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Introduction

If (Xt)t∈Z is a stationary process and if (ai )i∈Z is a sequence
such that

∑
i∈Z |ai | < +∞ then the process (Yt)t∈Z defined

by:

Yt =
∑
i∈Z

aiXt−i

is stationary.
One can rewrite:

Yt =
∑
i∈Z

aiXt−i =
∑
i∈Z

aiB
iXt = P (B)Xt

where P (B) =
∑

i∈Z aiB
i .
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Lag series

P is said to be a lag series if:

P (B) =
∑
i∈Z

aiB
i

where
∑

i∈Z |ai | < +∞.

We have:

I The linear combination of two lag series is a lag series.

I The product of two lag series is a lag series.
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Inverse of I − λB

We usually need to invert lag poynomials, so we consider the
inversion of I − λB.
We want to find the stationary process (Yt)t∈Z such that:

(I − λB)Yt = Xt

where λ ∈ C.



Lag series

AR process

MA process

ARMA process

ARIMA and
SARIMA processes

SARIMA model
forecasting

7/72

Inverse of I − λB : |λ| < 1 (1/2)

The module root 1
λ of 1− λz is more than 1.

Consider the sequence (ai )i∈Z such that :

ai =

{
0 if i ∈ Z \ N
λi if i ∈ N

The series
∑+∞

i=−∞ ai is absolutely convergent and:

(I − λB)
∑
i∈N

λiB i = λ0B0 = I .
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Inverse of I − λB : |λ| < 1 (2/2)

The solution (Yt)t∈Z of (I − λB)Yt = Xt is the sum of the
general case and of the particular case (I − λB)Yt = 0.
We have:

(I − λB)Yt = 0⇔ Yt = λYt−1

⇔ Yt = cλt

where c ∈ R.
Thus the solution is:

Yt =
∑
i∈N

λiXt−i + cλt .

However the only stationary solution is obtained with c = 0:

Yt =
∑
i∈N

λiXt−i .
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Inverse of I − λB : |λ| > 1

We have:

Yt = (I − λB)−1 Xt

=

[
−λB

(
− 1

λ
F + I

)]−1

Xt

=

(
− 1

λ
F

)∑
i∈N

(
1

λ

)i

F iXt

= −
+∞∑
i=1

1

λi
Xt+i .

Thus:

Yt = −
+∞∑
i=1

1

λi
Xt+i .
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Inverse of I − λB : |λ| = 1

For |λ| = 1, there is no stationary process (Yt)t∈Z such that
(I − λB)Yt = Xt .
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General case 1/3

Consider the lag series:

Φ (B) = I − ϕ1B − . . .− ϕpB
p

where (ϕ1, . . . , ϕp) ∈ Rp.
We want to find the stationary process (Yt)t∈Z such that:

Φ (B)Yt = Xt .

Let zj = 1
λj

with j ∈ {1, . . . , p} be the roots of Φ (z).

If one of the roots zj is on the unit circle then there is no
stationary solution.
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General case 2/3

If there is no roots zj on the unit circle then there is lag
series Ψ (B) =

∑
i∈Z ψiB

i , where (ψi )i∈Z is a real sequence,
such that:

I Φ (B) Ψ (B) = I ,

I Yt = Ψ (B)Xt is stationary.

If all the roots zj are outside the unit circle then we can
write:

Ψ (B) =
∑
i∈N

ψiB
i .

If all the roots zj are inside the unit circle then we can write:

Ψ (B) =
∑
i∈N∗

ψiF
i .
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General case 3/3

In order to determine Ψ, we can use one of these methods:

I Identification method.

I Partial fraction expansion of 1
Φ(z) and power series

expansion.

I Division of 1 by Φ (z) by increasing power order.
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Definition

Let (εt)t∈Z be a white noise of variance σ2.

(Xt)t∈Z is said to be an autoregressive process or a AR
process of order p, written AR(p), if:

I (Xt)t∈Z is stationary,

I

∀t ∈ Z : Xt =

p∑
i=1

ϕiXt−i + εt

where (ϕ1, . . . , ϕp) ∈ Rp and ϕp 6= 0.
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Notation

We generally use the notation Φ (B)Xt = εt where:

Φ (B) = I −
p∑

i=1

ϕiB
i .

Note that:

I Sometimes we find Φ (B) = I +
∑p

i=1 ϕiB
i .

I If Φ (B) has a root on the unit circle then the process
(Xt)t∈Z isn’t stationary, thus it isn’t an AR process.
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Canonical representation: introduction 1/2

We suppose that the lag polynomial Φ (B) is invertible (no
root on the unit circle).
Let zj = 1

λj
, j ∈ {1, . . . , p}, be the roots of Φ (z).

If one root zj is on the unit circle then there is no stationary
solution.
Assume that (zj)j∈{1,...,r} are inside the circle unit and that

(zj)j∈{r+1,...,p} are outside the unit circle. We can write:

Φ (B) =

p∏
j=1

(I − λjB) .
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Canonical representation: introduction 2/2

This polynomial is invertible but we prefer to have only
positive powers of B (the roots must be outside the unit
circle).
Thus we prefer to consider the polynomial:

Φ∗ (B) =
r∏

j=1

(
I − 1

λj
B

) p∏
j=r+1

(I − λjB) .

Φ∗ is obtained from Φ by inverting the roots which are inside
the unit circle.
Result: we obtain a new AR model (the canonical version):

Φ∗ (B)Xt = ηt .
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Canonical representation: definition

Let (Xt)t∈Z an AR(p) process:

Φ (B)Xt = εt .

If the roots of Φ are outside the unit circle then we have the
canonical representation.
In this case the associated white noise is the innovation.

From now we consider canonical AR processes.
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MA(∞) representation

Let (Xt)t∈Z be a canonical AR(p) process:

Φ (B)Xt = εt .

It has a MA(∞) representation:

Xt = Φ−1 (B) εt = εt +
+∞∑
i=1

ψiεt−i

where (ψi )i∈N is a real sequence.
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Yule-Walker equations

Let (Xt)t∈Z be a canonical AR(p) process:

∀t ∈ Z : Xt =

p∑
i=1

ϕiXt−i + εt .

We can obtain the Yule-Walker equations:

γ(0) =
σ2

1−
∑p

i=1 ϕiρ (i)
ρ(1)

...

ρ(p)

 = Rp


ϕ1

...

ϕp


.
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Autocorrelations of an AR process

Autocorrelations are solutions of a simple linear recurrence
equation of order p.

If the roots of Φ (z), zi = 1
λi

, i ∈ {1, . . . , p}, are real and

unique then we have ρ(h) =
∑p

i=1 ciλ
h
i . Autocorrelations

exponentially decrease to 0.

In the general case we obtain a damped sine wave.
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Partial autocorrelations of an AR process

If (Xt)t∈Z is a AR(p) process then its partial
autocorrelations are zero after p:{

r(p) 6= 0

∀h ∈ N, h ≥ p + 1 : r(h) = 0
.

Conversely it’s a necessary and sufficient condition that
(Xt)t∈Z is an AR(p) process.
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Proposition

Let (Xt)t∈Z be a canonical AR(p) process:

∀t ∈ Z : Xt =

p∑
i=1

ϕiXt−i + εt .

We have:
r(p) = ϕp.

Note that:

I This proposition applies only to canonical process.

I One can’t deduce anything for r(h), h ∈ {2, . . . , p}.
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Definition

Let (εt)t∈Z be a white noise of variance σ2.

(Xt)t∈Z is said to be a MA process of order q, written
MA(q), if:

∀t ∈ Z : Xt = εt +

q∑
i=1

θiεt−i

where (θ1, . . . , θq) ∈ Rq and θq 6= 0.
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Notation

We generally use the notation Xt = Θ (B) εt where:

Θ (B) = I +

q∑
i=1

θiB
i .

Note that:

I Sometimes we find Θ (B) = I −
∑q

i=1 θiB
i .

I A MA process is stationnary.
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Canonical representation

Let (Xt)t∈Z be a MA(q) process:

Xt = Θ (B) εt .

If the roots of Θ are outside the unit circle then we have the
canonical representation.
In this case, the associated white noise is the innovation.

From now we consider canonical MA processes.
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AR (∞) representation

Let (Xt)t∈Z be a canonical MA(q) process:

Xt = Θ (B) εt .

It has a AR (∞) representation:

εt = Θ−1 (B)Xt = Xt +
+∞∑
i=1

πiXt−i ,

thus:

Xt = −
+∞∑
i=1

πiXt−i + εt

where (πi )i∈N is a real sequence.
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Autocorrelations of a MA process

Let (Xt)t∈Z be a canonical MA(q) process:

∀t ∈ Z : Xt = εt +

q∑
i=1

θiεt−i .

We have:

γ(0) = σ2

(
1 +

q∑
i=1

θ2
i

)
and:

∀h ∈ N∗ : γ(h) =

{(
θh +

∑q
i=h+1 θiθi−h

)
σ2 if h ∈ {1, . . . , q}

0 otherwise
.



Lag series

AR process

MA process

ARMA process

ARIMA and
SARIMA processes

SARIMA model
forecasting

31/72

Autocorrelations of a MA process

If (Xt)t∈Z is a process MA(q) process then its
autocorrelations are zero after q:{

ρ(q) 6= 0

∀h ∈ N, h ≥ q + 1 : ρ(h) = 0
.

Conversely its a necessary and sufficient condition that
(Xt)t∈Z is a MA(q) process.
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Partial autocorrelations of a MA process

Partial autocorrelations are solutions of a simple linear
recurrence equation of order q. They decrease to 0.

In the general case, we obtain an exponential decrease or a
damped sine wave.
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Definition

Let (εt)t∈Z be a white noise of variance σ2.

(Xt)t∈Z is said to be a ARMA process of order (p, q),
written ARMA(p, q), if:

I (Xt)t∈Z is stationary,

I ∀t ∈ Z : Xt −
∑p

i=1 ϕiXt−i = εt +
∑q

i=1 θiεt−i
where (ϕ1, . . . , ϕp) ∈ Rp, ϕp 6= 0, (θ1, . . . , θq) ∈ Rq

and θq 6= 0.
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Notation

We generally use the notation:

Φ (B)Xt = Θ (B) εt

where:

Φ (B) = I −
p∑

i=1

ϕiB
i ,

Θ (B) = I +

q∑
i=1

θiB
i .
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Remarks

I One can consider non centered ARMA processes
(Xt)t∈Z. In this case, resultats are the same withe the
process Yt = Xt − µX .
From now we consider centered ARMA processes.

I An AR(p) process is a ARMA(p, 0) process.

I A MA(q) process is a ARMA(0, q) process.
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Representations of an ARMA process

Let (Xt)t∈Z be an ARMA(p, q) process:

Φ (B)Xt = Θ (B) εt .

The representation is:

I minimal if Φ and Θ have no common root,

I causal if the roots of Φ are outside the unit circle,

I invertible if the roots of Θ are outside the unit circle,

I canonical if the representation is causal and invertible.
In this case the associated white noise is the innovation.
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MA (∞) representation of an ARMA process

Let (Xt)t∈Z be an minimal canonical ARMA(p, q) process:

Φ (B)Xt = Θ (B) εt .

it has a MA (∞) representation:

Xt = Φ−1 (B) Θ (B) εt = εt +
+∞∑
i=1

ψiεt−i

where (ψi )i∈N is a real sequence.
With ψi = 0 for i < 0, θ0 = 1 and θi = 0 for i > q, we have:

∀i ∈ N : ψi −
p∑

j=1

ϕjψi−j = θi .
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AR (∞) representation of an ARMA process

It has an AR (∞) representation:

εt = Θ−1 (B) Φ (B)Xt = Xt +
+∞∑
i=1

πiXt−i ,

thus:

Xt = −
+∞∑
i=1

πiXt−i + εt

where (πi )i∈N is a real sequence.
With πi = 0 for i < 0, ϕ0 = −1 and ϕi = 0 for i > p, we
have:

∀i ∈ N : πi +

q∑
j=1

θjπi−j = −ϕi .
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Autocorrelations of an ARMA process 1/2

From the MA(∞) representation:

γ(h) = σ2
+∞∑
i=0

ψiψi+h

where ψ0 = 1.
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Autocorrelations of an ARMA process 2/2

From the AR equation, for h ∈ N:

γ(h)− ϕ1γ (h − 1)− . . .− ϕpγ (h − p)

= Cov (εt + θ1εt−1 + . . .+ θqεt−q,Xt−h)

= Cov

(
εt + θ1εt−1 + . . .+ θqεt−q,

+∞∑
i=0

ψiεt−h−i

)

=

{
σ2
∑+∞

i=0 θi+hψi if h ∈ {0, . . . , q}
0 otherwise

.
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Remarks

I Autocorrelations decrease to 0.
I If p > q then we obtain an exponential decrease or a

damped sine wave.
I If q ≥ p, the decrease is after the first q − p values.

I There are similar properties for partial autocorrelations.
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Corner method 1/3

There is no simple characterization of ARMA processes
based on simple and partial autocorrelations. The corner
method comes from autocorrelation matrixes properties.
Consider, for (i , j) ∈ N2:

Ωi,j =



ρ (i) ρ (i − 1) . . . . . . ρ (i − j + 1)

ρ (i − 1) ρ (i) ρ (i − 1) . . . ρ (i − j)

ρ (i − 2) ρ (i − 1) ρ (i)
. . .

...

...
...

. . .
. . . ρ (i − 1)

ρ (i − j + 1) ρ (i − j) . . . ρ (i − 1) ρ (i)


and their determinants:

∆i ,j = det (Ωi ,j) .
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Corner method 2/3

For a ARMA(p, q) process, we have:

I ∀ (i , j) ∈ N2, i > q, j > p : ∆i ,j = 0,

I ∀ (i , j) ∈ N2, i ≤ q : ∆i ,p 6= 0,

I ∀ (i , j) ∈ N2, j ≤ p : ∆q,j 6= 0.
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Corner method 3/3

For k enough large we represent the matrix
M = (∆i ,j)(i ,j)∈{1,...,k}2 and a corner appears:

M =



∆1,1 . . . ∆1,p ∆1,p+1 . . . ∆1,k

...
...

...
...

∆q,1 . . . ∆q,p ∆q,p+1 . . . ∆q,k

∆q+1,1 . . . ∆q+1,p

...
... 0

∆k,1 . . . ∆k,p


.
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Spectral density of an ARMA process

Let (Xt)t∈Z be an ARMA(p, q) process:

Φ (B)Xt = Θ (B) εt .

Its spectral density is:

f (ω) =
σ2

2π

∣∣Θ (e−iω)∣∣2
|Φ (e−iω)|2

.
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ARMA process estimation: principle

Let (Xt)t∈Z be a minimal canonical ARMA(p, q) process:

Φ (B)Xt = Θ (B) εt .

The aim is to estimate Φ and Θ, and σ2.

Estimations from autocorrelations aren’t efficient. We use
maximum likelihood estimation after a preliminary
estimation.
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Preliminary estimation: AR processes 1/2

From Yule-Walker equations:


ϕ̂1

...

ϕ̂p

 = R̂−1
p


ρ̂(1)

...

ρ̂(p)


σ̂2 = γ̂(0)

(
1−

∑p
i=1 ϕ̂i ρ̂ (i)

)
.
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Preliminary estimation: AR processes 2/2

With ϕ = (ϕ1, . . . , ϕp) and ϕ̂ = (ϕ̂1, . . . , ϕ̂p), we have:

√
n (ϕ̂− ϕ)

L→ N
(
0, σ2Σ−1

p

)
and:

σ̂2 P→ σ2

where:

Σp =



γ(0) γ(1) . . . γ (p − 1)

γ(1) γ(0)
. . .

...

...
. . .

. . . γ(1)

γ (p − 1) . . . γ(1) γ(0)


.
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Preliminary estimation: MA and ARMA
processes 1/2

Consider a minimal canonical ARMA(p, q) process.
From the MA (∞) representation:

Xt = εt +
+∞∑
i=1

ψiεt−i .

We use the innovation algorithm in order to estimate
coefficients (ψi )i∈{1,...,n}.
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Preliminary estimation: MA and ARMA
processes 2/2

With ψi = 0 for i < 0, θ0 = 1 and θi = 0 for i > q, we have:

∀i ∈ N : ψi −
p∑

j=1

ϕjψi−j = θi .

We thus obtain a first estimation of (ϕ1, . . . , ϕp) and

(θ1, . . . , θq) from
(
ψ̂1, . . . , ψ̂p+q

)
.



Lag series

AR process

MA process

ARMA process

ARIMA and
SARIMA processes

SARIMA model
forecasting

52/72

Maximum likelihood estimation

We assume now that the residuals are a gaussian white noise
with variance , σ2.
Based on (X1, . . . ,XT ), the likelihood is:

`
(
x1, . . . , xT ;ϕ1, . . . , ϕp, θ1, . . . , θq, σ

2
)

=
1

(2π)
T
2

1√
det ΣT

exp

(
−1

2
x>Σ−1

T x

)

where x = (x1, . . . , xT )> and ΣT is the variance-covariance
matrix of (X1, . . . ,XT ).
It’s a nonlinear optimization problem.



Lag series

AR process

MA process

ARMA process

ARIMA and
SARIMA processes

SARIMA model
forecasting

53/72

Maximum likelihood estimation

Consider:

∀i ∈ {1, . . . ,T} : X̂i = E
(
Xi

/
Hi−1

1 (X )
)
.

We use the innovation algorithm for the one step optimal
linear forecast and for forecast error εi = Xi − X̂i , and their

variance vi−1 = E
[(

Xi − X̂i

)2
]

.

One don’t need to calculate Σ−1
T and det ΣT .
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Maximum likelihood estimation

We have: 
X1

...

XT

 = CT


ε1

...

εT

 .
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Maximum likelihood estimation
(εi )i∈{1,...,T} =

(
Xi − X̂i

)
i∈{1,...,T}

are uncorrelated, the

variance-covariance matrix of (εi )i∈{1,...,T} is:

VT =



v0 0 . . . 0

0 v1
. . . . . .

. . .
. . .

. . . 0

0 . . . 0 vT−1


.

We have ΣT = CTVT (CT )> thus:

det ΣT = (detCT )2 detVT = v0 . . . vT−1

and:

x>Σ−1
T x =

T∑
i=1

(xi − x̂i )
2

vi−1
.
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Maximum likelihood estimation

We have:

`
(
x1, . . . , xT ;ϕ1, . . . , ϕp, θ1, . . . , θq, σ

2
)

=
1

(2π)
T
2

1
√
v0 . . . vT−1

exp

(
−1

2

T∑
i=1

(xi − x̂i )
2

vi−1

)

X̂i is recursively obtained with the innovation algorithm.
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Maximum likelihood estimation

Consider:
vi−1 = σ2ri−1.

We can rewrite:

`
(
x1, . . . , xT ;ϕ1, . . . , ϕp, θ1, . . . , θq, σ

2
)

=
1

(2πσ2)
T
2

1
√
r0 . . . rT−1

exp

(
− 1

2σ2

T∑
i=1

(xi − x̂i )
2

ri−1

)
.
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Maximum likelihood estimation

Finally we have:(
ϕ̂1, . . . , ϕ̂p, θ̂1, . . . , θ̂q

)
= arg min

(ϕ1,...,ϕp,θ1,...,θq)

{
ln

[
1

T
S (ϕ1, . . . , ϕp, θ1, . . . , θq)

]
+

1

T

T∑
i=1

ln ri

}

and:

σ̂2 =
1

T
S
(
ϕ̂1, . . . , ϕ̂p, θ̂1, . . . , θ̂q

)
where S

(
ϕ̂1, . . . , ϕ̂p, θ̂1, . . . , θ̂q

)
=
∑T

i=1

(xi − x̂i )
2

ri−1
.

Estimators are efficient.
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Model selection: Kullback criterium

Let f0 be a probability density which is estimated by an
element of the family F .
The Kullback criterium measure the difference between the
the trues and the estimated probability density:

I (f0,F) = min
f ∈F

∫
ln

(
f0(x)

f (x)

)
f0(x)dx .

This quantity is positive, zero if f0 ∈ F .
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Model selection: Kullback criterium

We have:∫
ln

(
f0(x)

f (x)

)
f0(x)dx = Ef0

[
ln

(
f0 (X )

f (X )

)]
= Ef0 [ln (f0 (X ))]− Ef0 [ln (f (X ))] .

We need to minimize −Ef0 [ln (f (X ))].
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Model selection: ARMA case

Based on (X1, . . . ,XT ), estimators of −Ef0 [ln (f (X ))] for
ARMA(p, q) processes can be written:

Ĉ (f0,F) = − 1

T
ln (f ) + α (T ) (p + q)

where α is a decreasing function.
If f is a gaussian, we obtain:

Ĉ (f0,F) = ln
(
σ̂2
)

+ α (T ) (p + q)

where σ̂2 is the estimated variance.
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Model selection: ARMA case

We generally consider:

I Akake criterium

With α (T ) =
2

T
:

AIC (p, q) = ln
(
σ̂2
)

+ 2
p + q

T
.

I Schwarz criterium

With α (T ) =
ln (T )

T
:

BIC (p, q) = ln
(
σ̂2
)

+ (p + q)
ln (T )

T
.



Lag series

AR process

MA process

ARMA process

ARIMA and
SARIMA processes

SARIMA model
forecasting

63/72

Table of contents

Lag series

AR process

MA process

ARMA process

ARIMA and SARIMA processes

SARIMA model forecasting



Lag series

AR process

MA process

ARMA process

ARIMA and
SARIMA processes

SARIMA model
forecasting

64/72

Definition

(Xt)t∈N is said to be an ARIMA process of order (p, d , q),
written ARIMA(p, d , q), if:

Φ (B)∇dXt = Θ (B) εt

where:

I ∇d = (I − B)d ,

I Φ (B) = I − ϕ1B − . . .− ϕpB
p where

(ϕ1, . . . , ϕp) ∈ Rp and ϕp 6= 0,

I Θ (B) = I + θ1B + . . .+ θqB
q where (θ1, . . . , θq) ∈ Rq

and θq 6= 0.
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Remarks

I An ARIMA process isn’t defined on Z but on N by
convention. Initial conditions are fixed with:

Z = (X−p, . . . ,X−1, ε−q, . . . , ε−1)> .

I ARIMA models can be applied on times series with a
trend.

I (I − B)d Xt is asympotically equivalent to an
ARMA(p, q) process.

I (Xt)t∈N isn’t a stationary process.
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Autoregressive and moving average
representations

We can’t obtain a AR (∞) nor MA (∞) representation but
it’s possible to obtain:

I Moving average representation:

Xt = εt +
t∑

i=1

ψiεt−i + ψ∗ (t)Z

where ψ∗ (t) is a p + q dimensional vector.

I Autoregressive representation:

Xt = −
t∑

i=1

πiXt−i − π∗ (t)Z + εt

where π∗ (t) is a p + q dimensional vector.
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Definition
(Xt)t∈N is said to be a SARIMA process of order
(p, d , q)(P,D,Q)s if:

Φ (B) Φ′ (Bs)∇d∇D
s Xt = Θ (B) Θ′ (Bs) εt

where:

I ∇d = (I − B)d ,

I ∇D
s = (I − Bs)D ,

I Φ (B) = I − ϕ1B − . . .− ϕpB
p where

(ϕ1, . . . , ϕp) ∈ Rp and ϕp 6= 0,

I Φ′ (B) = I − ϕ′1B − . . .− ϕ′PBP where
(ϕ′1, . . . , ϕ′P) ∈ RP and ϕ′P 6= 0,

I Θ (B) = I + θ1B + . . .+ θqB
q where (θ1, . . . , θq) ∈ Rq

and θq 6= 0,

I Θ′ (B) = I + θ′1B + . . .+ θ′QB
Q where(

θ′1, . . . , θ
′
Q

)
∈ RQ and θ′Q 6= 0.

We write: SARIMA(p, d , q)(P,D,Q)s .
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Remarks

I SARIMA models can be applied on times series with a
trend and a seasonality.

I Estimation of a SARIMA model: estimation of an
ARMA model on the differenced time series.
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Remark

The method is similar for SARIMA models than for ARIMA
models.

To forecast XT+h (with h ∈ N∗) based on (X1, . . . ,XT ), we
can use the autoregressive or the moving average
representation.
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Forecasting with the autoregressive
representation

X̂T (h)

= E
(
XT+h

/
HT∗

1 (X )
)

= E

(
−

T+h∑
i=1

πiXT+h−i − π∗ (T + h)Z + εT+h

/
HT∗

1 (X )

)

= E

(
−

h−1∑
i=1

πiXT+h−i −
T+h∑
i=h

πiXT+h−i − π∗ (T + h)Z + εT+h

/
HT∗

1 (X )

)

= −
h−1∑
i=1

πi X̂T (h − i)−
h−1∑
i=1

πiXT+h−i − π∗ (T + h)Z

' −
h−1∑
i=1

πi X̂T (h − i)−
h−1∑
i=1

πiXT+h−i car π∗ (T )
T→+∞−→ 0.



Lag series

AR process

MA process

ARMA process

ARIMA and
SARIMA processes

SARIMA model
forecasting

72/72

Forecasting with the moving average
representation

X̂T (h) = E
(
XT+h

/
HT∗

1 (X )
)

= E

(
εT+h +

T+h∑
i=1

ψiεT+h−i + ψ∗ (T + h)Z
/
HT∗

1 (X )

)

=
T+h∑
i=h−1

ψiεT+h−i + ψ∗ (T + h)Z

'
T+h∑
i=h−1

ψiεT+h−i car ψ∗ (T )
T→+∞−→ 0.
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