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Introduction

If (Xt).ez is a stationary process and if (a;);c; is a sequence
such that ), [ai| < +o00 then the process (Y}),., defined

by:
Y = Z ai X
i€Z
is stationary.
One can rewrite:

Ye=) aiXei=)» aBX.=P(B)X;
i€Z i€EZ

where P(B) =", a;iB".

Lag series



Lag series

Lag series

P is said to be a lag series if:

P(B)=> aiB
iE€Z

where > ., |ai| < +oo0.

We have:
» The linear combination of two lag series is a lag series.

» The product of two lag series is a lag series.



Inverse of [ — \B

Lag series

We usually need to invert lag poynomials, so we consider the
inversion of | — AB.

We want to find the stationary process (Y¢),cy such that:

e
(/ - )\B) Yt == Xt

where \ € C.



Inverse of | — AB: |A\| <1 (1/2)

Lag series

The module root % of 1 — Az is more than 1.
Consider the sequence (a;);cy such that :

0 ifieZ\N
a; = .
A ifieN

The series > 7°°__ a; is absolutely convergent and:

(I-xB)) NB =B =1.
ieN



Inverse of | — AB: |A\| <1 (2/2)

The solution (Y}),cz of (I = AB) Y: = X; is the sum of the
general case and of the particular case (I — AB) Y: = 0.
We have:

(I*)\B) Yt:0<:> Yt :)\th]_
<~ Yt :C)\t

where ¢ € R.
Thus the solution is:

Y, = Z NXi_i + et
ieN

However the only stationary solution is obtained with ¢ = 0:

Y, = Z N X

ieN

Lag series



Inverse of | — AB: |A\| > 1

We have:
Yi= (I —AB) ' X;
1 -1
=|-AB|—=F+1 X
e ()] x
1 1\ _;
=(-3F) 2 (3) =
ieN
+oo
1
:_ZYXH’
i=1
Thus:
+o0 1

Lag series



Inverse of | — AB: [\ =1

Lag series

For |[A| = 1, there is no stationary process (Y:),cz such that



General case 1/3

Lag series

Consider the lag series:
¢(B)=1—p1B—...—ppBP

where (p1,...,pp) € RP.
We want to find the stationary process (Y;),c; such that:

q) (B) Yt - Xt.

Let z; = )\% with j € {1,..., p} be the roots of ® (z).
If one of the roots z; is on the unit circle then there is no
stationary solution.



General case 2/3

Lag series
If there is no roots z; on the unit circle then there is lag
series W (B) = > ;.7 %iB', where (¢;);c; is a real sequence,
such that:

» d(B)V(B) =1,
» Y: =V (B) X; is stationary.

If all the roots z; are outside the unit circle then we can
write:
V(B)=) B
ieN
If all the roots z; are inside the unit circle then we can write:

V(B) =) uF'.

iEN*



General case 3/3

Lag series

In order to determine W, we can use one of these methods:

> Identification method.
» Partial fraction expansion of ﬁ and power series
expansion.

» Division of 1 by ®(z) by increasing power order.
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Definition

AR process

Let (c¢).cz, be a white noise of variance 0.

(Xt);cz is said to be an autoregressive process or a AR
process of order p, written AR(p), if:

> (Xt);ez is stationary,

>

P
VEEZ: Xe =) @iXe_i+e
i=1

where (¢1,...,9p) € RP and ¢, # 0.



Notation

AR process

We generally use the notation ® (B) X; = &+ where:
p .
O(B)=1-> B
i=1

Note that:
» Sometimes we find ® (B) =1+ > F_, ¢;B'.
» If ®(B) has a root on the unit circle then the process
(Xt)¢cy isn't stationary, thus it isn't an AR process.



Canonical representation: introduction 1/2

AR process

We suppose that the lag polynomial ® (B) is invertible (no
root on the unit circle).

Let z; = )\% J€41,...,p}, be the roots of & (z).
If one root z; is on the unit circle then there is no stationary
solution.

Assume that (z); are inside the circle unit and that
J _]6{1,,[‘}
(Zf)je{r+1,...,p} are outside the unit circle. We can write:

p

o(B)=[](/-\B).

j=1



Canonical representation: introduction 2/2

This polynomial is invertible but we prefer to have only Al e
positive powers of B (the roots must be outside the unit

circle).

Thus we prefer to consider the polynomial:

¢*(B):ﬁ (/-j_B) f[ (1 - \B).
j=1 1 j=rt1

®* is obtained from ® by inverting the roots which are inside
the unit circle.
Result: we obtain a new AR model (the canonical version):

q)* (B) Xt = MNt.



Canonical representation: definition
AR process

Let (Xt);cz an AR(p) process:
0] (B) Xt = &t.

If the roots of ® are outside the unit circle then we have the
canonical representation.
In this case the associated white noise is the innovation.

From now we consider canonical AR processes.



MA(o0) representation

AR process

Let (Xt);cz be a canonical AR(p) process:
& (B) X, = ey
It has a MA(co) representation:
+o0
Xe=0"1(B)er=er+ Y vice i
i=1

where (¢;);cy is a real sequence.



Yule-Walker equations

Let (Xt);cz be a canonical AR(p) process: AR process
P
Vt c Z . Xt = ZQO,'Xt_,‘ +€t.
i=1

We can obtain the Yule-Walker equations:

4 o2
MO =105 L0
p(1) 1
A
p(p) Pp




Autocorrelations of an AR process

AR process

Autocorrelations are solutions of a simple linear recurrence
equation of order p.

If the roots of @ (z), z; = )% i€{l,...,p}, are real and

unique then we have p(h)
exponentially decrease to 0.

S°F i\l Autocorrelations

In the general case we obtain a damped sine wave.



Partial autocorrelations of an AR process

AR process

If (Xt)iez is a AR(p) process then its partial
autocorrelations are zero after p:

r(p) # 0
YheN,h>p+1:r(h)=0

Conversely it's a necessary and sufficient condition that
(Xt):ez is an AR(p) process.



Proposition

AR process

Let (Xt).cz be a canonical AR(p) process:

P

VteZ: Xt = Z(,Dixt—i + &¢.

i=1

We have:
r(p) = ¢p.

Note that:

» This proposition applies only to canonical process.
» One can't deduce anything for r(h), h € {2,...,p}.
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Definition

MA process

Let (c¢).cz, be a white noise of variance o2.

(Xt);ez is said to be a MA process of order g, written
MA(q), if:

q
VtEZ:Xe=ce+ Y Oiee
i=1
where (61,...,04) € R9 and 6, # 0.



Notation

We generally use the notation X; = © (B) ¢ where:

q
©(B)=1+) 0B
i=1

Note that:
» Sometimes we find © (B) =1 —>.7_, 0;B".

» A MA process is stationnary.

MA process



Canonical representation

MA process

Let (Xt);cz be a MA(q) process:
Xt =0 (B) Et.

If the roots of © are outside the unit circle then we have the
canonical representation.
In this case, the associated white noise is the innovation.

From now we consider canonical MA processes.



AR (00) representation

Let (X:),., be a canonical MA(q) process:

tez MA process

Xt =0 (B) Et.
It has a AR (o0) representation:

+oo
er=0""(B)Xe =Xe+ > miXei,
i=1

thus:
+o0
Xt = — Z 7'(',‘Xt7i + &
i=1

where (7;): . is a real sequence.
1]ieN



Autocorrelations of a MA process

Let (Xt);cz be a canonical MA(q) process:

MA process

q
VteZ: Xt =&+ Zeigt_i.
i=1

We have: .
30) = o (1 " Ze?)
i=1
and:
q 0. 2 .
Vh e N* : "}/(h) — {(Gh + Zi:h+1 glel—h) g if he {.1, cey q} '
otherwise



Autocorrelations of a MA process

MA process

If (Xt);c7 is a process MA(q) process then its
autocorrelations are zero after g:

p(q) #0
VheN,h>qg+1:p(h)=0

Conversely its a necessary and sufficient condition that
(Xt)ez is @ MA(q) process.



Partial autocorrelations of a MA process

MA process

Partial autocorrelations are solutions of a simple linear
recurrence equation of order g. They decrease to 0.

In the general case, we obtain an exponential decrease or a
damped sine wave.
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Definition

. . . ARMA
Let (c¢).cz, be a white noise of variance o2. e

(Xt);ez is said to be a ARMA process of order (p, q),
written ARMA(p, q), if:

> (Xt);ez is stationary,

» VteZ: Xy — Zf?:l piXi_i=¢€r+ 27:1 Oiei_i
where (¢1,...,9p) €RP, 0, #0, (61,...,64) € RY
and 0, # 0.



Notation

We generally use the notation:
ARMA process

®(B)X; = ©(B)e:

where:
p -
®(B)=1-> B,
i=1

q
©(B)=1+> 6;B"
i=1



Remarks

ARMA process

» One can consider non centered ARMA processes
(Xt)¢cz- In this case, resultats are the same withe the
process Y: = X — ux.

From now we consider centered ARMA processes.

» An AR(p) process is a ARMA(p, 0) process.

» A MA(q) process is a ARMA(O, g) process.



Representations of an ARMA process

Let (Xt).cz be an ARMA(p, q) process: ARMA process
d) (B) Xt = @ (B) Et.

The representation is:
» minimal if ® and © have no common root,
» causal if the roots of ® are outside the unit circle,
» invertible if the roots of © are outside the unit circle,

» canonical if the representation is causal and invertible.
In this case the associated white noise is the innovation.



MA (o0) representation of an ARMA process

Let (Xt);cz be an minimal canonical ARMA(p, q) process:

®(B) X, = O (B)ex.

ARMA process

it has a MA (00) representation:

—+o00
Xe=0"1(B)O(B)er=er+ Y _thicr—i
i=1

where (1););cy is a real sequence.
With ¢; =0 for i < 0, g =1 and 6; =0 for i > g, we have:

p
VieN:y; — Z@jlﬂ,;j =0,.

J=1



AR (00) representation of an ARMA process

It has an AR (00) representation:

+0o0
ee=0"1(B)O(B)Xe =X+ Y miXei,
i=1

ARMA process

thus:
+o0o
Xe=— Z miXe—i + €t
i=1

where (7;);cy is a real sequence.
With m; =0 for i < 0, ¢g = —1 and ¢; =0 for i > p, we
have:
q
Vie N:m+ Zﬁjﬂ;_j = —;.
j=1



Autocorrelations of an ARMA process 1/2

ARMA process
From the MA(c0) representation:
+o0
y(h) = 0® > vt
i=0

where g = 1.



Autocorrelations of an ARMA process 2/2

From the AR equation, for h € N:

ARMA process

v(h) =1y (h—=1) — ... —ppy (h—p)
= Cov (et + b16¢—1+ ... + 0get—q, Xe—n)

“+o0o
= Cov <5t + 0161+ ...+ 0qct—q, Z @biet—h—i)
i=0

0 otherwise

{02 S0 ifhe{0,..., q}



Remarks

ARMA process

» Autocorrelations decrease to 0.

» If p > g then we obtain an exponential decrease or a
damped sine wave.
» If g > p, the decrease is after the first g — p values.

» There are similar properties for partial autocorrelations.



Corner method 1/3

There is no simple characterization of ARMA processes
based on simple and partial autocorrelations. The corner
method comes from autocorrelation matrixes properties.

Consider, for (i,j) € N2: ARMA process
- p (i) p(i—1) p(i—j_|.]_)-
p(i—1) p(i) p(i—1) .. p(i—Jj)
Qij=1 pi=2) p@i=1) p()
' ' p(i—1)
p(i—j+1) pli=i) .. p(i=1) o)

and their determinants:

A,‘J = det(Q,-,J-) .



Corner method 2/3

ARMA process

For a ARMA(p, q) process, we have:
» V(i,))eEN2i>q,j>p:A;;=0,
s V(i) EN2i<q: D, A0,
> V(i,j) EN2j < p:Ag, #0.



Corner method 3/3

For k enough large we represent the matrix
M = (AfJ)(iJ)e{l k2 and a corner appears:

ANE

Ag1

Agi11

Arp

Agp

Agi1p

Ak,p

A1 pi1

Agpt1

AN

q,k

ARMA process



Spectral density of an ARMA process

Let (Xt);cz be an ARMA(p, q) process:
b (B) Xt =0 (B) Et.

Its spectral density is:

ARMA process



ARMA process estimation: principle

ARMA process

Let (Xt),cz be a minimal canonical ARMA(p, q) process:
b (B) Xt =0 (B) Et.
The aim is to estimate ® and ©, and o2.

Estimations from autocorrelations aren't efficient. We use
maximum likelihood estimation after a preliminary
estimation.



Preliminary estimation: AR processes 1/2

From Yule-Walker equations:

,

o1 p(1)

p— A_l .
- P
Pp p(p)

52 =7(0) (1 — X2, i (1)

ARMA process



Preliminary estimation: AR processes 2/2

With ¢ = (¢1,...,¢p) and @ = (£1,...,Pp), we have:

\/B(SB - ) g N (0, ‘722;1) ARMA process
and:
52 5 52

where:

@ A o -

| @
(1)
L v(p=1) (1) (0]




Preliminary estimation: MA and ARMA
processes 1/2

ARMA process

Consider a minimal canonical ARMA(p, q) process.
From the MA (o0) representation:

+oo
Xe=¢er+ Zwigt—i-

i=1

We use the innovation algorithm in order to estimate
coefficients (¥i)icqy, . ny-



Preliminary estimation: MA and ARMA
processes 2/2

With ¢; =0 for i < 0, g =1 and 6; =0 for i > q, we have:

P
Vie N =Y ppbij =0

j=1

We thus obtain a first estimation of (¢1,...,¥p) and
(01,...,0q) from (1/11, e ,1/),,+q).

ARMA process



Maximum likelihood estimation

We assume now that the residuals are a gaussian white noise
. . 2 ARMA process
with variance ,o°.

Based on (Xi, ..., X7), the likelihood is:

E(xl,...,XT;apl,...,gop,Hl,...,Gq,az)

1 1 . < 1 Ty-1 )
= ————exp| —=x X
(277)5 VdetX P 2 T

where x = (x1, ... ,x-,-)T and X7 is the variance-covariance
matrix of (Xi,..., X1).
It's a nonlinear optimization problem.



Maximum likelihood estimation

. ARMA process
Consider: ’

Vie{l,...,T}:)?,-:IE(X,-/H{’WX)).

We use the innovation algorithm for the one step optimal
linear forecast and for forecast error ¢; = X; — X;, and their

variance vi_1 = E [(X,- — )A(,> 2].

One don't need to calculate Z}l and det > 1.



Maximum likelihood estimation

ARMA process
We have:
X1 €1



Maximum likelihood estimation

ieqr.my = (X~ X))

variance-covariance matrix of (¢);c(y 7y is:

Vo

0
Vr

0

ie{1,..,T}

0

Vi

0

We have X+ = C+ V7 (CT)T thus:

det L7 = (det Cr)?det Vi = vp...v7_1

and:

*TE= 3 X

T

i=1

are uncorrelated, the

0

0

VT-1

2

Vi—1

ARMA process



Maximum likelihood estimation

ARMA process
We have:
E(xl,...,XT;gol,...,gop,@l,...,Gq,a2)
1 1 1 F— X;
, exp —2 S LX)
(27T)7 A/ VO.--VT-1 2 Py Vi—1

~

X; is recursively obtained with the innovation algorithm.



Maximum likelihood estimation

COﬂSider' ARMA process

2
Vic1 =0 rli-1.

We can rewrite:

E(Xl,...,XT;<,01,...,g0p,91,...,Hq 2)

, O
T ~
_ 1 LI S 3 (xi —%)*
(27r02) n...rm—1 202 — ri_1

N



Maximum likelihood estimation

Finally we have:

ARMA process

(@1,...,@p,§1,...,§q)

-
. 1 1
= arg min {In [TS(gol,...,<pp,91,...,9q)]+TZInr,}

(‘Pla“w‘/’pﬂl»--w@q) i=1

and:
5 1 N —~ ~
o- = 75 <S017~--7§0p7017--'a0(J>
~ ~ 7 ~ T ()</'—>A<i)2
where S (@1,...,<pp,91,.--79q> = Zi:l ril
i

Estimators are efficient.



Model selection: Kullback criterium

ARMA process
Let fy be a probability density which is estimated by an ’

element of the family F.
The Kullback criterium measure the difference between the

the trues and the estimated probability density:

I(fy, F) = min/ln ('[O(X)) fo(x)dx.

feF f(x)

This quantity is positive, zero if fy € F.



Model selection: Kullback criterium

We have:

(8 o 63
= Eg [In (fo (X))] = Eg [In (F (X))].

We need to minimize —Eg [In (f (X))].




Model selection: ARMA case

Based on (Xi,...,X7), estimators of —E¢ [In (f (X))] for ARMA process
ARMA(p, q) processes can be written:

C(f, F) = —In(f) +a(T)(p+ )

where « is a decreasing function.
If f is a gaussian, we obtain:

C(f, F) = (5°) +a(T)(p+9q)

where 52 is the estimated variance.



Model selection: ARMA case

We generally consider:

» Akake criterium

2
With T) = —:
tho(T) = =
R +q
Al —In(52) +2P9
C(p,q) =In (%) + 2=
» Schwarz criterilIJm 7
n
With T) =
th o (T) = "o
In(T)

BIC(p,q) =In (3°) + (p+ q)

T

ARMA process
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Definition

(Xt):en is said to be an ARIMA process of order (p, d, q),
written ARIMA(p, d, q), if:

ARIMA and
SARIMA processes

®(B)VIX; = O (B)e;

where:
» V9= (- B),
» &(B)=1—-¢1B—...—@pBP where

(p1,--.,9¢p) € RP and ¢, # 0,
> ©(B)=1+0:1B+...+04B9 where (61, ....04) € RI
and 0, # 0.



Remarks

v

An ARIMA process isn't defined on Z but on N by

convention. Initial conditions are fixed with: ARIMA and
SARIMA processes

Z=(X_p,.. ., X 1,6 g, 61) .

v

ARIMA models can be applied on times series with a
trend.

(I — B)d X; is asympotically equivalent to an
ARMA(p, q) process.

(Xt)en isN't a stationary process.

v

v



Autoregressive and moving average
representations

We can't obtain a AR (oc0) nor MA (00) representation but
it's possible to obtain:

» Moving average representation: ARIMA and
SARIMA processes

Xe=cee+ Y e i+ (1) Z

i=1

where ¢* (t) is a p + g dimensional vector.

» Autoregressive representation:
t
Xt = —Z’]T,’Xt_,‘ — 7T* (t)Z"‘Et
i=1

where 7% (t) is a p + g dimensional vector.



Definition
(Xt);en is said to be a SARIMA process of order
(pa da q)(Pv Da Q)S if:

®(B)®' (B5)VIVEX, =0 (B)O (B%) e

where: SARIMA processes
» V4= (I-B),
> VP = (1 - B)P,
» &(B)=1—¢1B—...—@pBP where
(p1,--.,9¢p) € RP and ¢, # 0,
» &' (B)=1—¢{B—...—¢pBF where

(¢4, pp) €RP and ¢ £ 0,
O(B)=1+0.B+...+ 0489 where (61, ...,04) € R
and 0, # 0,

O (B) = I+9£B+...+9’QBQ where

(9’1,...,6’0) € R? and 0 # 0.

We write: SARIMA(p, d, q)(P, D, Q)s.



Remarks

ARIMA and
SARIMA processes

» SARIMA models can be applied on times series with a
trend and a seasonality.

» Estimation of a SARIMA model: estimation of an
ARMA model on the differenced time series.
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Remark

The method is similar for SARIMA models than for ARIMA

models. SARIMA model
forecasting

To forecast X744 (with h € N*) based on (Xi,...,X7), we

can use the autoregressive or the moving average

representation.



Forecasting with the autoregressive
representation

Xr(h)
=E (Xron /" (X))
SARIMA model
T+h forecasting
=F ZmXHh :—W*(T+h)Z+ET+h/HI*(X)>

T+h

mem j me”h,,- — 7 (T+h)Z+eren /HI* (X)>

Il
=
T‘A/_\

M

miXr (h—i) Zﬂ,xm =1 (T+h)Z

> -
[
_ e

h—1
miXr (h—i) = > mXrin_i car 7 (T) =57 0.

i=1

\ 2

Il
NR



Forecasting with the moving average
representation

Xr(h) =E (XM /H{* (X))

T+h
E <8T+h + Z¢i5T+h—i + 9" (T + h) Z/HIT* (X)>
i—1
T+h

Z vieTin—i +" (T+h) Z

i=h—1

T+h

Z ’([),'E']:H,f,' car 1/)* (T) Tioo 0.
i=h—1

1R

SARIMA model
forecasting
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