Lecture notes

1 Perturbation of low rank matrices

Let » > s > 0 be fixed integers and let 8 > 6, > ... > 65 > 0 > 0,41 > ... > 6,.. Define
P:diag(91,92,...,9r,0,0,...,()).

Let X,, be an n X n symmetric (Hermitian) unitary matrix, u, be its empirical eigenvalues measure,

ie.
1 n
fn = 25,\,;()(")
iz

and let G, be its Cauchy transform of (i, defined by:

G, = / dji(?, for z & suppp.

Assume that u,, converge almost surely to a non-randomly compact supported probability measure .
Suppose also that A;(X,,) and A,—_;(X,,) converge almost surely to b respectively a for every i =1, .., 7,
where —oco < a < b < 00 are fixed.

Define

X, =X, +P,.
Theorem 1 (Eigenvalues). [Benaych-Georges, Nadakuditi] For 1 <i < s and 6; > 1/G,,(b"),
/\1(Xn) —a.s G;l(l/el)

For1<i<sand§; <1/G,(b"), )
/\Z(Xn) —a.s b

For0<j<r—sand®; >1/G,(a"),
An—j(Xp) —as a
For0<j<r—sand0; <1/G,(a™),
M—j(Xn) —ras Gt (1/0,)-

Example 2. If X = ﬁZ, where is Z is GUE, then, we have a = =2, b =2, G,(b*) =1, G,(z) =

S Gu(a7) = 1 and G (1/6) = 65+

Theorem 3 (Eigenvectors). [Benaych-Georges, Nadakuditi] Consider i € {1,..,7} such that 1/0; €
(Gula™),G,(b")). Let u; be the unit-norm vector of X associated with the eigenvalue \;(X).



o If0;, >0 we have :
1

(@i, ker (0,1 — P))|2 — o0 5
702G, (p)

where p = G;;'(1/6;) is the limit of Xi. Moreover,

<ai, P ker (6,1 - P)> — 0.

J#i

e If0;, <0 we have:
1

|<ﬂn—r+i7ker(9il - P)>‘2 ——n—oo - ’
0:G..(p)

where p = G (1/6;) is the limit of At

Moreover,
<an_r+i, P ker(0;1 - P)> — 0.
J#i
Example 4. If X = ﬁ& where Z is GUE, we have for z > 0, G,(z2) = &=ZF— V;L‘l, so G, (2) =
% (1 — \/ij) which implies that G?G’;(éJré) = 9;;;1. Then, if all the 6;’s are distinct we have:

i

1—g if6;>1

1. 2 i
(8, )| _>{ 0 it0 <6 <1

‘<1~Li, span{ul, Uy weny Uj—1 5 Ujt1, ..,UT}>|2 — 0.

Proof of Theorem ?77.

Using Weyl’s interlacing inequalities imply that:

)‘k+(7‘75) S )\k(X> S Akfsa

(we use the convention that A\, = —oo, if &k > n and 400 if k¥ < 0) and so, since A, — b it follows

that if A\;(X) does not converge to a limit outside [a,b] for some 1 < i < s, then it has to go to b.

Similarly, if 0 < j < r—s and A,—;(X) does not converge to a limit outside [a, b], then it has to go to a.

Intuition from rank 1

Assume r = 1. Since X is unitary invariant wlog we can assume that X = diag(Aq,...,A,) and
P = 01u*u, where u is randomly distributed on the unit sphere.

Suppose A} > b is an eigenvalue of X which is not an eigenvalue of X. Then:
0 =det(N;T — (X + P)) = det(N, T — X) -det(I — (M, — X)"'P)

It follows that:
det(I — (NI — X)"'P) =0,

which translates as 1 is an eigenvalue for (A\j1 — X)~'P. But rank(P) = 1, so it follows that

Trace (A1 — X)™'P) = 1. (1)



Since X is unitary invariant, wlog we can assume that X = diag(\1, Mg, ..., A,) and P = Quu*, where
u = (ug,...,u,) is a random vector uniformly distributed on the unit sphere. Hence relation (??)

becomes:
1=03
A=A

Since u is uniformly distributed on the unit sphere, it follows that, if ] > A\; +¢, where € > 0 is fixed,
then:

n
u
D
k=1
Take € — 0, it follows that

n
N > o GL(\)).
nk:l )\/1 _)\k

0G,(N) — 1=\, — G, (1/6).

However, if 1/6 > G(b), then G;*(1/8) does not exist so, there is no such eigenvalue.

Proof from rank r

Let z be an eigenvalue for X which is not an eigenvalue for X, then det(z] — X ) = 0, which implies:
det(I — (21 — X)"'P) =0.
As before, assume X = diag(A1, A2, ..., A,) and let P = UAU™, then:
0=det(I — (2 — X)'P)=det (I —U*(zI — X)"'UA).

Define:
M, :=1-U*(zI — X)"'UA.

Lemma 5. The following things are true about M :

o z € ker(z] — X) = U*z € ker(M,) and

= (2 - X)"'UAU*z.

o M.(i,j) = Lij — 0; 50, LT

z2—Ag

o M.(i,5) — 0 ifi#j and M.(i,i) — 1 —0,G,(2) if i =j.

Proof. Fix n > 0. As long as z > A\; + 7 then ¢; := 1/(2z — Ax) are bounded and independent of the
entries of U, which implies that ", M — 0 for i # j. Take n — 0. O

Now it is easy to see that z is an eigenvalue of X outside [a, ] if and only if z is a diagonal element
of Mz and G(a) < 1/6; < G(b).

O

Proof of Theorem ?7. Let’s assume that 61 > 62. Suppose A > b+n, for some n > 0, is an eigenvalue
for X which is not an eigenvalue for X and let @; be the corresponding eigenvector. By Lemma 77
we know that 0 p 0
. 2 3 T
MG;1(1/01) — dlag (0, 1-— E, 1-— E, ceey 1-— E7 ].7 ].7 ceny ].> .
Now Lemma 77 also implies that:
U™ty € ker M- S1(1/0,)



which implies:
U*ay = ¢1(1,0,0,...,0),

for some ¢; > 0.

This implies that:

<a1, P ker(0;1 - P)> — 0. (2)

j>1
By Lemma ?? we know that:
i = (MI— X)) WUAU 4y
= (5\1I — X)il ZQJ(U;’[IQ)U]
j=1

T

= (MI = X) 70y (uiin)uy + (T — X)71 0, (uliin)u;

J
Jj=2

We know that A\, > 1 + b, which implies
IO = X) 7! < oo,
and so, by equation (?7)

(AT = X)) 0 (whin )u; — 0.

Jj=2
We conclude,

1= || ||® = 63 Jujaa (AT — X) " g |2

It follows that:

Take 1 — 0 to conclude the proof.

O

Consider the setting from the example. We have the following results regarding perturbation of small
rank matrices.

Theorem 6 (GUE + rank 1 perturbation). [Peche] Assume that X = ﬁZ, where Z is GUE, with
entries having variance 2. The following holds:

N ()\1(5() - (9 + ;)) — N(0,07),
where a9 == (c/0) - V02 — o2.



Theorem 7 (GUE + constant rank perturbation). [Peche] Let X = ﬁZ, where Z is GUE. Let
P = diag(by,...,01,02,...,0,,0,0,...,0) with 61 of multiplicity k such that k, r, 61 are given numbers
independent of n (k,r € Z4) and 0;’s lie in a compact set of (—o0,01) independent of n. Then the
following holds:

o If0; <1, then
lim P <n2/3()\1 -2)< IE) = Fy ().

n—oo

o [f0, =1, then
lim P <n2/3</\1 -2) < f) = F,ﬂ/g(x)

n—oQ

o If0, > 1, then

: 9% 1/2 1 k
i P (gt (= (004 7)) ) = Fbuao)

where FFW, F,ﬂ/g and FgUE,Gl are deterministic functions. (FéUEﬁ1 s the probability distri-
bution of the largest eigenvalue of the k x k GUE with parameter o2 )

Theorem 8 (GUE + low rank perturbation). [Peche] Let X = ﬁZ, where Z is GUE. Let P =
diag(61, ...,01,02,...,6,,0,0,...,0) with 61 of multiplicity k such that k and r satisfy lim, .o k/n =10
and lim,_, k/n = 0. Suppose that 01 is independent of n and o;’s lie in a compact set of (—o0,01)

also independent of n. Then there exists deterministic functions of n,k,r and 61, G1,G2,G3 such
that the following holds:

o If0; <1, then

lim P (Gi(\ — Ga) < 2) = F " (@),
o If0; > 1, then

lim P (Gs(\ — Ga) <) = FiW ().

n—oo

2 Dyson Brownian Motion

Theorem 9 (Wigner + rank 1 perturbation). [Capitaine, Donati-Martin, Feral] Suppose X, is
Wigner matriz with entries i.i.d up to the symmetry constrained, with variance o2 and distribution u
which satisfies the following Poincare inequality. ”There exist a positive constant C' such that for any
fR—=C, fecCt and f, f' € L*(n), the following holds:

E(f - E(f)]2) <C / P

Let P, := diag(0,0,0,...,0) or P,(i,5) = 6/n for all 1 < i,j < n, where § > o, then the following
holds:

Definition 10 (GOE/GUE).

e We say that Z is GOE if and only if Z;; = Z;; and Z;; is N(0,1) for i # j and N(0,2) is i =j
independent of each other.



e We say that Z is GUE if and only if Zij = Zji and Zij = (sz + iB;j)/\@ and Z'L'i = Biia where
B; ; are N'(0,1) independent of each other.

Let Z be a GOE/GUE matrix. We can think about the matrix A + Z as a process which starts at
time ¢ = 0 in A and it smoothly moves up to time ¢t = 1 when it reaches A+ Z. A good candidate for
the model would be:

A(t) = A+1Z.

Consider the relation

A(t)vi(t) = Ai(t)vi(t)
and differentiate it with respect to t. We get:
Zui(t) + Aol (8) = AP ()oi(t) + Xt ().
We can left multiply by v7 (i) to get:
VI (#)Zvi(t) +0 = 2V (t) + 0, (3)
as v; and vgl) are orthogonal.

The equation (??) is promising as we have a formula for the derivative of ;. Hence

AN(A+ Z) = Mi(A) = / 1 AW (t)dt.
0

The problem with this model is that v;(¢) depends on the matrix Z, so we can not use the randomness
of Z to bound v! (t)Zv;(t) unless t = 0. So we need a model in which at time ¢, v;(t) is independent
of the noise that is added at time t. Here is when Brownian Motion comes in play.

Definition 11. We call z(t) a Wigner process, if

e z(t) is N(0,¢) distributed for any ¢.
o z(t) —x(t') is N(0,t — t') distributed for any 0 <¢ <t <1
o z(t1) — z(t2) is independent of x(t3) — x(ts) for any ¢4 > to > t3 > 4

Basically z(t) is a random process and has the property that at time ¢ the way it moves is independent
of the actual value at time . We can generalize this concept to matrices.

Basically,
t/dt
= 1' ;
w(t) = lim z(0) + ;:1 Vi»

where ~; is N(0,dt) distributed.

Definition 12. We call Z(t) a Wigner symmetric process, i.e.

e Z(t) is symmetric N(0,t) distributed

o Z(t)— Z(t') is N(0,¢ — t') distributed for any 0 < ¢ <#' <1



° Z(tl) — Z(tg) is independent of Z(t3) — Z(t4) for any t1 > 1o > t3 > 14

Theorem 13 (Dyson). Let Z(t) be a Wiener process and let \;(t) be the it" eigenvalue at time t.
Then the following relations hold:

o P (Vt>0,M(t) > Aa(t) > ... > A\ (t) = 1.

e d)\;, = %dBi + Zj# W, where B; is N'(0,1) distributed and 8 =1 for GOE and § = 2
for GUE.

Similarly, Z(t) can be seen as:

t/dt
Z(t) = lim Z 7
(t) = lim (0)+; i

where Z;’s are GOE with variance dt.

We can thing about the model as follows. Fix n and let dt to be very small, going to 0 (independent
of n). Then, we can divide our process in 1/dt processes as:

) = A+ Zf/:dlt Z; if t is a multiple of dt
A+ Z}t:/ldtj Z; + (t — [t/dt]) Z;i41 otherwise

Now, since dt is very small, then we can approximate
vi(t) = vi([t/dt]dt),

and hence it will be independent of Z; 1 so we can follow the approach from equation (?7).

Observation 14. There is one issue with the above approach: dt - Z is GOE with variance N(0, dt?)
and not dt. So we need to take the gap of length V/dt to be under the condition of equation (7?).

This implies that:
A ((k: v 1)\/d7) ~ i (k \/ﬁ) + ik VAT Zyoi(k Vi),
where v; (k V/dt) is independent of Zj. Since Zj is NV(0,dt), we get that:
AL (k\/@%- s) ~ vl (kVdt) Zp 1ol (kVdE) := i,

for any 0 < s < /dt, where 7, is N'(0, 2dt) distributed which depends only on Z ;.

Similarly, we can compute first vgl) to get to:

(T ) g
Ni(kvdt) — N (kVdt) ;Axkx@)—MW@’

AP (Wit +5) 223

J#i

for any 0 < s < V/dt, where Zy(i, ) is N'(0,dt) distributed and depends only on Zj1.



Finally, using Taylor we have

Xi(k + D)VdE) = A (kVdt) + VAt (kvVdt) + A<2>(kf)+0((dt)3/2)

Hence:
1/Vdt
N(A+2) - ZA(kH\F) n(kVdt)
1/Vdt )
_ 3/2
f}; w+§2; k\F (k\ﬁ)+0(dt )

! 1
—>dtHOBi+/ ;Ai(A+Z(t))—Ak(A+Z(t)) dt +o(1) whp

0

where B; is N'(0,2) distributed.
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