
Optimal linear
forecast

Based on an infinite
past

Based on a finite past

Wold decomposition

1/19

Univariate time series
Optimal linear forecast

V. Lefieux



Optimal linear
forecast

Based on an infinite
past

Based on a finite past

Wold decomposition

2/19

Table of contents

Optimal linear forecast
Based on an infinite past
Based on a finite past
Wold decomposition



Optimal linear
forecast

Based on an infinite
past

Based on a finite past

Wold decomposition

3/19

Table of contents

Optimal linear forecast
Based on an infinite past
Based on a finite past
Wold decomposition



Optimal linear
forecast

Based on an infinite
past

Based on a finite past

Wold decomposition

4/19

Optimal linear forecast

Let (Xt)t∈Z be a stationary process.
Let Ht

−∞ (X ) be the space spanned by linear combinations
of (Xi )i≤t and 1.
The (one step) optimal linear forecast de Xt given its past is:

X̂t = E
(
Xt

/
Ht−1
−∞ (X )

)
.

The one step optimal linear forecast errors εt = Xt − X̂t are
called innovations.
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Proposition

The innovations process is a white noise.
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Method

For a stationary process (Xt)t∈N, we use recursive algorithms
in order to calculate the forecast of XT+1 based on
(X1, . . . ,XT ).
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With the Durbin-Levinson algorithm: one step
forecast 1/3

The one step forecast of XT+1 based on (X1, . . . ,XT ) is:

X̂T (1) = X̂T+1 =
T∑
i=1

ai (T )XT+1−i

where: 
a1(T )

...

aT (T )

 = R−1
T


ρ(1)

...

ρ(T )

 .
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With the Durbin-Levinson algorithm: one step
forecast 2/3

The one step forecast of XT+2 based on (X1, . . . ,XT+1) is:

X̂T+2 =
T+1∑
i=1

ai (T + 1)XT+2−i

where: 
a1 (T + 1)

...

aT+1 (T + 1)

 = R−1
T+1


ρ(1)

...

ρ (T + 1)

 .
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With the Durbin-Levinson algorithm: one step
forecast 3/3

We can use the Durbin-Levinson algorithm in order to obtain
coefficients (a1 (T + 1) , . . . , aT+1 (T + 1)) based on
coefficients (a1 (h) , . . . , ah (h))h∈{1,...,T}.
Moreover there is a relationship between mean squared
errors. With:

vT = E
[(

XT+1 − X̂T+1

)2
]

= E

(XT+1 −
T∑
i=1

ai (T )XT+1−i

)2


we have:

vT+1 = vT

[
1− (aT+1 (T + 1))2

]
= vT

[
1− r2 (T + 1)

]
.
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With the Durbin-Levinson algorithm: multiple
step forecast

The one step forecast of XT+k , with k ∈ {2, . . . ,T − 1},
based on (X1, . . . ,XT ) is:

X̂T (k) =
k−1∑
i=1

ai (T )X̂T (k − i) +
T∑
i=k

ai (T )XT+k−i .

Notice that one must have k � T .
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Introducing the innovation algorithm 1/4

The one step forecast of XT+1 based on (X1, . . . ,XT ) is:

X̂T (1) = X̂T+1 =
T∑
i=1

ai (T )XT+1−i .

Innovations are:

εT+1 = XT+1 − X̂T+1 = XT+1 −
T∑
i=1

ai (T )XT+1−i .
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Introducing the innovation algorithm 2/4

We have: 
ε1

...

εT+1

 = AT+1


X1

...

XT+1


with:

AT+1 =



1 0 . . . . . . 0

−a1(1) 1 0 . . . 0

−a2(2) −a1(2) 1
. . .

...

...
...

. . .
. . . 0

−at (T ) −aT−1 (T ) . . . −a1 (T ) 1


.
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Introducing the innovation algorithm 3/4
So: 

X1

...

XT+1

 = A−1
T+1


ε1

...

εT+1

 = CT+1


ε1

...

εT+1


where:

CT+1 =



1 0 . . . . . . 0

θ1(1) 1 0 . . . 0

θ2(2) θ1(2) 1
. . .

...

...
...

. . .
. . . 0

θt (T ) θT−1 (T ) . . . θ1 (T ) 1


.
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Introducing the innovation algorithm 4/4
Finaly:

X̂1

...

X̂T+1

 =


X1

...

XT+1

−


ε1

...

εT+1



= [CT+1 − IT+1]


ε1

...

εT+1



= [CT+1 − IT+1]




X1

...

XT+1

−


X̂1

...

X̂T+1


 .
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The innovation algorithm

With the notation vh = E
[(

Xh+1 − X̂h+1

)2
]

, we have:

I v0 = γ(0),

I ∀i ∈ {1, . . . , h − 1} :

θh−i (h) =
1

vi

γ (h − i)−
i−1∑
j=0

θi−j (i) θh−j (h) vj

 ,
I vh = γ (h + 1)−

∑h−1
i=0 θ

2
h−i (h) vi .
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Definition

Let (Xt)t∈Z be a stationary process.
(Xt)t∈Z is a regular (or non deterministic) process if:

E
[(

Xt − X̂t

)2
]
> 0.

(Xt)t∈Z is a singular (or deterministic) process if:

E
[(

Xt − X̂t

)2
]

= 0.
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Wold decomposition

If (Xt)t∈Z is a regular stationary process then there exists a
unique decomposition (named Wold decomposition):

∀t ∈ Z : Xt = εt +
+∞∑
i=1

ψiεt−i + Vt

where:

I (εt)t∈Z is a white noise,

I (Vt)t∈Z is a singular process, uncorrelated with (Xt)t∈Z,

I
∑+∞

i=1 ψ
2
i < +∞.
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