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Introduction

Introduction

Problem: Alice and Bob want to share a commun secret key.
But: Eve can observe every information that they exchange.

Problem: Bob wants to send a ciphertext to Alice, using Alice’s public
key such that Alice can decrypt it to obtain the plaintext.

Mathematical foundations in this talk:

Discrete Logarithms.

Integer Factorizations.

Propeties:
- easy to compute on every input
- hard to invert the image of a random input
easy: polynomial time
hard: exponential time.
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Some notions on Complexity

Number-Theoretic Algorithms

Discrete Logarithms and Public Key Problem.

Diffie- Hellman Key Exchange
The Elgamal Public Key Cryptosystem
Babystep - Giantstep Algorithm
The Pohlig- Hellman Algorithm
The index calculus method

RSA and Integer Factorization

Pollard’s p-1 Factorization
Factorization via Difference of Squares
B- smooth number
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Some notions on Complexity

Asymptotic notations

The complexity of an algorithm is represented by a function f (N) where N
is the size of the input.

Definition.

Let f (X ) and g(X ) be functions of X whose values are positive. Then we
define the following notions

f (X ) = O(g(X )) if there exists constants c and X0 such that
f (X ) ≤ cg(X ) for all X ≥ X0.

f (X ) = Ω(g(X )) if there exists constants c and X0 such that
f (X ) ≥ cg(X ) for all X ≥ X0.

f (X ) = Θ(g(X )) if f (X ) = O(g(X )) and f (X ) = Ω(g(X )).

f (X ) = o(g(X )) if for all constant c, there exists a constant Xo such
that f (X ) < cg(X ) for all X ≥ X0.

f (X ) = ω(g(X )) if for all constant c, there exists a constant Xo such
that f (X ) > cg(X ) for all X ≥ X0.
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Some notions on Complexity

Asymtotically,
f (X ) = O(g(X ))⇔ f (X ) ≤ g(X )

f (X ) = Ω(g(X ))⇔ f (X ) ≥ g(X )

f (X ) = Θ(g(X ))⇔ f (X ) ∼ g(X )

f (X ) = o(g(X ))⇔ f (X ) < g(X )

f (X ) = ω(g(x))⇔ f (X ) > g(X ).
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Some notions on Complexity

Polynomial, exponential and subexponential

For the input being a large number X (the size is logX ), the complexity
f (X ) is considered as a function of logX .

Definition.

The complexity grows polynomially if
∃k, l : f (X ) = O((logX )k) & f (X ) = Ω((logX )l).
The complexity grows exponentially if
∃k, l : f (X ) = O((X )k) & f (X ) = Ω((X )l).
The complexity is subexponential if
∀k, l : f (X ) = O((X )k) & f (X ) = Ω((logX )l).

Example
f1(X ) = (logX )3 log logX

√
logX , f2(X ) = 1

3X , f3(X ) =
√
X

f4(X ) = e
√

(lnX )(lnlnX ).
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Number-Theoretic Algorithms

Number-Theoretic Algorithms

The Euclidean Algorithm

Prime number and Factorization

Powers and primitive roots in finite fields

The Chinese reminder Theorem
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Number-Theoretic Algorithms

The Euclidean Algorithm

Problem.

Let a and b be positive integers with a ≥ b. Find the greatest comment
divisor of a and b (gcd(a, b)).

Algorithm.

1 Let r0 := a, r1 := b, i := 1;

2 Devide ri−1 by ri : ri−1 = riqi + ri+1 with 0 ≤ ri+1 < ri .

3 If ri+1 = 0 then gcd(a, b) := ri
4 Otherwise, i := i + 1; go to Step 2.

Complexity O(log b): linear time.
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Number-Theoretic Algorithms

The Extended Euclidean Algorithm

Theorem.

Let a and b be positive integers with a ≥ b. Then the equation
au + bv = gcd(a, b) always has a solution in integer u and v.

Using the Euclidean Algorithm, then we can find u and v as functions of
qi .
Complexity O(log b).

Proposition.

Let a be an integer, then there exists integer b such that a.b ≡ 1(
mod m) if and only if gcd(a,m) = 1. If such an integer b exists, we say
that b is the (multiplicative) inverse of a modulo m.
Moreover b can be found in O(logm).
In particular, if p is prime, then the inverse of a in F∗p exists always, and
denoted by a−1.
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Number-Theoretic Algorithms

Prime number and Factorization

Theorem.

(The Fundamental Theorem of Arithmetic)
Let a ≥ 2 be an integer. Then a can be factored as a product of prime
numbers in a unique way

a = pe11 .p
e2
2 . . . . .p

er
r .

The number ei is called the order of pi in a, denoted by ordpi (a).
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Number-Theoretic Algorithms

Powers and primitive roots in finite fields

Theorem.

(Fermat’s Little Theorem) Let p be a prime number and let a be any
integer. Then ap−1 ≡ 1( mod p) if p does not devide a.

Definition.

The order of a modulo p is the smallest power of a that are congruent to
1: ak ≡ 1( mod p).

Proposition.

Let p be a prime and let a be an integer not divisible by p. Then the order
of a divides p − 1.
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Number-Theoretic Algorithms

Primitive Root Theorem

Theorem.

(Primitive Root Theorem)
Let p be a prime number. Then there exists an element a ∈ F∗p whose
powers give every elements of F∗p, i.e.

F∗p = {1, g , g2, . . . , gp−2}.

Elements with this property are called primitive roots of Fp or generator of
F∗p. They are of order p − 1.

Example.
The field F∗11 has 2 as a primitive root, since in F∗11:

20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 5, 25 = 10, 26 = 9, 27 = 7, 28 = 3, 29 = 6

and 3 is not a primitive in F∗11 because 35 = 1 (note that 10 is divisible by
5).
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Number-Theoretic Algorithms

The Chinese reminder Theorem

Theorem.

Let n = n1n2 . . . nk , where ni are pairwise relatively prime. Then the map

f : Zn → Zn1 × Zn2 × . . .× Znk

a→ (a1, a2, . . . , ak), where ai = a mod ni

is a bijection. And
(a + b) mod n = ((a1 + b1) mod n1, . . . , (ak + bk) mod nk)
(a− b) mod n = ((a1 − b1) mod n1, . . . , (ak − bk) mod nk)
(ab) mod n = ((a1b1) mod n1, . . . , (akbk) mod nk)

Proof
From (a1, a2, . . . ak), how to find a ?
Let mi = n/ni . Compute ci = mi (m

−1
i mod ni ).

Then f (ci ) = (0, . . . , 0, 1, 0 . . . , 0)
Take a = c1a1 + c2a2 + . . .+ ckak (mod n), then a ≡ ai (mod ni ).
Then f (a) = (a1, a2, . . . , ak).PHAN Thi Ha Duong (Institute of Mathematices Vietnam Academy of Science and Technology )Some mathematical foundations of Cryptography
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Number-Theoretic Algorithms

The Chinese reminder Theorem

Corollary.

If n = n1n2 . . . nk , where the ni are pairwise relatively prime, then for any
integer a1, a2, . . . , ak , the system of equations x ≡ ai (mod ni ) for
i = 1, 2, . . . , k, has a unique solution modulo n for x.

Corollary.

If n = n1n2 . . . nk , where the ni are pairwise relatively prime, then for all
integer x and a, x ≡ a (mod ni ) for i = 1, 2, . . . , k, if and only if
x ≡ a (mod n).

The complexity to solve these equations is O(log n).
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Discrete Logarithms

Discrete Logarithms and Diffie- Hellman

Diffie- Hellman Key Exchange

Diffie-Hellman Problem

The Discrete Logarithm Problem

The Elgamal Public Key Cryptosystem

Babystep - Giantstep Algorithm

The Pohlig- Hellman Algorithm

The index calculus method
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Discrete Logarithms

Diffie- Hellman Key Exchange

Problem.

Alice and Bob want to share a secret key.
But: Eve can observe every information that they exchange.

Algorithm.

Public Parameter creation A trusted party gives:
p: a large prime number and g: a large prime order in F∗p.
Private computations
Alice: chose a secret interger a. Compute A = ga mod p.
Bob: chose a secret interger b. Compute B = gb mod p.
Public exchange of value
Alice sends A to Bob. Bob sends B to Alice.
Further private computations
Alice: Compute KA = Ba mod p. Bob: Compute KB = Ab mod p.
Property: K = KA = KB : Alice and Bob share a Secret Key K.
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Discrete Logarithms

The Diffie-Hellman Problem

Eve:
- Know p, g , ga and gb.
- Want to know gab.

Definition.

Let p be a prime number and g an integer. The Diffie- Hellman Problem
(DHP) is the problem of computing the value gab (mod p) from the
known values of ga (mod p) and gb (mod p).
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Discrete Logarithms

The Discrete Logarithm Problem

Definition.

Let g be a primitive root for Fp, and let h be a nonzero element of Fp.
The Discrete Logarithm Problem (DLP) is the problem of finding an
exponent x such that g x ≡ h (mod p).
The number x is called the discrete logarithm of h to the base g, denoted
by logg (h).

- In Fp, if g x = h then g x+k(p−1) = h.
So logg : F∗p → Z/(p − 1)Z.
- In general, if g is not a primitive root of F∗p, one can also define the
DLP: for any g ∈ F∗p and any h ∈ F∗p, find x such that g x ≡ h (mod p).
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Discrete Logarithms

The Discrete Logarithm Problem

Definition.

Let G be a group with operation ?. The Discrete Logarithm Problem
(DLP) for G is to determine, for any two given elements g and h in G, an
integer x satifying g ? g . . . ? g︸ ︷︷ ︸

X

= h.

DHP vs DLP

If one can solve the DLP then one can solve the DHP.
If one can find a such that ga ≡ A (mod p), than one can compute
gab = Ba (with B being gb) and solving DHP.

Open question: If one can solve the DHP then one can solve the DLP
or not?
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Discrete Logarithms

The Elgamal Public Key Cryptosystem

Problem.

Bob wants to send a ciphertext to Alice, using Alice’s public key.

Algorithm.

Public Parameter creation A trusted party gives:
p: a large prime number and g: a large prime order in F∗p.
Key creation Alice:
Choose a private key 1 ≤ a ≤ p − 1. Compute A = ga mod p).
Publish the public key A.
Encryption Bob:
Choose plaintext m. Choose a random element k.
Compute c1 = gk mod p and c2 = mAk mod p.
Send ciphertext (c1, c2) to Alice.
Decryption Alice:
Compute m′ = c−a1 c2 mod p. This is equal to m.
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Discrete Logarithms

Corectness and Complexity

Corectness
m′ ≡ c−a1 c2 ≡ (gk)−amAk ≡ g−akmgak ≡ m (mod p).

- Alice compute c−a1 or cp−1−a1 by using fast powering.
Complexity
Every step in the system is computed in linear time.
Attack:
- Eve knows: g , p and A.
- If Eve knows DLP, she can find a, and then compute m′ as Alice.
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Discrete Logarithms

DHP and Elgamal PKC

Proposition.

If Eve has access to an oracle that decryps arbitraty Elgamal ciphertext
encryptes using arbitrary Elgamal public keys, then she can use the oracle
to solve the Diffie- Hellman problem.
Conversly, if Eve can solve the DHP, then she can break the Elgamal PKC.

Proof.
Suppose that Eve can consult an Elgama oracle.
To solve DHP: Eve knows A = ga and B = gb (but not a and b), and Eve
must to compute gab

Now, Eve choose: public key A, c1 = B and an arbitrary c2. Send to the
oracle.
The oracle return m = c−a1 c2 = B−ac2 = (gab)−1c2
Then gab = m−1c2.

PHAN Thi Ha Duong (Institute of Mathematices Vietnam Academy of Science and Technology )Some mathematical foundations of Cryptography
IACR-SEAMS School ”Cryptography: Foundations and New Directions” November, 2016 21

/ 56



Discrete Logarithms

Complexity of DLP

If Eve can solve DLP, she can solve DHP and Elgamal PKC.

Definition.

Let G be a group with operation ?. The Discrete Logarithm Problem
(DLP) for G is to determine, for any two given element g and h in G, an
integer x satifying g ? g . . . ? g ≡ h.

If G is the additive group Fp, then DLP is to compute x such that
x .g ≡ h (mod p). This is in linear time.
Proof. By extended Euclidean algorithm, in linear time, compute g−1

(mod p), and setting x = g−1h (mod p).

If G is a group of elliptic curves: the best know algorithm for DLP is
O(
√
N) (so exponential).

If G is the multiplicative group F∗p, DLP is subexponential:
Algorithms ?
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Discrete Logarithms

Babystep - Giantstep Algorithm

Proposition.

Let g be a group and g ∈ G of order N ≥ 2. The following algorithm
solve the DLP g x = h in O(

√
NlogN) steps using O(

√
N) storage.

(1) Let n = 1 + b
√
Nc.

(2) Create two lists:
List1 : e, g , g2, . . . , gn,

List2 : h, hg−n, hg−2n, hg−3n, . . . , hg−n
2
.

(3) Find i and j such that g i = hg−jn (⇔ g i+jn = h).
(4) Then x = i + jn is a solution.
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Discrete Logarithms

Babystep - Giantstep Algorithm

Corectness
If DLP has a solution x , then write x : qn + r , 0 ≤ r < n.
1 ≤ x < N then q = x−r

n < N
n < n since n >

√
N.

Then g x = h⇔ g r = hg−qn with 0 ≤ r < n and 0 ≤ q < n, then

g r ∈ List1 and hg−qn ∈ List2.

Complexity
(1) and (4): O(1)
(2) Compute: u = g−n.
Compute List 1 in O(n) multiplications.
Compute List 2 in O(n) multiplications.
(3) Finding a match by using sorting and searching: O(nlogn).
Total time: O(nlogn) = O(

√
NlogN) time, using O(

√
N) space to store

List 1 and List 2.
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Discrete Logarithms

The Pohlig- Hellman Algorithm

Theorem.

Let G be a group and N = qe11 .q
e2
2 . . . . .q

et
t (factorization of N). If the

DLP gq = h for g of order q can be solved in T (q) time, then the DLP
for g of order N can be solved in time

O(
t∑

i=1

eiT (q) + logN).

Remark.

The T (q) can be O(
√
q) then T (N) = O(

∑t
i=1 ei

√
qi + logN).

If all qi are small then T (N) is small.

To avoid the attack, some of qi must be large, ie. the base g must be
a large prime order.
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Discrete Logarithms

Proof of the Pohlig- Hellman Theorem

Proof.

For N = qe11 .q
e2
2 . . . . .q

et
t then T (N) = O(

∑t
i=1 T (qeii ) + logN).

Using Chinese remainder theorem.

For N = qe then T (qe) = O(eT (q)).
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Discrete Logarithms

Proof of the Pohlig- Hellman Theorem. Part 1

Let N = qe11 .q
e2
2 . . . . .q

et
t .

Let gi = gN/q
ei
i and hi = hN/q

ei
i . Then gi is of order qeii .

Find the solution yi of the DLP g y
i = hi in T (qeii ) time.

Use the Chinese reminder Theorem in O(logN) time to solve
x ≡ y1 (mod qe11 ), x ≡ y2 (mod qe22 ), . . ., x ≡ yt (mod qett ).

For each i , x = yi + qeii zi for some zi .

⇒ (g x)N/q
ei
i = (g yi+q

ei
i zi )N/q

ei
i = (gN/q

ei
i )yi .gNzi = g yi

i = hi = hN/q
ei
i .

Taking discrete logarithms to the base g : N
q
ei
i

.x ≡ N
q
ei
i

.loggh (mod N).

N
q
e1
1

, N
q
e2
2

, . . . , N
q
et
t

have no common factor, then ∃c1, c2, . . . , ct :

c1.
N
q
e1
1

,+c2.
N
q
e2
2

,+ . . .+ ct .
N
q
et
t

= 1

⇒
∑t

i=1 ci
N
q
ei
i

.x ≡
∑t

i=1 ci
N
q
ei
i

loggh (mod N).

⇒ x = loggh (mod N) ⇒ g x ≡ h (mod p).
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Discrete Logarithms

Proof of the Pohlig- Hellman Theorem. Part 2

If the order of g is qe . Finding x : g x = h is in time O(eT (q)) ?

Write x = x0 + x1q + . . . xe−1q
e−1, with 0 ≤ xi < q.

Note that gqe−1
is of order q. Find x0:

hq
e−1

= (g x)q
e−1

= (g x0+x1q+...xe−1qe−1
)q

e−1
=

g x0qe−1
.(gqe )x1+x2q+...xe−1qe−2

= (gqe−1
)x0 .

Since gqe−1
is of order q, then finding x0 such that (gqe−1

)x0 = hq
e−1

is in T (q) time.

Finding x1: hq
e−2

= (g x)q
e−2

= (g x0+x1q+...xe−1qe−1
)q

e−2
=

g x0qe−2
.g x1qe−1

.(gqe )x2+x3q+...xe−1qe−3
= g x0qe−2

.(gqe−1
)x1 .

⇒ (gqe−1
)x1 = (h.g−x0)q

e−2
.

Finding x1 is in T (q) time.

and so on for x2, . . . , xe−1.

The total time is then eT (q).
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Discrete Logarithms

Example of the Pohlig- Hellman Algorithm

Problem.

Problem: Find x such that 23x = 9689 in F11251.

Algorithm.

11250 = 2.32.54, and 23 is primitive (of order 11250) in F11251.
p = 11251, g = 23, h = 9689,N = p − 1 = 2.32.54

q e g (N/qe) h(N/q
e) Solve (g (N/qe))x = h(N/q

e)

2 1 11250 11250 1

3 2 5029 10724 4

5 4 5448 6909 511

Chinese remainder theorem, solve: x ≡ 1 (mod 2), x ≡ 4 (mod 32),
x ≡ 511 (mod 54). Then x = 4261.
Then 234261 = 9689 in F11251.
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Discrete Logarithms

For example, solve: 5448x = 6909 (mod 11251).

x = x0 + x1.5 + x2.5
2 + x3.5

3.

Finding x0: (54485
3
)x0 = 69095

3
, ⇔ 11089x0 = 11089⇒ x0 = 1.

Finding x1: (54485
3
)x1 = (6909.5448−x0)5

2
= (6909.5448−1)5

2

⇔ 11089x1 = 3742⇒ x1 = 2.

Finding x2: (54485
3
)x2 = (6909.5448−x0−x1.5)5 = (6909.5448−11)5

⇔ 11089x2 = 1⇒ x2 = 0.

Finding x3: (54485
3
)x3 = 6909.5448−x0−x1.5−x2.5

2
= 6909.5448−11

⇔ 11089x3 = 6320⇒ x3 = 4.

x = 1 + 2.5 + 4.53 = 511.
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Discrete Logarithms

For example, solve: 5448x = 6909 (mod 11251).

x = x0 + x1.5 + x2.5
2 + x3.5

3.

Finding x0: (54485
3
)x0 = 69095

3
, ⇔ 11089x0 = 11089⇒ x0 = 1.

Finding x1: (54485
3
)x1 = (6909.5448−x0)5

2
= (6909.5448−1)5

2

⇔ 11089x1 = 3742⇒ x1 = 2.

Finding x2: (54485
3
)x2 = (6909.5448−x0−x1.5)5 = (6909.5448−11)5

⇔ 11089x2 = 1⇒ x2 = 0.

Finding x3: (54485
3
)x3 = 6909.5448−x0−x1.5−x2.5

2
= 6909.5448−11

⇔ 11089x3 = 6320⇒ x3 = 4.

x = 1 + 2.5 + 4.53 = 511.
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Discrete Logarithms

The index calculus method. Smooth numbers

Definition.

An integer n is called B-smooth if all of its prime factors are less than or
equal to B.

Definition.

The function π(B) counts prime numbers that are smaller than B.

Example B = 5, π(5) = 3.
5− smooths : 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36, . . .
Not 5− smooths :
7, 11, 13, 14, 17, 19, 21, 23, 26, 28, 29, 31, 33, 34, 35, 37, . . .
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Discrete Logarithms

The index calculus method

Problem.

Let g be a primitive root of Fp, find x st: g x ≡ h (mod p).

Algorithm.

Solve problem g x ≡ ` (mod p) for all prime ` ≤ B.

Look at h.g−k mod p for k = 1, 2, . . . until a value k such that
h.g−k mod p is B-smooth.

h.g−k ≡
∏
`≤B

`e` (mod p).

⇔ logg (h) ≡ k +
∑
l≤B

e`logg (`) (mod p − 1).
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Discrete Logarithms

Problem.

How to find logg (`) for small prime l ≤ B ?

Algorithm.

For a random i, comput gi = g i (mod p)
If gi is B-smooth, one can factor it as

gi ≡
∏
l≤B

lu`(i).

⇔ i = logg (gi ) ≡
∑
l leqB

u`(i)logg (`) (mod p − 1).

If we find more than π(B) equations, then we have a linear system with
the unknows logg (`), and we can find them.
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Discrete Logarithms

Example of the Index Calculus method

Problem.

Let p = 18443. Solve the DLP: 37x ≡ 211(mod 18443).

Algorithm.

g = 37 is a primitive root. Take B = 5 then the factor base is
{2, 3, 5}. We will find x2 = log372, x3 = log372, x5 = log375 in F18443.

Taking random i and keep i such that g i mod 18443 is a 5-smooth.
g12708 mod 18443 = 23.34.5 g11311 mod 18443 = 23.52

g15400 mod 18443 = 23.33.5 g2731 mod 18443 = 23.3.54

Write the system of linear equations (modulo p − 1 = 18442).

12708 = 3x2 +4x3 +x5 (mod 18442),
11311 = 3x2 +2x5 (mod 18442),
15400 = 3x2 +3x3 +x5 (mod 18442),
2731 = 3x2 +x3 +4x5 (mod 18442).
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Discrete Logarithms

Write 18442 = 2.9221 Then we solve the above system in F2 and in
F9221. The solution are

(x2, x3, x5) ≡ (1, 0, 1) (mod 2),

(x2, x3, x5) ≡ (5733, 6529, 6277) (mod 9221).

Chinese remainder Theorem:

(x2, x3, x5) ≡ (5733, 15750, 6277) (mod 18442).

Find k such that 211.37−k mod 18443 is a 5-smooth.

211.37−9549 ≡ 25.32.52 (mod 18443).

logg (211) ≡ 9549 + 5x2 + 2x3 + 2x5 (mod 18442).

⇔ logg (211) ≡ 8500 (mod 18442).

The solution is 8500.
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RSA and Integer Factorization

RSA and Integer Factorization

The RSA Public Key Cryptosystem

Pollard’s p-1 Factorization

Factorization via Difference of Squares

B- smooth number
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RSA and Integer Factorization

The RSA Public Key Cryptosystem

Problem.

Alice wants to send a ciphertext to Bob, using Bob’s public key.

Algorithm.

Key creation Bob:
- Choose secret primes p and q.
- Choose encryption exponent e with gcd(e, (p − 1)(q − 1)) = 1.
- Compute the decryption exponent d: ed ≡ 1 (mod (p − 1)(q − 1)).
- Publish the public key: the modulus N = pq, the encryption exponent e.
Encryption Alice:
- Choose plaintext m.
- Compute c = me mod N.
- Send ciphertext c to Bob.
Decryption Bob:
- Compute m′ ≡ cd mod N. This m′ is equal to m.
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RSA and Integer Factorization

Example of RSA

Key creation

Bob chooses: p = 1223, q = 1987. He computes N = pq = 2430101.

Bob chooses an encryption exponent e = 948047 st.
gcd(e, (p − 1)(q − 1)) = gcd(948047, 2426892) = 1.

Bob solve the equation
ed ≡ 1(mod (p − 1)(q − 1))⇔ 848047d ≡ 1mod 2426892) and find
d = 1051235.

Encryption

Alice takes m = 1070777 satisfying 1 ≤ m < N.

Alice uses Bob’s public key to compute: c = me

mod N = 1070777948047 mod 2430101 = 1473513.

Alice send 1473513 to Bob.

Decryption

Bob computes: m′ = cd mod 2430101 = 14735131051235

mod 2430101 = 1070777.
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RSA and Integer Factorization

Corectness and Complexity

Corectness.
m′ = cd = (me)d = med = mk(p−1)(q−1).m
We have mp−1 ≡ 1( mod p) and mq−1 ≡ 1( mod q), then
mk(p−1)(q−1) ≡ 1( mod pq).

m′ = mk(p−1)(q−1).m ≡ m(mod N)

⇔ m′ ≡ m(mod N)⇔ m′ = m.

Complexity.
- Encryption: easy, in O(log e) time.
- Decryption: easy, in O(log d) time.
- Key creation: Compute d by extended euclidean algorithm in O(logN).
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RSA and Integer Factorization

Complexity

Attack:
- If Eve knows p, q, it is OK.
- If Eve knows (p − 1)(q − 1), it is OK. And this is equivalent to know p
and q.
- Eve can find m if she can solve the equation xe ≡ c(mod N). What is
the complexity of this problem ?
- Factorization problem: Eve try to find p and q knowing N = pq.
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RSA and Integer Factorization

Pollard’s p-1 Factorization algorithm. Idea

Problem.

Knowing that N = pq with large prime numbers p and q. Find p and q.

Main Idea: Find M such that d = gcd(N,M) 6= 1,N. Then d will be p.

Algorithm.

1 Find an integer L st. (p − 1) devides L and (q − 1) does not.
∃i , j , k 6= 0 : L = i(p − 1) = j(q − 1)j + k.

2 Choose randomly a, then

aL = ai(p−1) = (ap−1)i ≡ 1i ≡ 1(mod p)

aL = aj(q−1)+k = (aq−1)jak ≡ 1iak ≡ ak(mod q)

If ak 6= 1(mod q) (hight probability), then q - (aL − 1).
Then p = gcd(N, aL − 1).
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RSA and Integer Factorization

Pollard’s p-1 Factorization algorithm. Idea

How to find such an integer L: (p − 1) devides L and (q − 1) does
not. ?

If p − 1 is a product of small primes then p − 1 divides n! for some
value n.

Choose n = 2, 3, 4, . . ., and compute gcd(an! − 1,N).

If the gcd is 1, go to the next value of n

If the gcd is N, choose another value of a.

If the gcd 6= 1,N then it is p.

To compute rapidly an!, we have an! = (a(n−1)!)n. And just consider
modulo N.

Compute akmod N in O(log k), then an! mod N in
O(log n!) = O(n log n).
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RSA and Integer Factorization

Example of Pollard’s Factorization algorithm.

1 Input N = 13927189.
2 a = 2, n begins from 9.

29!−1 ≡ 13867883 (mod 13927189), gcd(29!−1, 13927189) = 1,

210!−1 ≡ 5129508 (mod 13927189), gcd(210!−1, 13927189) = 1,

211!−1 ≡ 4405233 (mod 13927189), gcd(211!−1, 13927189) = 1,

212!−1 ≡ 6680550 (mod 13927189), gcd(212!−1, 13927189) = 1,

213!−1 ≡ 6161077 (mod 13927189), gcd(213!−1, 13927189) = 1,

214!−1 ≡ 879290 (mod 13927189), gcd(214!−1, 13927189) = 3823.

3 So p = 3823. We can check that p − 1 = 3822 = 2.3.72.13 (this is
why 214 works)

4 Then q = 3643, and q − 1 = 2.3.607, which is not a product of small
primes.
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RSA and Integer Factorization

Pollard’s p-1 Factorization algorithm.

Algorithm.

Input: Integer N to be factorized

1 Set a = 2 (or some other convenient value).
2 Loop j = 2, 3, 4, ... up to a specified bound

1 Set a = aj mod N;
2 Compute d = gcd(a− 1,N);
3 If 1 < d < N then Return d;

3 Increment j and loop again at Step 2.

Conclusion: If p − 1 or q − 1 is a product of small primes, then the RSA
can be attacked by Pollard’s Factorization algorithm.
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RSA and Integer Factorization

Factorization via Difference of Squares

Idea
Find a and b such that N = a2− b2 = (a− b)(a+ b): a factorization of N.
Looking b from 1, 2, 3, . . . and consider if N + b2 is a perfect square.
Example: N = 25217.
25217 + 12 = 25218,
25217 + 22 = 25221,
25217 + 32 = 26226,
25217 + 42 = 25233,
25217 + 52 = 25242,
25217 + 62 = 25253,
25217 + 72 = 26266,
25217 + 82 = 25281 = 1592.
⇒ 25217 = 1592 − 82 = (159 + 8)(150− 8) = 167.151
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RSA and Integer Factorization

Factorization via Difference of Squares

Idea
Find a and b such that kN = a2−b2 = (a−b)(a+b): factorization of kN.
Example: N = 203299. Take b from 1, 2, 3, . . . and test N + b2. Until
b = 100 it is not OK.
Test 3.N + b2

3.203299 + 12 = 609898,
3.203299 + 22 = 609901,
3.203299 + 32 = 609906,
3.203299 + 42 = 609913,
3.203299 + 52 = 609922,
3.203299 + 62 = 609933,
3.203299 + 72 = 609946,
3.203299 + 82 = 609961 = 7812

⇒ 3.203299 = 1782 − 82 = 789.773
gcd(203229, 789) = 263, gcd(203229, 773) = 773.
Then N = 263.773.
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RSA and Integer Factorization

A three step factorization procedure

Find a and b such that a2 ≡ b2(mod N).

Algorithm.

Relation Building. Find many integers a1, a2, . . . , , ar such that
ci = a2i mod N is a product of small primes.

Elimination. Take a product c = ci1 , ci2 , . . . , cis such that each prime
appearing in the product an even power. Then
c = ci1 .ci2 . . . . .cis = b2.

GCD Computation. Let a = ai1 .ai2 . . . . .ais Then a2 ≡ b2(mod N).
Compute d = gcd(N, a− b), d should be a nontrivial factor of N.
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RSA and Integer Factorization

Example: N = 914387.
We want to find numbers as products of primes in {2, 3, 5, 7}

18692 ≡ 750000 (mod 914387) and 750000 = 24.3.56

19092 ≡ 901120 (mod 914387) and 901120 = 214.5.11

33872 ≡ 499125 (mod 914387) and 499125 = 3.53.113

Then
18692.19092.33872 ≡ 218.32.510.114 = (29.3.55.112)2 = 5808000002 ≡
1642552 (mod 914387).
Moreover 1869.1909.3387 ≡ 9835 (mod 914387).
Compute gcd(914387, 9835− 164255) = 1103
And 914387 = 1103.829
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A three step factorization procedure

Algorithm.

Step 3: GCD Computation. Let a = ai1 .ai2 . . . . .ais Then
a2 ≡ b2(mod N). Compute d = gcd(N, a− b), a should be a
nontrivial factor of N.
It is easy, and the time is O(logN).

Step 2: Elimination. Take a product c = ci1 .ci2 . . . . .cis such that each
prime appearing in the product an even power. Then c = b2.
Problem: to solve a system of linear equations over the field F2 in the
specail cse that the corresponding matrix is very sparse.

Step 1: Relation Building. Find many integers a1, a2, . . . , , ar such
that ci = a2i mod N is a product of small primes.
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Step 2: Elimination

Problem.

We have ci ≡ a2i mod N and ci is a product of power of primes in
{p1, p2, . . . , pt}. We want to find a product of ci such that each prime
appearing in the product an even power.

We have eij such that

c1 = pe111 pe122 · · · p
e1t
t ,

c2 = pe211 pe222 · · · p
e2t
t ,

. . .
cr = per11 per22 · · · p

ert
t .

And we will find u1, u2, . . . , ur ∈ {0, 1} such that

cu11 .c
u2
2 . · · · .c

ur
r ss a perfect square.

cu11 .c
u2
2 . · · · .curr =

pe11u1+e21u2+···+er1ur
1 .pe12u1+e22u2+···+er2ur

1 . . . . .pe1tu1+e2tu2+···+ertur
1 .
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Step 2: Elimination

We need

e11u1 + e21u2 + · · ·+ er1ur ≡ 0 (mod 2),
e12u1 + e22u2 + · · ·+ er2ur ≡ 0 (mod 2),

. . .
e1tu1 + e2tu2 + · · ·+ ertur ≡ 0 (mod 2).

This can be done by standart Gaussian elimination.
Moreover, the matrix is very sparse, then we can solve this system of
equations by other more efficient method.
Condition
- The a2i should be greater than N such that a2i mod n is not trivial.
- The number of variables should be greater tha equal to the number of
equations (r ≥ t) such that there exists solution: the numbers of ai is
greater than the numbers of small primes.
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Step 3: Smooth numbers

Definition.

An integer n is called B-smooth if all of its prime factors are less than or
equal to B.

Definition.

The function ψ(X ,B) counts B-smooth numbers that are smaller than or
equal to X .
The function π(B) counts prime numbers that are smaller than B.

Condition for Step 2 (Elimination). We find X and B such that ψ(X ,B) is
greater than π(B).
Example B = 5,
5− smooths : 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36, . . .
Not 5− smooths :
7, 11, 13, 14, 17, 19, 21, 23, 26, 28, 29, 31, 33, 34, 35, 37, . . .
ψ(25, 5) = 15 and π(5) = 3.
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Distribution of smooth numbers

Theorem. (Canfield, Erdos, Pomerance n- 1983)

Fix a number 0 < ε < 1, and let X and B increase together while
satisfying (lnX )ε < lnB < (lnX )1−ε. Let u = lnX

lnB . Then

ψ(X ,B) = X .u−u(1+o(1)).

Definition.

L(X ) = e
√

(lnX )(lnlnX ). This fonction is subexponential

Corollary.

For any fix value of c with 0 < c < 1,

ψ(X , L(X )c) = X .L(X )(−1/2c)(1+o(1)) as X →∞.
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Subexponetial running time of the Factorization Algorithm

Proposition.

Let N be a large number, and let B = L(N)1/
√
2.

We expect to check approximately L(N)
√
2 random numbers modulo

N in order to find at least π(B) numbers that are B-smooth.

We expect to check approximetely L(N)
√
2 random numbers of the

form a2 mod N in order to find enough B-smooth numbers to factor
N.

Hence the factorization procedure in three steps should have a
subexponential running time.
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A note on subexponential complexity

Definition.

Let 0 ≤ a ≤ 1 and c ∈ R+. The subexponential function for the
parameters a and c is

LN(a, c) = exp(c log(N)a) log(log(N))1−a).

A complexity O(LN(a, c)) with 0 < a < 1 is called subexponential.

Note:
If a = 0 then LN(0, c) = log(N)c : polynomial
If a = 1 then LN(1, c) = Nc : exponential.
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