (I − SλΦ)

−1 is a bounded linear operator on
C(Ω) also R(λ,AΦ) maps L∞(Ω) to C(Ω). Moreover, if fn is a bounded sequence in
L∞(Ω) converging pointwise almost everywhere to f , then R(λ,A0)fn is a bounded
sequence which converges pointwise to R(λ,A0)f . Since U is bounded on C(Ω) we
have for x ∈ Ω

R(λ,AΦ)fn(x) = 〈UR(λ,A0)fn, δx〉 = 〈R(λ,A0)fn, U
∗δx〉

→ 〈R(λ,A0)f, U
∗δx〉 = R(λ,AΦ)f(x),
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where we have used dominated convergence. �

3. Local Robin boundary conditions

In this section we collect some results on elliptic operators with local Robin
boundary conditions which we will need in the next section when we establish our
results concerning non-local boundary conditions.

Let Ω ⊂ Rd be a bounded open set with Lipschitz boundary. As we are talking
about positive semigroups, we will consider real-valued spaces Lp(Ω), C(Ω), Cb(Ω)
and Bb(Ω) throughout. Only when we are concerned with analytic semigroups we
need spaces of complex-valued functions, in which case we pass to the complexi-
fication of these spaces. Concerning the coefficients of our operator we make the
following assumptions.

Hypothesis 3.1. We are given bounded, real-valued, measurable functions aij , bj,
cj , d0 on Ω for i, j = 1, . . . d. The diffusion coefficients a = (aij) are assumed to be
bounded and strictly elliptic, i.e. there is a constant η > 0 such that for all ξ ∈ Rd

and almost all x ∈ Ω we have
d

∑

i,j=1

aij(x)ξiξj ≥ η|ξ|2.

With these assumptions we define the operator A : H1(Ω) → D(Ω)′ by

A u := −
d

∑

i,j=1

Di(aijDju)−
d

∑

j=1

Dj(bju) +

d
∑

j=1

cjDju+ d0u.

Here, D(Ω) = C∞
c (Ω) is the space of all test functions and D(Ω)′ is the space of all

distributions. We introduce the continuous bilinear form a : H1(Ω) ×H1(Ω) → R

given by

a[u, v] :=

d
∑

i,j=1

∫

Ω

aijDiuDjv dx+

d
∑

j=1

∫

Ω

bjuDjv + cj(Dju)v dx+

∫

Ω

d0uv dx

for u, v ∈ H1(Ω). Thus 〈A u, ϕ〉 = a[u, ϕ] for all u ∈ H1(Ω) and ϕ ∈ D(Ω).
If u ∈ H1(Ω), we say that A u ∈ L2(Ω) if there exists a function f ∈ L2(Ω) such

that 〈A u, ϕ〉 = [f, ϕ] for all ϕ ∈ D(Ω). Here, and in what follows,

[f, g] :=

∫

Ω

fg dx

denotes the scalar product in L2(Ω). If A u ∈ L2(Ω) the function f above is unique
and we identify A u and f .

Next we define the weak conormal derivative by testing against functions in
H1(Ω) rather than functions in D(Ω) only.

Definition 3.2. Let u ∈ H1(Ω) be such that A u ∈ L2(Ω). For a function h ∈
L2(∂Ω) we say that h is the weak conormal derivative of u and write ∂A

ν u := h if
the Green formula

a[u, v]− [A u, v] =

∫

∂Ω

hv dσ

holds for all v ∈ H1(Ω).

Under our assumptions on the coefficients the weak conormal derivative, if it
exists, is unique. It depends on the operator A only through the coefficients a =
(aij) and bj . Moreover, if the coefficients and the boundary of Ω are smooth enough
the weak conormal derivative coincides with the usual conormal derivative

∂A

ν u =

d
∑

j=1

(

d
∑

i=1

aijDiu+ tr bju
)

νj
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where ν = (ν1, . . . , νd) is the unit outer normal of Ω. In particular, ∂A
ν 1 =

∑d
j=1 tr bjνj . For a proof of these facts and more information we refer to [1, Section

8.1].

Next we endow our differential operator with Robin boundary conditions, given
through a real function β ∈ L∞(∂Ω) as in Hypothesis 1.1. To that end, we employ
the theory of bilinear forms, defining aβ : H1(Ω)×H1(Ω) → R by

aβ[u, v] := a[u, v] +

∫

∂Ω

βuv dσ.

The associated operator A 2
β on L2(Ω) is given by

D(A 2
β ) := {u ∈ D(aβ) : ∃ f ∈ L2(Ω) with aβ [u, v] = [f, v] ∀ v ∈ H1(Ω)}

A
2
β u := f.

Testing against test functions we see that A 2
β u = A u for all u ∈ D(A 2

β ). By the
definition of the weak conormal derivative we obtain the following description of
the domain:

D(A 2
β ) = {u ∈ H1(Ω) : A u ∈ L2(Ω) and ∂A

ν u+ β tr u = 0}.

Thus A 2
β is the realization of A with Robin boundary condition.

We next prove that the operator −A 2
β generates a strongly continuous semigroup

T 2
β on L2(Ω) which leaves the space L∞(Ω) invariant. We will also prove that the re-

striction to L∞(Ω) is a holomorphic semigroup, by which we mean that the C-linear
extension of T 2

β |L∞(Ω) to the complexification L∞(Ω;C) of L∞(Ω) is holomorphic.

Theorem 3.3. Assume Hypothesis 3.1. The operator −A 2
β generates a positive,

strongly continuous semigroup T 2
β on L2(Ω). Its restriction Tβ to L∞(Ω) is a holo-

morpic semigroup on L∞(Ω). Each operator Tβ(t), t > 0, is compact and enjoys

the strong Feller property. In particular, C(Ω) is invariant. The restriction TC
β of

T 2
β to C(Ω) is a strongly continuous semigroup.

Proof. By standard results from the theory of quadratic forms ([27, Section 1.4])
−A 2

β generates a holomorphic semigroup T 2
β . The positivity of T 2

β follows from

[27, Theorem 2.6] noting that aβ[u
+, u−] = 0 for all u ∈ H1(Ω). It was proved in

[13, Corollary 6.1] (see also [11, Theorem 4.9]) that the semigroup T 2
β has Gaussian

estimates so that T 2
β extrapolates to a consistent family of semigroups T q

β on Lq(Ω)

for q ∈ [1,∞]. In particular, T 2
β leaves the space L∞(Ω) invariant and restricts to a

semigroup Tβ on this space. By [11, Theorem 5.3] the semigroup Tβ is holomorphic

on L∞(Ω). Moreover, by the proof of [26, Theorem 4.3] Tβ(t)L
∞(Ω) ⊂ C(Ω) for

all t > 0. It was also seen in that theorem that Tβ(t) is compact for all t > 0. We
now show that Tβ(t) is strongly Feller for t > 0. Since T 2

β is ultracontractive by

[3, 7.3 Criterion (v)] it follows that T 2
β (t)L

q(Ω) ⊂ L∞(Ω) and hence T 2
β (t)L

q(Ω) ⊂

T 2
β (t/2)L

∞(Ω) ⊂ C(Ω) for some q ∈ (2,∞). By the closed graph theorem, T 2
β (t) is

a bounded operator from Lq(Ω) to C(Ω). Now the strong Feller property, as defined
before Corollary 2.10, follows from the dominated convergence theorem. It follows
from [26, Theorem 4.3] that the restriction of the semigroup to C(Ω) is strongly
continuous. �

Of course the generator of Tβ is the part Aβ of −A 2
β in L∞(Ω), i.e.

D(Aβ) = {u ∈ H1(Ω) ∩ L∞(Ω) : A u ∈ L∞(Ω), ∂A

ν u+ βu = 0}

Aβu = −A u.
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Similarly, the generator of TC
β is the part AC

β of −A 2
β in C(Ω), i.e.

D(AC
β ) = {u ∈ H1(Ω) ∩ C(Ω) : A u ∈ C(Ω), ∂A

ν u+ β tr u = 0}

AC
β u = −A u.

As a consequence of the strong continuity of TC
β we find that D(AC

β ) is dense in

C(Ω).
We next investigate when the semigroup T 2

β generated by −A 2
β is sub-Markovian.

If this is the case, it follows that the restriction Tβ of T 2
β to L∞(Ω) is contractive.

We will use the following lemma.

Lemma 3.4. Let g ∈ L2(Ω) and h ∈ L2(∂Ω) be such that

(3.1)

∫

Ω

gv dx+

∫

∂Ω

hv dσ ≥ 0

for all 0 ≤ v ∈ H1(Ω). Then g ≥ 0 a.e. on Ω and h ≥ 0 a.e. on ∂Ω. Moreover, if
in (3.1) identity holds for all v ∈ H1(Ω), then g = 0 a.e. on Ω and h = 0 a.e. on
∂Ω.

Proof. By (3.1) we have
∫

Ω
gv dx ≥ 0 for all 0 ≤ v ∈ C∞

c (Ω). Thus g ≥ 0 almost

everywhere on Ω. Given a function ϕ ∈ C(∂Ω), we find a sequence vn ∈ C∞(Ω)
such that vn|∂Ω → ϕ in C(∂Ω), 0 ≤ vn ≤ ‖ϕ‖∞ in Ω and such that vn is supported
in a relatively open set Un ⊂ Ω with Un ⊃ Un+1 and

⋂

n∈N
Un = ∂Ω. Choosing

v = vn in (3.1) and letting n → ∞, we infer from dominated convergence that
∫

∂Ω hϕdσ ≥ 0. As ϕ ∈ C(∂Ω) was arbitrary, the claim follows. �

Proposition 3.5. Assume in addition to Hypothesis 3.1 that bj ∈ W 1,∞(Ω) for
j = 1, . . . , d.

(a) The semigroup T 2
β is sub-Markovian if and only if

(3.2)
d

∑

j=1

Djbj ≤ d0 almost everywhere on Ω and

(3.3)

d
∑

j=1

tr(bj)νj + β ≥ 0 almost everywhere on ∂Ω.

(b) The semigroup T 2
β is Markovian if and only if

(3.4)

d
∑

j=1

Djbj = d0 almost everywhere on Ω and

(3.5)

d
∑

j=1

tr(bj)νj + β = 0 almost everywhere on ∂Ω.

Proof. (a) The semigroup T 2
β is sub-Markovian if and only if the Beurling–Deny–

Ouhabaz criterion holds, i.e.

aβ [u ∧ 1, (u− 1)+] ≥ 0

for all u ∈ H1(Ω), see [27, Chapter 2] and [25, Corollary 2.8] or [16] for the case
where the form is not necessarily accretive. Recall that for u ∈ H1(Ω) the functions
u ∧ 1 and (u − 1)+ also belong to H1(Ω) and

Dj(u ∧ 1) = 1{u<1}Dju and Dj(u− 1)+ = 1{u>1}Dju.
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Thus Di(u ∧ 1)Dj(u − 1)+ = (u− 1)+Dj(u ∧ 1) = 0. We see that

aβ[u ∧ 1, (u− 1)+]

=

∫

Ω

d
∑

j=1

bjDj(u− 1)+ dx+

∫

{u>1}

d0(u − 1)+ dx+

∫

∂Ω

β(u− 1)+ dσ

=−

∫

Ω

d
∑

j=1

(Djbj)(u− 1)+ dx+

∫

∂Ω

d
∑

j=1

bjνj(u− 1)+ dσ

+

∫

Ω

d0(u− 1)+ dx +

∫

∂Ω

β(u − 1)+ dσ.

The latter is positive if (3.2) and (3.3) hold whence T 2
β is sub-Markovian in this

case. This shows sufficiency of these two conditions.
Conversely, if the semigroup T 2

β is sub-Markovian, the Beurling–Deny–Ouhabaz
criterion yields

∫

Ω

(

d0 −
d

∑

j=1

Djbj

)

(u− 1)+ dx+

∫

∂Ω

(

d
∑

j=1

bjνj + β
)

(u− 1)+ dσ ≥ 0

for all u ∈ H1(Ω). Choosing u = 1+ v with 0 ≤ v ∈ H1(Ω), Lemma 3.4 shows that
(3.2) and (3.3) are valid.

(b) A Markovian semigroup is in particular sub-Markovian whence the inequal-
ities (3.2) and (3.3) are satisfied. If T 2

β is sub-Markovian, then it is Markovian if

and only if 1 ∈ ker(−A 2
β ). Note that

−A 1 =

d
∑

j=1

Djbj − d0.

Thus (3.4) is necessary for T 2
β to be Markovian. If (3.4) holds, then for v ∈ H1(Ω)

we have

a[1, v]− [A 1, v] =

d
∑

j=1

∫

Ω

(bjDjv + d0v) dx =

d
∑

j=1

∫

∂Ω

bjνjv dσ,

where we used an integration by parts. Thus saying ∂A
ν 1+β = 0, i.e. 1 ∈ D(−A 2

β ),
is equivalent to

d
∑

j=1

∫

∂Ω

bjνjv dσ = −

∫

∂Ω

βv dσ

for all v ∈ H1(Ω) and hence to (3.5). �

In order to apply the abstract results of Section 2, we need some results about
the following elliptic problem, which were also used implicitly in Theorem 3.3.

(3.6)

{

λu + A u = f on Ω

∂A

ν u+ βu = h on ∂Ω.

Obviously, aβ defines a continuous sesquilinear mapping on H1(Ω). By [14, Corol-
lary 2.5] it is also elliptic, i.e. there are some ω, α > 0 such that aβ[u, u]+ω‖u‖2L2(Ω) ≥

α‖u‖2H1(Ω). With this information at hand, one can prove existence and uniqueness

of solutions to (3.6) by means of the Lax–Milgram Theorem. Indeed, considering
the continuous functional F on H1(Ω), given by F (v) =

∫

Ω
fv dx +

∫

∂Ω
hv dσ, it

follows from the Lax–Milgram Theorem that for λ > ω there is a unique u ∈ H1(Ω)
such that

aβ [u, v] + λ[u, v] = F (v)
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for all v ∈ H1(Ω). From [26, Theorem 3.14(iv)] we obtain the following result
concerning regularity of the solution.

Proposition 3.6. Fix q > d and λ > ω. Then there exist constants γ > 0 and
C > 0 such that whenever f ∈ Lq/2(Ω) and h ∈ Lq−1(∂Ω) the unique solution u of
(3.6) belongs to Cγ(Ω) and we have

‖u‖Cγ(Ω) ≤ C
(

‖f‖
L

q
2 (Ω)

+ ‖h‖Lq−1(∂Ω)

)

.

The following lemma is easy to prove, see e.g. [9, Lemma 2.3].

Lemma 3.7. Let X1, X2, X3 be Banach spaces such that X1 is reflexive. Let T :
X1 → X3 be compact, S : X1 → X2 be injective. Then, given ε > 0 there exists a
constant c > 0 such that

‖Tx‖X3
≤ ε‖x‖X1

+ c‖Sx‖X2

for all x ∈ X1.

We use this lemma to prove the following domination result.

Proposition 3.8. Let β1, β2 ∈ L∞(∂Ω) be such that β1 ≤ β2. There exists ω so
that both aβ1

+ ω and aβ2
+ ω are coercive and such that for λ > ω the following

holds. Let 0 ≤ f ∈ L2(Ω), 0 ≤ h ∈ L2(∂Ω). For j = 1, 2, let uj ∈ H1(Ω) be the
unique solution of

{

λu+ A u = f on Ω

∂A

ν u+ βju = h on ∂Ω.

Then 0 ≤ u2 ≤ u1.

Proof. We first show positivity for weak solutions u of (3.6). To that end consider
f ≤ 0 and h ≤ 0 for now. Since u solves (3.6) we have

λ[u, v] + aβ [u, v] = [f, v] +

∫

∂Ω

hv dσ

for all v ∈ H1(Ω). Setting v := u+ and noting that aβ [u, u
+] = aβ[u

+, u+] by the
locality of aβ , we find

λ[u+, u+] + aβ[u
+, u+] = [f, u+] +

∫

∂Ω

hu+ dσ ≤ 0.

As aβ+ω is coercive we have that aβ[u
+, u+]+ω‖u+‖2L2(Ω) ≥ α‖u+‖2H1(Ω) for some

α > 0. Together with λ > ω it follows that ‖u+‖H1(Ω) ≤ 0, whence u ≤ 0.

We can prove the domination similarly. This time we fix f ≥ 0 and h ≥ 0. The
solution uj (j = 1, 2) satisfies the equation

λ[uj , v] + aβj
[uj, v] = [f, v] +

∫

∂Ω

hv dσ

for all v ∈ H1(Ω). Subtracting these equations we find for a positive v that

λ[u2 − u1, v] + a[u2 − u1, v] =

∫

∂Ω

(β1u1 − β2u2)v dσ ≤

∫

∂Ω

β2(u1 − u2)v dσ,

since u1 ≥ 0 by the above. Testing against v := (u2 − u1)
+, we find

λ[(u2 − u1)
+, (u2 − u1)

+] + a[(u2 − u1)
+, (u2 − u1)

+]

≤−

∫

∂Ω

β2

(

(u2 − u1)
+
)2

≤ ‖β2‖L∞(∂Ω)

∫

∂Ω

(

(u2 − u1)
+
)2

dσ.
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Applying Lemma 3.7 with X1 = H1(Ω), X2 = L2(Ω) and X3 = L2(∂Ω) where T :
H1(Ω) → L2(∂Ω) is the trace operator (which is compact) and S : H1(Ω) → L2(Ω)
is the natural embedding, given ε > 0 we find a constant c > 0 such that

‖β2‖L∞(∂Ω)

∫

∂Ω

(

(u2 − u1)
+
)2

dσ ≤ ε‖(u2 − u1)
+‖2H1(Ω) + c‖(u2 − u1)

+‖2L2(Ω)

= ε

∫

Ω

∣

∣∇(u2 − u1)
+
∣

∣

2
dx+ (c+ ε)

∫

Ω

(

(u2 − u1)
+
)2

dx.

Using the ellipticity of a we deduce that, for a suitable constant α > 0, we have

(λ+ α− ω)‖(u2 − u1)
+‖2L2(Ω) + α

∫

Ω

∣

∣∇(u2 − u1)
+
∣

∣

2
dx

≤ε

∫

Ω

∣

∣∇(u2 − u1)
+
∣

∣

2
dx+ (c+ ε)‖(u2 − u1)

+‖2L2(Ω)

Choosing ε = α/2 and λ0 > ω + c + ε + 1, it follows that for λ > λ0 we have
(u2 − u1)

+ = 0, i.e. u2 ≤ u1. �

Proposition 3.8 yields in particular the following monotonicity property.

Corollary 3.9. Let β1, β2 ∈ L∞(Ω) be such that β1 ≤ β2. Then 0 ≤ T 2
β2
(t) ≤ T 2

β1
(t)

for all t ≥ 0.

Proof. Proposition 3.8 shows that for large λ we have 0 ≤ (λ+A 2
β2
)−1 ≤ (λ+A 2

β1
)−1.

This implies the claim in view of Euler’s formula. �

4. Non-local boundary conditions

We are now prepared to prove the main results of this article. We begin by
setting up the framework in which we apply Greiner’s boundary perturbation. In
contrast to the last section, in this section only consider complex Banach spaces in
order to handle (possibly) complex valued functions µ : ∂Ω → M (Ω).

We assume throughout Hypotheses 1.1 and 3.1. We then define

D := {u ∈ C(Ω) ∩H1(Ω) : A u ∈ L∞(Ω), ∂A

ν u ∈ Lp(∂Ω)},

where p > d− 1 is as in Hypothesis 1.1(b). Endowed with the norm

‖u‖D := ‖u‖C(Ω) + ‖u‖H1(Ω) + ‖A u‖L∞(Ω) + ‖∂A

ν u‖Lp(∂Ω)

D is a Banach space which is continuously embedded into X = L∞(Ω). Since
D ⊂ D(AC

β ), it follows that D is dense in C(Ω). We define our maximal operator

A : D → X by Au := −A u which is linear and continuous. We set ∂X := Lp(∂Ω)
and consider the boundary operator B : D → ∂Ω defined via Bu = ∂A

ν u + βu
where β is as in Hypothesis 1.1. Finally, given µ as in Hypothesis 1.1, the function
Φ : D → ∂X is given by

(Φu)(z) :=

∫

Ω

u(x)µ(z)( dx).

Making use of the results of Section 2 we can now prove our main generation
result for the operator Aβ,µ, defined by

D(Aβ,µ) =
{

u ∈ C(Ω) ∩H1(Ω) : A u ∈ L∞(Ω), ∂A

ν u+ βu = 〈u, µ(·)〉
}

Aβ,µ = −A u.

The following result contains Theorem 1.3 from the introduction as a special
case.

Theorem 4.1. Assume Hypotheses 1.1 and 3.1. Then the operator Aβ,µ generates
a holomorphic semigroup Tβ,µ on L∞(Ω) which satisfies the strong Feller property.

In particular, it leaves the space C(Ω) invariant. Its restriction to this space is a
strongly continuous semigroup whose generator is AC

β,µ, the part of Aβ,µ in C(Ω).
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Proof. Noting that the operator Aβ,µ is exactly the perturbed operator AΦ, where
A and Φ are as defined above, the claim follows immediately from Theorem 2.2 and
Corollary 2.10 once we verified that the maps A,B and Φ satisfy Hypothesis 2.1.

(a) The operator B : D → ∂X is surjective.
Fix λ > ω. Given h ∈ ∂X = Lp(∂Ω), it follows from Proposition 3.6 that the

unique solution u ∈ H1(Ω) of the problem
{

λu+ A u = 0

∂A
ν u+ βu = h

belongs to C(Ω). Moreover, A u = −λu ∈ C(Ω) ⊂ L∞(Ω). Thus, u ∈ D and
Bu = h, proving that B is surjective.

(b) The boundary map Φ is compact.
Let (un)n∈N be a bounded sequence in C(Ω), say ‖un‖C(Ω) ≤ M for all n ∈ N.

Since µ(z) ≪ τ by Hypothesis 1.1(c), for every z ∈ ∂Ω we find a Radon–Nikodym
density ϕz ∈ L1(Ω, τ) of µ(z) with respect to τ , i.e. we have

∫

Ω

f(x)µ(z)(dx) =

∫

Ω

fϕz dτ

for all f ∈ C(Ω). In particular, (Φun)(z) = 〈un, ϕz〉L∞(τ),L1(τ). Since the sequence

un is bounded in L∞(τ) and L1(τ) is separable, it follows from the Banach–Alaoglu
theorem that we find a weak∗-convergent subsequence, say unk

⇀∗ u for some
u ∈ L∞(τ). In particular,

(Φunk
)(z) =

∫

Ω

unk
ϕz dτ →

∫

Ω

uϕz dτ

for all z ∈ ∂Ω, i.e. Φun has a subsequence which converges pointwise. Note that we
have

|(Φun)(z)| ≤ M‖µ(z)‖.

As a consequence of Hypothesis 1.1(b) the functions Φun have a p-integrable ma-
jorant and it follows from the dominated convergence theorem that Φun has a
subsequence which converges in Lp(∂Ω).

(c) The operator A0 is exactly the part of −A 2
β in L∞(Ω). It follows from

Theorem 3.3 that A0 generates an analytic semigroup on X = L∞(Ω) which enjoys
the strong Feller property and whose domain is dense in C(Ω). �

For µ ≡ 0 we have Tβ,0(t) = Tβ(t), where Tβ is the semigroup on L∞(Ω), defined
in Section 3 for local Robin boundary conditions.

We next prove some additional properties of the semigroup Tβ,µ making use of
the corollaries to Theorem 2.2.

Proposition 4.2. Assume Hypotheses 1.1 and 3.1 and let Tβ,µ be the semigroup
generated by Aβ,µ according to Theorem 4.1.

(a) Tβ,µ is compact.
(b) If µ(z) is a positive measure for almost every z ∈ ∂Ω, then the semigroup

Tβ,µ is positive.

Proof. (a) Follows immediately from Corollary 2.7, noting that the semigroup gen-
erated by A0 is compact as a consequence of Theorem 3.3.

(b) By Theorem 3.3, the semigroup generated by A0 is positive. If µ(z) is positive
for almost every z ∈ ∂Ω, then the map Φ is positive. Note that for the solution
map Sλ the function Sλh is the unique solution of the boundary value problem

{

λu+ A u = 0

∂A
ν u+ βu = h.
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Thus, by Proposition 3.8, Sλ is positive for λ > ω. Altogether SλΦ is positive and
it follows from Corollary 2.8 that Tβ,µ is positive. �

Next we characterize when Tβ,µ is Markovian.

Proposition 4.3. Assume in addition to Hypotheses 1.1 and 3.1 that µ(z) is a
positive measure for almost every z ∈ ∂Ω. The following are equivalent.

(i) The semigroup Tβ,µ is Markovian.
(ii) We have

(4.1)
d

∑

j=1

Djbj = d0 almost everywhere on Ω and

(4.2) µ(z)(Ω) = β(z) +

d
∑

j=1

νj(z)bj(z) for almost all z ∈ ∂Ω.

Proof. Since Tβ,µ is positive, (i) is equivalent to 1 ∈ kerAβ,µ. Observe that −A 1 =
∑d

j=1 Djbj −d0. Thus −A 1 = 0 if and only if (4.1) holds. In that case, integration

by parts yields for v ∈ H1(Ω) that

a[1, v]− [A 1, v] =

d
∑

j=1

∫

Ω

bjDjv + d0v dx =

d
∑

j=1

∫

∂Ω

bjνjv dσ.

Thus 1 ∈ D(Aβ,µ) if and only if

d
∑

j=1

∫

∂Ω

bj(z)νj(z)v(z) dσ(z) =

∫

∂Ω

(

− β(z) + 〈µ(z),1〉
)

v(z) dσ

for all v ∈ H1(Ω). This is equivalent to (4.2). �

If we merely have inequalities in (4.1) and (4.2), then the semigroup is sub-
Markovian as we show next. In the proof, we use the following monotonicity result.

Proposition 4.4. Assume Hypothesis 3.1 and let β1, β2 ∈ L∞(∂Ω) with β2 ≤ β1.
Moreover, let functions µ1, µ2 : ∂Ω → M (Ω) be given such that 0 ≤ µ1(z) ≤ µ2(z)
for almost all z ∈ ∂Ω and such that µ1, µ2 satisfy Hypothesis 1.1 with the same p.
Then

0 ≤ Tβ1,µ1
(t) ≤ Tβ2,µ2

(t)

for all t ≥ 0.

Proof. The semigroups Tβ1,µ1
and Tβ2,µ2

are obtained from the same maximal oper-
ator A but using different boundary perturbations Φj : u 7→ 〈µj(·), u〉 and boundary
operators Bj : u 7→ ∂A

ν u + βju. We clearly have B2u ≤ B1u and 0 ≤ Φ1u ≤ Φ2u

for u ≥ 0. Moreover, if we write Sj
λ := (Bj |ker(λ−A))

−1, then we have S1
λ ≤ S2

λ by
Proposition 3.8. Thus Corollary 2.9 yields the claim. �

Proposition 4.5. Assume in addition to Hypotheses 1.1 and 3.1 that µ(z) is posi-
tive for almost all z ∈ ∂Ω and that bj ∈ W 1,∞(Ω) for j = 1, . . . , d. If

(4.3)

d
∑

j=1

Djbj ≤ d0 almost everywhere on Ω and

(4.4) µ(z)(Ω) ≤ β(z) +

d
∑

j=1

tr(bj)(z)νj(z) for almost all z ∈ ∂Ω

then the semigroup Tβ,µ is sub-Markovian.
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Proof. Assume at first that
∑d

j=1 Djbj = d0. Let us define β0(z) := µ(z)(Ω) −
∑d

j=1 tr bj(z)νj(z). By Proposition 4.3 the semigroup Tβ0,µ is Markovian. As a

consequence of Proposition 4.4 we have 0 ≤ Tβ,µ(t) ≤ Tβ0,µ(t) for all t > 0 which
clearly implies that Tβ,µ is sub-Markovian. That Tβ,µ is still sub-Markovian when
∑d

j=1 Djbj ≤ d0 follows from a standard perturbation result:

Denote by Ãβ,µ the operator where d0 is replaced by d̃0 :=
∑d

j=1 Djbj . Then

the semigroup T̃β,µ generated by Ãβ,µ is sub-Markovian by what has been proved

so far. Note that Aβ,µ + (d0 − d̃0) = Ãβ,µ, so that Ãβ,µ is a bounded and positive
perturbation of Aβ,µ. Using a perturbation result for resolvent positive operators [6,

Proposition 3.11.12] we find that R(λ,Aβ,µ) ≤ R(λ, Ãβ,µ) for large enough λ and
the domination of the semigroups follows from the Post–Widder inversion formula
[6, Theorem 1.7.7]. Alternatively, the domination property can be inferred from
the Dyson–Phillips formula for the perturbed semigroup, see [22, Example 3.4] for
a version which covers our setting. �

As a further consequence of Proposition 4.4 we have

(4.5) 0 ≤ Tβ,0(t) ≤ Tβ,µ(t)

for all t > 0 in the case where µ(z) is a positive measure for almost every z ∈ ∂Ω.
It thus follows from Proposition 3.5 that condition (4.3) is necessary for Tβ,µ to be
sub-Markovian. It seems not so easy to show that also condition (4.4) is necessary
for this. Also concerning the positivity of the semigroup Tβ,µ it seems unclear if
the condition that µ(z) is a positive measure for almost every z ∈ ∂Ω is necessary.
However, in Section 7 we will give a proof of necessity in the special case where
every measure µ(z) is absolutely continuous with respect to the Lebesgue measure.

5. Asymptotic behavior

Throughout this section we assume Hypotheses 1.1 and 3.1 so that Tβ,µ is a
semigroup on L∞(Ω). It is our aim to describe its asymptotic behavior as t → ∞.
Since Tβ,µ(t)L

∞(Ω) ⊂ C(Ω) for all t > 0 it suffices to study TC
β,µ, the restriction to

C(Ω), which is a strongly continuous semigroup. We also assume throughout that
µ(z) ≥ 0 for almost all z ∈ ∂Ω so that the semigroup is positive.

For the definition of spectral bound and irreducibility we refer to Appendix A.
The asymptotic behavior of TC

β,µ is determined by the spectral bound s(AC
β,µ) of its

generator (see Appendix A). We first show that the spectrum is not empty.

Proposition 5.1. One has s(AC
β,µ) > −∞. Moreover, s(AC

β,µ) is an eigenvalue of

AC
β,µ with positive eigenfunction.

Proof. We first show that s(AC
β,0) ≤ s(AC

β,µ). As a consequence of Proposition 4.4

we have 0 ≤ TC
β,0(t) ≤ TC

β,µ(t). Taking Laplace transforms, it follows that 0 ≤

R(λ,AC
β,0) ≤ R(λ,AC

β,µ) for all large enough λ. By [6, Theorem 5.3.1] for a positive
semigroup the abscissa of the Laplace transform coincides with the spectral bound.
Thus, if we assume that s(AC

β,0) > s(AC
β,µ) we have 0 ≤ R(λ,AC

β,0) ≤ R(λ,AC
β,µ) for

all λ > s(AC
β,0). By [6, Proposition 3.11.2] we have s(AC

β,0) ∈ σ(AC
β,0) and hence

supλ>s(AC
β,0

) ‖R(λ,AC
β,0)‖ = ∞. Consequently, also ‖R(λ,AC

β,µ)‖ is unbounded as

λ ↓ s(AC
β,0). It thus follows that s(A

C
β,0) ∈ σ(AC

β,µ), a contradiction to our assump-

tion s(AC
β0
) > s(AC

β,µ).

The operator AC
β,0 is the part of −A 2

β in C(Ω), defined before Theorem 3.3. It

follows from Proposition A.4 that the semigroup generated by −A 2
β is irreducible.

Since the resolvent of that operator is compact, it follows from de Pagter’s Theorem
(see [15, Theorem 3] or [7, C-III, Theorem 3.7.(c)]) that s(−A 2

β ) > −∞. But we



DIFFUSION WITH NONLOCAL ROBIN BOUNDARY CONDITIONS 17

have s(AC
β,0) = s(−A 2

β ) since the resolvents are compact and consistent, see [2,

Proposition 2.6]. �

Note that the semigroup TC
β,µ is compact and hence immediately norm continuous

whence spectral bound and growth bound coincide. Thus, if s(Aβ,µ) < 0, then
‖TC

β,µ(t)‖ ≤ Me−εt for all t > 0 and suitable constants M > 0, ε > 0, i.e. the

semigroup is exponentially stable. If, on the other hand, s(AC
β,µ) > 0 then there

exists ε > 0 M > 0 such that ‖TC
β,µ(t)‖ ≥ Meεt for all t > 0. Finally, if s(Aβ,µ) = 0,

then the semigroup converges if it is bounded. This is not easy to decide, though.
However, we have a precise criterion for the semigroup to be sub-Markovian. In
that case, we obtain the following result from Theorem A.1.

Proposition 5.2. Assume that µ(z) ≥ 0 and

(5.1) µ(z)(Ω) ≤ β(z) +

d
∑

j=1

tr bjνj(z)

for almost every z ∈ ∂Ω and

(5.2)

d
∑

j=1

Djbj ≤ d0

almost everywhere. Then there exist a positive projection P ∈ L (C(Ω)) with finite
rank and M > 0, ε > 0 such that

‖TC
µ,β(t)− P‖

L (C(Ω)) ≤ Me−εt

for all t > 0.

In the situation of Proposition 5.2, if s(AC
β,µ) = 0, there exists a function 0 < u =

Pu, i.e. a positive function in the kernel of AC
β,µ. If the semigroup is Markovian, then

1 is such a function. It is interesting to know when it is the only one (up to a scalar
multiple). If TC

β,µ is irreducible, then this is the case. Unfortunately, it is not easy to

prove irreducibility on C(Ω). However, it follows from the domination property (4.5)
that TC

β,µ is irreducible whenever TC
β,0 is so. As for the latter semigroup, a particular

case will be settled in Theorem 6.3. We also remark that in a forthcoming paper
[10] it will be shown that TC

β,0 is irreducible whenever Ω is connected, bj = 0 and
aij = aji for i, j = 1, . . . , d.

Theorem 5.3. Assume that µ(z) ≥ 0 and

0 ≤ µ(z)(Ω) = β(z) +
d

∑

j=1

tr bjνj(z)

for almost all z ∈ ∂Ω and
∑d

j=1 Djbj = d0. Assume further that TC
β,0 is irreducible.

Then there exist a strictly positive measure ρ on Ω and constants ε,M > 0 such
that for P ∈ L (C(Ω)), given by

Pf =

∫

Ω

f dρ · 1

for all f ∈ C(Ω), we have

‖TC
β,µ(t)− P‖

L (C(Ω)) ≤ Me−εt

for all t > 0.

Proof. By Proposition 4.2 the semigroup TC
β,µ is Markovian and hence 1 is a fixed

vector of the semigroup. As a consequence of (4.5), TC
β,µ is irreducible. Now the

claim follows from Theorem A.2. �
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We next prove exponential stability in the sub-Markovian case.

Theorem 5.4. Assume that µ(z) ≥ 0 for almost all z ∈ ∂Ω and that (5.1) and (5.2)
hold. Moreover, assume that TC

β,0 is irreducible. If in (5.1) or (5.2) the inequality
is strict on some set of positive measure, then there exist ε,M > 0 such that

‖TC
β,µ(t)‖L (C(Ω)) ≤ Me−εt

for all t > 0.

Proof. Let us put

β̃(z) := µ(z)(Ω)−
d

∑

j=1

tr bj(z)νj(z)

and d̃0(x) =
∑d

j=1(Djbj)(x). Replace d0 with d̃0 and β with β̃ and denote by

T̃β,µ the corresponding semigroup on C(Ω). We denote the generator of T̃C
β̃,µ

Then

0 ≤ TC
β,µ(t) ≤ T̃C

β̃,µ
(t) for all t > 0 by Proposition 4.4 and a perturbation argument,

cf. the proof of Proposition 4.5. By Proposition 4.3 the semigroup T̃ is Markovian
so that its generator has spectral bound 0. However, the generators of these two
semigroups are different. To see this, let us first assume that β 6= β̃ in L∞(∂Ω).
Note that the conormal derivative ∂A

ν does depend on the zero order term d0 resp.

d̃0. We find

〈1, µ(z)〉 = ∂Ã

ν 1+ β̃1 6= ∂A

ν 1+ β1.

Thus 1 6∈ D(AC
β,µ) but 1 ∈ D(ÃC

β,µ). If, on the other hand, β = β̃ in L∞(∂Ω), then

we have d0 6= d̃0 in L∞(Ω). Note that Aβ,µ1 = d̃0−d0. If d̃0−d0 ∈ C(Ω), it follows

that 1 ∈ D(AC
β,µ) but AC

β,µ1 6= ÃC
β̃,µ

1. If d̃0 − d0 6∈ C(Ω), then 1 6∈ D(AC
β,µ). In

any case we have ÃC
β̃,µ

6= AC
β,µ. Thus the claim follows from Theorem A.3. �

Next we show a blow-up result in the case where we perturb a Markovian semi-
group Tβ,0 by a positive µ. Recall from Proposition 3.5 that Tβ,0 is Markovian if
and only if the identities (3.4) and (3.5) hold.

Theorem 5.5. Assume the identities (3.4) and (3.5) and that Ω is connected. If
µ(z) ≥ 0 for almost all z ∈ ∂Ω but not identically 0 almost everywhere, then there
exist ω,M > 0 such that

‖TC
β,µ(t)‖L (C(Ω)) ≥ Meωt

for all t > 0.

Proof. The semigroup TC
β,0 is Markovian (by Proposition 3.5) and has an exten-

sion to L2(Ω) which is irreducible (as a consequence of Proposition A.4). From
Proposition A.5, it follows that TC

β,0 is irreducible. By Proposition 4.4 we have

TC
β,0(t) ≤ TC

β,µ(t) for all t > 0. Since ∂ν1 + β1 = 0 < µ(z)(Ω) for z in a set of

positive measure, one has 1 6∈ D(AC
β,µ). Thus the two semigroups are different and

it follows from Theorem A.3 that 0 = s(AC
β,0) < s(AC

β,µ) =: ω. Thus there exists

u ∈ C(Ω) such that u ≥ 1 with AC
β,µu = ωu. But this implies TC

β,µ(t)u = eωtu
which, in turn, yields the claim. �

Remark 5.6. In particular, it follows from Theorem 5.5 that the only realization
of our operator with non-local Neumann boundary conditions (i.e. where β = 0)
which generates a sub-Markovian semigroup is that with classical (local) Neumann
boundary conditions (i.e. β = 0 and µ = 0).
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6. Absolutely continuous measures µ(z)

In this section we consider the case where the measures µ(z) are absolutely
continuous with respect to the Lebesgue measure on Ω. More precisely, we assume
that we are given a function h ∈ L2(∂Ω× Ω) such that

µ(z)(A) =

∫

A

h(z, x) dx.

In this situation we can use form methods to show that the semigroup Tβ,µ, defined
on L∞(Ω), has an extension to L2(Ω). This allows us to establish irreducibility of
TC
β,µ via Propositions A.4 and A.5 in the Markovian case, provided Ω is connected.

On the other hand, we can use form methods to show that our assumptions to infer
positivity resp. sub-Markovianity are close to optimal.

We consider the form aβ,h : H1(Ω)×H1(Ω) → R, given by

aβ,h[u, v] := aβ [u, v]−

∫

∂Ω

∫

Ω

h(z, x)u(x) dx v(z) dσ(z).

Then the form aβ,h is elliptic and continuous. Denote by A 2
β,h the associated opera-

tor on L2(Ω). Then −A 2
β,h generates a holomorphic, strongly continuous semigroup

T 2
β,h on L2(Ω). It is easy to see that if in addition

(6.1)

∫

∂Ω

(

∫

Ω

|h(z, x)| dx
)p

dσ,

for some p > d−1 with p ≥ 2, then the measures µ(z) = h(z, x) dx satisfy Hypothesis
1.1 whence we obtain a semigroup Tβ,µ on L∞(Ω) with generator Aβ,µ. Using the
definition of the co-normal derivative one sees that the part of −A 2

β,h in L∞(Ω) is

precisely the operator Aβ,µ. It follows that T 2
β,h leaves the space L∞(Ω) invariant

and the restriction of that semigroup to L∞(Ω) is Tβ,µ.

Proposition 6.1. With the notation above, we have:

(a) The semigroup T 2
β,h is positive if and only if h ≥ 0 almost everywhere.

(b) Assume that bj ∈ W 1,∞(Ω) for j = 1, . . . , d. Then T 2
β,h is sub-Markovian

if and only if (4.3) holds, h ≥ 0 almost everywhere and 0 ≤
∫

Ω h(z, x) dx ≤

β(z) +
∑d

j=1 tr bj(z)νj(z) for almost every z ∈ ∂Ω.

Proof. (a) By the first Beurling–Deny criterion [25, Corollary 2.6] T 2
β,µ is positive

if and only if aβ,µ[u
+, u−] ≤ 0 for all u ∈ H1(Ω). If h ≥ 0 almost everywhere this

is clearly fulfilled.
Conversely assume that T 2

β,µ(t) ≥ 0 for all t > 0. Then
∫

∂Ω

∫

Ω

h(z, x)u+(x) dxu−(z) dσ(z) = −aβ,h[u
+, u−] ≥ 0

for all u ∈ H1(Ω). Now let functions 0 ≤ v ∈ D(Ω) and 0 ≤ ϕ ∈ C(∂Ω) be given.
We find a sequence wn ∈ D(Rd) with 0 ≤ wn ≤ ‖ϕ‖∞ such that suppwn∩supp v = ∅
and wn(z) → ϕ(z) for all z ∈ ∂Ω. Inserting u = v−wn in the above inequality and
using dominated convergence, we obtain that

∫

∂Ω

∫

Ω

h(z, x)v(x) dxϕ(z) dσ(z) ≥ 0

As 0 ≤ ϕ ∈ C(∂Ω) was arbitrary, we conclude that
∫

Ω

h(z, x)v(x) dx ≥ 0

for almost all z ∈ ∂Ω. As 0 ≤ v ∈ D(Ω) was arbitrary, it follows that for almost all
z ∈ ∂Ω we have h(z, x) = 0 for almost all x ∈ Ω. Now Fubini’s theorem implies that
h ≥ 0 with respect to the product measure, proving the necessity of the condition.
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(b) The sufficiency of the inequality above was already established in Proposition
4.5, so we only need to prove its necessity. If the semigroup is sub-Markovian, it is
positive and thus h ≥ 0 almost everywhere by (a).

By the Beurling–Deny–Ouhabaz criterion [25, Corollary 2.8], for u ∈ H1(Ω) we
have

0 ≤ aβ,h[u ∧ 1, (u− 1)+]

= −
∑

j

∫

Ω

(Djbj)(u − 1)+ dx+

∫

Ω

d0(u− 1)+ dx

+

∫

∂Ω

(

∑

j

bjνj(u− 1)+ + β(z)−

∫

Ω

(u ∧ 1)(x)h(z, x) dx
)

(u− 1)+(z) dσ(z).

Now let v ∈ H1(Ω) such that v ≥ 0. Inserting u = v + 1 in the above inequality,
the desired inequalities follow from Lemma 3.4. �

Remark 6.2. We have already noted after Proposition 4.5 that Condition (4.3) is
necessary for Tβ,µ to be sub-Markovian.

We now consider the case where the semigroup is Markovian. Then we can prove
irreducibility via Proposition A.4 and deduce convergence of the semigroup to an
equilibrium.

Theorem 6.3. Assume that Ω is connected, and that h ≥ 0 almost everywhere

satisfies Equation (6.1). Moreover, assume that
∑d

j=1 Djbj = d0 almost everywhere
on Ω and

d
∑

j=1

bj(z)νj(z) + β(z) =

∫

Ω

h(z, x) dx

almost everywhere on ∂Ω. Then the semigroup TC
β,µ on C(Ω) is irreducible and

Markovian. Consequently, there exist 0 ≪ ϕ ∈ L2(Ω) such that
∫

Ω
ϕ(x) dx = 1 and

constants ε,M > 0 such that

‖TC
β,µ(t)− ϕ⊗ 1‖

L (C(Ω)) ≤ Me−εt

for all t > 0.

7. Measures satisfying Hypothesis 1.1

In this brief section we give some examples of maps µ for which Hypothesis 1.1
is satisfied.

Example 7.1. Assume that for every Borel set A ⊂ Ω the complex-valued map
z 7→ µ(z)(A) is continuous. Then µ satisfies conditions (a), (b) and (c) in Hypothesis
1.1.

Proof. It is obvious that (a) holds. As for (b), we note that by continuity and
compactness of ∂Ω we have supz∈∂Ω |µ(z)(A)| < ∞ for every A ∈ B(Ω). Now [12,
Corollary 4.6.4] yields supz∈∂Ω ‖µ(z)‖ < ∞. To prove (c), pick a dense sequence zn
in ∂Ω. We set

τ :=
∑

n∈N

1

2n
|µ(zn)|,

where |µ(z)| denotes the total variation of µ(z). Then τ is a finite positive measure
and we have µ(zn) ≪ τ for every n ∈ N. Let A ∈ B(Ω) with τ(A) = 0 be
given. Consider the function ϕ(z) := µ(z)(A). By the above ϕ(zn) = 0 for all
n ∈ N. Moreover, ϕ is continuous by assumption. Thus ϕ ≡ 0, proving that in fact
µ(z) ≪ τ for all z ∈ ∂Ω. �

Similarly, we can consider maps µ which only take countably many values.
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Example 7.2. Assume that µ(z) =
∑

n∈J 1An
(z)µj where (An)j∈J ⊂ B(∂Ω) and

(µj)n∈J ⊂ M (Ω) and J is a finite or countably infinite index set. Then µ satisfies

Hypothesis 1.1 provided
∑

n∈J σ(An)|µn|(Ω)p < ∞ where p is as in Hypothesis
1.1(b).

Proof. Part (a) is obvious and (b) was assumed. Part (c) is fulfilled with τ =
∑

n∈J 2−n|µn|. �

Appendix A. Irreducible semigroups

In this appendix we collect some known facts on positive, irreducible semigroups.
In some cases we present some variations or adapt results to our special situation.

Let E be a real Banach lattice. In our context E will be C(Ω) or Lq(Ω). Let T
be a strongly continuous semigroup on E which is positive, i.e. for f ∈ E+ we have
T (t)f ∈ E+ for all t ≥ 0. We denote the generator of T by A. The spectral bound
of A is defined by

s(A) := sup{Reλ : λ ∈ σ(AC)}

where σ(AC) is the spectrum of the generator AC of the complexification of T . In
what follows, we will not distinguish between an operator and its complexification.
In particular, when we talk about the spectrum, resolvent, etc. of an operator, we
always mean the spectrum/resolvent, etc. of its complexification.

By [7, C-III Theorem 1.1], s(A) ∈ σ(A) whenever σ(A) 6= ∅ . If A has compact
resolvent, then σ(A) consists of isolated points which are all eigenvalues.

Theorem A.1. Assume that T (t) is compact for all t > 0, that s(A) = 0 and that
T is bounded. Then there exist a positive projection P 6= 0 of finite rank, ε > 0 and
M > 0 such that

‖T (t)− P‖L (E) ≤ Me−εt

for all t > 0.

Proof. Since T (t) is compact for all t > 0, T is immediately norm continuous
and it follows from [7, C-III Corollary 2.13] that there is some δ > 0 such that
Reλ ≤ −2δ < 0 for all λ ∈ σ(A) \ {0}. Denote by P the spectral projection with
respect to 0, i.e.

P :=
1

2πi

∫

|λ|=δ

R(λ,A) dλ.

As T (t) is compact for all t > 0, so is the resolvent and thus also P , whence it
has finite rank. The restriction of T to the range of P is a bounded semigroup
on a finite dimensional vector space whose generator has spectrum {0}. It follows
that the generator of the restriction is diagonalizable and is thus the zero operator.
Consequently, T (t)P = P for all t > 0. The space F = (I − P )E is invariant under
the semigroup and the generatorAF of the restriction has its spectrum in a strict left
half plane. Since the semigroup is immediately norm continuous there exist ε > 0,
M > 0 such that ‖T (t)|F‖L (F ) ≤ Me−εt and hence ‖T (t) − P‖L (E) ≤ Me−εt for
all t ≥ 0. �

Theorem A.1 implies in particular that there exists u > 0, i.e. u ≥ 0 and u 6= 0,
such that T (t)u = u for all t ≥ 0. Thus the Krein–Rutman Theorem which asserts
that the largest eigenvalue (i.e. s(A)) has a positive eigenfunction is incorporated
in Theorem A.1.

We next want to investigate when P has rank one and the positive eigenfunction
is strictly positive. This will be done via the notion of irreducibility. A subspace J
of E is called an ideal if

(i) u ∈ J implies |u| ∈ J and
(ii) if u ∈ J , then 0 ≤ v ≤ u implies v ∈ J .
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A positive, strongly continuous semigroup T on E is called irreducible if the only
invariant closed ideals are J = {0} and J = E.

If J = C(Ω) then J ⊂ E is a closed ideal if and only if there exists a closed
subset K of Ω such that

J = {f ∈ C(Ω) : f |K = 0}.

If E = Lq(Ω) (1 ≤ q < ∞) then J ⊂ E is a closed ideal if and only if there exists a
measurable subset K of Ω such that

J = {f ∈ Lq(Ω) : f |K = 0 a.e.}.

We say that u ∈ E is a quasi interior point and write u ≫ 0 if the principal ideal

Eu := {v ∈ E : ∃ c > 0 such that |v| ≤ cu}

is dense in E.
If E = C(Ω) then u ≫ 0 if and only if there is δ > 0 such that u(x) ≥ δ > 0 for

all x ∈ Ω. In this case u is actually an inner point of the positive cone. If E = Lp(Ω)
then u ≫ 0 if and only if u(x) > 0 for almost every x.

We call ϕ ∈ E′ a strictly positive functional if 〈ϕ, f〉 = 0 implies f = 0 for all
f ∈ E+.

If E = C(Ω), then ϕ is strictly positive if and only if there exists a strictly
positive Borel measure ν, i.e. ν(O) > 0 for all non-empty open sets O ⊂ Ω, such
that

〈ϕ, f〉 =

∫

Ω

f(x) dν(x).

If E = Lq(Ω) for ϕ ∈ Lq′(Ω) ≃ (Lq(Ω))′ to be strictly positive is equivalent to that
ϕ(x) > 0 almost everywhere, i.e. ϕ ≫ 0.

The importance of these concepts in the study of asymptotic behavior stems
from the fact that positive fixed points of positive, irreducible semigroups are strictly
positive. More precisely, if T is a positive, irreducible, strongly continuous semigroup
and u > 0 is such that T (t)u = u for all t > 0, then u ≫ 0 and if 0 < ϕ ∈ E′ is
such that T (t)′ϕ = ϕ for all t > 0 then ϕ is strictly positive. Moreover, because of
irreducibility, s(A) cannot be a pole of order larger than 1, see [7, C-III Proposition
3.5]. This implies that T (t)P = P for all t > 0 in the proof of Theorem A.1 even
though the semigroup is not assumed to be bounded. We thus obtain the following
result on asymptotic stability.

Theorem A.2. Let T be a positive, irreducible strongly continuous semigroup on
E with generator A. Assume that T (t) is compact for t > 0 and s(A) = 0. Then
there exist 0 ≪ u ∈ kerA, a strictly positive ϕ ∈ kerA′, ε > 0, M > 0 such that
〈ϕ, u〉 = 1 and

‖T (t)− ϕ⊗ u‖L (E) ≤ M−εt

for all t ≥ 0 where we have written ϕ⊗ u for the projection defined by

(ϕ⊗ u)(f) = 〈ϕ, f〉u,

for all f ∈ E. In particular

lim
t→∞

T (t)f = 〈ϕ, f〉u,

i.e. the orbits of the semigroup converge to an equilibrium.

Theorems A.1 and A.2 lie at the heart of the Perron–Frobenius theory. We refer
to [7] for more information.

We shall have occasion to use the strict monotonicity of the spectral bound.

Theorem A.3. Let S and T be strongly continuous semigroups on E with genera-
tors B and A respectively. Assume that
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(i) 0 ≤ S(t) ≤ T (t) for all t > 0;
(ii) A has compact resolvent, and
(iii) T is irreducible.

If A 6= B, then s(B) < s(A).

Proof. This is a version of [5, Theorem 1.3], see also [4, Theorem 10.2.10] in con-
nection with [4, Theorems 10.6.3 and 10.6.1]. �

Next we describe ways to prove irreducibility. On L2(Ω) this is very easy if
the semigroup is associated with a form by virtue of the Beurling–Deny–Ouhabaz
criterion for the invariance of closed convex sets. In particular the following holds
true (see [27, Theorem 2.10]).

Proposition A.4. Let V ⊂ H1(Ω) be a closed subspace containing H1
0 (Ω), where

Ω ⊂ Rd is a connected, open set. Let a : V × V → R be a continuous and elliptic
form such that the associated semigroup T is positive. Then T is irreducible.

On C(Ω) irreducibility is a stronger notion than on L2(Ω). However, the following
result shows how irreducibility on C(Ω) can be deduced from irreducibility on L2(Ω).

Proposition A.5. Let Ω ⊂ Rd be open and bounded and T be a positive, irreducible,
strongly continuous semigroup on L2(Ω) whose generator A has compact resolvent.
Assume that T leaves C(Ω) invariant and that the restriction TC of T to C(Ω)
is strongly continuous and suppose that its generator AC has compact resolvent.
Assume that s(A) = 0. Then TC is irreducible if and only if there exists u ∈
kerA ∩ C(Ω) such that u(x) ≥ δ > 0 for all x ∈ Ω.

Proof. Assume that there exists 0 ≪ u ∈ C(Ω) ∩ kerA. Since T is irreducible 0 is
a pole of order 1 and the residuum P is of the form

Pf =
(

∫

Ω

ϕf dx
)

· u

for some 0 ≪ ϕ ∈ L2(Ω), see [7, C-III Proposition 3.5]. Since C(Ω) is dense in L2(Ω),
it follows that the coefficients in the Laurent series expansion in C(Ω) around 0 (see
[7, A-III, Equation (3.1)]) are the restriction of those in L2(Ω). Thus 0 is also a
pole of order 1 of the resolvent of AC . The residuum

PC =
1

2πi

∫

|λ|=ε

R(λ,AC) dλ

is the same, i.e. PC = P |C(Ω). Now let J = {f ∈ C(Ω) : f |K = 0} be an invariant

ideal. Then for z ∈ K, f ∈ J , f ≥ 0 we have (T (t)f)(z) = 0 for all t > 0 and hence
(R(λ,AC)f)(z) = 0 for all λ > 0, since we suppose that s(A) = 0 and know that
s(A) is the abscissis of the Laplace transform of the semigroup [6, Theorem 5.3.1].
Thus

∫

Ω

f(x)ϕ(x) dx · u(z) = lim
λ↓0

(λR(λ,AC )f)(z) = 0.

Since ϕ ≫ 0 in L2(Ω) this implies f = 0. Consequently J = {0}. This proves the
sufficiency.

To show the necessity, recall that 0 is also a pole of R(λ,AC). It follows that
s(AC) = 0. By Theorem A.2, there exists 0 ≪ u ∈ ker(AC) ⊂ ker(A). �
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Basel AG, Basel, second ed., 2011.

[7] W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel,

F. Neubrander, and U. Schlotterbeck, One-parameter semigroups of positive operators,
vol. 1184 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1986.

[8] W. Arendt, S. Kunkel, and M. Kunze, Diffusion with nonlocal boundary conditions, J.
Funct. Anal., 270 (2016), pp. 2483–2507.

[9] W. Arendt and R. Mazzeo, Spectral properties of the dirichlet-to-neumann operator, Ulmer
Seminare, 12 (2007), pp. 23–37.

[10] W. Arendt and A. F. M. ter Elst, The Dirichlet-to-Neumann operator on C(∂Ω). in
preparation.

[11] W. Arendt and A. F. M. ter Elst, Gaussian estimates for second order elliptic operators

with boundary conditions, J. Operator Theory, 38 (1997), pp. 87–130.
[12] V. I. Bogachev, Measure theory. Vol. I, II, Springer-Verlag, Berlin, 2007.
[13] D. Daners, Heat kernel estimates for operators with boundary conditions, Math. Nachr., 217

(2000), pp. 13–41.
[14] , Inverse positivity for general Robin problems on Lipschitz domains, Arch. Math.

(Basel), 92 (2009), pp. 57–69.
[15] B. de Pagter, Irreducible compact operators, Math. Z., 192 (1986), pp. 149–153.
[16] D. Dier, Non-autonomous forms and invariance. preprint. available at arXiv:1609.03857,

2016.
[17] W. Feller, The parabolic differential equations and the associated semi-groups of transfor-

mations, Ann. of Math. (2), 55 (1952), pp. 468–519.
[18] , Diffusion processes in one dimension, Trans. Amer. Math. Soc., 77 (1954), pp. 1–31.
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