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Table of confusion 1/2

Predictive condition

Positive Negative

True condition
Positive True positive (TP) False negative (FN)

Negative False positive (FP) True negative (TN)
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Table of confusion 2/2

The sensitivity, or true positive rate (TPR), is:

TPR =
TP

TP + FN
.

The specificity (SPC), or the true negative rate (TNR), is:

SPC =
TN

FP + TN
.

The precision, or the positive predictive value (PPV), is:

PPV =
TP

TP + FP
.

The accuracy (ACC) is:

ACC =
TP + TN

TP + FN + FP + TN
.
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Receiver Operating Characteristic

The ROC (Receiver Operating Characteristic) curve plots
the sensitivity (TPR) in function of the specificity (FPR) for
different decision threshold.

The AUC (Area Under the ROC) measures how well a
decision rule can classify:

I AUC = 1
2 : worse case,

I AUC = 1: better case.
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R libraries

I ROCR.

I PROC.
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Goal

I To:
I Forecast a continuous variable Y ∈ R.
I Classify a categorical variable Y with K classes
{1, . . . ,K}.

I Based on p predictors (X1, . . . ,Xp)
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Principles

A Classification And Regression Tree, CART (Breiman et al.,
1984), is a recursive method:

I At the root is the whole sample.

I Each node of the tree separates the sample into 2
branches, according to a discrete, continuous or ordinal
variable (threshold) or a nominal variable (set of
categories).

I A terminal node is called leaf.

We obtain a partition of the feature space into rectangles
(recursive binary partitions), and then fit a simple model
(average, majority) in each rectangle.
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Example (Classification) 1/15
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Many possible splits

I For discrete and continuous variables: `− 1 where
` ≤ n is the number of unique values.

I For ordinal variables: K − 1 where K is the number of
labels.

I For nominal variables: 2K − 1 where K is the number of
labels.
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Warning for categorical variables

The algorithm tends to favor variables with many categories.

It is recommended to reduce this number by merging certain
categories.
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Technical issues

I Choose the best split for each variable.

I Choose the best variable to split.

I Decide that a node is a leaf.

I Fit a simple model in each rectangle.
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Overfitting

I A very large tree might overfit the data.

I A too small tree might not capture the underlying
structure.
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Data

Let (xi , yi )i∈{1,...,n} be n observations of (X ,Y ), where:

X = (X1, . . . ,Xp)> ,

xi = (xi1, . . . , xip)> .
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Goal

I Classify a categorical variable Y with K classes:

{1, . . . ,K} .

I Based on p predictors:

(X1, . . . ,Xp) .
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Region forecast

Let consider a partition into M regions {R1, . . . ,RM} .

Let Cm be the class of the m-th region.
For k ∈ {1, . . . ,K}, we estimate P (Cm = k) by :

p̂mk =
1

Card {xi ∈ Rm}
∑
xi∈Rm

1yi=k .

The predicted class for the m-th region is the most
important class among points in the region:

ĉm = arg max
k∈{1,...,K}

p̂mk .
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Splitting criterion

To find the best binary partition with a sum of squares
criterion, we use a “greedy” algorithm.

Let consider a binary partition for the j-th predictor and a
split point s:

R1 (j , s) = {X /Xj ≤ s } ,
R2 (j , s) = {X /Xj > s } ,

We choose the splitting variable j and the split point s that
solve (minimization of the missclassification errors):

min
j∈{1,...,p}

min
s

[(
1− p̂mĉ1

)
+
(
1− p̂mĉ2

)]
.

Once we have found this optimal split, we repeat the
splitting step on the two regions obtained, and so on. . .
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Impurity function

We have used an impurity function i : the missclassification
error.
More generally, we consider functions such that:

I i is minimal, and equal to 0, for configurations with
only one class:

(1, 0, 0, . . . , 0)

(0, 1, 0, . . . , 0)

...

(1, 0, 0, . . . , 0) .

I i is maximal for the configuration:

∀i ∈ {1, . . . ,K} : pi =
1

K
.
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Examples of impurity functions

For a region Rm:

I Misclassification error:

i(Rm) = 1− p̂mĉm .

I Gini index:

i(Rm) =
K∑

k=1

p̂mk (1− p̂mk ) .

I Cross-entropy:

i(Rm) = −
K∑

k=1

p̂mk ln (p̂mk ) .
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Region forecast

Let consider a partition into M regions {R1, . . . ,RM}.
Consider the regression function (a constant in each region):

m(x) =
M∑

m=1

cm 1x∈Rm .

If we consider a sum of squares criterion, the predicted
regression function is:

m̂(x) =
M∑

m=1

ĉm 1x∈Rm .

where:

ĉm =
1

Card {xi ∈ Rm}
∑
xi∈Rm

yi .
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Splitting criterion

To find the best binary partition with a sum of squares
criterion, we use a “greedy” algorithm.

Let consider a binary partition for the j-th predictor and a
split point s:

R1 (j , s) = {X /Xj ≤ s } ,
R2 (j , s) = {X /Xj > s } ,

We choose the splitting variable j and the split point s that
solve:

min
j∈{1,...,p}

min
s

 ∑
xi∈R1(j ,s)

(yi − ĉ1)2 +
∑

xi∈R2(j ,s)

(yi − ĉ2)2

 .

Once we have found this optimal split, we repeat the
splitting step on the two regions obtained, and so on. . .
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Impurity function

We have used here the following impurity function:

i (Rm) =
∑

xi∈Rm(j ,s)

(yi − ĉm)2
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Som criteria

I Reduction of impurity smaller than a threshold.

I Number of points lower than a threshold (e.g 5).

I Hypothesis testing.

I Fully grow and prune.
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Pruning

(Breiman et al., 1984) proposed to:

I Grow a very large tree using forward selection.
At each step, find the best split and stop when all
terminal nodes have less than a fixed number of points
(commonly between 1 and 5) or have almost the same
outcomes.

I Create a nested sequence of trees, with decreasing
complexity.

I Prune back unnecessary splits (find the optimal tree).
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Complexity cost

For a tree T , with a number of leaves |T |, we define:

C (T ) =

|T |∑
i=1

i (Ri ) + α |T | .

Let T0 be the maximum tree.

To seek the tree T ⊂ T0 that minimizes C , we recursively
prune the weakest leaf (in the sense of i) to find this optimal
tree.

In CART, the tuning parameter α is chosen by cross
validation (5-fold or 10-fold).
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p-fold cross-validation

I Divide the data set at random into p regions
(R1, . . . ,Rp).

I For i ∈ {1, . . . , p}, fit the predictor on
⋃p

j=1,j 6=i Rj and
predict Rp.

I Estimate the accuracy (calculate the cross validation
criterion) using the p predictions.
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Advantages

I No distribution assumption.

I Easy to implement.

I Nice graphical representation of a set of rules

I Automatic variable selection.
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Disadvantages

I Need large data sets.

I Only horizontal or vertical splits.

I No interactions between variables.

I Instability (a small change in the data set can provide a
different tree).
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Different ideas

I Bagging: (Breiman, 1996)
Fit many trees to bootstrap-resampled versions of the
training data set, and “combine” them (average or
majority vote).

I Boosting: (Schapire and Freund, 2012)
Fit many large or small trees to reweighted versions of
the training data set, and “combine” them (with
weights).

I Random Forests (Breiman, 2001)
Fit many de-correlated trees, and “combine” them.
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R libraries

I ElemStatLearn: data sets used in (Hastie et al., 2009).

I rpart: classification and regression trees.

I randomForest: random forests.
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Web references

Leo Breiman and Adele Cutler built a software tool (Random
Forests):
http://www.stat.berkeley.edu/~breiman/RandomForests/

See also the nice website of Andrej Karpathy, including a
random forest demo in Javascript:
http://cs.stanford.edu/people/karpathy/svmjs/demo/

demoforest.html

http://www.stat.berkeley.edu/~breiman/RandomForests/
http://cs.stanford.edu/people/karpathy/svmjs/demo/demoforest.html
http://cs.stanford.edu/people/karpathy/svmjs/demo/demoforest.html
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