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Goal

KDE

Estimate the density f of a random variable:

» Based on an i.i.d sample (Xi,...,X,).

» Without parametric hypothesis.

Reference: (Silverman, 1986)



A first idea: the histogram |

Let (Xi,...,X,) be an i.i.d sample from X € R.

KDE

Assume that X has a probability density f bounded support

([a, b])-

We divide the support into a series of k small intervals
[CV,',CV,'_H[, i € {1, RN k}, with a1 = a and Qg1 = b.

Histogram estimator is a step function:

k

N fi
Vx € [a, b : fn(X):Zﬁ
j=p il T

]l[a;,a,-H[ (X)

where:

1 n
fl' = E Z 1[(}1,‘,()4,'+1[ ()<J) .
j=1



A first idea: the histogram I
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A first idea: the histogram Il|

Usually we consider equal intervals: Ko

Vie{l,...,k} aj1 —aj=90, .

We choose §,, such as:
_>
S 7o, ’

_>
nd, LmasNNN

~ 2
Mean Square Error MSE = E {(fn (x) — f(x)) ] is of n~3

: . _1
order for an optimal choice §, ~ n"3.



From histogram to KDE |

We can consider a “moving” histogram: the value of the
density estimator at x is equal to the height of the rectangle
in the histogram, for the interval [x — hp, x + hp]:

~ 1 <&
fn (X) = 2nhn ; l[X*th‘i’hn] (X’) :

We can notice that:

x—h, <Xi<x+4+h, — -1<

SO:

-~ 1 n x — X;
fo (x) = 5nh E 11 < p ) .
n ’:1 n

KDE



From histogram to KDE I

For density estimation
KDE

Bandwidth anc

The moving histogram can be rewriten:
~ R~ x — X; Local patynomials
fn(x)= K ‘
0= 3 (*5

K (x) = %1[71,1] (x) -

where

Note that considering [—1,1] or [—1, 1] is equivalent.



Kernel Density Estimator (KDE)

We can improve the “moving histogram” estimation
considering another K function (kernel).

Kernel Density Estimator (KDE) (in the univariate case) is
defined by:

-~ 1 & X—X,'
o (x) = — ZK( ; )
nl.:1 n

where h, is the bandwidth and K is a Parzen-Rosenblatt
kernel:

» K is bounded,
> fj;o K(x)dx =1,
» xK (x) Emas Ny
Generally we use symmetric kernels:

Vx e R: K(—x)=K(x) .

Note that the kernel isn't necessary-nonnegative.

KDE



Kernel order

KDE

Consider for a function f and k € N:

my (f) = /+OO xKf (x) dx.

—00

The order of a kernel K is:
r=min{k € N: my (K) >0} .

Note that r > 2 for symmetric kernels.



Classic kernels |

Uniform K(x) =311 (x)

Gaussian K (x) = \/% exp (—3x%)

Epanechnikov (0=2) | K (x) =2 (1 —x?) 1_1 11 (x)
Epanechnikov (0=4) | K(x) =22 (1-1x?) (1 - x?) 1_13(x)

KDE



K(x)

Classic kernels Il
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KDE properties

Consider for a function f:

Bias (Fn (X)) —E (E (x)) —f(x)

_ %f(r) (x) hym, (K) + o (hL) .
Var (7,0) = FORK) <1> .

nh, n

The bias expression is obtained (with a Taylor
approximation) for a kernel of order r.



Remarks

KDE
» As small the bandwidth is, as small is the bias.

» For a second-order kernel, the bias increases with the
square of the bandwidth.

» With higher (than 2) order kernels, bias is of lower than
the order obtained from second-order kernels.
Higher-order kernels are bias-reducing kernels.

» Variance tends to O if nh, nteo, ),



Mean Square Error

The mean square error of the KDE is:
MSE (fn (x)) —E [(? (x)— f (x)ﬂ
= [Bias (E, (x)>]2 + Var (E, (X))

KDE



Asymptotic Mean Square Error

KDE

The AMSE, and the following AMISE, are useful to obtain
the optimal bandwidth.

AMSE (?n (x)) - <1f(f) (x) h.m, (K)>2 L FIRK)

nh,



Asymptotic Mean Integrated Square Error

KDE

AMISE (f) - /foo AMSE (?n(x)) dx

_ (rl!h,',mr(K))z R(F0) + RUK).

nh,



Optimal bandwidth

After differentiation of the AMISE, we obtain the following ot and
optimal values: kernel choice

w ((r!)? -
hopf[(R(f(’)» <(2rl)m§((:<<)))

R (F)) m? (K) (R (K))*
(rhy2(2r)>r

1
n 2+t s

_1

2r+1
2
n 2+l

AMISE ot (?) = (2r+1)

Sy . _1
Considering a second-order kernel, we obtain hopr ~ n™5 and

AMISE ¢ (E,) ~ nfg, which is less than the classic n=1

rate for parametric methods.



Rule of thumb

Bandwidth and

The optimal bandwidth depends on R (f(r)) which is Kernel choice
unknown.The idea is to replace this unknown quantity by
R (g(’)) where g(") is a plausible parametric density.

We can consider for example N (Xp, s?) where (X, s) are
respectively the sample mean and standard deviation. The
bandwidth choice would be optimal if the density is
gaussian, and close to the optimal one if the density is close
to a gaussian one. Whatever it could be a good initialization
point in optimal bandwidth searching.



Kernel choice

Bandwidth and
kernel choice

Considering the kernel order r, and the optimal bandwidth,
the AMISE is minimized with m, (K) (R (K))".

Epanechnikov (1969) has minimized R (K') under constraint
m, (K) =1 (only the shape is important), and obtained a
scaled version of the following one:

K (x) = Z (1 x?) 1py () -



Cross validation |

Bandwidth and
kernel choice

Consider the ISE (Integrated Squared Error):

ISE (?) - / (?(X) - f(x)>2 dx .

We can rewrite:

|SE(f) :/?Z(x) dx—z/?(x)f(x) dx+/f2(x) dx .



Cross validation |l

1. [f2(x) dx doesn't depend on hp.

2. For a bandW|dth hn, f ) dx can be computed.

3. We could abusively con5|der that | f( f x) f(x) dx is i
equivalent to [ (x) f(x) dx = E {z?(X)} indeed
depends on the sample.

To correct this, we use a “leave-one out estimator” and
estimate | f (x)f (x) dx by:

where




Cross validation I

For density estimation
KDE

Bandwidth and
kernel choice

estimator

The cross validation bandwidth is obtained by minimizing: \m

CV (hy) = /f()dx— nthZK< )

i=1 j=1j#i



KDE in the multivariate case |

Let (Xi,...,X,) be an i.i.d sample from X € RP, p € N*.
Kernel Density Estimator (KDE) (in the multivariate case) is
defined by:

Multivariate case

Xp,i

~ Xl, Xp* ,
fo (x) = nhl,,.. 72K< e T )

where x = (x1,...,%,) €RP, H=(hypn,...,hpn)" €RPis
the bandwidth and K|, is a multivariate Parzen-Rosenblatt
kernel:

» K, is bounded on RRP.
> o K(x) dx = 1.
> [|x[” Kp (x)

norm.

P+ ) where ||x|| is the euclidean



KDE in the multivariate case |l

Usually we choose the same bandwidth
H = (hp, ..., hy) € RP and we rewrite:

~ 1 < x — X;
h = e (57)
nlzl n

with X; = ()(]_7,'7 R ,ij,').
Generally we use a product kernel (we consider this case in
the following):

Multivariate case

Ko(xa, .-, x0) = [ K(x) -



Bias, variance and AMISE

We still consider for a function f on RP:
R (f) :/ 2 (x) dx ,
RP
my (f) :/ xKF (x) dx .
RP

Multivariate case

We have:
Bias (1/‘,\, (x)) = %m, (K)hy 7" f(x)+o(hy) ,
Var (1?,, (x)) = L) R (K) +o <1>

nhb n
where v/'f (x) = >°F_; %f(xl, s Xp)
We obtain:

AMISE (f) - <r1!h,f,m,(K))2 R(V'F) +



Remarks

~ ) 2r Multivariate case

> hopt ~ 0~ 7% and AMISE gpe (£) ~n55.

» As small the bandwidth is, as small is the bias.

» Variance tends to 0 if nh? 2=+ 0.

» The AMISE rate decreases with the dimension, this is
called the curse of dimensionality.

» From a practical point of view, we choose the optimal
bandwidth by cross validation.
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Goal

Let ((X1, Y1),...,(Xn, Yn)) be an i.i.d sample from
(X, Y)eR xR, e
Consider the regression between it

Y=m(X)+e

where ¢ is a white noise.
The goal is to estimate the link function m without
parametric hypothesis.

References: Hardle et al. (2004),Fan and Gijbels (1996)



From KDE to Nadaraya-Watson estimator |

The following link function:
m(x)=E(Y|X =x)

—+o00
= / Yy x=x (y) dy

— 00

1 —+o00
- f; d
A () /_OO yfx,y(x,y)dy

minimizes the quadratic cost function E (52).

Nadaraya-Watson
estimator



From KDE to Nadaraya-Watson estimator |l

Using the 2 following KDE (product kernel for X and Y/,
symetric kernel K, same bandwidth hj):

1 “ X X,'
:nhnZK< n >’
o= 2 () (5

we can consider the following estimator:

Nadaraya-Watson
estimator

+oo
Mpw (X) = = / yix,y(x,y)dy .
fX (X) —00
After calculations we obtain:
LK ()
Mpw (x) = X
n x—X;
Sk (55)



Nadaraya-Watson estimator |

Let ((X1, Y1),...,(Xn, Yn)) be an i.i.d sample from
(X,Y)eRP xR.
Consider the regression between

Nadaraya-Watson
estimator

Y=m(X)+¢

where € is a white noise.
The Nadaraya-Watson estimator of the link function is:

Sk (50)
YKo (555)

Generally we use a product kernel, and it's possible to
consider different bandwidths for covariates.

Mpw (X)




Nadaraya-Watson estimator |l

We can rewrite:

where:

Wi

For density estimation
KDE

Bandwidth and
kernel choice

Multivariate case
For regression

Nadaraya-Watson
estimator

Local polynomials



Cross validation

We can choose the optimal bandwidth by a cross validation
criterium. We can estimate the:

MISE (m) = E | (in,(X) — m(X))’

by: R W
Y L
- Z (Mpw (Xi) —m (Xi))2 .
i=1

n-

In fact we consider:

where:




Local polynomials (univariate case)

For Nadaraya-Watson estimator, continuity criterion on m
allows to write:

x= X;= m(x)=m(X;) .

Thus the folllowing definition of m:

n

- X ocal polynomials

ﬁﬁ(x):argminZK(X ') [Yi —m(X)]? . ot pebron
m(x)=a ;-1 hn

If mis d-differentiable, we can write:
x 2 Xi = m(x Z[fyj (x — X;Y

. mU) (x
with 7 (x) = %

We can write in this case:
X

(x) = arg min g K ( - Xi) [Yi — m(X)]?.
—_5d . j hn
’"(X)—Zj:o aj (x=X;) i=1

3
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k-nearest neighbors

Let (Xi,...,X,) be a sample in RP and consider x € RP.
We compute distances between x and the sample:

Vie{l,...,n}:Dj=d(x,X)

where d is a distance (for example: euclidean, Manhattan).
We reorder these distance:

The k-nearest neighbors of x (k-nn for k-nearest
neighbours) are the k points associated to

D(l) <...<Z D(k): X(l) (x),... ,X(k) (x) (in cas of equality,
it's possible to use a random selection).

Based on k-nearest neighbors, it's possible to estimate a
probability density, build a classification or a regression.

Nearest neighbors



Regression

Let ((X1, Y1),...,(Xn, Yn)) be an i.i.d sample of
(X,Y)eRP xR
Consider the following regression:

Y = m(X) + e Nearest neighbors

where € is a white noise.
The regression with k-nearest neighbors is:

_ 1 ¢
Mkpn (X) = ; Z ]ld(X,X,-)ng Yi.
i=1

It's possible to smooth this link function.



Choice of k

We find heuristically with cross validation the optimal

number of nearest neighbors, based on an error criterion Nearest neighbors
(RMSE, MAPE. . .).

Bigger is k, smoother is the regression estimation.
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