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Parameterized partial di↵erential equations
Deterministic and stochastic coe�cients

parameters
y 2 � ⇢ RN �!

PDE model:
L(a(y))[u] = f

in D ⇢ Rd, d = 1, 2, 3

�!
quantity of
interest
Q[u(·,y)]

The linear operator L depends on an q parameters y = (y1, y2, . . . , yq) 2 �,
which can be deterministic or stochastic.

Deterministic setting: The parameters y are known or controlled by the user.

– Goal: a query y 2 �, quickly approximating the solution map y 7! u(·,y).

Stochastic setting: The parameters y may be a↵ected by uncertainty
(measurement error, incomplete description of parameters), and are modeled as
a random vector y : ⌦ ! � with joint PDF %(y) =

Qq
i=1 %i(yi).

– Goal: Uncertainty quantification of u or some statistical QoI, e.g.,

E[u], Var[u], P[u > u0] = E[1{u>u0}].
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Galerkin projection and finite element methods

Let H(D) be a Hilbert space with the norm k · kH.

B(y)(·, ·) : H⇥H ! R is the bilinear form corresponding to the operator L.

The weak problem is to find u : � ! H(D) s.t.

B(y)(u,�) = F(y)(�), � 2 H(D),

where F(y)(�) := (f,�) + b(g(y),�) and b(·, ·) is the operator involving the
boundary condition.

The approximation of y ! u(x,y) is based on the fact that the manifold
S := {u(·,y) : y 2 �} is a compact set in H(D).

Galerkin projection to an N -dimensional subspace HN (D) ⇢ H(D), i.e., find
uN : � ! HN (D) s.t.

B(y)(u,�) = F(y)(�), � 2 HN (D).

For any given y 2 �, the cost of solving uN (x,y) is dominated by assembling and
inverting an N ⇥N linear system.
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Strategies for approximation of the map y 7! u(·,y)

The first step is to choose a subspace HN (D) ⇢ H(D), where HN (D) is
usually an N -dimensional finite element space with N su�ciently large.

The second step is to approximate the map y 7! uN (·,y) by

uN ⇡ IM [uN ](x,y) :=

NX

i=1

MX

j=1

cij �i(x) j(y),

– Monte Carlo sampling 1

– Stochastic Galerkin

– Stochastic collocation (interpolation)

– Discrete least squares

– Compressed sensing

– POD, Reduced-basis methods

The main challenge

The computational cost, dominated by the parametric degrees of freedom M , grows
very fast with the dimension of the parameter space.

1 MC method can only approximate statistics, e.g., moments
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Multilevel methods
The general idea

Instead of using only one subspace HN , we use a sequence of nested subspaces

HN0 ⇢ HN1 ⇢ · · · ⇢ HNL = HN ⇢ H(D).

uN (x,y) can be represented by as

uN = uNL(x,y) =

LX

l=0

�ul(x,y),

where �u0 := uN0 and �ul := uNl � uNl�1 . Then, uN (x,y) is approximated
by sampling all �ul(x,y) for l = 0, . . . , L.

The cost of solving �ul(x,y) is increasing with l, i.e.,

C0 < C1 < · · · < CL.

The key idea

The basic idea of multilevel methods is to give a better allocation of computational
e↵ort among all the levels of approximations than the single level strategy.
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Multilevel methods
Existing strategies

Multilevel Monte Carlo [Giles, 2015] was originally developed for SDEs, then
applied to parameterized PDEs.

Multilevel quasi-MC [Dick, Kuo, Sloan, 13], Multilevel MCMC [Dodwell, Ketelsen,

Scheichl, Teckentrup, 15], etc.
(https://people.maths.ox.ac.uk/gilesm/mlmc community.html)

Multilevel stochastic collocation (MLSC) using sparse-grid interpolation
[Teckentrup, Jantsch, Webster, Gunzburger, 2015]

Multi-index methods, including multi-index MC [Haji-Ali, Nobile, Tempone, 2016]

and multi-index SC [Haji-Ali, Nobile, Tamellini,Tempone, 2016]

Multilevel MC and SC methods can be viewed 2-D combination methods, and
Multi-index MC and SC can be viewed as multi-D combination methods.
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Motivation of multilevel Monte Carlo methods
Why Monte Carlo is still needed?

Monte Carlo method is still a good choice for very high-dimensional UQ
problems, when the high-dimensional map y ! u(·,y) does NOT have
su�cient sparsity to build sparse polynomial approximations.

Case 1: the random coe�cient a(x,y) in the parameterized PDE can be
approximated by truncated Karhunen-Loève expansion

a(x,y) ⇡ amin + exp

(
a(x) +

dX

k=1

p
�kbk(x)yk(!)

)
,

but the random field is so heterogenous that the eigenvalues �k decay very slow.

Case 2: y consists of a large number of
independent random parameters that are
not from discretization of a random field.

The PDE model has similar sensitivity
with respect to most components of y.

Can we reduce the cost of MC sampling
in UQ simulation?

Figure: A highly heterogenous permeability
filed (from the SPE 10th model)
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The standard Monte Carlo sampling

Monte Carlo methods can only be used to do numerical integration, so they
cannot be used to approximate the entire solution map y ! u(y).

Quantities of interest: E[u], Var[u], P[u > u0] = E[1{u>u0}], CDFs, PDFs.

Ensemble approximation of the PDF of the quantity of interest Q(y)

⇢(Q) ⇡ 1

N

NX

n=1

 
JX

j=1

X[ej�1,ej ](Q(yn))

|ej � ej�1|

!
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Convergence of the standard Monte Carlo simulation
How to improve the e�ciency?

The standard Monte Carlo estimator is

E[QM ] ⇡ Q

MC
M =

1

NMC

NMCX

i=1

Q

(i)
M ,

and the mean square error (MSE) is

e

⇣
Q

MC
M

⌘2
= E

⇣
Q

MC
M � E[Q]

⌘2�
= N

�1
MCV[QM ]| {z }

sampling error

+(E[QM �Q])

2

| {z }
discretization error

,

The discretization error can be reduced by increasing M , i.e. reducing mesh size.

The sampling MSE involves the number of samples NMC and the variance of
the integrand V[QM ].

The convergence rate O(N

� 1
2

MC ) can be improved to O(log(NMC)
d
N

�1
MC ) using

quasi-MC sampling.

For a prescribed accuracy " > 0, reducing the variance V[QM ] can also improve

the e�ciency of achieving e

�
Q

MC
M

�2  "

2.
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Multilevel Monte Carlo (MLMC) methods
for estimating mean values [Giles,08]

E[QM ] is estimated using a sequence of models QM0 , QM1 , . . . , QML on a
sequence of meshes {TM`}L`=0, where M0 < M1 < · · · ,ML�1 < ML = M .

Denote by C` the cost of one realization of Q` for ` = 0, 1, . . . , L, such that

C0 > C1 > · · · > CL = CM

By defining Yl := QM` �QM`�1 , E[QM ] can be represented by

E[QM ] = E[QM0 ] +

LX

`=1

E[QM` �QM`�1 ] =

LX

`=0

E[Y`],

E[Y0] and each incremental item E[Y`] can be estimated individually by

b
Y0 :=

1

N0

N0X

i=1

Q

(i)
0 and bY` :=

1

N`

NX̀

i=1

⇣
Q

(i)
` �Q

(i)
`�1

⌘
,

The quantity of interest E[QM ]

E[QM ] ⇡ Q

ML
M :=

LX

`=0

b
Y`.
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Computational costs of MC and MLMC

The MSE of the MLMC estimator QML
M is

e

⇣
Q

ML
M

⌘2
=

LX

`=0

N

�1
` V[Y`] + (E[QM �Q])

2
,

The total costs of MC and MLMC are

(MC) C(QMC
M ) = NMC CL, (MLMC) C(QML

M ) =

LX

`=0

N` C`,

where the minimum NMC and {N`}L`=0 for achieving a prescribed accuracy
" > 0 is

(MC) NMC = 2"

�2V[QM ], (MLMC) N` = 2"

�2
p

V[Y`]/C`

 
LX

`=0

p
V[Y`]C`

!
.

The key idea of MLMC is the fact that V[Y`] = V[QM` �QM`�1 ] ! 0 as
`! 1, such that

N0 > N1 > · · · > NL ⌧ NMC
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Computational costs of MC and MLMC

Under the following three conditions

Discretization error decay: |E[QM �Q]|  c1M
�↵

Variance decay: V[Y`]  c2M
��
` ,

Cost increase: C`  c3 M
�
` ,

the costs of MC and MLMC, for achieving a prescribed accuracy " > 0, can be
represented by

C(QMC
M )  c2NMCM

�  2

1+ �
2↵

c

�/↵
1 c2V[QM ] "

�2��/↵
,

and

C(QML
M ) 

8
>><

>>:

c4"
�2

, if � > �,

c4"
�2

(log ")

2
, if � = �,

c4"
�2�(���)/↵

, if � < �,

The variance decay rate � is the most important factor to the computational
saving of MLMC method.

MLMC can be viewed as a variance reduction technique.
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Numerical experiments
The SPE10 model

Figure: (a) True log permeability field log(k); I represents the injection well and P is the
production well. (b) Locations of 36 sample data drawn from (a); conditioning on these
samples, the realizations of random log(k) field are generated. (c) An example of one
realization of random log(k) field.
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Numerical experiments
A sequence of permeability fields

Figure: Grid size of di↵erent level grids used in MLMC. The highest level grid (level 5) has
the same size at the measurement scale.
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Numerical experiments
Variance decay and how to choose the starting level
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Figure: Plots of V[Q`] and V[Y`] = V[Q` �Q`�1] for each level ` when (a) h0 < � and (b)
h0 > � where h0 is the cell length of the coarsest level grid and � is the correlation length
of the permeability field.
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MLMC for estimating cumulative distribution functions (CDFs)
smoothing functions [Giles-Nagapetyan-Ritter,14]

The CDF of Q can be represented by

F (x) = E
⇥
X(�1,x](Q)

⇤
=

Z +1

�1
X(�1,x](Q)⇢(Q)dQ,

which can be estimated by MC at a set of discrete points {xj}Jj=1 and
Lagrange interpolation.

The discontinuity of the step function X(�1,x](Q) makes V[Y`] NOT decay

In MLMC setting, smoothing functions are needed to guarantee the required
variance decay, i.e. V[Y`]  c2M

��
`
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Challenges of estimating CDFs using MLMC
How to choose the optimal scaling factor �?

The total errors of MLMC for estimating CDFs can be split as

Etotal  discretization err| {z }
E1

+ sampling err| {z }
E2

+ interpolation err| {z }
E3

+ smoothing err| {z }
E4

For a prescribed accuracy ", the goal is to minimize the cost of achieving

E1  "

4

, E2  "

4

, E3  "

4

, E4  "

4

=) Etotal  "

Observing the fact that

E4 ! 0 as � ! 0 but Ctotal ! 1 as � ! 0.

The challenge is to

Find the maximum value of the scaling factor �opt to achieve E4  "
4 without

knowing the representation of the error E4
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Strategy 1: determining � using a priori estimate of E4
[Giles-Nagapetyan-Ritter,14]

Derive a computable asymptotic estimate of E4 and find � using

E4  Eest(�) =
"

4

=) � = E

�1
est

⇣
"

4

⌘

However, the estimate Eest(�) is usually NOT sharp, such that E�1
est

�
"
4

�
may be

much smaller than the maximum value �opt achieving E4  "
4 .
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With too small �, the cost of MLMC is even higher than MC because the
variance decays very slowly.
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Strategy 2: determining � using a posterori estimate of E4
[Lu-Z-Webster-Barbier,16]

Draw Ninit (Ninit ⌧ NL) samples {Q(i)}Ninit
i=1 , and find the maximum �, such that

max

j=1,...,J

�����

NinitX

i=1

h
X(�1,xj ](Q

(i)
)� fsmooth(Q

(i)
, xj , �)

i�����

2

 "

2

16

The initial samples {Q(i)}Ninit
i=1 will be reused in MLMC sampling, so there is no

waste of computing e↵ort.
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A short summary of MLMC

As a variance reduction technique, the MLMC can significantly reduce the
overall computational complexity compared to the standard MC.

For PDE involved models (e.g. Navier-Stokes equations), the bulk of the
computational cost of UQ is associated with linear or nonlinear iterative solvers.

The convergence of multilevel methods can be further accelerated (and thus,
reduce overall complexity) by exploiting the model hierarchy

E[QM ] = E[QM0 ] +

LX

`=1

E[QM` �QM`�1 ] =

LX

`=0

E[Y`],

For ` = 1, . . . , L, the samples of QM`�1 can be used to construct good initial
guesses for the iterative solvers for solving QM` , such that the total number of
iterations can be greatly reduced.

– Multilevel Monte Carlo with acceleration based on mesh-free interpolation
[Reshniak-Colgin-Z-Webster,14]

– Multilevel stochastic collocation with acceleration based on sparse-grid
approximation [Galindo-Jantsch-Webster-Z,14]
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Multilevel Stochastic Collocation

For stochastic collocation, we simply interpolate the di↵erences uhk � uhk�1 at
di↵erent resolutions.

Multilevel Stochastic Collocation Method (MLSC)

With general interpolation operators, the multilevel approximation is given by

u

ML
K =

KX

k=0

IMK�k

�
uhk � uhk�1

�
.

Assumption (A1)

Suppose we have a sequence of interpolation operators {IMk} with algebraic
convergence in the number of points Mk:

kv � IMk [v]kL2
⇢(�;H1

0 (D))  CI M
�µ
k ⇣(v),

with ⇣ some function that admits the estimate

⇣(uhk+1 � uhk )  h

�
k+1.
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Multilevel Stochastic Collocation
Sequence of meshes

u

ML
K =

KX

k=0

IMK�k

�
uhk � uhk�1

�
, uh�1 = 0.

k = 0: IMK [uh0 ]

...
k = K: IM0 [uhK � uhK�1 ]
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Error Splitting

We examine the method by considering the discretization errors independently:

ku� u

ML
K k  ku� uhKk

| {z }
I

+ kuhK � u

ML
K k

| {z }
II

 ".

Assumption (A2):

The spatial discretization converges in h as

I  Csh
↵
K , ↵ > 0

The term II can be further split apart using the triangle inequality:

II = k
KX

k=0

(uhk
� uhk�1

)� IMK�k
(uhk

� uhk�1
)k


KX

k=0

k( I� IMK�k
)(uhk

� uhk�1
)k.

(A1)


KX

k=0

CI M
�µ
K�k h

�
k .

Guannan Zhang http://www.csm.ornl.gov/

~

gz3 – VIASM, November 14-17, 2016 25/47



Introduction Multilevel Monte Carlo Methods Multilevel Monte Carlo methods for estimating probability distribution functions Multilevel Stochastic Collocation Methods Multilevel Reduced-Basis Methods

Error Balancing

Finally, we compute the cost of the multilevel method using the metric

Cost =

KX

k=0

MK�k C
FEM
k

(A3)
h

KX

k=0

MK�k h
��
k .

We can ensure I  "/2 by requiring

Cs h
↵
K  "

2

This fixes the mesh maximum mesh size (and the lower level meshes). Then we may
choose the interpolation operators IMk to satisfy

II 
KX

k=0

CI M
�µ
K�k h

↵
k  "

2

.

and such that they minimize the computational cost.
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Complexity analysis

Theorem: [Gunzburger, Jantsch, Teckentrup, Webster, 15]

Under assumptions (A1)-(A3), for any " > 0 there exists an integer K such that

ku� u

ML
K kL2

⇢(�;H1
0 (D))  "

and

Cost

ML
" .

8
>><

>>:

"

� 1
µ if � > µ�,

"

� 1
µ | log "|1+

1
µ if � = µ�,

"

� 1
µ� �µ��

↵µ if � < µ�.

(1)

Compare to standard, single level SC:

CostSL
" h h

��
M h "

��/↵�1/µ
.

Case � > µ� � = µ� � = ↵ < µ�

Cost Reduction "

��/↵ h "

��/↵
"

�1/µ

Guannan Zhang http://www.csm.ornl.gov/

~

gz3 – VIASM, November 14-17, 2016 27/47



Introduction Multilevel Monte Carlo Methods Multilevel Monte Carlo methods for estimating probability distribution functions Multilevel Stochastic Collocation Methods Multilevel Reduced-Basis Methods

Example Problem:

As an example, we consider the following boundary value problem on either
D = (0, 1) or D = (0, 1)

2:

�r · (a(x,y)ru(x,y)) = 1, for x 2 D,

u(x,y) = 0, for x 2 @D .

We take the coe�cient a to be of the form

a(x,y) = 0.5 + exp

"
NX

n=1

p
�nbn(x)yn

#
,

where {yn}n2N is a sequence of independent, uniformly distributed random variables
on [-1,1], and {�n}n2N and {bn}n2N are the eigenvalues and eigenfunctions, resp.,
of the covariance operator with kernel function C(x1, x2) = exp[�kx1 � x2k1].
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Two Implementation Challenges

First, the multilevel method predicts a number of points, but not an appropriate
sparse grid. Thus, we may use many more points than necessary.

We could ameliorate this issue by using granular or adaptive grids, solving a
discrete optimization problem for grid levels, or various ad hoc rounding
strategies. However, we still see gains in e�ciency in the “worst” case.

Leja sequence can be used to achieve linear growth of the sampling in the
parameter space.

Secondly, the method relies on a priori knowledge of the convergence rates and
parameters ↵,�, µ, �. We need a practical implementation of the method. (See
MLMC path simulation, Giles, 2008).
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Results in N=10D
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Figure: Left: Cost versus Error for D = (0, 1)2, N = 10. Right: Number of samples per
level (predicted vs actual).
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Results in N=20D
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Multilevel reduced-basis method
Motivation

The e↵ectiveness of a multilevel strategy relies on the following assumptions:

A1 FEM error: kuNl � ukH  c1Nl
�↵,

A2 Parametric approximation error: k�ul � IMl [�ul]k  c2 �(Ml)Nl
�� ,

A3 Cost increase: C`  c3 N
�
l ,

for some positive constants ↵,�, � > 0.

Multilevel Monte Carlo (MLMC):
– Pro: linear growth of the number of snapshots (samples).

– Con: slow convergence; only for approximating statistics, e.g. moments.

Multilevel stochastic collocation (MLSC):
– Pro: fast convergence; approximation to the solution map y 7! u(·,y).
– Con: fast growth of interpolation points; structured interpolation grid.

Motivation

The reduced-basis method features both fast convergence as MLSC and
unstructured sampling as MLMC.
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The standard (single-level) reduced-basis method
The general procedure

Choose a training set ⌅train of Mtrain points in the parameter domain �

– e.g., these points could be chosen randomly according to the joint PDF ⇢(y)
associated with the random parameters y 2 �

Choose a point y0 2 ⌅train

– the particular point chosen is usually somewhere near the center of �

Then, starting with n = 1, we do the following steps

Solve the spatial finite element system n times to obtain the set of
n finite element approximations {uN (x,yi)}n�1

i=0

– let HRB
n = span{uN (x,yi)}n�1

i=0 ⇢ HN (=
reduced basis space
of dimension n ⌧ N

Using a Galerkin method, determine a reduced basis approximate solution
u

RB
n (x,y) 2 HRB

n (D), i.e., solve the problem by seeking

u

RB
n (x,y) =

n�1X

i=0

c

k
i (y)uN (x,yi) 2 HRB

n (D)

satisfying
B(y)(uRB

n ,�) = F(y)(�), � 2 HRB
n (D)
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The standard (single-level) reduced-basis method
The general procedure

The next step is to “improve” the initial point set ⌅n = {yi}n�1
i=0

=) add a point yn to the set ⌅n

to produce
a “better” point set ⌅n+1 = {yi}ni=0 of n+ 1 points

Ideally, the new point yn is chosen by the greedy algorithm

yn = arg sup

y2�
|||uRB

n (·,y)� uN (·,y)|||

=) the point in � at which the error in the current reduced basis
approximation relative to the finite element solution is largest.

Determine the finite element solution uN (x,yn) corresponding to the new
point yn

set ⌅n+1 = ⌅n [ {yn} and define

HRB
n+1 = span{uN (x,yi)}ni=0 ⇢ HN (=

new reduced basis space
of dimension n+ 1 ⌧ N
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The standard (single-level) reduced-basis method
The general procedure

Obvious flaw: Determining the point yn by solving the maximization problem

yn = arg sup

y2�
|||uRB

n (·,y)� uN (·,y)|||

is impossible.

Instead, we could solve the discretized problem

yn = arg max

y2⌅train

|||uRB
n (·,y)� uN (·,y)|||

Since the initial point set ⌅n is chosen from the training set, ⌅n+1 ⇢ ⌅train

holds as well.

Unfortunately, even this is not a practical procedure because it requires Mtrain

expensive finite element solves, something we want to avoid.

We use the Galerkin residual as the error indicator and exploit the a�ne
property of the coe�cient a(x,y) to achieve the online-o✏ine decomposition.
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Multilevel reduced-basis method
Greedy procedure

The multilevel RB approximation is represented by

IRB
L [u](x,y) :=

LX

l=0

IRB
Ml

[�ul](x,y),

where IRB
Ml

[·] is the classic RB operator acting on �ul.

For any y 2 �, �ul(x,y) is obtained by solving

B(y)(ul�1,�) = F(y)(�), for all � 2 HNl�1(D),

B(y)(�ul,�) = F(y)(�)� B(y)(ul�1,�), for all � 2 HNl(D),

where k�ulkH / N

�↵
l , e.g., in R2 using quadratic FEM yields ↵ =

3
2 .

Given Hn = span{�ul(x,y1),�ul(x,y2), · · · ,�ul(x,yn)}, the next sample
yn+1 can be determined by

yn+1 = argmax

y2�
inf

�2Vn

k�ul(x,y)� �kH.
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Multilevel reduced-basis method
The assumption on the decay of the Kolmogorov n-width

The Kolmogorov n-width for u

dn := inf

dim(H)=n
max

y2�
inf

�2H
ku� �kH.

The convergence rate of the greedy algorithm is determined by the decay of dn
[Binev, Cohen, Dahmen, DeVore, Petrova, Wojtaszczyk, 2011]

If dn exhibits algebraic decay, then

max

y2�
ku� unkH  C dn  C(r)n

�r
.

The MLRB method requires that the n-width of �ul

dl,n := inf

dim(H)=n
max

y2�
inf

�2H
k�ul � �kH,

also decays with Nl, i.e.,

dl,n  C(l, r)N

��
l n

�rl
, l = 0, . . . , L.
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Weak greedy strategy
o✏ine-online decomposition

Instead of sampling from the entire parameter domain �, we sample in a
training set

⌅train := {y1,y2, · · · ,ys},
which is uniformly sampled from �.

The Galerkin residual is used as the error indicator to generate the next
snapshot

yn+1 = argmax

y2⌅train

sup

�2Vn

|Fl(y)(�)� B(y)(�ul,n,�)|
k�kH

If the bilinear form B(y)(·, ·) is separable, i.e.,

B(y)(u, v) =
mX

k=1

pk(y)Bk(u, v),

the cost of evaluating the Galerkin residual only depends on n.

If B(y) is NOT separable, empirical interpolation [Barrault, Maday, Nguyen,

Patera, 04] is needed.
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Greedy cost-balancing algorithm

The level l for each snapshot is chosen by the weighted Galerkin residuals.

Define HN1 ,HN2 , · · · , where Nl = 4

l�1
N1 by assuming D ⇢ R2

Let y1 =

1
|�|
R
�
ydy

Let Hn1 = span{uN1(x,y1)} and n1 = 1;

Given Hn1 , · · · ,HnL , compute the maximum Galerkin residuals e1, · · · , eL;

Next sample is collected at level l⇤ where

l

⇤
= argmax

l2[1,L]

el

Nl

Update the RB approximation at level l⇤.

Note: Our strategy is closely related to the profit-index approach [Bungartz, Griebel,

04], [Nobile, Tamellini, Tempone, 14] in the context of sparse grid interpolation and
integration.
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Numerical example 1
The parameterized linear di↵usion equation

We consider the classical parameterized linear elliptic equation
(

�r · (a(x,y)ru(x,y)) = f(x), x 2 D,

u(x,y) = 0, x 2 @D,

where

D = [0, 1]⌦ [0, 1]

f(x) = cos(x1) sin(x1)

y 2 � =

N11
k=1[�1, 1]

a(x,y) is defined by

a(x,y) = 0.5 + exp

 
1 +

4
p
9⇡

2

y1

+

4
p
9⇡p
2

5X

k=1

e

� (k⇡)2

32
�
y2k sin(k⇡x1) + y2k+1 cos(k⇡x1)

�
!
.
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Numerical example 1
The parameterized linear di↵usion equation
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Numerical example 1
The parameterized linear di↵usion equation
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Multilevel L=4
Single Level
PDE Correction

n1 n2 n3 n4 Single-level
L = 3 65 27 5 � 49

L = 4 138 74 28 8 69
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Numerical example 2
The parameterized linear convection-di↵usion equation

We consider the linear convection di↵usion equations
(

�r · (a(x,y)ru(x,y)) + b(y) ·ru(x,y) = 0, x 2 D,

u(x,y) = g(x,y), x 2 @D,

where

D = [0, 1]⌦ [0, 1]

y 2 � =

N6
k=1[�1, 1]

the parameterized inputs a(x,y), b(y) and g(x,y) are given by

a(x,y) = 0.4 + 0.1y1 + 0.1y2 cos(⇡x1) + 0.1y3 sin(⇡x1)

b(y) = (1 + 0.25y4)

✓
cos(

⇡
4 y5)

sin(

⇡
4 y5)

◆

g(x,y) =

⇢
4(0.75 + 0.25y6)x2(1� x2), x1 = 0

0, x2 = 0 or x2 = 1
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Numerical example 2
The parameterized linear convection-di↵usion equation
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Numerical example 2
The parameterized linear convection-di↵usion equation
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Multilevel L=4
Single Level
PDE Correction

n1 n2 n3 n3 Single-level
L = 3 55 21 3 � 48

L = 4 95 52 22 5 68
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Concluding remarks

Multilevel methods are very easy to implement, especially the MLMC.

The key point to guarantee the complexity reduction is to have as much
variance reduction as possible;

However, it is usually not easy to have when the quantity of interest has some
irregular dependence on the parameter, e.g., in CDF approximation.

Multilevel methods can be extended by using a sequence of multi-fidelity
models, obtained by upscaling or homogenization.
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