Multivariate time series

VAR processes
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Strict stationarity

Stationary
processes

Let consider the process (X;),c; with

Xe =Xty Xqe) €R?, d e N*.
(Xt) ¢y is said to be strictly stationary if
Vk € N*,Y(ty,. .., tx) € Z¥,Yh € Z:

d (th, .o ,th) = d (Xt1+h7 .o ,th+h)



Stationarity

A second order process (Xt),. is said to be (weakly)
stationary if its expectation [E (X;) and its covariances
Cov (X, Xt) are time shifted invariant.

In this case we write:

» Vi€ Z E(X;) = pu (€ RY).
» YheZ:

[(h) = Cov (X, Xe_p)
=B |(Xe — 1) (Xen— 1)

=B (XXLy) — "

7ij(h) refers to the (i, j)-th element of the matrix ['(h).

Stationary
processes



Autocorrelations

Stationary
processes

Autocorrelations of a stationary process (X;),; are defined
by:

Vh e Z: p(h) = Corr (X¢, Xe_p) = DT (h)D™!

where D = diag («/711(0), ce \/Vdd(0)> (vector of the

standard deviations of the components of X).
pij(h) refers to the (i, j)-th element of the matrix p(h).
Each component (X;;),.; has 7ii(h) as autocovariance
function and pji(h) as autocorrelation function:

Vh e Z: i (—h) =i (h),
pii (—h) = pii(h).



Crossed covariances and crossed correlations 1/2

Stationary
processes

The crossed covariances and crossed correlations of (Xi,t)tez
and (Xj ), are:
vii(h) = Cov (X ¢, Xj t—n)
pij(h) = Corr (Xi.¢, Xj.t—n) -

These quantities aren’'t symmetric in general.



Crossed covariances and crossed correlations 2/2

Stationary
processes

If there exists a value h € N* such that ~;j(h) # 0 then
(Xj,t)teZ causes (Xi,t)teZ'

If there exists a value h € N* such that ;; (—h) # 0 then we
say (Xi,f)teZ causes ()g:t)tGZ'

The two situations can coexist.



Proposition

Stationary
processes

If (Xt).cz is stationary then the univariate processes
(X1t)eezr - - -+(Xdt) ey are also stationary.



Propertie

sssssssss

We have:

-
Xith — M) (Xt—M)D

-
Xeshh— ) (Xe— h—,u)])

Xe—p) " (Xeep — M)DT

— o~~~



Weakly white noise

Stationary
processes

(€t)ez is said to be a (weakly) white noise with
variance-covariance matrix Q and we write ¢, ~ WN (0, )
if:

> vtEZ:E(St):O,
» .(0)=Q,
> VheZ*:T(h) =0,



Moments estimation

Stationary
processes

Let (X:),cz be a stationary process.
Based on (Xi,...,X7), we define the estimators:

1
t=1
and

.

_ 1 _ _

VheZ:T(h) = =— S (Xe—X1) (Xeen — X7)
t=h+1

p(h) = D T(h)D ™.

These estimators are consistent (ergodic theory).



Wold decomposition

Stationary
processes

If (Xt)ez is a regular stationary process then there exists a
unique decomposition (named Wold decomposition):

+o00
Vt & Z . Xt :€t+ZHW,‘H€t_,'+ Vt
i=1
where:
> (€t)¢ez is @ white noise,
> (V4)iey is a singular process uncorrelated to (Xt),c7,

» ST || Wil < +oo, with for example the Frobenius
norm: ||lll,||i- =Tr(V;v]).
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Definition

VAR processes

Let (£t);cz be a white noise with Q as variance-covariance
matrix.

(Xt)tez is said to be a VAR process of order p, written
VAR(p), if:

p
VtEZ:Xt:u—l—Zd),-Xt_,-—i—at
i=1

where (®1,...,®,) are p matrixes of dimensions d x d and
v eRe.



Notation

One can write:
p -
(/ —Zcb,-B’) Xe=v+ee
i=1

that is:
O(B)Xi=v+es

where:

p
®(B)=1-> B
i=1

VAR processes



Stability condition

VAR processes

P
Vz/|z| <1:det <|d -> q>,-z") #£0,

i=1
then the process (X;),cy is stationary, canonical and ergodic.
Then (g¢),cz is the innovation process:

Yh e N*: COV(St,Xt_h) =0.

We consider here that the stability condition is checked.



VAR(1) case 1/2

Consider a centered VAR(1) process:

VAR processes

VtGZ:Xt:¢Xt71+€t

where ¢, ~ WN (0, Q).
We have for (s, t) € Z? such that s < t:
Xe=®X; 1+ ¢
= °X; o+ ey g + &

s—1
=X, + Z die, ;.
i=0



VAR(1) case 2/2

i VAR processes
In order to have independency between X; and X;_s when
S — 400, one must have:
(DS s——+00 0

The eigenvalues A\ of ® must be inside the unit circle.

Then:
VA/IA > 1:det(Alg—P) #0
that is:
Vz/|z| <1:z 9det(lg —z®d) #0
. 1
with z = 3
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Mean

We have:

VAR processes

P
,LL =v + Z q),/l/ + 0 moments
i=1

p -1
w= (Id — Z CD,-> V.
i=1

that is:

One can write:

P
Xt_N:Z(Di(thi_N)"’_Et'
i=1



Autocovariances 1/2

Assume here 11 = 0 (centered process).
We have:

VAR processes
moments

p
Xe X, = Zcb,-xt_,-xj + e X,
i=1

:>E< ) Zd),E(Xt, )—i—E(atXT)

Il
—



Autocovariances 2/2

For h S N*: VAR processes

moments

p
XX, = Z O X i XL+ eeXl
i=1

=E (XtXtT_h) = Zp: K (thiXt—Eh> +E (‘EtXifT—h)
i=1

=Tx(h)=> ox(h—1).



VAR(1) autocovariances
For a centered VAR(1) process:

VtEZ:Xt:d)Xt_l—i—at

VAR processes
moments

where ; ~ WN (0, Q).

We have:
x(0)=olx (-1)+Q
and:
Vhe N*:Tx(h)=olx (h—1).
So:

[x(0) = &l x (~1) + Q
=oTx(1)" +Q
=orx(0)' o' +Q
=Mk (0)" +Q.



Vectorization and Kronecker product

The Kronecker product of 2 matrixes A (n x p dimensional
matrix) and B is:

allB . alpB

AR B =
amB ... appB

Vectorization (stacking operation) of a matrix A with
dimensions n x p is:

vec (A) = (311,...,3,,1,...,alp,...,a,,p)T

VAR processes
moments



Proposition

We have:

>

>

>

AR B 75 B ® A. VAR processes
(AeB) =AT®B". o
A(B+C)=AB+A®C.

If A and B are invertible matrixes:

(AeB) '=A1lgB L

With dimensions conditions:

(A B)(C® D) =AC® BD.

Eigenvalues of A® B are the products of A and B
eigenvalues.

vec (A + B) = vec(A) + vec(B).
vec (ABC) = (CT ® A) vec(B).



Consequence

VAR processes
moments

We have:
vec (Tx(0)) = vec (CDFX(O)(DT) + vec (Q)
= (¢ ® ®)vec (I'x(0)) + vec(Q).

So:
vec (Mx(0)) = (Ilgz —® ®@ &) vec (Q).



VAR(1) representation of a VAR(p) process 1/2

For a centered VAR(p) process, we can write:

Xi = O X1+ e

where:
o b, B o1 D
Xe i
Iy O 0 0
Xi—1
0o Iy 0 0
X, = ®* =
0 Uy
0
Xe—p+1
L o o .- 0 Iy 0 |

VAR processes
moments



VAR(1) representation of a VAR(p) process 2/2

The variance-covariance matrix of ¢5 is:

rX(O) rX(]') e rX (p - 1) VAR processes
Tx(1)"
Mx-(0) =
Mx(1)
| Tx(p—=1" o Tx(@)T Tx(0) |
We have:
-1
vec (x+(0)) = (Ijpgy —®* © &%) vec (@)
Q0
where Q* = is a pd x pd dimensional matrix.

0 0
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VMA (0) representation of a VAR(p) process

With the stability condition:
VMA (c0)
representation of a

Xt = (Dil (B) Et VAR(p) process
+oo

=p+er+ Z\U,'&t,,'
i=1

where Y5 Wi < +o00 ((V;);en- are d x d dimensional
matrixes).



Table of contents

Stationary processes

VAR processes

VAR processes moments

VMA (o0) representation of a VAR(p) process
VAR processes forecasting

VAR processes estimation

VAR processes order selection

Granger causality

VAR processes and causality

«0O»r «Fr <

it
v
a
it
v
it

DAt 32/56



VAR processes forecasting 1/3

We want to forecast X7, (with £ € N*) from (X;),. 1.
Let ' (X) be the set spanned by (Xi) i<t

o~

Xr () =E (Xrye [ FIo (X))

forecasting
P
) <V + Z¢iXT+Z—i terie [F (X))
i=1
/—1 . 4
=v+ Z ¢ Xt (f — I) + Z (biXT—i-E—i +0.
i=1 i=£



VAR processes forecasting 2/3

From VMA (o0) representation:
Xr(0)=E (xm / FT. (X))

VAR processes
+oo T forecasting
=E|p+erqe+ ZWiST+z—i/]:_oo (X)
i=1
+oo
=u+ Z VieT o—j.
i=0



VAR processes forecasting 3/3

MSE (Mean Square Error) is:

MSE (¢) = Var (XT+, X7 (4))

= Var <€T+/+ § Viery- ,>
VAR processes

—1 forecasting
=Q+) voul
i=1

We obtain the linear recurrence equation:
MSE (¢) = MSE (£ — 1) + ¥,_1Q¥/

with MSE(0) = 0.
One can obtain forecast intervals under normality
distribution.
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Least square estimation 1/3
Consider a centered VAR(p) process:

Based on (Xi,...

we have:

where:

P
VteZ: Xt = Z¢iXt—i + &t
i=1
, XT1), with initial values (Xi_p,...

Y=0oX+¢

VAR processes
estimation



Least square estimation 2/3
So:
vec(Y) = <XT ® Id> vec () + vec(e).

Least square estimator minimizes:
[vec (¢)] " vec (e).

Least square estimator is:
® T -1 T VAR processes
Ve ((D) - |:<X—r ® Id) (XT ® |d>:| (XT ® Id) vec (Y) ety
-1
= [(XXT) & Id] vec (YXT)
-1
= vec (YXT <XXT> > )

& =vYx' (XXT)_l .

Thus:



Least square estimation 3/3

Under stationarity and ergodicity assumptions, the least
square estimator is asymptotically normal (that allows

significance tests):
VAR processes

VT (vec (CTD) — vec (CD)) 5N <O, lim (rv(o)_l ®Q)) . .

T—+o0
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VAR processes order selection

One use information criterium:

AIC = In (det (ﬁ(p))) n %pdz,

BIC = In <det (ﬁ(p))) + ln(TT)pd2.

VAR processes
order selection
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Notation

We use the notation:
EL (X/A)

for the expectation of X given the set spanned by all the
linear combinations of the components of A (and 1).

One can also find the notations EL (X /A), IE(X JA) or
P(X/A).

We also use the notation:

Xe={X,,i€Z i<t}

Granger causality



Causality

Let X = (Xt);ez and Y = (Yt),cz be two multivariate
processes (dimensions can be different).
Y doesn’t cause X at time t if:

\WAS N* : ]E[_ (Xt_t'_g/&, ﬁ) = E[_ (Xt-i-f/&) .

We use the notation:
CY%_)X . Granger causality



Instantaneous causality

Y doesn't instantaneously cause X at time t if:

E¢ (Xt+1/&, Yt+1) =E; (Xex1/Xe, Ye) -

We use the notation:
Cy%x.

Granger causality



Remark

If the processes are stationary then there is equivalence
between causality at a time t and causality for all times.

Granger causality



Definition

One can also use the following characterisation.
Let consider the error of the linear forecast of X given A:

el (Xe/A) = Xe — EL (X/A).

We define:

» Y doesn't cause X at time t if:

V¢ € N*: Var (8,_ (XtM/&,ﬁ)) = Var (&?L (Xt+z/&)) .

Granger causality

» Y doesn’t cause X instantaneously at time t if:

Var (=0 (Xes1/Xe Yira) ) = Var (0 (Xes1/Xe, Y2))



Property

> Y doesn't instantaneously cause X at time t iff:
Cov (Xey1 — Er (Xe1/Xe Ya) s Yers — Bi (Yep1/Xe, Y2)) = 0.

» We have:
Cy_x & Cx_vy.

Granger causality



Example

Let (ut),cy and (Vi) be two independent white noises.
Let (Xt);ez and (Y:) ez be two processes such that:

Xt = ur + ave + bvi 1,

Y = vt
where (a, b) € R2.
We have:
Er (Xer1/Xe, Ye) = bYs,
E. (Xt+1/&, @) =aYi1 + bYs. Gz sy
Thus:

» Y doesn't cause X at time t iff b= 0,

> Y doesn’t instantaneously cause X at time t iff a = 0.
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VAR processes and causality

Let X = (Xt);ez and Y = (Y}),cz be two multivariate (with

different or same dimensions) processes such that (X, Y;)'
is a VAR (p) process:

Xt i q)I)O( q)l)(Y th,' 5t
= +
Y, i=1 | &YX oYY Yioi Nt
We have:

Cyﬁx <:>\V/I'€{1,...,p}:¢,xyzo,
Cxﬁy@ViE{l,...,p}:d)iYX:O,
Cy.x © Cov (e, m) = 0.

VAR processes and
causality



Example 1/2

Let (Xt)rezr (Ye)iez and (Zt),cz be three univariate
processes (in R) such that (X, Y, Z;) " is a VAR (1) process:

Xi 100 Xo_1 .
Yi | = % 0 0 Yeor [+ ne
Z 0 3 3 Ziq &
with:
B 1 % 0 VAR processes and
Var e — % 10 sy



Example 2/2
We have:

and:

Cy,z)4x
Cx—(v,2)
Cx,z)=vs
Cy(x,2)s
Czu(x,Y)s

Cix,v)=z

Cx—(v,2),
Cy_(x,2),

Cz(x,v)-

VAR processes and
causality



Causality test 1/2

A test of causality between two multivariate processes
X = (Xt)sez and Y = (Y}),cz such that (X, Yi) is a
VAR(p) process, is equivalent to a significance test for some

coefficients of the matrix (®1,...,®p):
Ho : Rvec(®) =0
Hi : Rvec(®) #0

where R is a r ranked matrix.
We know that:

VT (vec (CT)) - vec(CD)) 5N (0,r'eQ).
Thus:

VT (Rvec () — Rvec(®)) £ N (0,R (M2 Q) RT).

VAR processes and
causality



Causality test 2/2

Under Hy:

~

7‘<Rvec($))T[R(F_1®SI)RT}_1(Rvec<¢)) £ 2
One use this Wald test with estimators:

1

r=_=-xx'
T )
.
~ 1
Q=— " S aa".
T—dp— 14"

VAR processes and
causality

Asymptotic distribution is still 2 (r).

One can also test instantaneously causality.
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