
Lecture notes

1 Perturbation of low rank matrices

Let r ≥ s ≥ 0 be fixed integers and let θ1 ≥ θ2 ≥ ... ≥ θs > 0 > θs+1 ≥ ... ≥ θr. Define
P = diag (θ1, θ2, ..., θr, 0, 0, ..., 0).

Let Xn be an n× n symmetric (Hermitian) unitary matrix, µn be its empirical eigenvalues measure,
i.e.

µn =
1

n

n∑
i=1

δλi(Xn)

and let Gµn be its Cauchy transform of µn, defined by:

Gµn :=

∫
dµn(t)

z − t
, for z 6∈ suppµ.

Assume that µn, converge almost surely to a non-randomly compact supported probability measure µ.
Suppose also that λi(Xn) and λn−i(Xn) converge almost surely to b respectively a for every i = 1, .., r,
where −∞ < a ≤ b <∞ are fixed.

Define
X̃n = Xn + Pn.

Theorem 1 (Eigenvalues). [Benaych-Georges, Nadakuditi] For 1 ≤ i ≤ s and θi > 1/Gµ(b+),

λi(X̃n) −→a.s G
−1
µ (1/θi)

For 1 ≤ i ≤ s and θi ≤ 1/Gµ(b+),

λi(X̃n) −→a.s b

For 0 ≤ j < r − s and θi ≥ 1/Gµ(a−),

λn−j(X̃n) −→a.s a

For 0 ≤ j < r − s and θi < 1/Gµ(a−),

λn−j(X̃n) −→a.s G
−1
µ (1/θr−j).

Example 2. If X = 1√
n
Z, where is Z is GUE, then, we have a = −2, b = 2, Gµ(b+) = 1, Gµ(z) =

z−
√
4−z2
2 , Gµ(a−) = −1 and G−1µ (1/θi) = θi + 1

θi
.

Theorem 3 (Eigenvectors). [Benaych-Georges, Nadakuditi] Consider i ∈ {1, .., r} such that 1/θi ∈
(Gµ(a−), Gµ(b+)). Let ũi be the unit-norm vector of X̃ associated with the eigenvalue λi(X̃).
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• If θi > 0 we have :

|〈ũi, ker(θiI − P )〉|2 −→n→∞
−1

θ2iG
′
µ(ρ)

,

where ρ = G−1µ (1/θi) is the limit of λ̃i. Moreover,〈
ũi,
⊕
j 6=i

ker(θjI − P )

〉
−→ 0.

• If θi < 0 we have:

|〈ũn−r+i, ker(θiI − P )〉|2 −→n→∞
−1

θ2iG
′
µ(ρ)

,

where ρ = G−1µ (1/θi) is the limit of λ̃n−r+i.

Moreover, 〈
ũn−r+i,

⊕
j 6=i

ker(θjI − P )

〉
−→ 0.

Example 4. If X = 1√
n
Z, where Z is GUE, we have for z > 0, Gµ(z) = z−

√
z2−4
2 , so G′µ(z) =

1
2

(
1− z√

z2−4

)
which implies that −1

θ2iG
′
µ(θ+

1
θ )

=
θ2i−1
θ2i

. Then, if all the θi’s are distinct we have:

|〈ũi, ui〉|2 →
{

1− 1
θ2i

if θi > 1

0 if 0 < θi ≤ 1

|〈ũi, span{u1, u2, ..., ui−1, ui+1, .., ur}〉|2 → 0.

Proof of Theorem ??.

Using Weyl’s interlacing inequalities imply that:

λk+(r−s) ≤ λk(X̃) ≤ λk−s,

(we use the convention that λk = −∞, if k > n and +∞ if k < 0) and so, since λr −→ b it follows
that if λi(X̃) does not converge to a limit outside [a, b] for some 1 ≤ i ≤ s, then it has to go to b.
Similarly, if 0 < j ≤ r−s and λn−i(X̃) does not converge to a limit outside [a, b], then it has to go to a.

Intuition from rank 1

Assume r = 1. Since X is unitary invariant wlog we can assume that X = diag(λ1, ..., λn) and
P = θ1u

∗u, where u is randomly distributed on the unit sphere.

Suppose λ′1 > b is an eigenvalue of X̃ which is not an eigenvalue of X. Then:

0 = det(λ′1I − (X + P )) = det(λ′1I −X) · det(I − (λ′1I −X)−1P )

It follows that:
det(I − (λ′1I −X)−1P ) = 0,

which translates as 1 is an eigenvalue for (λ′1I −X)−1P . But rank(P ) = 1, so it follows that

Trace
(
(λ′1I −X)−1P

)
= 1. (1)
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Since X is unitary invariant, wlog we can assume that X = diag(λ1, λ2, ..., λn) and P = θuu∗, where
u = (u1, ..., un) is a random vector uniformly distributed on the unit sphere. Hence relation (??)
becomes:

1 = θ

n∑
k=1

|ui|2

λ′1 − λk
.

Since u is uniformly distributed on the unit sphere, it follows that, if λ′1 ≥ λ1 + ε, where ε > 0 is fixed,
then:

n∑
k=1

|ui|2

λ′1 − λk
−→n→∞

1

n

n∑
k=1

1

λ′1 − λk
= Gµ(λ′1).

Take ε→ 0, it follows that
θGµ(λ′) −→ 1⇒ λ′1 −→ G−1µ (1/θ).

However, if 1/θ > G(b), then G−1µ (1/θ) does not exist so, there is no such eigenvalue.

Proof from rank r

Let z be an eigenvalue for X̃ which is not an eigenvalue for X, then det(zI − X̃) = 0, which implies:

det(I − (zI −X)−1P ) = 0.

As before, assume X = diag(λ1, λ2, ..., λn) and let P = UΛU∗, then:

0 = det(I − (zI −X)−1P ) = det
(
I − U∗(zI −X)−1UΛ

)
.

Define:
Mz := I − U∗(zI −X)−1UΛ.

Lemma 5. The following things are true about M :

• x ∈ ker(zI − X̃)⇒ U∗x ∈ ker(Mz) and

x = (zI −X)−1UΛU∗x.

• Mz(i, j) = 1i=j − θj
∑
k
U(j,k)U∗(k,i)

z−λk

• Mz(i, j) −→ 0 if i 6= j and Mz(i, i) −→ 1− θiGµ(z) if i = j.

Proof. Fix η > 0. As long as z > λ1 + η then ck := 1/(z − λk) are bounded and independent of the

entries of U , which implies that
∑
k
U(j,k)U∗(k,i)

z−λk −→ 0 for i 6= j. Take η → 0.

Now it is easy to see that z is an eigenvalue of X̃ outside [a, b] if and only if z is a diagonal element
of MZ and G(a) ≤ 1/θi ≤ G(b).

Proof of Theorem ??. Let’s assume that θ1 > θ2. Suppose λ̃1 > b+η, for some η > 0, is an eigenvalue
for X̃ which is not an eigenvalue for X and let ũ1 be the corresponding eigenvector. By Lemma ??
we know that

MG−1
µ (1/θ1)

−→ diag

(
0, 1− θ2

θ1
, 1− θ3

θ1
, ..., 1− θr

θ1
, 1, 1, ..., 1

)
.

Now Lemma ?? also implies that:
U∗ũ1 ∈ kerMG−1

µ (1/θ1)
,
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which implies:
U∗ũ1 = c1(1, 0, 0, ..., 0),

for some c1 > 0.

This implies that: 〈
ũ1,
⊕
j>1

ker(θjI − P )

〉
−→ 0. (2)

By Lemma ?? we know that:

ũ1 = (λ̃1I −X)−1UΛU∗ũ1

= (λ̃1I −X)−1
r∑
j=1

θj(u
∗
j ũ1)uj

= (λ̃1I −X)−1θ1(u∗1ũ1)u1 + (λ̃1I −X)−1
r∑
j=2

θj(u
∗
j ũ1)uj

We know that λ̃1 > η + b, which implies

‖(λ̃1I −X)−1‖ <∞,

and so, by equation (??)

(λ̃1I −X)−1
r∑
j=2

θj(u
∗
j ũ1)uj −→ 0.

We conclude,

1 = ‖ũ1‖2 = θ21|u∗1ũ1|2‖(λ̃1I −X)−1u1‖2

= θ21|u∗1ũ1|2
r∑
i=1

|u1(i)|2

(λ̃1 − λi)2

−→ θ21|u∗1ũ1|2
∫

dµ

(λ̃1 − t)2

−→ θ21|u∗1ũ1|2
(
−G′µ(λ̃1)

)
.

It follows that:

|u∗1ũ1|2 −→
1

−θ21G′µ(λ̃1)
.

Take η → 0 to conclude the proof.

Consider the setting from the example. We have the following results regarding perturbation of small
rank matrices.

Theorem 6 (GUE + rank 1 perturbation). [Peche] Assume that X = 1√
n
Z, where Z is GUE, with

entries having variance σ2. The following holds:

√
n

(
λ1(X̃)−

(
θ +

1

θ

))
−→ N (0, σ2

θ),

where σθ := (σ/θ) ·
√
θ2 − σ2.
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Theorem 7 (GUE + constant rank perturbation). [Peche] Let X = 1√
n
Z, where Z is GUE. Let

P = diag(θ1, ..., θ1, θ2, ..., θr, 0, 0, ..., 0) with θ1 of multiplicity k such that k, r, θ1 are given numbers
independent of n (k, r ∈ Z+) and σi’s lie in a compact set of (−∞, θ1) independent of n. Then the
following holds:

• If θ1 < 1, then

lim
n→∞

P
(
n2/3(λ1 − 2) ≤ x

)
= FTW2 (x).

• If θ1 = 1, then

lim
n→∞

P
(
n2/3(λ1 − 2) ≤ x

)
= FTWk+2 (x).

• If θ1 > 1, then

lim
n→∞

P

(
θ21

θ21 − 1
n1/2

(
λ1 −

(
θ1 +

1

θ1

))
≤ x

)
= F kGUE,θ1(x),

where FTW2 , FTWk+2 and F kGUE,θ1 are deterministic functions. (F kGUE,θ1 is the probability distri-

bution of the largest eigenvalue of the k × k GUE with parameter σ2)

Theorem 8 (GUE + low rank perturbation). [Peche] Let X = 1√
n
Z, where Z is GUE. Let P =

diag(θ1, ..., θ1, θ2, ..., θr, 0, 0, ..., 0) with θ1 of multiplicity k such that k and r satisfy limn→∞ k/n = 0
and limn→∞ k/n = 0. Suppose that θ1 is independent of n and σi’s lie in a compact set of (−∞, θ1)
also independent of n. Then there exists deterministic functions of n, k, r and θ1, G1, G2, G3 such
that the following holds:

• If θ1 ≤ 1, then
lim
n→∞

P (G1(λ1 −G2) ≤ x) = FTW2 (x).

• If θ1 > 1, then
lim
n→∞

P (G3(λ1 −G2) ≤ x) = FTW2 (x).

2 Dyson Brownian Motion

Theorem 9 (Wigner + rank 1 perturbation). [Capitaine, Donati-Martin, Feral] Suppose Xn is
Wigner matrix with entries i.i.d up to the symmetry constrained, with variance σ2 and distribution µ
which satisfies the following Poincare inequality. ”There exist a positive constant C such that for any
fR→ C, f ∈ C1 and f, f ′ ∈ L2(µ), the following holds:

E(|f −E(f)|2) ≤ C
∫
|f ′|2dµ.”

Let Pn := diag(θ, 0, 0, ..., 0) or Pn(i, j) = θ/n for all 1 ≤ i, j ≤ n, where θ > σ, then the following
holds:

λ1(X̃) −→ θ +
1

θ
.

Definition 10 (GOE/GUE).

• We say that Z is GOE if and only if Zij = Zji and Zij is N (0, 1) for i 6= j and N (0, 2) is i = j
independent of each other.
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• We say that Z is GUE if and only if Zij = Zji and Zij = (Bij + iB′ij)/
√

2 and Zii = Bii, where
Bi,j are N (0, 1) independent of each other.

Let Z be a GOE/GUE matrix. We can think about the matrix A + Z as a process which starts at
time t = 0 in A and it smoothly moves up to time t = 1 when it reaches A+Z. A good candidate for
the model would be:

A(t) = A+ tZ.

Consider the relation
A(t)vi(t) = λi(t)vi(t)

and differentiate it with respect to t. We get:

Zvi(t) +A(t)v
(1)
i (t) = λ

(1)
i (t)vi(t) + λi(t)v

(1)
i (t).

We can left multiply by vTi (i) to get:

vTi (t)Zvi(t) + 0 = λ
(1)
i (t) + 0, (3)

as vi and v
(1)
i are orthogonal.

The equation (??) is promising as we have a formula for the derivative of λi. Hence

λi(A+ Z)− λi(A) =

∫ 1

0

λ
(1)
i (t)dt.

The problem with this model is that vi(t) depends on the matrix Z, so we can not use the randomness
of Z to bound vTi (t)Zvi(t) unless t = 0. So we need a model in which at time t, vi(t) is independent
of the noise that is added at time t. Here is when Brownian Motion comes in play.

Definition 11. We call x(t) a Wigner process, if

• x(t) is N (0, t) distributed for any t.

• x(t)− x(t′) is N (0, t− t′) distributed for any 0 ≤ t ≤ t′ ≤ 1

• x(t1)− x(t2) is independent of x(t3)− x(t4) for any t1 > t2 ≥ t3 > t4

Basically x(t) is a random process and has the property that at time t the way it moves is independent
of the actual value at time t. We can generalize this concept to matrices.

Basically,

x(t) = lim
dt→0

x(0) +

t/dt∑
i=1

γi,

where γi is N (0, dt) distributed.

Definition 12. We call Z(t) a Wigner symmetric process, i.e.

• Z(t) is symmetric N (0, t) distributed

• Z(t)− Z(t′) is N (0, t− t′) distributed for any 0 ≤ t ≤ t′ ≤ 1
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• Z(t1)− Z(t2) is independent of Z(t3)− Z(t4) for any t1 > t2 ≥ t3 > t4

Theorem 13 (Dyson). Let Z(t) be a Wiener process and let λi(t) be the ith eigenvalue at time t.
Then the following relations hold:

• P (∀t > 0, λ1(t) > λ2(t) > ... > λn(t)) = 1.

• dλi =
√
2√
β
dBi +

∑
j 6=i

dt
λi(t)−λj(t) , where Bi is N (0, 1) distributed and β = 1 for GOE and β = 2

for GUE.

Similarly, Z(t) can be seen as:

Z(t) = lim
dt→0

Z(0) +

t/dt∑
i=1

Zi,

where Zi’s are GOE with variance dt.

We can thing about the model as follows. Fix n and let dt to be very small, going to 0 (independent
of n). Then, we can divide our process in 1/dt processes as:

A(t) =

{
A+

∑t/dt
i=1 Zi if t is a multiple of dt

A+
∑bt/dtc
i=1 Zi + (t− bt/dtc)Zi+1 otherwise

Now, since dt is very small, then we can approximate

vi(t) ≈ vi(bt/dtcdt),

and hence it will be independent of Zi+1 so we can follow the approach from equation (??).

Observation 14. There is one issue with the above approach: dt ·Z is GOE with variance N (0, dt2)
and not dt. So we need to take the gap of length

√
dt to be under the condition of equation (??).

This implies that:

λi

(
(k + 1)

√
dt
)
≈ λi

(
k
√
dt
)

+ vi(k
√
dt)TZkvi(k

√
dt),

where vi(k
√
dt) is independent of Zk. Since Zk is N (0, dt), we get that:

λ
(1)
i

(
k
√
dt+ s

)
≈ vTi (k

√
dt)Zk+1v

T
i (k
√
dt) := γk,

for any 0 ≤ s <
√
dt, where γk is N (0, 2dt) distributed which depends only on Zk+1.

Similarly, we can compute first v
(1)
i to get to:

λ
(2)
i

(
k
√
dt+ s

)
≈ 2

∑
j 6=i

(
vTi (k

√
dt)Zk+1v

T
j (k
√
dt)
)2

λi(k
√
dt)− λj(k

√
dt)

:= 2
∑
j 6=i

Zk(i, j)2

λi(k
√
dt)− λj(k

√
dt)

,

for any 0 ≤ s <
√
dt, where Zk(i, j) is N (0, dt) distributed and depends only on Zk+1.
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Finally, using Taylor we have

λi((k + 1)
√
dt) = λi(k

√
dt) +

√
dtλ

(1)
i (k

√
dt) +

dt

2
λ
(2)
i (k

√
dt) +O((dt)3/2)

Hence:

λi(A+ Z)− λi(A) =

1/
√
dt∑

k=1

λi

(
(k + 1)

√
dt
)
− λi(k

√
dt)

=
√
dt

1/
√
dt∑

k=1

γk +
∑
k 6=i

∑
j 6=i

Zk(i, j)2

λi(k
√
dt)− λj(k

√
dt)

+O(dt3/2)

−→dt→0 Bi +

∫ 1

0

∑
k 6=i

1

λi(A+ Z(t))− λk(A+ Z(t))

 dt+ o(1) whp

where Bi is N (0, 2) distributed.
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