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Goal

Estimate the density f of a random variable:

I Based on an i.i.d sample (X1, . . . ,Xn).

I Without parametric hypothesis.

Reference: (Silverman, 1986)
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A first idea: the histogram I

Let (X1, . . . ,Xn) be an i.i.d sample from X ∈ R.

Assume that X has a probability density f bounded support
([a, b[).

We divide the support into a series of k small intervals
[αi , αi+1[, i ∈ {1, . . . , k}, with α1 = a and αk+1 = b.

Histogram estimator is a step function:

∀x ∈ [a, b[ : f̂n (x) =
k∑

i=1

fi
αi+1 − αi

1[αi ,αi+1[ (x)

where:

fi =
1

n

n∑
j=1

1[αi ,αi+1[ (Xj) .
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A first idea: the histogram II

-

6

xαi αi+1
× × × ××××× ××

f̂n (x)
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A first idea: the histogram III

Usually we consider equal intervals:

∀i ∈ {1, . . . , k} : αi+1 − αi = δn .

We choose δn such as:

δn
n→+∞−−−−→ 0 ,

nδn
n→+∞−−−−→ +∞ .

Mean Square Error MSE = E
[(

f̂n (x)− f (x)
)2]

is of n−
2
3

order for an optimal choice δn ∼ n−
1
3 .
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From histogram to KDE I

We can consider a “moving” histogram: the value of the
density estimator at x is equal to the height of the rectangle
in the histogram, for the interval [x − hn, x + hn]:

f̂n (x) =
1

2nhn

n∑
i=1

1[x−hn,x+hn] (Xi ) .

We can notice that:

x − hn ≤ Xi ≤ x + hn ⇐⇒ −1 ≤ x − Xi

hn
≤ 1

so:

f̂n (x) =
1

2nhn

n∑
i=1

1[−1,1]

(
x − Xi

hn

)
.
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From histogram to KDE II

The moving histogram can be rewriten:

f̂n (x) =
1

nhn

n∑
i=1

K

(
x − Xi

hn

)
where

K (x) =
1

2
1[−1,1] (x) .

Note that considering [−1, 1] or [−1, 1[ is equivalent.
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Kernel Density Estimator (KDE)
We can improve the “moving histogram” estimation
considering another K function (kernel).
Kernel Density Estimator (KDE) (in the univariate case) is
defined by:

f̂n (x) =
1

nhn

n∑
i=1

K

(
x − Xi

hn

)
where hn is the bandwidth and K is a Parzen-Rosenblatt
kernel:

I K is bounded,

I
∫ +∞
−∞ K (x) dx = 1,

I xK (x)
x→+∞−−−−→ 0 .

Generally we use symmetric kernels:

∀x ∈ R : K (−x) = K (x) .

Note that the kernel isn’t necessary nonnegative.
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Kernel order

Consider for a function f and k ∈ N:

mk (f ) =

∫ +∞

−∞
xk f (x) dx .

The order of a kernel K is:

r = min {k ∈ N : mk (K ) > 0} .

Note that r ≥ 2 for symmetric kernels.
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Classic kernels I

Uniform K (x) = 1
21[−1,1] (x)

Gaussian K (x) = 1√
2π

exp
(
− 1

2x
2
)

Epanechnikov (o=2) K (x) = 3
4

(
1− x2

)
1[−1,1] (x)

Epanechnikov (o=4) K (x) = 15
8

3
4

(
1− 7

3x
2
) (

1− x2
)
1[−1,1] (x)
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Classic kernels II
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KDE properties

Consider for a function f :

R (f ) =

∫ +∞

−∞
f 2 (x) dx .

We have:∫ +∞

−∞
f̂n (x) dx = 1 .

Bias
(
f̂n (x)

)
= E

(
f̂n (x)

)
− f (x)

=
1

r !
f (r) (x) hrnmr (K ) + o (hrn) .

Var
(
f̂n (x)

)
=

f (x)R (K )

nhn
+ o

(
1

n

)
.

The bias expression is obtained (with a Taylor
approximation) for a kernel of order r .



Smoothing kernel
methods

For density estimation

KDE

Bandwidth and
kernel choice

Multivariate case

For regression

Nadaraya-Watson
estimator

Local polynomials

Nearest neighbors

References

16/42

Remarks

I As small the bandwidth is, as small is the bias.

I For a second-order kernel, the bias increases with the
square of the bandwidth.

I With higher (than 2) order kernels, bias is of lower than
the order obtained from second-order kernels.
Higher-order kernels are bias-reducing kernels.

I Variance tends to 0 if nhn
n→+∞−−−−→ 0.
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Mean Square Error

The mean square error of the KDE is:

MSE
(
f̂n (x)

)
=E

[(
f̂n (x)− f (x)

)2]
=
[
Bias

(
f̂n (x)

)]2
+ Var

(
f̂n (x)

)
=

(
1

r !
f (r) (x) hrnmr (K )

)2

+
f (x)R (K )

nhn

+ o

(
hrn +

1

n

)
.
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Asymptotic Mean Square Error

The AMSE, and the following AMISE, are useful to obtain
the optimal bandwidth.

AMSE
(
f̂n (x)

)
=

(
1

r !
f (r) (x) hrnmr (K )

)2

+
f (x)R (K )

nhn
.
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Asymptotic Mean Integrated Square Error

AMISE
(
f̂n
)

=

∫ +∞

−∞
AMSE

(
f̂n (x)

)
dx

=

(
1

r !
hrnmr (K )

)2

R
(
f (r)
)

+
R (K )

nhn
.
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Optimal bandwidth

After differentiation of the AMISE, we obtain the following
optimal values:

hopt =

[(
R
(
f (r)
)) −1

2r+1

(
(r !)2R (K )

2r .m2
r (K )

) 1
2r+1

]
n−

1
2r+1 ,

AMISEopt

(
f̂n
)

= (2r + 1)

[
R
(
f (r)
)
m2

r (K ) (R (K ))2r

(r !)2(2r)2r

] 1
2r+1

n−
2r

2r+1 .

Considering a second-order kernel, we obtain hopt ∼ n−
1
5 and

AMISEopt

(
f̂n
)
∼ n−

4
5 , which is less than the classic n−1

rate for parametric methods.
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Rule of thumb

The optimal bandwidth depends on R
(
f (r)
)

which is
unknown.The idea is to replace this unknown quantity by
R
(
g (r)

)
where g (r) is a plausible parametric density.

We can consider for example N
(
xn, s

2
)

where (x , s) are
respectively the sample mean and standard deviation. The
bandwidth choice would be optimal if the density is
gaussian, and close to the optimal one if the density is close
to a gaussian one. Whatever it could be a good initialization
point in optimal bandwidth searching.



Smoothing kernel
methods

For density estimation

KDE

Bandwidth and
kernel choice

Multivariate case

For regression

Nadaraya-Watson
estimator

Local polynomials

Nearest neighbors

References

22/42

Kernel choice

Considering the kernel order r , and the optimal bandwidth,
the AMISE is minimized with mr (K ) (R (K ))r .

Epanechnikov (1969) has minimized R (K ) under constraint
mr (K ) = 1 (only the shape is important), and obtained a
scaled version of the following one:

K (x) =
3

4

(
1− x2

)
1[−1,1] (x) .
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Cross validation I

Consider the ISE (Integrated Squared Error):

ISE
(
f̂
)

=

∫ (
f̂ (x)− f (x)

)2
dx .

We can rewrite:

ISE
(
f̂
)

=

∫
f̂ 2 (x) dx − 2

∫
f̂ (x) f (x) dx +

∫
f 2 (x) dx .
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Cross validation II

1.
∫
f 2 (x) dx doesn’t depend on hn.

2. For a bandwidth hn,
∫
f̂ 2 (x) dx can be computed.

3. We could abusively consider that
∫
f̂ (x) f (x) dx is

equivalent to
∫
f̂ (x) f (x) dx = E

[
f̂ (X )

]
, indeed f̂

depends on the sample.
To correct this, we use a “leave-one out estimator” and
estimate

∫
f̂ (x) f (x) dx by:

1

n

n∑
i=1

f̂−i (Xi )

where

f̂−i (x) =
1

(n − 1)h

n∑
j=1,j 6=i

K

(
x − Xj

hn

)
.



Smoothing kernel
methods

For density estimation

KDE

Bandwidth and
kernel choice

Multivariate case

For regression

Nadaraya-Watson
estimator

Local polynomials

Nearest neighbors

References

25/42

Cross validation III

The cross validation bandwidth is obtained by minimizing:

CV (hn) =

∫
f̂ 2 (x) dx − 2

n(n − 1)hn

n∑
i=1

n∑
j=1,j 6=i

K

(
Xi − Xj

hn

)
.
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KDE in the multivariate case I

Let (X1, . . . ,Xn) be an i.i.d sample from X ∈ Rp, p ∈ N∗.
Kernel Density Estimator (KDE) (in the multivariate case) is
defined by:

f̂n (x) =
1

nh1,n . . . hp,n

n∑
i=1

Kp

(
x1 − X1,i

h1,n
, . . . ,

xp − Xp,i

hp,n

)

where x = (x1, . . . , xp)> ∈ Rp, H = (h1,n, . . . , hp,n)> ∈ Rp is
the bandwidth and Kp is a multivariate Parzen-Rosenblatt
kernel:

I Kp is bounded on Rp.

I
∫
Rp K (x) dx = 1.

I ‖x‖p Kp (x)
‖x‖→+∞−−−−−−→ 0 where ‖x‖ is the euclidean

norm.
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KDE in the multivariate case II

Usually we choose the same bandwidth
H = (hn, . . . , hn) ∈ Rp and we rewrite:

f̂n (x) =
1

nhpn

n∑
i=1

Kp

(
x − Xi

hn

)
with Xi = (X1,i , . . . ,Xp,i ).
Generally we use a product kernel (we consider this case in
the following):

Kp(x1, . . . , xp) =

p∏
j=1

K (xj) .
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Bias, variance and AMISE
We still consider for a function f on Rp:

R (f ) =

∫
Rp

f 2 (x) dx ,

mk (f ) =

∫
Rp

xk f (x) dx .

We have:

Bias
(
f̂n (x)

)
=

1

r !
mr (K ) hrn 5r f (x) + o (hrn) ,

Var
(
f̂n (x)

)
=

f (x)Rp (K )

nhpn
+ o

(
1

n

)
where 5r f (x) =

∑p
i=1

∂r

∂x ri
f (x1, . . . , xp) .

We obtain:

AMISE
(
f̂n
)

=

(
1

r !
hrnmr (K )

)2

R (5r f ) +
Rp (K )

nhpn
.
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Remarks

I hopt ∼ n−
1

2r+p and AMISEopt

(
f̂n
)
∼ n−

2r
2r+p .

I As small the bandwidth is, as small is the bias.

I Variance tends to 0 if nhpn
n→+∞−−−−→ 0.

I The AMISE rate decreases with the dimension, this is
called the curse of dimensionality.

I From a practical point of view, we choose the optimal
bandwidth by cross validation.
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Goal

Let ((X1,Y1) , . . . , (Xn,Yn)) be an i.i.d sample from
(X ,Y ) ∈ R× R.
Consider the regression between

Y = m(X ) + ε

where ε is a white noise.
The goal is to estimate the link function m without
parametric hypothesis.

References: Härdle et al. (2004),Fan and Gijbels (1996)
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From KDE to Nadaraya-Watson estimator I

The following link function:

m (x) = E (Y |X = x )

=

∫ +∞

−∞
yfY |X=x (y) dy

=
1

fX (x)

∫ +∞

−∞
yfX ,Y (x , y) dy

minimizes the quadratic cost function E
(
ε2
)
.
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From KDE to Nadaraya-Watson estimator II
Using the 2 following KDE (product kernel for X and Y ,
symetric kernel K , same bandwidth hn):

f̂X (x) =
1

nhn

n∑
i=1

K

(
x − Xi

hn

)
,

f̂X ,Y (x , y) =
1

nh2n

n∑
i=1

K

(
x − Xi

hn

)
K

(
y − Yi

hn

)
,

we can consider the following estimator:

m̂nw (x) =
1

f̂ X (x)

∫ +∞

−∞
y f̂X ,Y (x , y)dy .

After calculations we obtain:

m̂nw (x) =

∑n
i=1 YiK

(
x−Xi
hn

)
∑n

i=1 K
(
x−Xi
hn

) .



Smoothing kernel
methods

For density estimation

KDE

Bandwidth and
kernel choice

Multivariate case

For regression

Nadaraya-Watson
estimator

Local polynomials

Nearest neighbors

References

34/42

Nadaraya-Watson estimator I

Let ((X1,Y1) , . . . , (Xn,Yn)) be an i.i.d sample from
(X ,Y ) ∈ Rp × R.
Consider the regression between

Y = m(X ) + ε

where ε is a white noise.
The Nadaraya-Watson estimator of the link function is:

m̂nw (x) =

∑n
i=1 YiKp

(
x−Xi
hn

)
∑n

i=1 Kp

(
x−Xi
hn

) .

Generally we use a product kernel, and it’s possible to
consider different bandwidths for covariates.
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Nadaraya-Watson estimator II

We can rewrite:

m̂nw (x) =
n∑

i=1

ωiYi

where:

ωi =
Kp

(
x−Xi
hn

)
∑n

j=1 Kp

(
x−Xj

hn

) .
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Cross validation
We can choose the optimal bandwidth by a cross validation
criterium. We can estimate the:

MISE (m) = E
[
(m̂nw (X )−m(X ))2

]
by:

1

n

n∑
i=1

(m̂nw (Xi )−m (Xi ))2 .

In fact we consider:

CV (m̂nw ) =
1

n

n∑
i=1

(m̂nw ,−i (Xi )− Yi )
2

where:

m̂nw ,−i (x) =

∑n
j=1,j 6=i YjK

(
x−Xj

hn

)
∑n

j=1,j 6=i K
(
x−Xj

hn

) .
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Local polynomials (univariate case)
For Nadaraya-Watson estimator, continuity criterion on m
allows to write:

x ≈ Xi ⇒ m (x) ≈ m (Xi ) .

Thus the folllowing definition of m̂:

m̂ (x) = arg min
m(x)=a

n∑
i=1

K

(
x − Xi

hn

)
[Yi −m (Xi )]2 .

If m is d-differentiable, we can write:

x w Xi =⇒ m (x) w
d∑

j=0

[γj (x)] (x − Xi )
j

with γj (x) = m(j)(x)
j! .

We can write in this case:

m̂ (x) = arg min
m(x)=

∑d
j=0 aj (x−Xi )

j

n∑
i=1

K

(
x − Xi

hn

)
[Yi −m (Xi )]2 .
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k-nearest neighbors

Let (X1, . . . ,Xn) be a sample in Rp and consider x ∈ Rp.
We compute distances between x and the sample:

∀i ∈ {1, . . . , n} : Di = d (x ,Xi )

where d is a distance (for example: euclidean, Manhattan).
We reorder these distance:

D(1) ≤ . . . ≤ D(n) .

The k-nearest neighbors of x (k-nn for k-nearest
neighbours) are the k points associated to
D(1) ≤ . . . ≤ D(k): X(1) (x) , . . . ,X(k) (x) (in cas of equality,
it’s possible to use a random selection).
Based on k-nearest neighbors, it’s possible to estimate a
probability density, build a classification or a regression.
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Regression

Let ((X1,Y1) , . . . , (Xn,Yn)) be an i.i.d sample of
(X ,Y ) ∈ Rp × R.
Consider the following regression:

Y = m(X ) + ε

where ε is a white noise.
The regression with k-nearest neighbors is:

m̂knn (x) =
1

k

n∑
i=1

1d(x ,Xi )≤Dk
Yi .

It’s possible to smooth this link function.
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Choice of k

We find heuristically with cross validation the optimal
number of nearest neighbors, based on an error criterion
(RMSE, MAPE. . . ).

Bigger is k , smoother is the regression estimation.
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