Lecture notes

1 Perturbation of low rank matrices

Let $r \geq s \geq 0$ be fixed integers and let $\theta_1 \geq \theta_2 \geq ... \geq \theta_s > 0 > \theta_{s+1} \geq ... \geq \theta_r$. Define $P = \text{diag}(\theta_1, \theta_2, ..., \theta_r, 0, 0, ..., 0)$.

Let X_n be an $n \times n$ symmetric (Hermitian) unitary matrix, μ_n be its empirical eigenvalues measure, i.e.

$$\mu_n = \frac{1}{n} \sum_{i=1}^n \delta_{\lambda_i(X_n)}$$

and let G_{μ_n} be its Cauchy transform of μ_n , defined by:

$$G_{\mu_n} := \int \frac{d\mu_n(t)}{z-t}, \text{ for } z \notin \mathrm{supp}\mu.$$

Assume that μ_n , converge almost surely to a non-randomly compact supported probability measure μ . Suppose also that $\lambda_i(X_n)$ and $\lambda_{n-i}(X_n)$ converge almost surely to b respectively a for every i = 1, ..., r, where $-\infty < a \le b < \infty$ are fixed.

Define

$$\tilde{X}_n = X_n + P_n$$

Theorem 1 (Eigenvalues). [Benaych-Georges, Nadakuditi] For $1 \le i \le s$ and $\theta_i > 1/G_{\mu}(b^+)$,

$$\lambda_i(\tilde{X}_n) \longrightarrow_{a.s} G_\mu^{-1}(1/\theta_i)$$

For $1 \leq i \leq s$ and $\theta_i \leq 1/G_{\mu}(b^+)$,

$$\lambda_i(X_n) \longrightarrow_{a.s} b$$

For $0 \le j < r - s \text{ and } \theta_i \ge 1/G_{\mu}(a^-)$,

$$\lambda_{n-j}(X_n) \longrightarrow_{a.s} a$$

For $0 \le j < r - s$ and $\theta_i < 1/G_{\mu}(a^-)$,

$$\lambda_{n-j}(\tilde{X}_n) \longrightarrow_{a.s} G_{\mu}^{-1}(1/\theta_{r-j}).$$

Example 2. If $X = \frac{1}{\sqrt{n}}Z$, where is Z is GUE, then, we have a = -2, b = 2, $G_{\mu}(b^{+}) = 1$, $G_{\mu}(z) = \frac{z - \sqrt{4-z^{2}}}{2}$, $G_{\mu}(a^{-}) = -1$ and $G_{\mu}^{-1}(1/\theta_{i}) = \theta_{i} + \frac{1}{\theta_{i}}$.

Theorem 3 (Eigenvectors). [Benaych-Georges, Nadakuditi] Consider $i \in \{1, .., r\}$ such that $1/\theta_i \in (G_{\mu}(a^{-}), G_{\mu}(b^{+}))$. Let \tilde{u}_i be the unit-norm vector of \tilde{X} associated with the eigenvalue $\lambda_i(\tilde{X})$.

• If $\theta_i > 0$ we have :

$$|\langle \tilde{u}_i, \ker(\theta_i I - P) \rangle|^2 \longrightarrow_{n \to \infty} \frac{-1}{\theta_i^2 G'_{\mu}(\rho)}$$

where $\rho = G_{\mu}^{-1}(1/\theta_i)$ is the limit of $\tilde{\lambda}_i$. Moreover,

$$\left\langle \tilde{u}_i, \bigoplus_{j \neq i} \ker(\theta_j I - P) \right\rangle \longrightarrow 0$$

• If $\theta_i < 0$ we have:

$$|\langle \tilde{u}_{n-r+i}, \ker(\theta_i I - P) \rangle|^2 \longrightarrow_{n \to \infty} \frac{-1}{\theta_i^2 G'_{\mu}(\rho)}$$

where $\rho = G_{\mu}^{-1}(1/\theta_i)$ is the limit of $\tilde{\lambda}_{n-r+i}$. Moreover,

$$\left\langle \tilde{u}_{n-r+i}, \bigoplus_{j \neq i} \ker(\theta_j I - P) \right\rangle \longrightarrow 0.$$

Example 4. If $X = \frac{1}{\sqrt{n}}Z$, where Z is GUE, we have for z > 0, $G_{\mu}(z) = \frac{z-\sqrt{z^2-4}}{2}$, so $G'_{\mu}(z) = \frac{1}{2}\left(1-\frac{z}{\sqrt{z^2-4}}\right)$ which implies that $\frac{-1}{\theta_i^2 G'_{\mu}(\theta+\frac{1}{\theta})} = \frac{\theta_i^2-1}{\theta_i^2}$. Then, if all the θ_i 's are distinct we have:

$$\begin{split} |\langle \tilde{u}_i, u_i \rangle|^2 &\to \begin{cases} 1 - \frac{1}{\theta_i^2} & \text{if } \theta_i > 1\\ 0 & \text{if } 0 < \theta_i \le 1 \\ |\langle \tilde{u}_i, \operatorname{span}\{u_1, u_2, \dots, u_{i-1}, u_{i+1}, \dots, u_r\} \rangle|^2 \to 0. \end{split}$$

Proof of Theorem ??.

Using Weyl's interlacing inequalities imply that:

$$\lambda_{k+(r-s)} \le \lambda_k(\tilde{X}) \le \lambda_{k-s},$$

(we use the convention that $\lambda_k = -\infty$, if k > n and $+\infty$ if k < 0) and so, since $\lambda_r \longrightarrow b$ it follows that if $\lambda_i(\tilde{X})$ does not converge to a limit outside [a, b] for some $1 \le i \le s$, then it has to go to b. Similarly, if $0 < j \le r-s$ and $\lambda_{n-i}(\tilde{X})$ does not converge to a limit outside [a, b], then it has to go to a.

Intuition from rank 1

Assume r = 1. Since X is unitary invariant wlog we can assume that $X = \text{diag}(\lambda_1, ..., \lambda_n)$ and $P = \theta_1 u^* u$, where u is randomly distributed on the unit sphere.

Suppose $\lambda'_1 > b$ is an eigenvalue of \tilde{X} which is not an eigenvalue of X. Then:

$$0 = \det(\lambda'_1 I - (X + P)) = \det(\lambda'_1 I - X) \cdot \det(I - (\lambda'_1 I - X)^{-1} P)$$

It follows that:

$$\det(I - (\lambda_1'I - X)^{-1}P) = 0,$$

which translates as 1 is an eigenvalue for $(\lambda'_1 I - X)^{-1}P$. But rank(P) = 1, so it follows that

Trace
$$((\lambda'_1 I - X)^{-1} P) = 1.$$
 (1)

Since X is unitary invariant, wlog we can assume that $X = \text{diag}(\lambda_1, \lambda_2, ..., \lambda_n)$ and $P = \theta u u^*$, where $u = (u_1, ..., u_n)$ is a random vector uniformly distributed on the unit sphere. Hence relation (??) becomes:

$$1 = \theta \sum_{k=1}^{n} \frac{|u_i|^2}{\lambda_1' - \lambda_k}.$$

Since u is uniformly distributed on the unit sphere, it follows that, if $\lambda'_1 \ge \lambda_1 + \epsilon$, where $\epsilon > 0$ is fixed, then:

$$\sum_{k=1}^{n} \frac{|u_i|^2}{\lambda_1' - \lambda_k} \longrightarrow_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{1}{\lambda_1' - \lambda_k} = G_{\mu}(\lambda_1').$$

Take $\epsilon \to 0$, it follows that

$$\theta G_{\mu}(\lambda') \longrightarrow 1 \Rightarrow \lambda'_1 \longrightarrow G_{\mu}^{-1}(1/\theta).$$

However, if $1/\theta > G(b)$, then $G_{\mu}^{-1}(1/\theta)$ does not exist so, there is no such eigenvalue.

Proof from rank r

Let z be an eigenvalue for \tilde{X} which is not an eigenvalue for X, then $\det(zI - \tilde{X}) = 0$, which implies:

$$\det(I - (zI - X)^{-1}P) = 0.$$

As before, assume $X = \text{diag}(\lambda_1, \lambda_2, ..., \lambda_n)$ and let $P = U\Lambda U^*$, then:

$$0 = \det(I - (zI - X)^{-1}P) = \det(I - U^*(zI - X)^{-1}U\Lambda)$$

Define:

$$M_z := I - U^* (zI - X)^{-1} U \Lambda.$$

Lemma 5. The following things are true about M:

• $x \in \ker(zI - \tilde{X}) \Rightarrow U^*x \in \ker(M_z)$ and

$$x = (zI - X)^{-1} U\Lambda U^* x.$$

M_z(i, j) = 1_{i=j} − θ_j ∑_k U(j,k)U^{*}(k,i)/(z-λ_k)
M_z(i, j) → 0 if i ≠ j and M_z(i, i) → 1 − θ_iG_μ(z) if i = j.

Proof. Fix $\eta > 0$. As long as $z > \lambda_1 + \eta$ then $c_k := 1/(z - \lambda_k)$ are bounded and independent of the entries of U, which implies that $\sum_k \frac{U(j,k)U^*(k,i)}{z - \lambda_k} \longrightarrow 0$ for $i \neq j$. Take $\eta \to 0$.

Now it is easy to see that z is an eigenvalue of \tilde{X} outside [a, b] if and only if z is a diagonal element of M_Z and $G(a) \leq 1/\theta_i \leq G(b)$.

Proof of Theorem ??. Let's assume that $\theta_1 > \theta_2$. Suppose $\tilde{\lambda}_1 > b + \eta$, for some $\eta > 0$, is an eigenvalue for \tilde{X} which is not an eigenvalue for X and let \tilde{u}_1 be the corresponding eigenvector. By Lemma ?? we know that

$$M_{G_{\mu}^{-1}(1/\theta_1)} \longrightarrow \operatorname{diag}\left(0, 1 - \frac{\theta_2}{\theta_1}, 1 - \frac{\theta_3}{\theta_1}, ..., 1 - \frac{\theta_r}{\theta_1}, 1, 1, ..., 1\right).$$

Now Lemma ?? also implies that:

$$U^*\tilde{u}_1 \in \ker M_{G^{-1}_{\mu}(1/\theta_1)},$$

which implies:

$$U^*\tilde{u}_1 = c_1(1, 0, 0, ..., 0),$$

for some $c_1 > 0$.

This implies that:

$$\left\langle \tilde{u}_1, \bigoplus_{j>1} \ker(\theta_j I - P) \right\rangle \longrightarrow 0.$$
 (2)

By Lemma ?? we know that:

$$\begin{split} \tilde{u}_1 &= (\tilde{\lambda}_1 I - X)^{-1} U \Lambda U^* \tilde{u}_1 \\ &= (\tilde{\lambda}_1 I - X)^{-1} \sum_{j=1}^r \theta_j (u_j^* \tilde{u}_1) u_j \\ &= (\tilde{\lambda}_1 I - X)^{-1} \theta_1 (u_1^* \tilde{u}_1) u_1 + (\tilde{\lambda}_1 I - X)^{-1} \sum_{j=2}^r \theta_j (u_j^* \tilde{u}_1) u_j \end{split}$$

We know that $\tilde{\lambda}_1 > \eta + b$, which implies

$$\|(\tilde{\lambda}_1 I - X)^{-1}\| < \infty,$$

and so, by equation (??)

$$(\tilde{\lambda}_1 I - X)^{-1} \sum_{j=2}^r \theta_j (u_j^* \tilde{u}_1) u_j \longrightarrow 0.$$

We conclude,

$$\begin{split} 1 &= \|\tilde{u}_1\|^2 = \theta_1^2 |u_1^* \tilde{u}_1|^2 \| (\tilde{\lambda}_1 I - X)^{-1} u_1 \|^2 \\ &= \theta_1^2 |u_1^* \tilde{u}_1|^2 \sum_{i=1}^r \frac{|u_1(i)|^2}{(\tilde{\lambda}_1 - \lambda_i)^2} \\ &\longrightarrow \theta_1^2 |u_1^* \tilde{u}_1|^2 \int \frac{d\mu}{(\tilde{\lambda}_1 - t)^2} \\ &\longrightarrow \theta_1^2 |u_1^* \tilde{u}_1|^2 \left(-G'_\mu(\tilde{\lambda}_1) \right). \end{split}$$

It follows that:

$$|u_1^*\tilde{u}_1|^2 \longrightarrow \frac{1}{-\theta_1^2 G'_\mu(\tilde{\lambda}_1)}.$$

Take $\eta \rightarrow 0$ to conclude the proof.

Consider the setting from the example. We have the following results regarding perturbation of small rank matrices.

Theorem 6 (GUE + rank 1 perturbation). [Peche] Assume that $X = \frac{1}{\sqrt{n}}Z$, where Z is GUE, with entries having variance σ^2 . The following holds:

$$\sqrt{n}\left(\lambda_1(\tilde{X}) - \left(\theta + \frac{1}{\theta}\right)\right) \longrightarrow \mathcal{N}(0, \sigma_{\theta}^2),$$

where $\sigma_{\theta} := (\sigma/\theta) \cdot \sqrt{\theta^2 - \sigma^2}$.

Theorem 7 (GUE + constant rank perturbation). [Peche] Let $X = \frac{1}{\sqrt{n}}Z$, where Z is GUE. Let $P = \text{diag}(\theta_1, ..., \theta_1, \theta_2, ..., \theta_r, 0, 0, ..., 0)$ with θ_1 of multiplicity k such that k, r, θ_1 are given numbers independent of n $(k, r \in \mathbf{Z}_+)$ and σ_i 's lie in a compact set of $(-\infty, \theta_1)$ independent of n. Then the following holds:

• If $\theta_1 < 1$, then

$$\lim_{n \to \infty} \mathbf{P}\left(n^{2/3}(\lambda_1 - 2) \le x\right) = F_2^{TW}(x).$$

• If $\theta_1 = 1$, then

$$\lim_{n \to \infty} \mathbf{P}\left(n^{2/3}(\lambda_1 - 2) \le x\right) = F_{k+2}^{TW}(x)$$

• If $\theta_1 > 1$, then

$$\lim_{n \to \infty} \mathbf{P}\left(\frac{\theta_1^2}{\theta_1^2 - 1} n^{1/2} \left(\lambda_1 - \left(\theta_1 + \frac{1}{\theta_1}\right)\right) \le x\right) = F_{GUE,\theta_1}^k(x),$$

where F_2^{TW} , F_{k+2}^{TW} and F_{GUE,θ_1}^k are deterministic functions. $(F_{GUE,\theta_1}^k$ is the probability distribution of the largest eigenvalue of the $k \times k$ GUE with parameter σ^2)

Theorem 8 (GUE + low rank perturbation). [Peche] Let $X = \frac{1}{\sqrt{n}}Z$, where Z is GUE. Let $P = \text{diag}(\theta_1, ..., \theta_1, \theta_2, ..., \theta_r, 0, 0, ..., 0)$ with θ_1 of multiplicity k such that k and r satisfy $\lim_{n\to\infty} k/n = 0$ and $\lim_{n\to\infty} k/n = 0$. Suppose that θ_1 is independent of n and σ_i 's lie in a compact set of $(-\infty, \theta_1)$ also independent of n. Then there exists deterministic functions of n, k, r and θ_1 , G_1, G_2, G_3 such that the following holds:

If θ₁ ≤ 1, then
 lim _{n→∞} P (G₁(λ₁ − G₂) ≤ x) = F₂^{TW}(x).
 If θ₁ > 1, then

 $\lim_{n \to \infty} \mathbf{P} \left(G_3(\lambda_1 - G_2) \le x \right) = F_2^{TW}(x).$

2 Dyson Brownian Motion

Theorem 9 (Wigner + rank 1 perturbation). [Capitaine, Donati-Martin, Feral] Suppose X_n is Wigner matrix with entries i.i.d up to the symmetry constrained, with variance σ^2 and distribution μ which satisfies the following Poincare inequality. "There exist a positive constant C such that for any $f\mathbb{R} \to \mathbb{C}, f \in \mathcal{C}^1$ and $f, f' \in L^2(\mu)$, the following holds:

$$\mathbf{E}(|f - \mathbf{E}(f)|^2) \le C \int |f'|^2 d\mu.$$

Let $P_n := \text{diag}(\theta, 0, 0, ..., 0)$ or $P_n(i, j) = \theta/n$ for all $1 \le i, j \le n$, where $\theta > \sigma$, then the following holds:

$$\lambda_1(\tilde{X}) \longrightarrow \theta + \frac{1}{\theta}.$$

Definition 10 (GOE/GUE).

• We say that Z is GOE if and only if $Z_{ij} = Z_{ji}$ and Z_{ij} is $\mathcal{N}(0,1)$ for $i \neq j$ and $\mathcal{N}(0,2)$ is i = j independent of each other.

• We say that Z is GUE if and only if $Z_{ij} = Z_{ji}$ and $Z_{ij} = (B_{ij} + \mathbf{i}B'_{ij})/\sqrt{2}$ and $Z_{ii} = B_{ii}$, where $B_{i,j}$ are $\mathcal{N}(0,1)$ independent of each other.

Let Z be a GOE/GUE matrix. We can think about the matrix A + Z as a process which starts at time t = 0 in A and it smoothly moves up to time t = 1 when it reaches A + Z. A good candidate for the model would be:

$$A(t) = A + tZ.$$

Consider the relation

$$A(t)v_i(t) = \lambda_i(t)v_i(t)$$

and differentiate it with respect to t. We get:

$$Zv_i(t) + A(t)v_i^{(1)}(t) = \lambda_i^{(1)}(t)v_i(t) + \lambda_i(t)v_i^{(1)}(t).$$

We can left multiply by $v_i^T(i)$ to get:

$$v_i^T(t)Zv_i(t) + 0 = \lambda_i^{(1)}(t) + 0, \tag{3}$$

as v_i and $v_i^{(1)}$ are orthogonal.

The equation (??) is promising as we have a formula for the derivative of λ_i . Hence

$$\lambda_i(A+Z) - \lambda_i(A) = \int_0^1 \lambda_i^{(1)}(t) dt.$$

The problem with this model is that $v_i(t)$ depends on the matrix Z, so we can not use the randomness of Z to bound $v_i^T(t)Zv_i(t)$ unless t = 0. So we need a model in which at time t, $v_i(t)$ is independent of the noise that is added at time t. Here is when Brownian Motion comes in play.

Definition 11. We call x(t) a Wigner process, if

- x(t) is $\mathcal{N}(0, t)$ distributed for any t.
- x(t) x(t') is $\mathcal{N}(0, t t')$ distributed for any $0 \le t \le t' \le 1$
- $x(t_1) x(t_2)$ is independent of $x(t_3) x(t_4)$ for any $t_1 > t_2 \ge t_3 > t_4$

Basically x(t) is a random process and has the property that at time t the way it moves is independent of the actual value at time t. We can generalize this concept to matrices.

Basically,

$$x(t) = \lim_{dt \to 0} x(0) + \sum_{i=1}^{t/dt} \gamma_i,$$

where γ_i is $\mathcal{N}(0, dt)$ distributed.

Definition 12. We call Z(t) a Wigner symmetric process, i.e.

- Z(t) is symmetric $\mathcal{N}(0,t)$ distributed
- Z(t) Z(t') is $\mathcal{N}(0, t t')$ distributed for any $0 \le t \le t' \le 1$

• $Z(t_1) - Z(t_2)$ is independent of $Z(t_3) - Z(t_4)$ for any $t_1 > t_2 \ge t_3 > t_4$

Theorem 13 (Dyson). Let Z(t) be a Wiener process and let $\lambda_i(t)$ be the *i*th eigenvalue at time t. Then the following relations hold:

- $\mathbf{P}(\forall t > 0, \lambda_1(t) > \lambda_2(t) > \dots > \lambda_n(t)) = 1.$
- $d\lambda_i = \frac{\sqrt{2}}{\sqrt{\beta}} dB_i + \sum_{j \neq i} \frac{dt}{\lambda_i(t) \lambda_j(t)}$, where B_i is $\mathcal{N}(0, 1)$ distributed and $\beta = 1$ for GOE and $\beta = 2$ for GUE.

Similarly, Z(t) can be seen as:

$$Z(t) = \lim_{dt \to 0} Z(0) + \sum_{i=1}^{t/dt} Z_i,$$

where Z_i 's are GOE with variance dt.

We can thing about the model as follows. Fix n and let dt to be very small, going to 0 (independent of n). Then, we can divide our process in 1/dt processes as:

$$A(t) = \begin{cases} A + \sum_{i=1}^{t/dt} Z_i & \text{if } t \text{ is a multiple of } dt \\ A + \sum_{i=1}^{\lfloor t/dt \rfloor} Z_i + (t - \lfloor t/dt \rfloor) Z_{i+1} & \text{otherwise} \end{cases}$$

Now, since dt is very small, then we can approximate

$$v_i(t) \approx v_i(\lfloor t/dt \rfloor dt),$$

and hence it will be independent of Z_{i+1} so we can follow the approach from equation (??).

Observation 14. There is one issue with the above approach: $dt \cdot Z$ is GOE with variance $\mathcal{N}(0, dt^2)$ and not dt. So we need to take the gap of length \sqrt{dt} to be under the condition of equation (??).

This implies that:

$$\lambda_i \left((k+1)\sqrt{dt} \right) \approx \lambda_i \left(k \sqrt{dt} \right) + v_i (k \sqrt{dt})^T Z_k v_i (k \sqrt{dt})^T$$

where $v_i(k \sqrt{dt})$ is independent of Z_k . Since Z_k is $\mathcal{N}(0, dt)$, we get that:

$$\lambda_i^{(1)}\left(k\sqrt{dt}+s\right) \approx v_i^T(k\sqrt{dt})Z_{k+1}v_i^T(k\sqrt{dt}) := \gamma_k,$$

for any $0 \leq s < \sqrt{dt}$, where γ_k is $\mathcal{N}(0, 2dt)$ distributed which depends only on Z_{k+1} . Similarly, we can compute first $v_i^{(1)}$ to get to:

$$\lambda_i^{(2)}\left(k\sqrt{dt}+s\right) \approx 2\sum_{j\neq i} \frac{\left(v_i^T(k\sqrt{dt})Z_{k+1}v_j^T(k\sqrt{dt})\right)^2}{\lambda_i(k\sqrt{dt}) - \lambda_j(k\sqrt{dt})} := 2\sum_{j\neq i} \frac{Z_k(i,j)^2}{\lambda_i(k\sqrt{dt}) - \lambda_j(k\sqrt{dt})},$$

for any $0 \leq s < \sqrt{dt}$, where $Z_k(i, j)$ is $\mathcal{N}(0, dt)$ distributed and depends only on Z_{k+1} .

Finally, using Taylor we have

$$\lambda_i((k+1)\sqrt{dt}) = \lambda_i(k\sqrt{dt}) + \sqrt{dt}\lambda_i^{(1)}(k\sqrt{dt}) + \frac{dt}{2}\lambda_i^{(2)}(k\sqrt{dt}) + \mathcal{O}((dt)^{3/2})$$

Hence:

$$\begin{split} \lambda_i(A+Z) - \lambda_i(A) &= \sum_{k=1}^{1/\sqrt{dt}} \lambda_i \left((k+1)\sqrt{dt} \right) - \lambda_i(k\sqrt{dt}) \\ &= \sqrt{dt} \sum_{k=1}^{1/\sqrt{dt}} \gamma_k + \sum_{k \neq i} \sum_{j \neq i} \frac{Z_k(i,j)^2}{\lambda_i(k\sqrt{dt}) - \lambda_j(k\sqrt{dt})} + O(dt^{3/2}) \\ &\longrightarrow_{dt \to 0} B_i + \int_0^1 \left(\sum_{k \neq i} \frac{1}{\lambda_i(A+Z(t)) - \lambda_k(A+Z(t))} \right) dt + o(1) \text{ whp} \end{split}$$

where B_i is $\mathcal{N}(0,2)$ distributed.

References

- [1] F. Benaych-Georges and R.Nadakuditi The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices, ScienceDirect 2011
- M. Capitaine, C. Donati-Martin and D. Feral The largest eigenvalues of finite rank deformation of large Wigner matrices: convergence and nonuniversality of the fluctuations, 2011 (https://arxiv.org/pdf/0706.0136.pdf)
- [3] S.Peche The largest eigenvalue of small rank perturbations of Hermitian random matrices, 2005 (https://arxiv.org/pdf/math/0411487.pdf) itemaa G.Anderson, A.Guionnet, O. Zeitouni An introduction to Random Matrices