Octave

Thanh Ha Do, VNU University of Science

SEAMS SCHOOL ON

MATHEMATICAL MODELLING IN BIOLOGY

March 08-15, 2017

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ● ○○○

Overview Start, quit, getting help Variables and data types Matrices Plotting

(同) (三) (三)

э

Overview

Start, quit, getting help Variables and data types Matrices Plotting

SEAMS SCHOOL ON Octave Tutorial

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Octave is the "open-source Matlab"

It is for free (GPL license)

www.octave.org

www.mathworks.com

There are minor differences in syntax

Octave and **Matlab** are high-level languages and mathematical programming environments for

Visualization Programming, algorithm development, etc. Scientific computing: linear algebra, optimization, statistic, signal processing, etc.

Overview

Start, quit, getting help

Variables and data types Matrices

Plotting

SEAMS SCHOOL ON Octave Tutorial

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Start Octave: type the shell command octave or whatever
your OS needs
Interrupt Octave: by typing Ctrl-C
Quit Octave: type quit or exit
Get help: type help or doc
Get help on a specific command: type help command
help size, help plot, help figure, help inv,
...

To get help on the help system, type help help Type q to exit help mode

Overview Start, quit, getting help Variables and data types Matrices Plotting

э

4 同 ト 4 ヨ ト 4 ヨ ト

In Octave/Matlab almost everything is a matrix

Main matrix classes

Strings: matrices of characters Structures: matrices of named fields for data of varying types and sizes Logical: matrices of boolean 0/1-values Not treated in this tutorial Cells (like structures)

Function handles (pointer to functions)

vector or arrays?

A matrix with one column or row

Scalars?

A matrix of dimension 1 \times 1

Intergers?

A double

Characters

A string of size 1

Creating a Matrix

Simply type: » A = [1, 2, 3; 4, 9, 10; 1, 5, 7] Octave will respond with a matrix in pretty-print: A = 1 2 3 4 9 10 1 5 7

More on matrices will introduce further down this tutorial

Creating a Character String

Simply type: » str = 'Hello World' Opposed to Matlab, Octave can also deal with double quotes. For compatibility reasons: always use **single quotes**

Creating a Structure

Type for instance

```
» data.id = 3
» data.timestamp = 1256.235
» data.name = 'School'
```

Creating a Vector of Structures

A new measurement has arrived. Extend struct by:

- » data(2).id = 4 » data(2).timestamp = 1268.45879
- » data(2).name = 'Department'

Octave will respond with

data =

1x2 struct array containing the fields: id timestamp name

A
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B

Display Variables

Simply type its name

» a = 4

Suppress Output

Add a semicolon

```
» a;
» sin(pi)
```

Applies also to function calls

4 3 5 4 3

Variable have no permanent type. Octave/Matlab are weakly typed languages

s = 3 followed by s = "octave" is fine

Use help or who (or the more detailed whos) to list the currently defined variables. Example:

Numerical Precision

Variables are stored as double precision numbers in IEEE floating point format

realmin: Smallest positive floating point number: 2.23e-308
realmax: Largest positive floating point number: 1.80e+308
eps: Relative precision: 2.22e-16

These keywords are reserved and can be used in your code

Control Display of Float Variables

format short format long format short e format long e format short g format long g Fixed point format with 5 digits Fixed point format with 15 digits Floating point format, 5 digits

- Floating point format, 15 digits
- Best of fixed or floating point with 5 digits

Best of fixed or floating point with 15 digits

See help format for more information

Talking about Float Variables...

- ceil(x) Round to smallest interger not less than x
- floor (x) Round to largest integer not greater than x
- round (x) Round towards nearest integer
- fix(x) Round towards zero

If x is a matrix **matrix**, the functions are applied to **each element** of x

Overview Start, quit, getting help Variables and data types Matrices Plotting

э

< 同 > < 三 > < 三 > 、

Creating a Matrix

Simply type:

= [1, 2, 3; 4, 9, 10; 1, 5, 7]

To delimit **columns**, use comma or space

To delimit rows, use semicolon

The following expressions are equivalent

» A = [1 2 3; 4 9 10; 1 5 7] » A = [1, 2, 3; 4, 9, 10; 1, 5, 7]

(同) (三) (三)

ъ

Creating a Matrix

Alternative Example:

SEAMS SCHOOL ON Octave Tutorial

AP ► < E ►

Creating a Matrix from Matrices

» A = [1 2 3; 4 9 10; 1 5 7] ; B = [33; 33; 33]

Column-wise

» C = [A B]

Row-wise

» D = [A; [33 33 33]]

э.

Indexing

Always "row before column"!

aij = A(i, j)	get an element
r = A(i, :)	get arow
c = A(:,j)	get a column
B = A(i:k, j:l)	get a sub-matrix

Useful indexing command end:

» A = [1 2 3; 4 9 10; 1 5 7] » v = A(2:end; 2:end)

A
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B

Matrices

The two meaning of colon ':'

```
» A(3,:), B(:,1)
```

Wildcard to select entire matrix row or column Defines a range in expression like

```
indices = 1:5 Returns row vector 1, 2, 3, 4, 5
steps = 1:3:61 Returns row vector 1, 4, 7, ..., 61
t = 0:0.01:1 Returns vector 0, 0.01,0.02, ..., 1
```

ъ

Useful command to define ranges: linspace

Assigning a Row/Column

All referenced elements are set to the scalar value

» A = [1 2 3; 4 9 10; 1 5 7] » A(3,:) = -2

Adding a Row/Column

If the referenced row/columns does not exist, it's added

» A(5,:) = -2Result ??

A > < = > < = > -

3

Deleting a Row/Column

Assigning an empty matrix[] deletes the referenced rows or columns

Examples:

» A(3,:) = [] » A(1:1:3,:) = []

A
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B

э

Matrices

Get Size

```
nr = size(A, 1)
nc = size(A, 2)
[nr nc] = size(A)
l = length(A)
numel(A)
isempty(A)
```

Octave only:

nr = rows(A)
nc = columns(A)

Get number of rows of A Get number of columns of A Get both (remember order) Get whatever is bigger Get number of elements Check if A is empty matrix[]

Get number of rows of A Get number of columns of A

伺い イヨト イヨト

Matrix Operations With x being a column vector

B = 3 * A	Multiply by scalar
C = A*B + X - D	Add and multiply
B = A'	TransposeA
B = inv(A)	InvertA
s = v' * Q * v	Mix vectors and matrices
d = det(A)	Determinant of A
$[v \ lambda] = eig(A)$	Eigenvalue decomposition
[U S V] = svd(A)	Singular value decomposition

Vector Operations

With x being a column vector

s = x' * x Inner product, result is a scalar X = x * x' Outer product, result is a matrix e = x * x Gives an error

Element-Wise Operations With x being a column vector

- s = x + x Element-wise addition
- $p = x \cdot x'$ Element-wise multiplication
- q = x./x Element-wise division
- e = x.^3 Element-wise power operator

Useful Vector Functions

sum(v)	Compute sum of elements of v
cumsum(v)	Compute cumulative sums of
	elements of v (returns a vector)
prod(v)	Compute product of elements of v
cumprod(v)	Compute cumulative products of
	elements of v (returns a vector)
diff(v)	Compute difference of subsequent
	elements [v(2) - v(1)v(3)-v(2)]
mean(v)	Mean value of elements in v
std(v)	Standard deviation of elements

▲御▶ ▲ 臣▶ ▲ 臣▶

э

Useful Vector Functions

min(v) max(v)	Return smallest element in v Return largest element in v
<pre>sort(v,'ascend') sort(v, 'descend')</pre>	Sort in ascending order Sort in descending order
find(v)	Find indices of non-zero elements Great in combination with vectorization Example:
	ivec = find(datavec == 5)

▲御▶ ▲ 臣▶ ▲ 臣▶

э

Special Matrices

$$A = zeros(m, n)$$

$$B = ones(m, n)$$

$$I = eye(n)$$

$$D = diag([a b c])$$

Zero matrix of size $m \times n$ (Often used for preallocation) Matrix of size $m \times n$ with all 1's Identity matrix of size nDiagonal matrix of size 3×3 with a, b, c in the main diagonal

- ₹ 🖹 🕨

Random Matrices and Vectors

R =	rand(m,n)	Matrix with $m \times n$ uniformly distributed random numbers
N =	randn(m,n)	from interval [01] Matrix with $m \times n$ normally
		distributed random numbers with zero mean, unit variance
v =	randperm(n)	Row vector with a random permutation of the numbers 1 to n

(人間) トイヨト イヨト

э.

Multi-Dimensional Matrices Matrices can have more than two dimensions

Create a 3-dimensional matrix: e.g.,

A = ones(2, 5, 2)

・ 同 ト ・ ヨ ト ・ ヨ ト -

э.

Multi-Dimensional Matrices

All operations to create, index, add, assign, delete and get size apply in the same fashion

Examples:

» [m n l] = size(A) » A = ones(m, n, l) » m = min(min(min(A))) » aijk = A(i, j, k) » A(:, :, 2) = -3

A
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B

э

Matrices Massage

Matrix operations that have no mathematical meaning. Useful for manipulating data with is organized in matrices

reshape(A, m,n)	Change size of matrix A to have dimension $m \times n$. An error results of A does not have $m \times n$ elements
circshift(A,[m n]]	Shift elements of A m times in row dimension and m times in column dimension. Has no mathematical meaning
shiftdim(A, n)	Shift the dimension of A by n. Generalizes transpose for multi-dimensional matrices

Matrices Massage

Matrix operations that have no mathematical meaning. Useful for manipulating data with is organized in matrices

fliplr(A)	Reverses the order of columns of matrix A in left/right-direction. Rows are not changed
flipud(A)	Reverses the order of rows of matrix A in up/down-direction. Columns are not changed
flipdim(A, dim)	Flip matrix A along dimension dim . Typically. for multi-dimensional matrices
rot90(A)	90 degree counterclockwise rotation of matrix A. This is not the transpose of A

Matrices Massage Example

Let P = [x1; y1; x2; y2; ...] be a $2n \times 1$ column vector of n pairs (x, y). Make it a column vector of (x, y, theta) tuples with all theta being pi/2

Make P it a 2 \times *n* matrix

 \gg P = reshape(P, 2, numel(P)/2)

Add a third row, assign pi/2

» P(3,:) = pi/2

Reshape it to be a $3n \times 1$ column vector

» P = reshape(P, numel(P),1)

伺い イヨト イヨト

String

Most Often Used Commands

strcat	Concatenate strings
int2str	Convert integer to a string
num2str	Convert floating point numbers to a string
sprintf	Write formatted data to a string
	Same as C/C++ fprintf for strings

Example

» s = strcat('At step ', int2str(k),', p = ', num2str(p,4))
Given that strings are matrices of characters, this is equivalent to

» s = ['At step ' int2str(k) ', p = ' num2str(p,4)]

String

Octave/Matlab has virtually all common string and sparsing functions

You can encouraged to browse through the list of commands or simply help command Some commands:

strcmp, strncmp strmatch, char, ischar, findstr, strfind, str2double, str2num, num2str, strvcat, strtrim, strtok, upper, lower, ...

< 🗇 🕨 < 🖻 🕨 < 🖻 🕨 -

э.

Overview Start, quit, getting help Variables and data types Matrices Plotting

э

< 同 ト < 三 ト < 三 ト

Plotting in 2D

Display x, y plot : plot (x, cos(x))

Creates automatically a figure window. Octave uses gnuplot to handle graphics.

Create figure window 'n': figure (n)

If the figure window **already exists**, brings it into the forground (=makes it the current figure)

Create new figure window with identifier incremented by 1: figure

Several Plots

Octave Tutorial

SEAMS SCHOOL ON

伺い イヨト イヨト

Frequent Commands

clf hold on	Create figure Hold axes. Do not replace plot with new plot, superimpose plots
grid on grid off	Add grid lines Remove grid lines
<pre>title('My Plot') xlabel('time') ylabel('prob')</pre>	Set title of figure window Set label of x-axis Set label of y-axis

Controlling Axes

axis equal
axis square
axis tight
a = axis
axis([-1 1 2.5 5])
axis off
box on
box off

Set equal scales for x-/y-axes Force a square aspect ratio Set axes to the limits of the data Return current axis limits [xmin xmax ymin ymax] Set axis limits (freeze axes) Turn off ticmarks

Adds a box to the current axes Removes box

Controlling Plot Styles

In plot(x, $\cos(x)$, 'r+') the format expression 'r+' means red cross

There are a number of line styles and colors, see help plot **Example**:

4 AR N 4 B N 4 B N

ъ

» x = linspace(0,2*pi,100); » plot(x,cos(x),'r+',x,sin(x),'bx'); more on plotExample.m

Exporting Figures

print -deps picBW.eps Export B/W .eps file print -depsc picC.eps Export color .eps file print -djpeg -r80 myPic.jpg Export .png in 80 ppi print -dpng -r100 myPic.png Export .png in 100 ppi

See ${\tt help\ print}$ for more devices including specialized ones for Latex

print can also be called as a function

Then it takes arguments and options as a comma-separated list
print('-dpng', '-r100', 'myPic.png')

伺い イラト イラト

-

This tutorial cannot cover the large variety of graphics commands in Octave/Matlab

You are encouraged to browse through the list of commands or simply type help command

Some commands:

hist, bar, pie, area, fill, contour, quiver, scatter, compass, rose, semilogx, loglog, stem, stairs, image, images ...

伺い イラト イラト

ъ

Plotting in 3D

plot3 Plot lines and points in 3D
mesh 3D mesh surface plot
surf 3D colored surface plot

Most 2D plot commands have a 3D sibling. Check out, for example,

bar3, pie3, fill3, contour3, quiver3, scatter3, stem3 let see some examples...