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One-dimensional piecewise polynomial basis
Nodal and hierarchical bases

Sparse grids can be constructed based on many types of piecewise (local) bases.
We first use the hat function to explain the construction, and then introduce
several other types of bases.

We consider the 1-D hat function having support [−1, 1] defined by

ψ(y) = max{1− |y|, 0},

from which an arbitrary hat function with support (yl,i − hl, yl,i + hl) can be
generated by dilation and translation, that is,

ψl,i(y) := ψ

(
y + 1− ihl

hl

)
,

where hl denotes the grid size on the resolution level l.
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One-dimensional piecewise polynomial basis
Nodal and hierarchical bases

Delta property: each nodal basis function is zero at other grid poins, i.e.,

ψl,i(yl,i′) = δii′ ,

with δ being the Kronecker delta

A sequence of nodal bases can be generated by defining a sequence of mesh
sizes {hl, l = 0, 1, . . .}.

The most common choice is the dyadic rule, i.e.,

hl+1 =
hl
2
, Nl = 2l + 1, for l = 0, 1, . . . .

We define Vl to represent the space expanded by the nodal basis on level l, i.e.,

Vl := span
{
ψl,i(y) | 0 ≤ i ≤ 2l

}
.

Due to the dyadic rule, the sequence {Vl} is nested, i.e.,

V0 ⊂ V1 ⊂ · · · ⊂ Vl ⊂ Vl+1 ⊂ · · · ⊂ V.
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One-dimensional hierarchical basis
Based on the hat function

Due to the nesting structure of {Vl}∞l=0, we
can define the incremental subspace

Wl := Vl/Vl−1 =⇒ Vl = Vl−1 ⊕Wl.

Then, we have a hierarchical subspace
splitting of Vl given by

Vl = V0 ⊕W1 ⊕ · · · ⊕Wl for l = 1, 2, . . . .

Each Wl contains about half of the basis
functions of the associated Vl.

Non-overlapping property:
For l ≥ 1, the supports of the basis functions
in Wl do not overlap.
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One-dimensional hierarchical basis
Based on the hat function

The hierarchical and the nodal bases expand the same subspace Vl.

The hierarchical basis only possesses a partial delta property:

Partial Delta Property

The basis functions corresponding to a specific level possess the delta
property with respect to its own level and coarser levels, but not with
respect to finer levels.

for 0 ≤ l′ < l, ψl,i(yl′,i′) = 0 for all i′ ∈ Bl′ ,
for l′ = l, ψl,i(yl,i′) = δi,i′ for all i′ ∈ Bl′ ,
for l < l′ ≤ l, ψl,i(yl′,i′) 6= 0 for all i′ ∈ Bl′ .

Our goal is to use such basis to build hierarchical interpolation in Vl.
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One-dimensional hierarchical interpolation

The interpolant of a function g(y) in the subspace Vl in terms of the its nodal

basis {ψl,i(y)}2li=0 is given by

Il[g](y) :=

2l∑
i=0

g(yl,i)ψl,i(y).

Due to the nesting property Vl = Vl−1 ⊕Wl, we have Il−1[g] = Il
[
Il−1[g]

]
,

based on which we define the incremental interpolation operator

∆l[g] = Il[g]− Il−1[g] = Il
[
g − Il−1[g]

]
=

2l∑
i=0

{
g(yl,i)− Il−1[g](yl,i

)}
ψl,i(y)

=
∑
i∈Bl

{
g(yl,i)− Il−1[g](yl,i

)}
ψl,i(y) =

∑
i∈Bl

cl,iψl,i(y),

where cl,i = g(yl,i)− Il−1

[
g(yl,i)

]
. Then we have

Il[g] = Il−1[g] + ∆l[g] = · · · = I0[g] +
l∑

l′=1

∆l′ [g].
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One-dimensional hierarchical interpolation
Illustration

Figure: (Solid red line) the piecewise linear interplolant; (Dashed blue line) the absolute
value of the coefficients cl,i
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Multidimensional nodal basis and subspaces

The one-dimensional hierarchical polynomial basis can be extended to the
d-dimensional parameter domain Γ using tensorization.

The d-variate basis function ψl,i(y) associated with yl,i = (yl1,i1 , . . . , yld,id) is
defined using tensor products, i.e.,

ψl,i(y) :=
d∏

n=1

ψln,in(yn),

where l = (l1, . . . , ld) and i = (i1, . . . , id) are multiindices indicating the
resolution level and the grid point within the level.

The multidimensional expanded by nodal basis of level l:

Vl := span{ψl,i(y) | in = 0, . . . , 2ln , n = 1, . . . , d},

which might be anisotropic, i.e., ln 6= ln′ for some n 6= n′.
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Multidimensional hierarchical basis and subspaces

The d-dimensional hierarchical incremental subspace Wl can be defined by

Wl =

N⊗
n=1

Wln = span {ψl,i(y)|i ∈ Bl} ,

where the multi-index set Bl is defined by

Bl :=

{
i ∈ Nd

∣∣∣∣ in ∈ {1, 3, 5, . . . , 2ln − 1} for n = 1, . . . , d if ln > 0

in ∈ {0, 1} for n = 1, . . . , d if ln = 0

}
.

A subspace VJ can be defined by the direct sum of a set of Wl, i.e.,

VJ :=
⊕
l∈J

Wl.

Wl are like “building blocks”, and the multi-index set J is like a “blueprint”
determining which set of building blocks are chosen to construct VJ .
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Tensor-product interpolation operators
The building blocks for sparse grid interpolants

In any subspace Vl, we can define a tensor-product interpolation operator

Il[g] :=
2l1∑
i1=0

· · ·
2ld∑
id=0

g(yl1,i1 , . . . , yld,id)

(
d∏

n=1

ψln,in(yn)

)
,

In any subspace Wl, we can define a tensor-product incremental operator

∆l[g] := ∆l1 ⊗ · · · ⊗∆ld [g]

=
d⊗

n=1

(Iln − Iln−1) [g]

=
∑

α∈{0,1}d

(
(−1)|α|

d⊗
n=1

Iln−αn [g]

)
,

where α = (α1, . . . , αd) and |α| := α1 + · · ·+ αd.
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Isotropic sparse grid interpolaion
based on a specific choice of the index set J

The isotropic sparse grid interpolant is defined by choosing the index set J in
the following way

J = J sg
L :=

{
l ∈ Nd

∣∣∣ |l| = l1 + · · ·+ ld ≤ L
}
.

The corresponding polynomial subspace VJ is given by

VJ := VJ sg
L

:=
⊕

l∈J sg
L

Wl =
L⊕
l=0

⊕
|l|=l

Wl.

The sparse grid interpolant can be naturally obtained by summing all the ∆l

associated with J sg
L ,

Isg
L [g](y) :=

L∑
l=0

∑
|l|=l

∆l1 ⊗ · · · ⊗∆ld︸ ︷︷ ︸
∆l

[g](y).
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Isotropic sparse grid interpolaion
illustration
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Sparse grid v.s. full tensor product

J sg
L :=

{
l ∈ Nd

∣∣ |l| ≤ L} v.s. J tp
L :=

{
l ∈ Nd

∣∣ max
n

ln ≤ L
}
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Computation of the coefficients

Computing the coefficients of any Lagrange interpolant is equivalent to solving
a linear system

Ψc = g,

where Ψij is the value of the j-th basis function evaluated at the i-th
interpolation point.

The interpolation matrix of a tensor product interpolant is an identity matrix,
due to the delta property, i.e., Ψij = δij .

The sparse grid interpolant can also be written as the linear combination of the
basis functions in VJ sg

L

Isg
L [g](y) =

L∑
l=0

∑
|l|=l

∆l1 ⊗ · · · ⊗∆ld [g](y)

=
L∑
l=0

∑
|l|=l

∑
i∈Bl

cl,i ψl,i(y)

The resulting linear system can be solved by some linear solvers, but we would
like to see if we could exploit the partial delta property to solve it explicitly.
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Computation of the coefficients

The sparse grid interpolation can be written as a recursive formulation,

Isg
L [g](y) :=

L∑
l=0

∑
|l|=l

∆l1 ⊗ · · · ⊗∆ld [g](y)

= Isg
L−1[g](y) +

∑
|l|=L

∆l1 ⊗ · · · ⊗∆ld [g](y)

= Isg
L−1[g](y) +

∑
|l|=L

∑
i∈Bl

cl,i ψl,i(y).

For any l satisfying |l| = L and any l′ satisfying |l′| ≤ L, there exists one
component ln > l′n, such that ψln,in(yl′n,jn) = 0 due to the partial delta
property. Thus, we have

ψl,i(yl′,j) := 0 for l ≥ l′.
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Computation of the coefficients

Suppose we are given Isg
L−1[g](y), and now we add new points on level L.

Substituting any interpolation points yl,i satisfying |l| < L, we have

Isg
L [g](yl,i) = Isg

L−1[g](yl,i),

which means the new added basis functions on level L will not change the
coefficients of Isg

L−1[g].

Substituting any new added point yl,i satisfying |l| = L, we have

Isg
L−1[g](yl,i) + cl,iψl,i(yl,i) = g(yl,i),

such that cl,i can be computed explicitly by

cl,i = g(yl,i)− Isg
L−1[g](yl,i),

where cl,i is called the “surplus”.

In other words, the interpolation matrix is a lower triangular matrix.
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Error estimates and complexity
[Bungartz, Griebel, 04]

By defining the mixed derivative and a norm

Dαg :=
∂|α|g

∂yα1
1 · · · ∂yαdd

, and ‖g‖2Hsmix
:=

∑
0≤α≤s

|Dαg|22 ,

the space Hs
mix can be defined in natural way:

Hs
mix :=

{
g : Γ→ R

∣∣‖g‖Hsmix
<∞

}
.

For a function g ∈ H2
mix, the error of the sparse grid interpolant Isg

L [g] is

‖g − Isg
L [g]‖L2 = O

(
h2
L log(h−1

L )d−1
)
,

while the error of the full tensor product interpolant is

‖g − Itp
L [g]‖L2 = O

(
h2
L

)
However the complexity comparison, i.e., the number of grid points, is

#(Vsg
L ) = O

(
h−1
L log(h−1

L )d−1
)

v.s. #(Vtp
L ) = O

(
h−dL

)
.

Guannan Zhang http://www.csm.ornl.gov/~gz3 – VIASM, November 14-17, 2016 17/58

http://www.csm.ornl.gov/~gz3


Piecewise hierarchical polynomial basis Adaptive sparse grid interpolation Sparse grids with other types of basis functions Application 1: high-dimensional discontinuity detection Application 2: hierarchical acceleration of stochastic collocation methods

Motivations of adaptive sparse grids

Adaptive mesh refinement (AMR) has been
widely used to approximate functions with
irregular behavior, e.g., steep gradient, sharp
transition, and jump discontinuities.

The key of AMR is to exploits an a-posteriori
error indicator to measure the error of the
current approximation, and guide us where to
add new grid points.

Can we do mesh refinement on sparse grids?

If so, what is the error indicator?
Figure: (Top) Turbulent flow past a
cylinder; (Bottom) An adaptive
triangulation [Tran, Webster, Z, 16]
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Strategy 1: dimensional adaptive sparse grids
Anisotropic sparse grids

This strategy shares the same idea as the global sparse grids. Instead of having
the same resolution along each direction, we can add the anisotropy by defining
a weighted norm for the multi-index l, i.e.,

J aniso
L :=

{
l ∈ Nd

∣∣∣ |l|w = w1l1 + · · ·+ wdld ≤ L
}
.
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Strategy 2: local adaptive refinement

Recall the expression of the surplus cl,i

cl,i = g(yl,i)− Isg
L−1[g](yl,i),

which can be bounded by [Bungartz, Griebel, 04]

|cl,i| ≤ C2−2|l|,

such that the surplus can be used as an error indicator to guide the refinement.

For a given threshold τ > 0, the level L interpolant Isg
τ,L[g] retains only the

terms of the isotropic SG interpolant Isg
L [g] for which the magnitudes of the

corresponding surpluses are larger than τ , i.e.,

Isg
τ,L[g](y) =

L∑
l=0

∑
|l|=l

∑
i∈Bτ

l

cl,i ψl,i(y) with Bτl = {i ∈ Bl | |cl,i| > τ } .
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Adaptivity using surplus
1-D Illustration

Figure: (Solid red line) the piecewise linear interplolant; (Dashed blue line) the absolute
value of the coefficients cl,i
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One-dimensional example
Level 6 adaptive hierarchical interpolation with τ = 0.01
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−
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]
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Figure: The resulting adaptive grid has 21 points (black points) whereas the full grid has 65
points (black and gray points)
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Two-dimensional illustration
Level 0, 1, 2 sparse grids with i1 + i2 ≤ 2
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Isotropic sparse grid H2
2

Adaptive sparse grid Ĥ2
2

Figure: With adaptivity, each point that corresponds to a large surplus, e.g., the points in
red, blue, or green, lead to 2 children points added in each direction resulting in the
adaptive sparse grid
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2D and 3D examples

We approximate a characteristic function g(y) with y = (y1, . . . , yd) as

g(y) =

 1,
√
y2

1 + · · ·+ y2
d ≤ 1

0, otherwise
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High-order hierarchical polynomial basis
[Bungartz, Griebel, 04] [Gunzburger, Webster, Z, 14]

When extending the linear basis to a high-order basis, we would like to retain
the partial delta property, i.e.,

(P1) New basis function on level L is equal to zero at all the grid points for L′ < L

(P2) New basis function on level L is equal to zero at all the grid points for L′ = L

High-order polynomials requires more grid points to define, 2nd-order needs 3
points, 3rd-order needs 4 points, etc.

The idea is to use some points at lower levels plus one point on the current
level to define the polynomial to satisfy (P1), and then cut off part of the
polynomial to satisfy (P2).
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High-order hierarchical polynomial bases for sparse grids
[Bungartz, Griebel, 04] [Gunzburger, Webster, Z, 14]
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High-order hierarchical polynomial basis
[Bungartz, Griebel, 04] [Gunzburger, Webster, Z, 14]
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Convergence with the use high-order bases
[Bungartz, Griebel, 04] [Gunzburger, Webster, Z, 14]

For a function g ∈ Hp+1
mix , the error of the sparse grid interpolant Isg

L [g] is

‖g − Isg
L [g]‖L2 = O

(
hp+1
L log(h−1

L )d−1
)
.
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Figure: The error decay for a 2D function g(y) = exp(−y2
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Adaptivity with high-order sparse-grid interpolation
linear, quadratic and cubic approximations with tol = 10−3
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Wavelet bases for sparse grids
[Gunzburger, Webster, Z, 14b] [Bungartz, Griebel, 04]

Motivation: The aforementioned hierarchical bases may have some stability
issues when doing adaptivity.

For example, the projection of the target function g(y) in the subspace VJ sg
L

can be bounded from above, i.e.,

‖Isg
L [g]‖2L2 ≤ C

L∑
l=0

∑
|l|=l

∑
i∈Bl

|cl,i|2 ,

which may be an over estimate, meaning that a big coefficient may only
contribute very little to the approximation.

Riesz basis: there exists constants c and C independent of level L such that

c

L∑
l=0

∑
|l|=l

∑
i∈Bl

|cl,i|2 ≤ ‖Isg
L [g]‖2L2 ≤ C

L∑
l=0

∑
|l|=l

∑
i∈Bl

|cl,i|2 .
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Second-generation wavelets for sparse grids
[Sweldens, 97] [Gunzburger, Webster, Z, 14b]

Idea: The lifting scheme is a process of taking an existing hierarchical basis and
modifying it by adding linear combinations of hierarchical basis at the coarser
level.

The approximation space Vl = span{ψl,i|0 ≤ i ≤ 2l} has a decomposition
Vl = Vl−1 ⊕Wl where Vl−1 and Wl are defined by

Vl−1 = span
{
ψl−1,i|0 ≤ i ≤ 2l−1

}
, Wl = span

{
ψl,i|0 ≤ i ≤ 2l, i odd

}
.

For any ψl,i ∈Wl, the corresponding second-generation wavelet ψl,i is
constructed by “lifting” ψl,i as

ψl,i ≡ ψl,i +
2l−1∑
î=0

αl−1

î,i
ψl−1,̂i,

where the weights αl−1

î,i
in the linear combination are chosen in such a way that

the new wavelet ψl,i satisfies the Riesz property.
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An example: second-generation linear wavelets

In the linear case, the second-generation wavelets are defined by

φl,i = ψl,i − 1

4
ψ
l−1, i−1

2
− 1

4
ψ
l−1, i+1

2
for 1 < i < 2l − 1, i odd

φl,i = ψl,i − 3

4
ψ
l−1, i−1

2
− 1

8
ψ
l−1, i+1

2
for i = 1,

ψl,i = ψl,i − 1

8
ψ
l−1, i−1

2
− 3

4
ψ
l−1, i+1

2
for i = 2l − 1,

we end up with

ψl
k = φlk − 1

4
φl−1

k−1
2

− 1

4
φl−1

k+1
2

for 1 < k < 2l − 1, k odd

ψl
k = φlk − 3

4
φl−1

k−1
2

− 1

8
φl−1

k+1
2

for k = 1,

ψl
k = φlk − 1

8
φl−1

k−1
2

− 3

4
φl−1

k+1
2

for k = 2l − 1,

(3.13)

where the three equations are used to define central wavelet, left-boundary wavelet
and right-boundary wavelet, respectively. For illustration, we plot these three lifting
wavelets in Figure

− 1
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− 1
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− 3
4

9
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− 1
8

− 3
4

9
16

− 1
8

Fig. 3.1: Left-boundary wavelet (left), central wavelet (middle), right-boundary
wavelet (right)

(1)the hat function can be viewed as wavelet but have no Riesz basis property.
The second-generation wavelet is lifted from the first generation wavelet by lifting
scheme and how.

(2) show the lifting process by taking hat function as an example.
(3) The lifted scheme has all 5 properties
(4) say that for 1d case there is fast algorithm for computing the wavelet coeffi-

cients, for multi-dimensional case, we will work on this. So far, we can compute the
coefficients by solving a linear system.

4. Numerical examples.

4.1. Example 1: approximation of a function with regularized line sin-
gularity.

4.2. Example 2: Burgers equation with stochastic initial shock.

4.3. Example 3: Stochastic elliptic problem.

5. Conclusion and future works.
REFERENCES

7

Figure: Left wavelet (left), central wavelet (middle), right wavelet (right)
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A numerical example
function approximation

The target function is a bivariate function

f(x, y) =
1

|0.15− x2 − y2|+ 0.1
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Introduction to UQ and Motivation Forward UQ problem: error analysis of a stochastic collocation method for linear parabolic SPDEs Inverse UQ problem: an efficient sparse-grid-based method for Bayesian uncertainty analysis Current and future work

Preliminary results

The target function is a bivariate function
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The L2 error of the AWSCM approximation is closer to that of the best

N-term approximation

Guannan Zhang Department of Scientific Computing Florida State UniversityForward and Inverse Uncertainty Quantification for Predictive Simulation of SPDEs

The L2 error of the wavelet approximation is closer to that of the best N -term
approximation
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Background: parameterized PDE models
Deterministic and stochastic coefficients

parameters
y ∈ Γ ⊂ RN −→

PDE model:
L(u,y) = f

in D ⊂ Rd, d = 1, 2, 3
−→

quantity of
interest
Q[u(·,y)]

The linear operator L depends on an q parameters y = (y1, y2, . . . , yq) ∈ Γ,
which can be deterministic or stochastic.

The parameters y may be affected by uncertainty (measurement error,
incomplete description of parameters), and are modeled as a random vector
y : Ω→ Γ with joint PDF %(y) =

∏q
i=1 %i(yi).

Quantity of interest F (y) = F (u(y)) is a functional of u which may

– be a smooth function of y

– have steep gradients with respect to y

– have dicontinuities with respect to y
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Motivation: detecting discontinuities

For F (y) with discontinuities in the parameter space Γ, we want to

– identify the points of discontinuity

– subdivide the geometry into subregions of smooth behavior

– construct a piecewise approximation which is smooth over each subregion

For any F (y), continuous or discontinuous, the problem we want to solve is:

– given the PDF ρ(y) for the input parameter y ∈ Γ

– given the threshold F0

– given an output of interest F (y) = F (u(y))

Probability of the event F (y) ≥ F0

P [F (u(y)) ≥ F0] =

∫
Γ

χ{F (y)≥F0}(y)ρ(y)dy
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Motivation: discontinuities from thresholds
a simple example

M MC estimate MC error
1 0.000000 0.110691

10 0.200000 0.089309
100 0.090000 0.020691

1,000 0.106000 0.004691
10,000 0.108300 0.002391

100,000 0.110430 0.000261
1,000,000 0.110564 0.000127

exact 0.110691

Monte Carlo is slow to converge

lots of solutions of PDE are needed

quadrature rules with global polynomial
approximation do not work
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Setup
in high-dimensional discontinuity detection

We often begin with a bounded domain Γ ⊂ RN but we are interested in a

subdomain D which can only be described implicitly, e.g. by a characteristic

function f(y) : Γ→ R defined by

f(y) =

{
1, if y ∈ D ⊂ Γ,

0, otherwise.

Can we detect the boundary ∂D of the discontinuous function f(y) ?

Can we accurately and efficiently estimate the integral:∫
Γ

f(y)ρ(y)dy =

∫
D

ρ(y)dy

Our goals is to combat (we are not so ambitious as to believe we can beat it)
the curse of dimensionality in

– Building approximations to ∂D

– Estimating the above integral faster than conventional Monte Carlo sampling
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Existing methods for detecting jump discontinuities

adaptive triangle mesh refinement

discontinous Galerkin methods

Monte Carlo sampling

polynomial annihilation

adaptive hierarchical sparse grids
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Adaptive hierarchical sparse-grid approximation
for high-dimensional discontinuity detection

In multi-D, an adaptive process (based on surpluses) is used to select a subset

of the tensor product grid that is concentrated near the discontinuity surface.

For discontinuous functions, the adaptive hierarchical sparse-grid method can
incur very high cost, even in low dimensions, because

– the sparse-grid interpolant does not converge in L∞ norm, which means the
surplus does not decay to zero

– the adaptivity generates a dense grid around the discontinuity surface

– many grid points do not contribute much to the approximation

– high-order hierarchical basis functions are useless
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2D and 3D examples

We approximate a characteristic function g(y) with y = (y1, . . . , yd) as

g(y) =

 1,
√
y2

1 + · · ·+ y2
d ≤ 1

0, otherwise
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Figure: 2D adaptive sparse grid requires 5,925 points; 3D adaptive sparse-grid requires
21,501 points
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2D and 3D examples
Error decay
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Figure: The error is measured by

∣∣∣∣∫ f(y)dy −
∫
Isg
L [f ](y)dy

∣∣∣∣
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The hyper-spherical sparse-grid method
[Z, Webster, Gunzburger, Burkardt, SINUM, 15; SIREV, 16]

Consider a bounded domain Γ ⊂ RN and a characteristic function
f(y) : Γ→ R defined by

f(y) =

{
1, if y ∈ D ⊂ Γ,

0, otherwise ,

– D is the characteristic domain

– ∂D is the discontinuity surface described by an implicit equation G(y) = 0 in Γ.

For example, a hyper-sphere can be represented by G(y) ≡
∑N
n=1 y

2
n − λ2 = 0

The goal is to find two bounded domains D1 and D2 such that

– D1 ⊂ D ⊂ D2 ⊂ Γ

– dist (∂D1, ∂D2) ≤ ε
where ε is a prescribed accuracy.

It is easy to see that f(y) = 0 for y ∈ ∂D2 and f(y) = 1 for y ∈ ∂D1
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The hyper-spherical sparse-grid method
One assumption

We put the following assumption about the domain D ∈ Γ of interest:

Assumption

Assume that D is a star-convex domain in Γ and a point y0 in D is given such that
for all y in D, the line segment {y0 + ty|t ∈ [0, 1]} from y0 to y is in D.

y0

Figure: (left) A star-convex domain is not necessarily convex; (right) An annulus is not a
star-convex domain (The two figures are from Wikipedia)
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N -dimensional hyper-spherical coordinate system

A hyper-spherical coordinate system is a generalization of the 2D polar and 3D
spherical coordinate systems

one radial coordinate r ranging over [0,+∞)

one angular coordinate θN−1 ranging over [0, 2π)

N − 2 angular coordinates θ1, . . . , θN−2 ranging over [0, π)

Hyper-spherical coordinates are converted Cartesian coordinates by

y1 = y0,1 + r cos(θ1)

y2 = y0,2 + r sin(θ1) cos(θ2)

y3 = y0,3 + r sin(θ1) sin(θ2) cos(θ3)

...

yN−2 = y0,N−2 + r sin(θ1) · · · sin(θN−2) cos(θN−1)

yN−1 = y0,N−1 + r sin(θ1) · · · sin(θN−2) sin(θN−1)
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The hyper-spherical sparse-grid method

Transform the Cartesian coordinates y1, . . . , yN to the hyper-spherical
coordinates r, θ1, . . . , θN−1 with the given origin point y0.

Each point θ = (θ1, . . . , θN−1) corresponds to a ray in RN out from y0 in a
specific direction

Due to the star-convexity of the domain D, there is only one jump discontinuity
in each direction θ

∂D can be represented by a function r = g(θ) on the bounded N -1
dimensional domain

Γθ =

N−1∏
n=1

[0, π]× [0, 2π]

where for any θ = (θ1, . . . , θN−1) ∈ Γθ, (g(θ),θ) is on ∂D.

Build an L-level sparse grid HN−1
L on Γθ with a total of M grid points.

HN−1
L = {θi ∈ Γθ, for i = 1, . . . ,M}
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The hyper-spherical sparse-grid method

For an accuracy tolerance ε and for m = 1, . . . ,M , from y0, along the direction
corresponding θm ∈ HN−1

L , use 1-D bisection method to find two values g1
m

and g2
m such that

g1
m ≤ g(θm) ≤ g2

m and |g1
m − g2

m| ≤ ε

Build sparse-grid interpolants g1(θ) and g2(θ) based on {g1
m,m = 1, . . . ,M}

and {g2
m,m = 1, . . . ,M}, respectively. Then we have(

g1(θ),θ
)

=⇒ ∂D1(
g2(θ),θ

)
=⇒ ∂D2

# function evaluations =
M∑
m=1

# bisection trials for θm

According to smoothness of the hyper-surface ∂D, different types of basis
functions can be used, e.g. high-order hierarchical basis or wavelet basis
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Numerical examples
Hyper-spherical sparse grids

Consider the two characteristic functions in RN

F1(y) =


1 if

N∑
n=1

y2
n ≤ 1,

0 otherwise,
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Figure: (a) The discontinuity surface γ with sparse grid points; (b) the transformed surface
g(θ) in the hyperspherical coordinate system. The parameters for the SG approximation are
Lmin = 4, Lmax = 12, α = 0.01, and y0 = (0.1, 0.2, 0.3); the total number of sparse grid
points is 160.
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Numerical examples
Hyper-spherical sparse grids

Consider the two characteristic functions in RN

F2(y) =

{
1 if |y3 − y1| ≤ 0.5 for y ∈ [0, 1]N ,

0 otherwise,
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Figure: (a) The discontinuity surface γ with sparse grid points; (b) the transformed surface
g(θ) in the hyperspherical coordinate system. The parameters for the SG approximation are
Lmin = 4, Lmax = 12, α = 0.01, and y0 = (0.3, 0.4, 0.5); the total number of sparse grid
points is 1120 of which only 349 are off the boundary.
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Numerical examples
Hyper-spherical least squares, compressive sensing approximations

Consider the discontinuous function in Γ = [0, 1]N

f(y) =


1 if (y1 + 0.3)2 +

N∑
n=2

y2
n ≤ 0.64,

0 otherwise,
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Figure: (a) The discontinuity surface γ in the Cartesian system; (b) the transformed surface
g(θ) in the hyperspherical system.
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Numerical examples
Hyper-spherical least squares, compressive sensing approximations
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Computational cost of stochastic collocation methods
for parameterized PDE systems

At each collocation point yl,i, uNh(x,yl,i) is approximated based on the
solution from the selected linear system solver, i.e.

uNh(x,yl,i) =

Nh∑
j=1

uj,l,iφj(x) ≈ ũNh(x,yl,i) =

Nh∑
j=1

ũj,l,iφj(x)

where ũl,i = (ũ1,l,i, . . . , ũNh,l,i)
> is the output of the solver.

In the case of using conjugate gradient methods, the error ekl,i = ul,i − ukl,i is
bounded by

‖ekl,i‖Al,i ≤ 2

(√
κl,i − 1
√
κl,i + 1

)k
‖e0

l,i‖Al,i

We describe the total computational cost for constructing ũNh,ML ≈ uNh,ML is
represented by

Ctotal =

L∑
l=0

∑
|l|=l

∑
i∈Bl

Ml,i

where Ml,i is the number of iterations needed at the collocation point yl,i.
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Exploit the hierarchical structure to accelerate solutions
in the context of local hierarchical sparse-grid approximation

The approximation ũNh,ML(x,y) can be represented in a hierarchical manner,

ũNh,ML(x,y) = ũNh,ML−1(x,y) +
∑
g(l)=L

∑
i∈Bl

c̃l,i(x) · ψl,i(y)

At each collocation point yl,i on level L, ul,i = (u1,l,i, . . . , uNj ,l,i)
> can be

represented by

uj,l,i = uNh,ML−1(xj ,yl,i) + cj,l,i, for j = 1, . . . , Nh

Key idea

Due to the decay of |cj,l,i| as |l| → ∞, the initial guess for the CG solver is given by

ũ0
l,i =

(
ũNh,ML−1(x1,yl,i), . . . , ũNh,ML−1(xNh ,yl,i)

)>
where the error of such prediction is, for j = 1, . . . , Nh,∣∣ũ0

j,l,i − u(xj ,yl,i)
∣∣ ≤ ∣∣ũNh,ML−1(xj ,yl,i)− uNh,ML−1(xj ,yl,i)

∣∣+ cj,l i
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Computational cost analyses
without hierarchical acceleration

Without hierarchical acceleration, τ0 = O(‖u‖∞), so that the minimum cost
Cmin to achieve ‖e‖| ≤ ε can be bounded by

Cmin ≤ |HL(Γ)| · J(τ0, ε, κ, Lk, N)

whose estimate is given as follows:

Theorem [Gunzburger, Webster, Z, 14], complexity without hierarchical acceleration

The minimum cost Cmin for building the standard piecewise linear SG approximation
ũNh,ML(x,y) with the prescribed accuracy ε > 0 can be bounded by

Cmin ≤ α1

N

α2 + α3

log2

(
3Csg

ε

)
N

α4N (
3Csg

ε

)α5

× 1

log2

(√
κ+ 1√
κ− 1

) [α6 log2

(
3Csg

ε

)
+ log2(

√
κτ0) + α7N + α8

]
,

where the constants α1, . . . , α8 are independent of L, N and ε.

Guannan Zhang http://www.csm.ornl.gov/~gz3 – VIASM, November 14-17, 2016 53/58

http://www.csm.ornl.gov/~gz3


Piecewise hierarchical polynomial basis Adaptive sparse grid interpolation Sparse grids with other types of basis functions Application 1: high-dimensional discontinuity detection Application 2: hierarchical acceleration of stochastic collocation methods

Computational cost analyses
with hierarchical acceleration

With hierarchical acceleration, τ l0 ≤ Csg2−2l + 2Necg for l = 1, . . . , L, so that
the minimum cost Cmin to achieve ‖e‖| ≤ ε can be bounded by

Cmin ≤
Lk∑
l=0

|∆Hl(Γ)| · J(τ l0, ε, κ, Lk, N)

whose estimate is given as follows:

Theorem [Gunzburger, Webster, Z, 14], complexity with hierarchical acceleration

The minimum cost Cmin for building the standard piecewise linear SG approximation
ũNh,ML(x,y) with the prescribed accuracy ε > 0 can be bounded by

Cmin ≤ α1

α2 + α3

log2

(
2Csg

ε

)
N

α4N (
2Csg

ε

)α5

× 1

log2

(√
κ+ 1√
κ− 1

) [2N − log2(N) + α9 + log2(
√
κ)
]
,

where the constants α1, . . . , α5 and α9 are independent of L, N and ε.
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Numerical example
Linear elliptic problem with random inputs

We consider the 2D Poisson equation with random diffusivity and forcing term, i.e.,{
∇ · (a(x,y)∇u(x,y)) = f(x,y) in [0, 1]2 × Γ,

u(x,y) = 0 on ∂D × Γ,

where a and f arethe nonlinear functions of the random vector y given by

a(x,y) = 0.1 + exp
[
y1 cos(πx1) + y2 sin(πx2)

]
,

and
f(x,y) = 10 + exp

[
y3 cos(πx1) + y4 sin(πx2)

]
,

where yn for n = 1, 2, 3, 4 are i. i. d. random variables following the uniform
distribution U([−1, 1]). The quantity of interest is the mean value of the solution
over D × Γ, i.e.

QoI = E
[∫

D

u(x,y)dx

]
,
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Numerical example
Linear elliptic problem with random inputs

Table: The computational savings of the piecewise SG approach with hierarchical
acceleration

Basis type Error # SG points
hSGSC hSGSC+acceleration

cost cost saving

Linear

1.0e-2 377 13,841 7,497 45.8%

1.0e-3 1,893 81,068 38,670 52.2%

1.0e-4 7,777 376,287 167,832 55.3%

Quadratic

1.0e-3 701 29,874 11,877 60.2%

1.0e-4 2,285 110,744 36,760 66.8%

1.0e-5 6,149 329,294 100,420 69.5%

Cubic

1.0e-4 1,233 59,344 23,228 60.8%

1.0e-5 3,233 172,845 57,777 66.5%

1.0e-6 7,079 415,760 129,433 68.8%
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Software

Download at http://tasmanian.ornl.gov

Global and Local hierarchical basis functions;

Arbitrary order local polynomial basis;

C++ library and CLI and MATLAB interfaces;

Different types of local refinement techniques
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