
Matrix Perturbation

1 Basic Linear Algebra Results

Fact 1 (Eigenvalues of a Hermitian matrix). Let A be a Hermitian matrix. Then all the eigenvalues
of A are real. As a consequence the singular values are the absolute value of the eigenvalues.

Fact 2 (Continuity of the eigenvalues for Hermitian matrices). The eigenvalues of a Hermitian matrix
are continuous with respect to the changes in the entries. The same is not true for non Hermitian
matrices. For example consider the characteristic polynomial for the following matrices:0 1 0

0 0 1
0 0 0

 and

0 1 0
0 0 1
ε 0 0

 .
Theorem 3 (Courant-Fisher Min-Max principle). Let A be Hermitian matrix with eigenvalues λ1 ≥
λ2 ≥ ... ≥ λn. Then the following holds:

λk = max
S,dimS=k

min
v∈S,|v|=1

v∗Av.

λk = min
S,dimS=n−k+1

max
v∈S,|v|=1

v∗Av.

Theorem 4 (Interlacing Property). Let A be a symmetric n× n matrix and let An−1 be the top-left
n− 1× n− 1 minor. Then the following holds:

λn(An) ≤ λn−1(An−1) ≤ λn−1(An) ≤ ... ≤ λ1(An−1) ≤ λ1(An).

Proof.

Lemma 5. Two polynomials f, g interlace if and only if pα := f + αg has real roots for all α ∈ R.

Proof of lemma. Wlog assume that both f and g are monic. For simplicity let x1 < x2 < ... < xn be
the roots of f .

”⇒”. Let α > 0. Then (f + αg)(xi) ≥ 0 iff i is odd and is (f + αg)(xi) < 0 iff i is even. Similarly is
α < 0 or α = 0.

”⇐”. Suppose f and g do not interlace, then wlog assume g has no roots in [x1, x2] and both f
and g are positive in (x1, x2). Let x′ = (x1 + x2)/2 so f(x′) > 0, it means there exists ε > 0 such
that p−ε(x

′) > 0. Note that p−ε is negative at x1 and x2, hence p−ε must have at least two roots
between x1 and x2. Since we have p−t is negative at x1 and x2 all the time, if we vary it from −ε to
−∞ the roots will move continuously and cannot leave the interval (x1, x2). But p−∞(x) < 0 for all
x ∈ [x1, x2], so the roots disappeared - contradiction.
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Write

An =

[
An−1 b
b∗ d

]
.

Let α > 0 be fixed. We have:

det(An − xI) + α det(An−1 − xI) = det

[
An−1 − xIn−1 b

b∗ d− x

]
+ α det

[
An−1 − xIn−1 0

0 1

]
= det

[
An−1 − xIn−1 b

b∗ d− x

]
+ det

[
An−1 − xIn−1 0

0 α

]
= det det

[
An−1 − xIn−1 b

b∗ d− x

]
+ det

[
An−1 b

0 α

]
= det

[
An−1 − xIn−1 b

b∗ d− x+ α

]
.

Note that [
An−1 b
b∗ d+ α

]
is a Hermitian matrix so its characteristic polynomial has all the roots reals. By lemma we have that
the eigenvalues of An and An−1 interlace.

2 Deterministic perturbation

Theorem 6 (Weyl’s bound). Let A and b be two Hermitian matrices. Then the following holds:

λi+j−1(A+B) ≤ λi(A) + λj(B),

valid whenever i, j ≥ 1 and i+ j − i ≤ n.

Proof.

λi+j−1(A+B) = min
S,dimS=n−i−j

max
v∈S,|v|=1

v∗(A+B)v

≤ max
v,w∈S′

v∗(A+ Z)v,

where
S′ = (Rn ∩ span{v1(A), ...., vi−1(A)}) ∩ span{v1(B), ..., vj−1(B)}

as dimS′ ≥ n− i− j. This implies:

λi+j−1(A+B) ≤ max
v∈S′,|v|=1

v∗Av + max
v∈S′,|v|=1

v∗Bv

≤ λi(A) + λj(B).

Theorem 7 (Ky Fan theorem). For any k the following holds:

k∑
i=1

λi(A+B) ≤
k∑
i=1

λi(A) + λi(B).
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Proof. Proof is similar with the one of the Weyl’s theorem.

Theorem 8 (Wielandt-Hoffman). Let A and B be two symmetric matrices, then

min
σ∈Sn

n∑
i=1

(λi(A)− λσ(i)(B))2 ≤ ||A−B||2F .

Proof. Let A = V ∗A1V and B = U∗B1U be the SVDs of A and B. Then, since the Frobenius norm
is invariant under orthogonal transformation (as it can be written as the trace of the square matrix),
the RHS becomes:

‖A−B‖2F = ‖A1V U
∗ − V U∗B1‖2F

:= ‖A1Q−QB1‖2F ,

where Q := V U∗ is unitary matrix. We can explicitly write

‖A1Q−QB1‖2F =
∑
i,j

(λi(A)− λj(B))2Q2
i,j

≤
∑
i,j

(λi(A)− λσ(i)(B))2Q2
i,j

=
∑
i

(λi(A)− λσ(i)(B))2,

as Q is unitary.

Observation 9. The Wielandt-Hoffman can be interpreted as follows: Let B be a small perturbation
of A (small enough that the permutation σ will be the identity), then the following holds:

n∑
i=1

(λi(A+B)− λi(A))2 ≤ ||B||2F .

Theorem 10 (Davis-Kahan, Wedin; sine theorem).

• sin∠(v1, v
′
1) ≤ ||B||

λ1(A)−λ2(A+B)

• sin∠(v1, v
′
1) ≤ 2 ||B||δ .

Proof. Let the SVD’s of A and A+B be

A = λ1v1v
∗
i + U∗ΛU

A+B = λ′1v
′
1v
′∗
1 + U ′∗Λ′U ′.

We have:

‖B‖ ≥ ‖U ′Bv1‖ = ‖U ′(A+B)v1 − U ′Av1‖
= ‖U ′(λ′1v′1v′∗1 + U ′∗Λ′U ′)v1 − U ′λ1v1‖
= ‖Λ′U ′v1 − λ1U ′v1‖
≥ ‖Λ′ − λ1I‖ · ‖U ′v1‖
≥ |λ′2 − λ1|‖U ′v1‖,
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which implies:

sin(v1, v
′
1) = ‖U ′v1‖ ≤

‖B‖
|λ1(A)− λ2(A+B)|

.

The second bound follows by the fact that

|λ2(A+B)− λ2(A)| ≤ ‖B‖.
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