Lecture notes

1 Perturbation of low rank matrices

Let $r \geq s \geq 0$ be fixed integers and let $\theta_{1} \geq \theta_{2} \geq \ldots \geq \theta_{s}>0>\theta_{s+1} \geq \ldots \geq \theta_{r}$. Define $P=\operatorname{diag}\left(\theta_{1}, \theta_{2}, \ldots, \theta_{r}, 0,0, \ldots, 0\right)$.

Let X_{n} be an $n \times n$ symmetric (Hermitian) unitary matrix, μ_{n} be its empirical eigenvalues measure, i.e.

$$
\mu_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i}\left(X_{n}\right)}
$$

and let $G_{\mu_{n}}$ be its Cauchy transform of μ_{n}, defined by:

$$
G_{\mu_{n}}:=\int \frac{d \mu_{n}(t)}{z-t}, \text { for } z \notin \operatorname{supp} \mu \text {. }
$$

Assume that μ_{n}, converge almost surely to a non-randomly compact supported probability measure μ. Suppose also that $\lambda_{i}\left(X_{n}\right)$ and $\lambda_{n-i}\left(X_{n}\right)$ converge almost surely to b respectively a for every $i=1, \ldots, r$, where $-\infty<a \leq b<\infty$ are fixed.

Define

$$
\tilde{X}_{n}=X_{n}+P_{n} .
$$

Theorem 1 (Eigenvalues). [Benaych-Georges, Nadakuditi] For $1 \leq i \leq s$ and $\theta_{i}>1 / G_{\mu}\left(b^{+}\right)$,

$$
\lambda_{i}\left(\tilde{X}_{n}\right) \longrightarrow_{a . s} G_{\mu}^{-1}\left(1 / \theta_{i}\right)
$$

For $1 \leq i \leq s$ and $\theta_{i} \leq 1 / G_{\mu}\left(b^{+}\right)$,

$$
\lambda_{i}\left(\tilde{X}_{n}\right) \longrightarrow \longrightarrow_{a . s} b
$$

For $0 \leq j<r-s$ and $\theta_{i} \geq 1 / G_{\mu}\left(a^{-}\right)$,

$$
\lambda_{n-j}\left(\tilde{X}_{n}\right) \longrightarrow_{a . s} a
$$

For $0 \leq j<r-s$ and $\theta_{i}<1 / G_{\mu}\left(a^{-}\right)$,

$$
\lambda_{n-j}\left(\tilde{X}_{n}\right) \longrightarrow \longrightarrow_{a . s} G_{\mu}^{-1}\left(1 / \theta_{r-j}\right) .
$$

Example 2. If $X=\frac{1}{\sqrt{n}} Z$, where is Z is GUE, then, we have $a=-2, b=2, G_{\mu}\left(b^{+}\right)=1, G_{\mu}(z)=$ $\frac{z-\sqrt{4-z^{2}}}{2}, G_{\mu}\left(a^{-}\right)=-1$ and $G_{\mu}^{-1}\left(1 / \theta_{i}\right)=\theta_{i}+\frac{1}{\theta_{i}}$.

Theorem 3 (Eigenvectors). [Benaych-Georges, Nadakuditi] Consider $i \in\{1, . ., r\}$ such that $1 / \theta_{i} \in$ $\left(G_{\mu}\left(a^{-}\right), G_{\mu}\left(b^{+}\right)\right)$. Let \tilde{u}_{i} be the unit-norm vector of \tilde{X} associated with the eigenvalue $\lambda_{i}(\tilde{X})$.

- If $\theta_{i}>0$ we have :

$$
\left|\left\langle\tilde{u}_{i}, \operatorname{ker}\left(\theta_{i} I-P\right)\right\rangle\right|^{2} \longrightarrow_{n \rightarrow \infty} \frac{-1}{\theta_{i}^{2} G_{\mu}^{\prime}(\rho)},
$$

where $\rho=G_{\mu}^{-1}\left(1 / \theta_{i}\right)$ is the limit of $\tilde{\lambda}_{i}$. Moreover,

$$
\left\langle\tilde{u}_{i}, \bigoplus_{j \neq i} \operatorname{ker}\left(\theta_{j} I-P\right)\right\rangle \longrightarrow 0 .
$$

- If $\theta_{i}<0$ we have:

$$
\left|\left\langle\tilde{u}_{n-r+i}, \operatorname{ker}\left(\theta_{i} I-P\right)\right\rangle\right|^{2} \longrightarrow_{n \rightarrow \infty} \frac{-1}{\theta_{i}^{2} G_{\mu}^{\prime}(\rho)},
$$

where $\rho=G_{\mu}^{-1}\left(1 / \theta_{i}\right)$ is the limit of $\tilde{\lambda}_{n-r+i}$.
Moreover,

$$
\left\langle\tilde{u}_{n-r+i}, \bigoplus_{j \neq i} \operatorname{ker}\left(\theta_{j} I-P\right)\right\rangle \longrightarrow 0 .
$$

Example 4. If $X=\frac{1}{\sqrt{n}} Z$, where Z is GUE, we have for $z>0, G_{\mu}(z)=\frac{z-\sqrt{z^{2}-4}}{2}$, so $G_{\mu}^{\prime}(z)=$ $\frac{1}{2}\left(1-\frac{z}{\sqrt{z^{2}-4}}\right)$ which implies that $\frac{-1}{\theta_{i}^{2} G_{\mu}^{\prime}\left(\theta+\frac{1}{\theta}\right)}=\frac{\theta_{i}^{2}-1}{\theta_{i}^{2}}$. Then, if all the θ_{i} 's are distinct we have:

$$
\begin{aligned}
& \left|\left\langle\tilde{u}_{i}, u_{i}\right\rangle\right|^{2} \rightarrow \begin{cases}1-\frac{1}{\theta_{i}^{2}} & \text { if } \theta_{i}>1 \\
0 & \text { if } 0<\theta_{i} \leq 1\end{cases} \\
& \left|\left\langle\tilde{u}_{i}, \operatorname{span}\left\{u_{1}, u_{2}, \ldots, u_{i-1}, u_{i+1}, . ., u_{r}\right\}\right\rangle\right|^{2} \rightarrow 0 .
\end{aligned}
$$

Proof of Theorem ??.

Using Weyl's interlacing inequalities imply that:

$$
\lambda_{k+(r-s)} \leq \lambda_{k}(\tilde{X}) \leq \lambda_{k-s},
$$

(we use the convention that $\lambda_{k}=-\infty$, if $k>n$ and $+\infty$ if $k<0$) and so, since $\lambda_{r} \longrightarrow b$ it follows that if $\lambda_{i}(\tilde{X})$ does not converge to a limit outside $[a, b]$ for some $1 \leq i \leq s$, then it has to go to b. Similarly, if $0<j \leq r-s$ and $\lambda_{n-i}(\tilde{X})$ does not converge to a limit outside $[a, b]$, then it has to go to a.

Intuition from rank 1

Assume $r=1$. Since X is unitary invariant wlog we can assume that $X=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and $P=\theta_{1} u^{*} u$, where u is randomly distributed on the unit sphere.
Suppose $\lambda_{1}^{\prime}>b$ is an eigenvalue of \tilde{X} which is not an eigenvalue of X. Then:

$$
0=\operatorname{det}\left(\lambda_{1}^{\prime} I-(X+P)\right)=\operatorname{det}\left(\lambda_{1}^{\prime} I-X\right) \cdot \operatorname{det}\left(I-\left(\lambda_{1}^{\prime} I-X\right)^{-1} P\right)
$$

It follows that:

$$
\operatorname{det}\left(I-\left(\lambda_{1}^{\prime} I-X\right)^{-1} P\right)=0,
$$

which translates as 1 is an eigenvalue for $\left(\lambda_{1}^{\prime} I-X\right)^{-1} P$. But $\operatorname{rank}(P)=1$, so it follows that

$$
\begin{equation*}
\text { Trace }\left(\left(\lambda_{1}^{\prime} I-X\right)^{-1} P\right)=1 . \tag{1}
\end{equation*}
$$

Since X is unitary invariant, wlog we can assume that $X=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ and $P=\theta u u^{*}$, where $u=\left(u_{1}, \ldots, u_{n}\right)$ is a random vector uniformly distributed on the unit sphere. Hence relation (??) becomes:

$$
1=\theta \sum_{k=1}^{n} \frac{\left|u_{i}\right|^{2}}{\lambda_{1}^{\prime}-\lambda_{k}}
$$

Since u is uniformly distributed on the unit sphere, it follows that, if $\lambda_{1}^{\prime} \geq \lambda_{1}+\epsilon$, where $\epsilon>0$ is fixed, then:

$$
\sum_{k=1}^{n} \frac{\left|u_{i}\right|^{2}}{\lambda_{1}^{\prime}-\lambda_{k}} \longrightarrow_{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{1}{\lambda_{1}^{\prime}-\lambda_{k}}=G_{\mu}\left(\lambda_{1}^{\prime}\right)
$$

Take $\epsilon \rightarrow 0$, it follows that

$$
\theta G_{\mu}\left(\lambda^{\prime}\right) \longrightarrow 1 \Rightarrow \lambda_{1}^{\prime} \longrightarrow G_{\mu}^{-1}(1 / \theta)
$$

However, if $1 / \theta>G(b)$, then $G_{\mu}^{-1}(1 / \theta)$ does not exist so, there is no such eigenvalue.

Proof from rank r

Let z be an eigenvalue for \tilde{X} which is not an eigenvalue for X, then $\operatorname{det}(z I-\tilde{X})=0$, which implies:

$$
\operatorname{det}\left(I-(z I-X)^{-1} P\right)=0
$$

As before, assume $X=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ and let $P=U \Lambda U^{*}$, then:

$$
0=\operatorname{det}\left(I-(z I-X)^{-1} P\right)=\operatorname{det}\left(I-U^{*}(z I-X)^{-1} U \Lambda\right)
$$

Define:

$$
M_{z}:=I-U^{*}(z I-X)^{-1} U \Lambda
$$

Lemma 5. The following things are true about M :

- $x \in \operatorname{ker}(z I-\tilde{X}) \Rightarrow U^{*} x \in \operatorname{ker}\left(M_{z}\right)$ and

$$
x=(z I-X)^{-1} U \Lambda U^{*} x
$$

- $M_{z}(i, j)=\mathbb{1}_{i=j}-\theta_{j} \sum_{k} \frac{U(j, k) U^{*}(k, i)}{z-\lambda_{k}}$
- $M_{z}(i, j) \longrightarrow 0$ if $i \neq j$ and $M_{z}(i, i) \longrightarrow 1-\theta_{i} G_{\mu}(z)$ if $i=j$.

Proof. Fix $\eta>0$. As long as $z>\lambda_{1}+\eta$ then $c_{k}:=1 /\left(z-\lambda_{k}\right)$ are bounded and independent of the entries of U, which implies that $\sum_{k} \frac{U(j, k) U^{*}(k, i)}{z-\lambda_{k}} \longrightarrow 0$ for $i \neq j$. Take $\eta \rightarrow 0$.

Now it is easy to see that z is an eigenvalue of \tilde{X} outside $[a, b]$ if and only if z is a diagonal element of M_{Z} and $G(a) \leq 1 / \theta_{i} \leq G(b)$.

Proof of Theorem ??. Let's assume that $\theta_{1}>\theta_{2}$. Suppose $\tilde{\lambda}_{1}>b+\eta$, for some $\eta>0$, is an eigenvalue for \tilde{X} which is not an eigenvalue for X and let \tilde{u}_{1} be the corresponding eigenvector. By Lemma ?? we know that

$$
M_{G_{\mu}^{-1}\left(1 / \theta_{1}\right)} \longrightarrow \operatorname{diag}\left(0,1-\frac{\theta_{2}}{\theta_{1}}, 1-\frac{\theta_{3}}{\theta_{1}}, \ldots, 1-\frac{\theta_{r}}{\theta_{1}}, 1,1, \ldots, 1\right)
$$

Now Lemma ?? also implies that:

$$
U^{*} \tilde{u}_{1} \in \operatorname{ker} M_{G_{\mu}^{-1}\left(1 / \theta_{1}\right)}
$$

which implies:

$$
U^{*} \tilde{u}_{1}=c_{1}(1,0,0, \ldots, 0)
$$

for some $c_{1}>0$.
This implies that:

$$
\begin{equation*}
\left\langle\tilde{u}_{1}, \bigoplus_{j>1} \operatorname{ker}\left(\theta_{j} I-P\right)\right\rangle \longrightarrow 0 \tag{2}
\end{equation*}
$$

By Lemma ?? we know that:

$$
\begin{aligned}
\tilde{u}_{1} & =\left(\tilde{\lambda}_{1} I-X\right)^{-1} U \Lambda U^{*} \tilde{u}_{1} \\
& =\left(\tilde{\lambda}_{1} I-X\right)^{-1} \sum_{j=1}^{r} \theta_{j}\left(u_{j}^{*} \tilde{u}_{1}\right) u_{j} \\
& =\left(\tilde{\lambda}_{1} I-X\right)^{-1} \theta_{1}\left(u_{1}^{*} \tilde{u}_{1}\right) u_{1}+\left(\tilde{\lambda}_{1} I-X\right)^{-1} \sum_{j=2}^{r} \theta_{j}\left(u_{j}^{*} \tilde{u}_{1}\right) u_{j}
\end{aligned}
$$

We know that $\tilde{\lambda}_{1}>\eta+b$, which implies

$$
\left\|\left(\tilde{\lambda}_{1} I-X\right)^{-1}\right\|<\infty
$$

and so, by equation (??)

$$
\left(\tilde{\lambda}_{1} I-X\right)^{-1} \sum_{j=2}^{r} \theta_{j}\left(u_{j}^{*} \tilde{u}_{1}\right) u_{j} \longrightarrow 0
$$

We conclude,

$$
\begin{aligned}
1=\left\|\tilde{u}_{1}\right\|^{2} & =\theta_{1}^{2}\left|u_{1}^{*} \tilde{u}_{1}\right|^{2}\left\|\left(\tilde{\lambda}_{1} I-X\right)^{-1} u_{1}\right\|^{2} \\
& =\theta_{1}^{2}\left|u_{1}^{*} \tilde{u}_{1}\right|^{2} \sum_{i=1}^{r} \frac{\left|u_{1}(i)\right|^{2}}{\left(\tilde{\lambda}_{1}-\lambda_{i}\right)^{2}} \\
& \longrightarrow \theta_{1}^{2}\left|u_{1}^{*} \tilde{u}_{1}\right|^{2} \int \frac{d \mu}{\left(\tilde{\lambda}_{1}-t\right)^{2}} \\
& \longrightarrow \theta_{1}^{2}\left|u_{1}^{*} \tilde{u}_{1}\right|^{2}\left(-G_{\mu}^{\prime}\left(\tilde{\lambda}_{1}\right)\right) .
\end{aligned}
$$

It follows that:

$$
\left|u_{1}^{*} \tilde{u}_{1}\right|^{2} \longrightarrow \frac{1}{-\theta_{1}^{2} G_{\mu}^{\prime}\left(\tilde{\lambda}_{1}\right)}
$$

Take $\eta \rightarrow 0$ to conclude the proof.

Consider the setting from the example. We have the following results regarding perturbation of small rank matrices.
Theorem 6 (GUE + rank 1 perturbation). [Peche] Assume that $X=\frac{1}{\sqrt{n}} Z$, where Z is GUE, with entries having variance σ^{2}. The following holds:

$$
\sqrt{n}\left(\lambda_{1}(\tilde{X})-\left(\theta+\frac{1}{\theta}\right)\right) \longrightarrow \mathcal{N}\left(0, \sigma_{\theta}^{2}\right)
$$

where $\sigma_{\theta}:=(\sigma / \theta) \cdot \sqrt{\theta^{2}-\sigma^{2}}$.

Theorem 7 (GUE + constant rank perturbation). [Peche] Let $X=\frac{1}{\sqrt{n}} Z$, where Z is GUE. Let $P=\operatorname{diag}\left(\theta_{1}, \ldots, \theta_{1}, \theta_{2}, \ldots, \theta_{r}, 0,0, \ldots, 0\right)$ with θ_{1} of multiplicity k such that k, r, θ_{1} are given numbers independent of $n\left(k, r \in \mathbf{Z}_{+}\right)$and σ_{i} 's lie in a compact set of $\left(-\infty, \theta_{1}\right)$ independent of n. Then the following holds:

- If $\theta_{1}<1$, then

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left(n^{2 / 3}\left(\lambda_{1}-2\right) \leq x\right)=F_{2}^{T W}(x)
$$

- If $\theta_{1}=1$, then

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left(n^{2 / 3}\left(\lambda_{1}-2\right) \leq x\right)=F_{k+2}^{T W}(x)
$$

- If $\theta_{1}>1$, then

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left(\frac{\theta_{1}^{2}}{\theta_{1}^{2}-1} n^{1 / 2}\left(\lambda_{1}-\left(\theta_{1}+\frac{1}{\theta_{1}}\right)\right) \leq x\right)=F_{G U E, \theta_{1}}^{k}(x)
$$

where $F_{2}^{T W}, F_{k+2}^{T W}$ and $F_{G U E, \theta_{1}}^{k}$ are deterministic functions. ($F_{G U E, \theta_{1}}^{k}$ is the probability distribution of the largest eigenvalue of the $k \times k$ GUE with parameter σ^{2})

Theorem 8 (GUE + low rank perturbation). [Peche] Let $X=\frac{1}{\sqrt{n}} Z$, where Z is GUE. Let $P=$ $\operatorname{diag}\left(\theta_{1}, \ldots, \theta_{1}, \theta_{2}, \ldots, \theta_{r}, 0,0, \ldots, 0\right)$ with θ_{1} of multiplicity k such that k and r satisfy $\lim _{n \rightarrow \infty} k / n=0$ and $\lim _{n \rightarrow \infty} k / n=0$. Suppose that θ_{1} is independent of n and σ_{i} 's lie in a compact set of $\left(-\infty, \theta_{1}\right)$ also independent of n. Then there exists deterministic functions of n, k, r and $\theta_{1}, G_{1}, G_{2}, G_{3}$ such that the following holds:

- If $\theta_{1} \leq 1$, then

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left(G_{1}\left(\lambda_{1}-G_{2}\right) \leq x\right)=F_{2}^{T W}(x)
$$

- If $\theta_{1}>1$, then

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left(G_{3}\left(\lambda_{1}-G_{2}\right) \leq x\right)=F_{2}^{T W}(x)
$$

2 Dyson Brownian Motion

Theorem 9 (Wigner + rank 1 perturbation). [Capitaine, Donati-Martin, Feral] Suppose X_{n} is Wigner matrix with entries i.i.d up to the symmetry constrained, with variance σ^{2} and distribution μ which satisfies the following Poincare inequality. "There exist a positive constant C such that for any $f \mathbb{R} \rightarrow \mathbb{C}, f \in \mathcal{C}^{1}$ and $f, f^{\prime} \in L^{2}(\mu)$, the following holds:

$$
\mathbf{E}\left(|f-\mathbf{E}(f)|^{2}\right) \leq C \int\left|f^{\prime}\right|^{2} d \mu . "
$$

Let $P_{n}:=\operatorname{diag}(\theta, 0,0, \ldots, 0)$ or $P_{n}(i, j)=\theta / n$ for all $1 \leq i, j \leq n$, where $\theta>\sigma$, then the following holds:

$$
\lambda_{1}(\tilde{X}) \longrightarrow \theta+\frac{1}{\theta}
$$

Definition 10 (GOE/GUE).

- We say that Z is GOE if and only if $Z_{i j}=Z_{j i}$ and $Z_{i j}$ is $\mathcal{N}(0,1)$ for $i \neq j$ and $\mathcal{N}(0,2)$ is $i=j$ independent of each other.
- We say that Z is GUE if and only if $Z_{i j}=Z_{j i}$ and $Z_{i j}=\left(B_{i j}+\mathbf{i} B_{i j}^{\prime}\right) / \sqrt{2}$ and $Z_{i i}=B_{i i}$, where $B_{i, j}$ are $\mathcal{N}(0,1)$ independent of each other.

Let Z be a GOE/GUE matrix. We can think about the matrix $A+Z$ as a process which starts at time $t=0$ in A and it smoothly moves up to time $t=1$ when it reaches $A+Z$. A good candidate for the model would be:

$$
A(t)=A+t Z
$$

Consider the relation

$$
A(t) v_{i}(t)=\lambda_{i}(t) v_{i}(t)
$$

and differentiate it with respect to t. We get:

$$
Z v_{i}(t)+A(t) v_{i}^{(1)}(t)=\lambda_{i}^{(1)}(t) v_{i}(t)+\lambda_{i}(t) v_{i}^{(1)}(t)
$$

We can left multiply by $v_{i}^{T}(i)$ to get:

$$
\begin{equation*}
v_{i}^{T}(t) Z v_{i}(t)+0=\lambda_{i}^{(1)}(t)+0 \tag{3}
\end{equation*}
$$

as v_{i} and $v_{i}^{(1)}$ are orthogonal.
The equation (??) is promising as we have a formula for the derivative of λ_{i}. Hence

$$
\lambda_{i}(A+Z)-\lambda_{i}(A)=\int_{0}^{1} \lambda_{i}^{(1)}(t) d t
$$

The problem with this model is that $v_{i}(t)$ depends on the matrix Z, so we can not use the randomness of Z to bound $v_{i}^{T}(t) Z v_{i}(t)$ unless $t=0$. So we need a model in which at time $t, v_{i}(t)$ is independent of the noise that is added at time t. Here is when Brownian Motion comes in play.

Definition 11. We call $x(t)$ a Wigner process, if

- $x(t)$ is $\mathcal{N}(0, t)$ distributed for any t.
- $x(t)-x\left(t^{\prime}\right)$ is $\mathcal{N}\left(0, t-t^{\prime}\right)$ distributed for any $0 \leq t \leq t^{\prime} \leq 1$
- $x\left(t_{1}\right)-x\left(t_{2}\right)$ is independent of $x\left(t_{3}\right)-x\left(t_{4}\right)$ for any $t_{1}>t_{2} \geq t_{3}>t_{4}$

Basically $x(t)$ is a random process and has the property that at time t the way it moves is independent of the actual value at time t. We can generalize this concept to matrices.

Basically,

$$
x(t)=\lim _{d t \rightarrow 0} x(0)+\sum_{i=1}^{t / d t} \gamma_{i}
$$

where γ_{i} is $\mathcal{N}(0, d t)$ distributed.
Definition 12. We call $Z(t)$ a Wigner symmetric process, i.e.

- $Z(t)$ is symmetric $\mathcal{N}(0, t)$ distributed
- $Z(t)-Z\left(t^{\prime}\right)$ is $\mathcal{N}\left(0, t-t^{\prime}\right)$ distributed for any $0 \leq t \leq t^{\prime} \leq 1$
- $Z\left(t_{1}\right)-Z\left(t_{2}\right)$ is independent of $Z\left(t_{3}\right)-Z\left(t_{4}\right)$ for any $t_{1}>t_{2} \geq t_{3}>t_{4}$

Theorem 13 (Dyson). Let $Z(t)$ be a Wiener process and let $\lambda_{i}(t)$ be the $i^{\text {th }}$ eigenvalue at time t. Then the following relations hold:

- $\mathbf{P}\left(\forall t>0, \lambda_{1}(t)>\lambda_{2}(t)>\ldots>\lambda_{n}(t)\right)=1$.
- $d \lambda_{i}=\frac{\sqrt{2}}{\sqrt{\beta}} d B_{i}+\sum_{j \neq i} \frac{d t}{\lambda_{i}(t)-\lambda_{j}(t)}$, where B_{i} is $\mathcal{N}(0,1)$ distributed and $\beta=1$ for $G O E$ and $\beta=2$ for GUE.

Similarly, $Z(t)$ can be seen as:

$$
Z(t)=\lim _{d t \rightarrow 0} Z(0)+\sum_{i=1}^{t / d t} Z_{i}
$$

where Z_{i} 's are GOE with variance $d t$.
We can thing about the model as follows. Fix n and let $d t$ to be very small, going to 0 (independent of n). Then, we can divide our process in $1 / d t$ processes as:

$$
A(t)=\left\{\begin{array}{l}
A+\sum_{i=1}^{t / d t} Z_{i} \text { if } t \text { is a multiple of } d t \\
A+\sum_{i=1}^{\lfloor t / d t\rfloor} Z_{i}+(t-\lfloor t / d t\rfloor) Z_{i+1} \text { otherwise }
\end{array}\right.
$$

Now, since $d t$ is very small, then we can approximate

$$
v_{i}(t) \approx v_{i}(\lfloor t / d t\rfloor d t)
$$

and hence it will be independent of Z_{i+1} so we can follow the approach from equation (??).
Observation 14. There is one issue with the above approach: dt. Z is $G O E$ with variance $\mathcal{N}\left(0, d t^{2}\right)$ and not dt. So we need to take the gap of length $\sqrt{d t}$ to be under the condition of equation (??).

This implies that:

$$
\lambda_{i}((k+1) \sqrt{d t}) \approx \lambda_{i}(k \sqrt{d t})+v_{i}(k \sqrt{d t})^{T} Z_{k} v_{i}(k \sqrt{d t})
$$

where $v_{i}(k \sqrt{d t})$ is independent of Z_{k}. Since Z_{k} is $\mathcal{N}(0, d t)$, we get that:

$$
\lambda_{i}^{(1)}(k \sqrt{d t}+s) \approx v_{i}^{T}(k \sqrt{d t}) Z_{k+1} v_{i}^{T}(k \sqrt{d t}):=\gamma_{k}
$$

for any $0 \leq s<\sqrt{d t}$, where γ_{k} is $\mathcal{N}(0,2 d t)$ distributed which depends only on Z_{k+1}.
Similarly, we can compute first $v_{i}^{(1)}$ to get to:

$$
\lambda_{i}^{(2)}(k \sqrt{d t}+s) \approx 2 \sum_{j \neq i} \frac{\left(v_{i}^{T}(k \sqrt{d t}) Z_{k+1} v_{j}^{T}(k \sqrt{d t})\right)^{2}}{\lambda_{i}(k \sqrt{d t})-\lambda_{j}(k \sqrt{d t})}:=2 \sum_{j \neq i} \frac{Z_{k}(i, j)^{2}}{\lambda_{i}(k \sqrt{d t})-\lambda_{j}(k \sqrt{d t})},
$$

for any $0 \leq s<\sqrt{d t}$, where $Z_{k}(i, j)$ is $\mathcal{N}(0, d t)$ distributed and depends only on Z_{k+1}.

Finally, using Taylor we have

$$
\lambda_{i}((k+1) \sqrt{d t})=\lambda_{i}(k \sqrt{d t})+\sqrt{d t} \lambda_{i}^{(1)}(k \sqrt{d t})+\frac{d t}{2} \lambda_{i}^{(2)}(k \sqrt{d t})+\mathcal{O}\left((d t)^{3 / 2}\right)
$$

Hence:

$$
\begin{aligned}
\lambda_{i}(A+Z)-\lambda_{i}(A) & =\sum_{k=1}^{1 / \sqrt{d t}} \lambda_{i}((k+1) \sqrt{d t})-\lambda_{i}(k \sqrt{d t}) \\
& =\sqrt{d t} \sum_{k=1}^{1 / \sqrt{d t}} \gamma_{k}+\sum_{k \neq i} \sum_{j \neq i} \frac{Z_{k}(i, j)^{2}}{\lambda_{i}(k \sqrt{d t})-\lambda_{j}(k \sqrt{d t})}+O\left(d t^{3 / 2}\right) \\
& \longrightarrow{ }_{d t \rightarrow 0} B_{i}+\int_{0}^{1}\left(\sum_{k \neq i} \frac{1}{\lambda_{i}(A+Z(t))-\lambda_{k}(A+Z(t))}\right) d t+o(1) \text { whp }
\end{aligned}
$$

where B_{i} is $\mathcal{N}(0,2)$ distributed.

References

[1] F. Benaych-Georges and R.Nadakuditi The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices, ScienceDirect 2011
[2] M. Capitaine, C. Donati-Martin and D. Feral The largest eigenvalues of finite rank deformation of large Wigner matrices: convergence and nonuniversality of the fluctuations, 2011 (https://arxiv.org/pdf/0706.0136.pdf)
[3] S.Peche The largest eigenvalue of small rank perturbations of Hermitian random matrices, 2005 (https://arxiv.org/pdf/math/0411487.pdf) itemaa G.Anderson, A.Guionnet, O. Zeitouni An introduction to Random Matrices

