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Strict stationarity

Let consider the process (Xt)t∈Z with

Xt = (X1,t , . . . ,Xd ,t)
> ∈ Rd , d ∈ N∗.

(Xt)t∈Z is said to be strictly stationary if
∀k ∈ N∗,∀(t1, . . . , tk) ∈ Zk ,∀h ∈ Z:

d (Xt1 , . . . ,Xtk ) = d (Xt1+h, . . . ,Xtk+h)
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Stationarity

A second order process (Xt)t∈Z is said to be (weakly)
stationary if its expectation E (Xt) and its covariances
Cov (Xs ,Xt) are time shifted invariant.
In this case we write:

I ∀t ∈ Z : E (Xt) = µ (∈ Rd).

I ∀h ∈ Z:

Γ(h) = Cov (Xt ,Xt−h)

= E
[
(Xt − µ) (Xt−h − µ)>

]
= E

(
XtX

>
t−h

)
− µµ>.

γij(h) refers to the (i , j)-th element of the matrix Γ(h).
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Autocorrelations

Autocorrelations of a stationary process (Xt)t∈Z are defined
by:

∀h ∈ Z : ρ(h) = Corr (Xt ,Xt−h) = D−1Γ(h)D−1

where D = diag
(√

γ11(0), . . . ,
√
γdd(0)

)
(vector of the

standard deviations of the components of Xt).
ρij(h) refers to the (i , j)-th element of the matrix ρ(h).
Each component (Xi ,t)t∈Z has γii (h) as autocovariance
function and ρii (h) as autocorrelation function:

∀h ∈ Z : γii (−h) = γii (h) ,

ρii (−h) = ρii (h).
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Crossed covariances and crossed correlations 1/2

The crossed covariances and crossed correlations of (Xi ,t)t∈Z
and (Xj ,t)t∈Z are:

γij(h) = Cov (Xi ,t ,Xj ,t−h) ,

ρij(h) = Corr (Xi ,t ,Xj ,t−h) .

These quantities aren’t symmetric in general.
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Crossed covariances and crossed correlations 2/2

If there exists a value h ∈ N∗ such that γij(h) 6= 0 then
(Xj ,t)t∈Z causes (Xi ,t)t∈Z.

If there exists a value h ∈ N∗ such that γij (−h) 6= 0 then we
say (Xi ,t)t∈Z causes (Xj ,t)t∈Z.

The two situations can coexist.
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Proposition

If (Xt)t∈Z is stationary then the univariate processes
(X1t)t∈Z, . . . ,(Xdt)t∈Z are also stationary.
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Propertie

We have:

ΓX (−h) = E
[
(Xt − µ) (Xt+h − µ)>

]
=
(
E
[
(Xt+h − µ)> (Xt − µ)

])>
=
(
E
[
(Xt+h−h − µ)> (Xt−h − µ)

])>
=
(
E
[
(Xt − µ)> (Xt−h − µ)

])>
= ΓX (h)>.
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Weakly white noise

(εt)t∈Z is said to be a (weakly) white noise with
variance-covariance matrix Ω and we write εt ∼WN (0,Ω)
if:

I ∀t ∈ Z : E (εt) = 0,

I Γε(0) = Ω,

I ∀h ∈ Z∗ : Γε(h) = 0.
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Moments estimation

Let (Xt)t∈Z be a stationary process.
Based on (X1, . . . ,XT ), we define the estimators:

µ̂ = X =
1

T

T∑
t=1

Xt

and

∀h ∈ Z : Γ̂(h) =
1

T − h

T∑
t=h+1

(
Xt − XT

) (
Xt−h − XT

)>
,

ρ̂(h) = D̂−1Γ̂(h)D̂−1.

These estimators are consistent (ergodic theory).
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Wold decomposition

If (Xt)t∈Z is a regular stationary process then there exists a
unique decomposition (named Wold decomposition):

∀t ∈ Z : Xt = εt +
+∞∑
i=1

‖Ψi‖ εt−i + Vt

where:

I (εt)t∈Z is a white noise,

I (Vt)t∈Z is a singular process uncorrelated to (Xt)t∈Z,

I
∑+∞

i=1 ‖Ψi‖ < +∞, with for example the Frobenius
norm: ‖Ψi‖2

F = Tr
(
ΨiΨ

>
i

)
.
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Definition

Let (εt)t∈Z be a white noise with Ω as variance-covariance
matrix.
(Xt)t∈Z is said to be a VAR process of order p, written
VAR(p), if:

∀t ∈ Z : Xt = ν +

p∑
i=1

ΦiXt−i + εt

where (Φ1, . . . ,Φp) are p matrixes of dimensions d × d and
ν ∈ Rd .



Stationary
processes

VAR processes

VAR processes
moments

VMA (∞)
representation of a
VAR(p) process

VAR processes
forecasting

VAR processes
estimation

VAR processes
order selection

Granger causality

VAR processes and
causality

References

16/56

Notation

One can write: (
I −

p∑
i=1

ΦiB
i

)
Xt = ν + εt

that is:
Φ (B)Xt = ν + εt

where:

Φ (B) = I −
p∑

i=1

ΦiB
i .
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Stability condition

If:

∀z /|z | ≤ 1 : det

(
Id −

p∑
i=1

Φiz
i

)
6= 0,

then the process (Xt)t∈Z is stationary, canonical and ergodic.
Then (εt)t∈Z is the innovation process:

∀h ∈ N∗ : Cov(εt ,Xt−h) = 0.

We consider here that the stability condition is checked.



Stationary
processes

VAR processes

VAR processes
moments

VMA (∞)
representation of a
VAR(p) process

VAR processes
forecasting

VAR processes
estimation

VAR processes
order selection

Granger causality

VAR processes and
causality

References

18/56

VAR(1) case 1/2

Consider a centered VAR(1) process:

∀t ∈ Z : Xt = ΦXt−1 + εt

where εt ∼WN (0,Ω).
We have for (s, t) ∈ Z2 such that s < t:

Xt = ΦXt−1 + εt

= Φ2Xt−2 + Φεt−1 + εt
...

= ΦsXt−s +
s−1∑
i=0

Φiεt−i .
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VAR(1) case 2/2

In order to have independency between Xt and Xt−s when
s → +∞, one must have:

Φs s→+∞−−−−→ 0.

The eigenvalues λ of Φ must be inside the unit circle.
Then:

∀λ /|λ| ≥ 1 : det (λ Id −Φ) 6= 0

that is:
∀z /|z | ≤ 1 : z−d det (Id −zΦ) 6= 0

with z = 1
λ .
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Mean

We have:

µ = ν +

p∑
i=1

Φiµ+ 0

that is:

µ =

(
Id −

p∑
i=1

Φi

)−1

ν.

One can write:

Xt − µ =

p∑
i=1

Φi (Xt−i − µ) + εt .
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Autocovariances 1/2

Assume here µ = 0 (centered process).
We have:

XtX
>
t =

p∑
i=1

ΦiXt−iX
>
t + εtX

>
t

⇒E
(
XtX

>
t

)
=

p∑
i=1

ΦiE
(
Xt−iX

>
t

)
+ E

(
εtX

>
t

)
⇒E

(
εtX

>
t

)
=

p∑
i=1

ΦiE
(
εtX

>
t−i

)
+ E

(
εtε
>
t

)
= Ω

⇒ ΓX (0) =

p∑
i=1

ΦiΓX (−i) + Ω.
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Autocovariances 2/2

For h ∈ N∗:

XtX
>
t−h =

p∑
i=1

ΦiXt−iX
>
t−h + εtX

>
t−h

⇒E
(
XtX

>
t−h

)
=

p∑
i=1

ΦiE
(
Xt−iX

>
t−h

)
+ E

(
εtX

>
t−h

)
⇒ ΓX (h) =

p∑
i=1

ΦiΓX (h − i) .
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VAR(1) autocovariances

For a centered VAR(1) process:

∀t ∈ Z : Xt = ΦXt−1 + εt

where εt ∼WN (0,Ω).
We have:

ΓX (0) = ΦΓX (−1) + Ω

and:
∀h ∈ N∗ : ΓX (h) = ΦΓX (h − 1) .

So:

ΓX (0) = ΦΓX (−1) + Ω

= ΦΓX (1)> + Ω

= ΦΓX (0)>Φ> + Ω

= ΦΓX (0)Φ> + Ω.
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Vectorization and Kronecker product

The Kronecker product of 2 matrixes A (n × p dimensional
matrix) and B is:

A⊗ B =


a11B . . . a1pB

...
...

an1B . . . anpB


Vectorization (stacking operation) of a matrix A with
dimensions n × p is:

vec (A) = (a11, . . . , an1, . . . , a1p, . . . , anp)>
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Proposition

We have:

I A⊗ B 6= B ⊗ A.

I (A⊗ B)> = A> ⊗ B>.

I A⊗ (B + C ) = A⊗ B + A⊗ C .

I If A and B are invertible matrixes:
(A⊗ B)−1 = A−1 ⊗ B−1.

I With dimensions conditions:
(A⊗ B) (C ⊗ D) = AC ⊗ BD.

I Eigenvalues of A⊗ B are the products of A and B
eigenvalues.

I vec (A + B) = vec (A) + vec (B).

I vec (ABC ) =
(
C> ⊗ A

)
vec (B).
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Consequence

We have:

vec (ΓX (0)) = vec
(

ΦΓX (0)Φ>
)

+ vec (Ω)

= (Φ⊗ Φ) vec (ΓX (0)) + vec (Ω) .

So:
vec (ΓX (0)) = (Id2 −Φ⊗ Φ)−1 vec (Ω) .
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VAR(1) representation of a VAR(p) process 1/2

For a centered VAR(p) process, we can write:

X ∗t = Φ∗X ∗t−1 + ε∗t

where:

X∗
t =



Xt

Xt−1

.

.

.

Xt−p+1


, Φ∗ =



Φ1 Φ2 Φ3 · · · Φp−1 Φp

Id 0 0 · · · · · · 0

0 Id 0
. . . 0

.

.

. 0 Id

. . .
. . .

.

.

.

.

.

.

.

.

.
. . .

. . .
. . . 0

0 0 · · · 0 Id 0



, ε
∗
t =



εt

0

.

.

.

0


.
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VAR(1) representation of a VAR(p) process 2/2

The variance-covariance matrix of ε∗t is:

ΓX∗(0) =



ΓX (0) ΓX (1) . . . ΓX (p − 1)

ΓX (1)>
. . .

. . .
...

...
. . .

. . . ΓX (1)

ΓX (p − 1)> . . . ΓX (1)> ΓX (0)


.

We have:

vec (ΓX∗(0)) =
(

I(pd)2 −Φ∗ ⊗ Φ∗
)−1

vec (Ω∗)

where Ω∗ =

 Ω 0

0 0

 is a pd × pd dimensional matrix.
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VMA (∞) representation of a VAR(p) process

With the stability condition:

Xt = Φ−1 (B) εt

= µ+ εt +
+∞∑
i=1

Ψiεt−i

where
∑+∞

i=1 ‖Ψi‖ < +∞ ((Ψi )i∈N∗ are d × d dimensional
matrixes).
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VAR processes forecasting 1/3

We want to forecast XT+` (with ` ∈ N∗) from (Xi )i≤T .

Let FT
−∞ (X ) be the set spanned by (Xi )i≤T :

X̂T (`) = E
(
XT+`

/
FT
−∞ (X )

)
= E

(
ν +

p∑
i=1

ΦiXT+`−i + εT+`

/
FT
−∞ (X )

)

= ν +
`−1∑
i=1

Φi X̂T (`− i) +

p∑
i=`

ΦiXT+`−i + 0.
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VAR processes forecasting 2/3

From VMA (∞) representation:

X̂T (`) = E
(
XT+`

/
FT
−∞ (X )

)
= E

(
µ+ εT+` +

+∞∑
i=1

ΨiεT+`−i

/
FT
−∞ (X )

)

= µ+
+∞∑
i=`

ΨiεT+`−i .
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VAR processes forecasting 3/3

MSE (Mean Square Error) is:

MSE (`) = Var
(
XT+l − X̂T (`)

)
= Var

(
εT+l +

`−1∑
i=1

ΨiεT+l−i

)

= Ω +
`−1∑
i=1

ΨiΩΨ>i .

We obtain the linear recurrence equation:

MSE (`) = MSE (`− 1) + Ψ`−1ΩΨ>`−1

with MSE(0) = 0.
One can obtain forecast intervals under normality
distribution.
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Least square estimation 1/3
Consider a centered VAR(p) process:

∀t ∈ Z : Xt =

p∑
i=1

ΦiXt−i + εt .

Based on (X1, . . . ,XT ), with initial values (X1−p, . . . ,X0),
we have:

Y = ΦX + ε

where:

Y =

(
X1 . . . XT

)
,

Φ =

(
Φ1 . . . Φp

)
,

X =


X0 . . . XT−1

...
...

X1−p . . . XT−p

 ,

ε =

(
ε1 . . . εT

)
.



Stationary
processes

VAR processes

VAR processes
moments

VMA (∞)
representation of a
VAR(p) process

VAR processes
forecasting

VAR processes
estimation

VAR processes
order selection

Granger causality

VAR processes and
causality

References

38/56

Least square estimation 2/3
So:

vec (Y) =
(
X> ⊗ Id

)
vec (Φ) + vec (ε) .

Least square estimator minimizes:

[vec (ε)]> vec (ε) .

Least square estimator is:

vec
(

Φ̂
)

=

[(
X> ⊗ Id

)> (
X> ⊗ Id

)]−1 (
X> ⊗ Id

)>
vec (Y)

=

[(
XX>

)−1
⊗ Id

]
vec
(

YX>
)

= vec

(
YX>

(
XX>

)−1
)
.

Thus:

Φ̂ = YX>
(
XX>

)−1
.
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Least square estimation 3/3

Under stationarity and ergodicity assumptions, the least
square estimator is asymptotically normal (that allows
significance tests):

√
T
(

vec
(

Φ̂
)
− vec (Φ)

)
L−→ N

(
0, lim

T→+∞

(
ΓY(0)−1 ⊗ Ω

))
.
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VAR processes order selection

One use information criterium:

AIC = ln
(

det
(

Ω̂(p)
))

+
2

T
pd2,

BIC = ln
(

det
(

Ω̂(p)
))

+
ln (T )

T
pd2.
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Notation

We use the notation:

EL (X/A)

for the expectation of X given the set spanned by all the
linear combinations of the components of A (and 1).

One can also find the notations EL (X /A), Ê (X /A) or
P̂ (X /A).

We also use the notation:

Xt = {Xi , i ∈ Z, i ≤ t} .
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Causality

Let X = (Xt)t∈Z and Y = (Yt)t∈Z be two multivariate
processes (dimensions can be different).
Y doesn’t cause X at time t if:

∀` ∈ N∗ : EL

(
Xt+`/Xt ,Yt

)
= EL

(
Xt+`/Xt

)
.

We use the notation:
CY 6→X .
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Instantaneous causality

Y doesn’t instantaneously cause X at time t if:

EL

(
Xt+1/Xt ,Yt+1

)
= EL

(
Xt+1/Xt ,Yt

)
.

We use the notation:
CY 6−X .
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Remark

If the processes are stationary then there is equivalence
between causality at a time t and causality for all times.
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Definition

One can also use the following characterisation.
Let consider the error of the linear forecast of X given A:

εL (Xt/A) = Xt − EL (X/A) .

We define:

I Y doesn’t cause X at time t if:

∀` ∈ N∗ : Var
(
εL
(
Xt+`/Xt ,Yt

))
= Var

(
εL
(
Xt+`/Xt

))
.

I Y doesn’t cause X instantaneously at time t if:

Var
(
εL

(
Xt+1/Xt ,Yt+1

))
= Var

(
εL
(
Xt+1/Xt ,Yt

))
.
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Property

I Y doesn’t instantaneously cause X at time t iff:

Cov
(
Xt+1 − EL

(
Xt+1/Xt ,Yt

)
,Yt+1 − EL

(
Yt+1/Xt ,Yt

))
= 0.

I We have:
CY−X ⇔ CX−Y .
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Example

Let (ut)t∈Z and (vt)t∈Z be two independent white noises.
Let (Xt)t∈Z and (Yt)t∈Z be two processes such that:

Xt = ut + avt + bvt−1,

Yt = vt

where (a, b) ∈ R2.
We have:

EL

(
Xt+1/Xt ,Yt

)
= bYt ,

EL

(
Xt+1/Xt ,Yt+1

)
= aYt+1 + bYt .

Thus:

I Y doesn’t cause X at time t iff b = 0,

I Y doesn’t instantaneously cause X at time t iff a = 0.
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VAR processes and causality

Let X = (Xt)t∈Z and Y = (Yt)t∈Z be two multivariate (with

different or same dimensions) processes such that (Xt ,Yt)
>

is a VAR (p) process: Xt

Yt

 =

p∑
i=1

 ΦXX
i ΦXY

i

ΦYX
i ΦYY

i


 Xt−i

Yt−i

+

 εt

ηt

 .

We have:

CY 6→X ⇔ ∀i ∈ {1, . . . , p} : ΦXY
i = 0,

CX 6→Y ⇔ ∀i ∈ {1, . . . , p} : ΦYX
i = 0,

CY 6−X ⇔ Cov (εt , ηt) = 0.
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Example 1/2

Let (Xt)t∈Z, (Yt)t∈Z and (Zt)t∈Z be three univariate

processes (in R) such that (Xt ,Yt ,Zt)
> is a VAR (1) process:

Xt

Yt

Zt

 =


1
3 0 0

1
2 0 0

0 1
2

1
4




Xt−1

Yt−1

Zt−1

+


εt

ηt

ξt


with:

Var


εt

ηt

ξt

 =


1 1

4 0

1
4 1 0

0 0 1

 .
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Example 2/2

We have:

C(Y ,Z) 6→X ,

CX→(Y ,Z),

C(X ,Z)→Y ,

CY→(X ,Z),

CZ 6→(X ,Y ),

C(X ,Y )→Z

and:

CX−(Y ,Z),

CY−(X ,Z),

CZ 6−(X ,Y ).



Stationary
processes

VAR processes

VAR processes
moments

VMA (∞)
representation of a
VAR(p) process

VAR processes
forecasting

VAR processes
estimation

VAR processes
order selection

Granger causality

VAR processes and
causality

References

54/56

Causality test 1/2

A test of causality between two multivariate processes
X = (Xt)t∈Z and Y = (Yt)t∈Z such that (Xt ,Yt) is a
VAR(p) process, is equivalent to a significance test for some
coefficients of the matrix (Φ1, . . . ,Φp):

H0 : R vec (Φ) = 0

H1 : R vec (Φ) 6= 0

where R is a r ranked matrix.
We know that:

√
T
(

vec
(

Φ̂
)
− vec (Φ)

)
L−→ N

(
0, Γ−1 ⊗ Ω

)
.

Thus:

√
T
(
R vec

(
Φ̂
)
− R vec (Φ)

)
L−→ N

(
0,R

(
Γ−1 ⊗ Ω

)
R>
)
.
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Causality test 2/2

Under H0:

T
(
R vec

(
Φ̂
))> [

R
(
Γ−1 ⊗ Ω

)
R>
]−1 (

R vec
(

Φ̂
))

L−→ χ2 (r)

One use this Wald test with estimators:

Γ̂ =
1

T
XX>,

Ω̂ =
1

T − dp − 1

T∑
t=1

ε̂t ε̂t
>.

Asymptotic distribution is still χ2 (r).

One can also test instantaneously causality.
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