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Introduction

If (Xt)t∈Z is a stationary process and if (ai )i∈Z is a sequence
such that

∑
i∈Z |ai | < +∞ then the process (Yt)t∈Z defined

by:

Yt =
∑
i∈Z

aiXt−i

is stationary.
One can rewrite:

Yt =
∑
i∈Z

aiXt−i =
∑
i∈Z

aiB
iXt = P (B)Xt

where P (B) =
∑

i∈Z aiB
i .
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Lag series

P is said to be a lag series if:

P (B) =
∑
i∈Z

aiB
i

where
∑

i∈Z |ai | < +∞.

We have:

I The linear combination of two lag series is a lag series.

I The product of two lag series is a lag series.
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Inverse of I − λB

We usually need to invert lag poynomials, so we consider the
inversion of I − λB.
We want to find the stationary process (Yt)t∈Z such that:

(I − λB)Yt = Xt

where λ ∈ C.



Lag series

AR process

MA process

ARMA process

ARIMA and
SARIMA processes

SARIMA model
forecasting

7/72

Inverse of I − λB : |λ| < 1 (1/2)

The module root 1
λ of 1− λz is more than 1.

Consider the sequence (ai )i∈Z such that :

ai =

{
0 if i ∈ Z \ N
λi if i ∈ N

The series
∑+∞

i=−∞ ai is absolutely convergent and:

(I − λB)
∑
i∈N

λiB i = λ0B0 = I .
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Inverse of I − λB : |λ| < 1 (2/2)

The solution (Yt)t∈Z of (I − λB)Yt = Xt is the sum of the
general case and of the particular case (I − λB)Yt = 0.
We have:

(I − λB)Yt = 0⇔ Yt = λYt−1

⇔ Yt = cλt

where c ∈ R.
Thus the solution is:

Yt =
∑
i∈N

λiXt−i + cλt .

However the only stationary solution is obtained with c = 0:

Yt =
∑
i∈N

λiXt−i .
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Inverse of I − λB : |λ| > 1

We have:

Yt = (I − λB)−1 Xt

=

[
−λB

(
− 1

λ
F + I

)]−1

Xt

=

(
− 1

λ
F

)∑
i∈N

(
1

λ

)i

F iXt

= −
+∞∑
i=1

1

λi
Xt+i .

Thus:

Yt = −
+∞∑
i=1

1

λi
Xt+i .
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Inverse of I − λB : |λ| = 1

For |λ| = 1, there is no stationary process (Yt)t∈Z such that
(I − λB)Yt = Xt .
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General case 1/3

Consider the lag series:

Φ (B) = I − ϕ1B − . . .− ϕpB
p

where (ϕ1, . . . , ϕp) ∈ Rp.
We want to find the stationary process (Yt)t∈Z such that:

Φ (B)Yt = Xt .

Let zj = 1
λj

with j ∈ {1, . . . , p} be the roots of Φ (z).

If one of the roots zj is on the unit circle then there is no
stationary solution.
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General case 2/3

If there is no roots zj on the unit circle then there is lag
series Ψ (B) =

∑
i∈Z ψiB

i , where (ψi )i∈Z is a real sequence,
such that:

I Φ (B) Ψ (B) = I ,

I Yt = Ψ (B)Xt is stationary.

If all the roots zj are outside the unit circle then we can
write:

Ψ (B) =
∑
i∈N

ψiB
i .

If all the roots zj are inside the unit circle then we can write:

Ψ (B) =
∑
i∈N∗

ψiF
i .
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General case 3/3

In order to determine Ψ, we can use one of these methods:

I Identification method.

I Partial fraction expansion of 1
Φ(z) and power series

expansion.

I Division of 1 by Φ (z) by increasing power order.
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Definition

Let (εt)t∈Z be a white noise of variance σ2.

(Xt)t∈Z is said to be an autoregressive process or a AR
process of order p, written AR(p), if:

I (Xt)t∈Z is stationary,

I

∀t ∈ Z : Xt =

p∑
i=1

ϕiXt−i + εt

where (ϕ1, . . . , ϕp) ∈ Rp and ϕp 6= 0.
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Notation

We generally use the notation Φ (B)Xt = εt where:

Φ (B) = I −
p∑

i=1

ϕiB
i .

Note that:

I Sometimes we find Φ (B) = I +
∑p

i=1 ϕiB
i .

I If Φ (B) has a root on the unit circle then the process
(Xt)t∈Z isn’t stationary, thus it isn’t an AR process.
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Canonical representation: introduction 1/2

We suppose that the lag polynomial Φ (B) is invertible (no
root on the unit circle).
Let zj = 1

λj
, j ∈ {1, . . . , p}, be the roots of Φ (z).

If one root zj is on the unit circle then there is no stationary
solution.
Assume that (zj)j∈{1,...,r} are inside the circle unit and that

(zj)j∈{r+1,...,p} are outside the unit circle. We can write:

Φ (B) =

p∏
j=1

(I − λjB) .
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Canonical representation: introduction 2/2

This polynomial is invertible but we prefer to have only
positive powers of B (the roots must be outside the unit
circle).
Thus we prefer to consider the polynomial:

Φ∗ (B) =
r∏

j=1

(
I − 1

λj
B

) p∏
j=r+1

(I − λjB) .

Φ∗ is obtained from Φ by inverting the roots which are inside
the unit circle.
Result: we obtain a new AR model (the canonical version):

Φ∗ (B)Xt = ηt .
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Canonical representation: definition

Let (Xt)t∈Z an AR(p) process:

Φ (B)Xt = εt .

If the roots of Φ are outside the unit circle then we have the
canonical representation.
In this case the associated white noise is the innovation.

From now we consider canonical AR processes.
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MA(∞) representation

Let (Xt)t∈Z be a canonical AR(p) process:

Φ (B)Xt = εt .

It has a MA(∞) representation:

Xt = Φ−1 (B) εt = εt +
+∞∑
i=1

ψiεt−i

where (ψi )i∈N is a real sequence.
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Yule-Walker equations

Let (Xt)t∈Z be a canonical AR(p) process:

∀t ∈ Z : Xt =

p∑
i=1

ϕiXt−i + εt .

We can obtain the Yule-Walker equations:

γ(0) =
σ2

1−
∑p

i=1 ϕiρ (i)
ρ(1)

...

ρ(p)

 = Rp


ϕ1

...

ϕp


.
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Autocorrelations of an AR process

Autocorrelations are solutions of a simple linear recurrence
equation of order p.

If the roots of Φ (z), zi = 1
λi

, i ∈ {1, . . . , p}, are real and

unique then we have ρ(h) =
∑p

i=1 ciλ
h
i . Autocorrelations

exponentially decrease to 0.

In the general case we obtain a damped sine wave.
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Partial autocorrelations of an AR process

If (Xt)t∈Z is a AR(p) process then its partial
autocorrelations are zero after p:{

r(p) 6= 0

∀h ∈ N, h ≥ p + 1 : r(h) = 0
.

Conversely it’s a necessary and sufficient condition that
(Xt)t∈Z is an AR(p) process.
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Proposition

Let (Xt)t∈Z be a canonical AR(p) process:

∀t ∈ Z : Xt =

p∑
i=1

ϕiXt−i + εt .

We have:
r(p) = ϕp.

Note that:

I This proposition applies only to canonical process.

I One can’t deduce anything for r(h), h ∈ {2, . . . , p}.
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Definition

Let (εt)t∈Z be a white noise of variance σ2.

(Xt)t∈Z is said to be a MA process of order q, written
MA(q), if:

∀t ∈ Z : Xt = εt +

q∑
i=1

θiεt−i

where (θ1, . . . , θq) ∈ Rq and θq 6= 0.
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Notation

We generally use the notation Xt = Θ (B) εt where:

Θ (B) = I +

q∑
i=1

θiB
i .

Note that:

I Sometimes we find Θ (B) = I −
∑q

i=1 θiB
i .

I A MA process is stationnary.
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Canonical representation

Let (Xt)t∈Z be a MA(q) process:

Xt = Θ (B) εt .

If the roots of Θ are outside the unit circle then we have the
canonical representation.
In this case, the associated white noise is the innovation.

From now we consider canonical MA processes.
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AR (∞) representation

Let (Xt)t∈Z be a canonical MA(q) process:

Xt = Θ (B) εt .

It has a AR (∞) representation:

εt = Θ−1 (B)Xt = Xt +
+∞∑
i=1

πiXt−i ,

thus:

Xt = −
+∞∑
i=1

πiXt−i + εt

where (πi )i∈N is a real sequence.
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Autocorrelations of a MA process

Let (Xt)t∈Z be a canonical MA(q) process:

∀t ∈ Z : Xt = εt +

q∑
i=1

θiεt−i .

We have:

γ(0) = σ2

(
1 +

q∑
i=1

θ2
i

)
and:

∀h ∈ N∗ : γ(h) =

{(
θh +

∑q
i=h+1 θiθi−h

)
σ2 if h ∈ {1, . . . , q}

0 otherwise
.
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Autocorrelations of a MA process

If (Xt)t∈Z is a process MA(q) process then its
autocorrelations are zero after q:{

ρ(q) 6= 0

∀h ∈ N, h ≥ q + 1 : ρ(h) = 0
.

Conversely its a necessary and sufficient condition that
(Xt)t∈Z is a MA(q) process.
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Partial autocorrelations of a MA process

Partial autocorrelations are solutions of a simple linear
recurrence equation of order q. They decrease to 0.

In the general case, we obtain an exponential decrease or a
damped sine wave.
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Definition

Let (εt)t∈Z be a white noise of variance σ2.

(Xt)t∈Z is said to be a ARMA process of order (p, q),
written ARMA(p, q), if:

I (Xt)t∈Z is stationary,

I ∀t ∈ Z : Xt −
∑p

i=1 ϕiXt−i = εt +
∑q

i=1 θiεt−i
where (ϕ1, . . . , ϕp) ∈ Rp, ϕp 6= 0, (θ1, . . . , θq) ∈ Rq

and θq 6= 0.
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Notation

We generally use the notation:

Φ (B)Xt = Θ (B) εt

where:

Φ (B) = I −
p∑

i=1

ϕiB
i ,

Θ (B) = I +

q∑
i=1

θiB
i .
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Remarks

I One can consider non centered ARMA processes
(Xt)t∈Z. In this case, resultats are the same withe the
process Yt = Xt − µX .
From now we consider centered ARMA processes.

I An AR(p) process is a ARMA(p, 0) process.

I A MA(q) process is a ARMA(0, q) process.
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Representations of an ARMA process

Let (Xt)t∈Z be an ARMA(p, q) process:

Φ (B)Xt = Θ (B) εt .

The representation is:

I minimal if Φ and Θ have no common root,

I causal if the roots of Φ are outside the unit circle,

I invertible if the roots of Θ are outside the unit circle,

I canonical if the representation is causal and invertible.
In this case the associated white noise is the innovation.
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MA (∞) representation of an ARMA process

Let (Xt)t∈Z be an minimal canonical ARMA(p, q) process:

Φ (B)Xt = Θ (B) εt .

it has a MA (∞) representation:

Xt = Φ−1 (B) Θ (B) εt = εt +
+∞∑
i=1

ψiεt−i

where (ψi )i∈N is a real sequence.
With ψi = 0 for i < 0, θ0 = 1 and θi = 0 for i > q, we have:

∀i ∈ N : ψi −
p∑

j=1

ϕjψi−j = θi .
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AR (∞) representation of an ARMA process

It has an AR (∞) representation:

εt = Θ−1 (B) Φ (B)Xt = Xt +
+∞∑
i=1

πiXt−i ,

thus:

Xt = −
+∞∑
i=1

πiXt−i + εt

where (πi )i∈N is a real sequence.
With πi = 0 for i < 0, ϕ0 = −1 and ϕi = 0 for i > p, we
have:

∀i ∈ N : πi +

q∑
j=1

θjπi−j = −ϕi .
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Autocorrelations of an ARMA process 1/2

From the MA(∞) representation:

γ(h) = σ2
+∞∑
i=0

ψiψi+h

where ψ0 = 1.
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Autocorrelations of an ARMA process 2/2

From the AR equation, for h ∈ N:

γ(h)− ϕ1γ (h − 1)− . . .− ϕpγ (h − p)

= Cov (εt + θ1εt−1 + . . .+ θqεt−q,Xt−h)

= Cov

(
εt + θ1εt−1 + . . .+ θqεt−q,

+∞∑
i=0

ψiεt−h−i

)

=

{
σ2
∑+∞

i=0 θi+hψi if h ∈ {0, . . . , q}
0 otherwise

.
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Remarks

I Autocorrelations decrease to 0.
I If p > q then we obtain an exponential decrease or a

damped sine wave.
I If q ≥ p, the decrease is after the first q − p values.

I There are similar properties for partial autocorrelations.



Lag series

AR process

MA process

ARMA process

ARIMA and
SARIMA processes

SARIMA model
forecasting

43/72

Corner method 1/3

There is no simple characterization of ARMA processes
based on simple and partial autocorrelations. The corner
method comes from autocorrelation matrixes properties.
Consider, for (i , j) ∈ N2:

Ωi,j =



ρ (i) ρ (i − 1) . . . . . . ρ (i − j + 1)

ρ (i − 1) ρ (i) ρ (i − 1) . . . ρ (i − j)

ρ (i − 2) ρ (i − 1) ρ (i)
. . .

...

...
...

. . .
. . . ρ (i − 1)

ρ (i − j + 1) ρ (i − j) . . . ρ (i − 1) ρ (i)


and their determinants:

∆i ,j = det (Ωi ,j) .
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Corner method 2/3

For a ARMA(p, q) process, we have:

I ∀ (i , j) ∈ N2, i > q, j > p : ∆i ,j = 0,

I ∀ (i , j) ∈ N2, i ≤ q : ∆i ,p 6= 0,

I ∀ (i , j) ∈ N2, j ≤ p : ∆q,j 6= 0.
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Corner method 3/3

For k enough large we represent the matrix
M = (∆i ,j)(i ,j)∈{1,...,k}2 and a corner appears:

M =



∆1,1 . . . ∆1,p ∆1,p+1 . . . ∆1,k

...
...

...
...

∆q,1 . . . ∆q,p ∆q,p+1 . . . ∆q,k

∆q+1,1 . . . ∆q+1,p

...
... 0

∆k,1 . . . ∆k,p


.
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Spectral density of an ARMA process

Let (Xt)t∈Z be an ARMA(p, q) process:

Φ (B)Xt = Θ (B) εt .

Its spectral density is:

f (ω) =
σ2

2π

∣∣Θ (e−iω)∣∣2
|Φ (e−iω)|2

.



Lag series

AR process

MA process

ARMA process

ARIMA and
SARIMA processes

SARIMA model
forecasting

47/72

ARMA process estimation: principle

Let (Xt)t∈Z be a minimal canonical ARMA(p, q) process:

Φ (B)Xt = Θ (B) εt .

The aim is to estimate Φ and Θ, and σ2.

Estimations from autocorrelations aren’t efficient. We use
maximum likelihood estimation after a preliminary
estimation.
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Preliminary estimation: AR processes 1/2

From Yule-Walker equations:


ϕ̂1

...

ϕ̂p

 = R̂−1
p


ρ̂(1)

...

ρ̂(p)


σ̂2 = γ̂(0)

(
1−

∑p
i=1 ϕ̂i ρ̂ (i)

)
.
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Preliminary estimation: AR processes 2/2

With ϕ = (ϕ1, . . . , ϕp) and ϕ̂ = (ϕ̂1, . . . , ϕ̂p), we have:

√
n (ϕ̂− ϕ)

L→ N
(
0, σ2Σ−1

p

)
and:

σ̂2 P→ σ2

where:

Σp =



γ(0) γ(1) . . . γ (p − 1)

γ(1) γ(0)
. . .

...

...
. . .

. . . γ(1)

γ (p − 1) . . . γ(1) γ(0)


.
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Preliminary estimation: MA and ARMA
processes 1/2

Consider a minimal canonical ARMA(p, q) process.
From the MA (∞) representation:

Xt = εt +
+∞∑
i=1

ψiεt−i .

We use the innovation algorithm in order to estimate
coefficients (ψi )i∈{1,...,n}.
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Preliminary estimation: MA and ARMA
processes 2/2

With ψi = 0 for i < 0, θ0 = 1 and θi = 0 for i > q, we have:

∀i ∈ N : ψi −
p∑

j=1

ϕjψi−j = θi .

We thus obtain a first estimation of (ϕ1, . . . , ϕp) and

(θ1, . . . , θq) from
(
ψ̂1, . . . , ψ̂p+q

)
.
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Maximum likelihood estimation

We assume now that the residuals are a gaussian white noise
with variance , σ2.
Based on (X1, . . . ,XT ), the likelihood is:

`
(
x1, . . . , xT ;ϕ1, . . . , ϕp, θ1, . . . , θq, σ

2
)

=
1

(2π)
T
2

1√
det ΣT

exp

(
−1

2
x>Σ−1

T x

)

where x = (x1, . . . , xT )> and ΣT is the variance-covariance
matrix of (X1, . . . ,XT ).
It’s a nonlinear optimization problem.



Lag series

AR process

MA process

ARMA process

ARIMA and
SARIMA processes

SARIMA model
forecasting

53/72

Maximum likelihood estimation

Consider:

∀i ∈ {1, . . . ,T} : X̂i = E
(
Xi

/
Hi−1

1 (X )
)
.

We use the innovation algorithm for the one step optimal
linear forecast and for forecast error εi = Xi − X̂i , and their

variance vi−1 = E
[(

Xi − X̂i

)2
]

.

One don’t need to calculate Σ−1
T and det ΣT .
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Maximum likelihood estimation

We have: 
X1

...

XT

 = CT


ε1

...

εT

 .
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Maximum likelihood estimation
(εi )i∈{1,...,T} =

(
Xi − X̂i

)
i∈{1,...,T}

are uncorrelated, the

variance-covariance matrix of (εi )i∈{1,...,T} is:

VT =



v0 0 . . . 0

0 v1
. . . . . .

. . .
. . .

. . . 0

0 . . . 0 vT−1


.

We have ΣT = CTVT (CT )> thus:

det ΣT = (detCT )2 detVT = v0 . . . vT−1

and:

x>Σ−1
T x =

T∑
i=1

(xi − x̂i )
2

vi−1
.
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Maximum likelihood estimation

We have:

`
(
x1, . . . , xT ;ϕ1, . . . , ϕp, θ1, . . . , θq, σ

2
)

=
1

(2π)
T
2

1
√
v0 . . . vT−1

exp

(
−1

2

T∑
i=1

(xi − x̂i )
2

vi−1

)

X̂i is recursively obtained with the innovation algorithm.
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Maximum likelihood estimation

Consider:
vi−1 = σ2ri−1.

We can rewrite:

`
(
x1, . . . , xT ;ϕ1, . . . , ϕp, θ1, . . . , θq, σ

2
)

=
1

(2πσ2)
T
2

1
√
r0 . . . rT−1

exp

(
− 1

2σ2

T∑
i=1

(xi − x̂i )
2

ri−1

)
.
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Maximum likelihood estimation

Finally we have:(
ϕ̂1, . . . , ϕ̂p, θ̂1, . . . , θ̂q

)
= arg min

(ϕ1,...,ϕp,θ1,...,θq)

{
ln

[
1

T
S (ϕ1, . . . , ϕp, θ1, . . . , θq)

]
+

1

T

T∑
i=1

ln ri

}

and:

σ̂2 =
1

T
S
(
ϕ̂1, . . . , ϕ̂p, θ̂1, . . . , θ̂q

)
where S

(
ϕ̂1, . . . , ϕ̂p, θ̂1, . . . , θ̂q

)
=
∑T

i=1

(xi − x̂i )
2

ri−1
.

Estimators are efficient.
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Model selection: Kullback criterium

Let f0 be a probability density which is estimated by an
element of the family F .
The Kullback criterium measure the difference between the
the trues and the estimated probability density:

I (f0,F) = min
f ∈F

∫
ln

(
f0(x)

f (x)

)
f0(x)dx .

This quantity is positive, zero if f0 ∈ F .
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Model selection: Kullback criterium

We have:∫
ln

(
f0(x)

f (x)

)
f0(x)dx = Ef0

[
ln

(
f0 (X )

f (X )

)]
= Ef0 [ln (f0 (X ))]− Ef0 [ln (f (X ))] .

We need to minimize −Ef0 [ln (f (X ))].
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Model selection: ARMA case

Based on (X1, . . . ,XT ), estimators of −Ef0 [ln (f (X ))] for
ARMA(p, q) processes can be written:

Ĉ (f0,F) = − 1

T
ln (f ) + α (T ) (p + q)

where α is a decreasing function.
If f is a gaussian, we obtain:

Ĉ (f0,F) = ln
(
σ̂2
)

+ α (T ) (p + q)

where σ̂2 is the estimated variance.
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Model selection: ARMA case

We generally consider:

I Akake criterium

With α (T ) =
2

T
:

AIC (p, q) = ln
(
σ̂2
)

+ 2
p + q

T
.

I Schwarz criterium

With α (T ) =
ln (T )

T
:

BIC (p, q) = ln
(
σ̂2
)

+ (p + q)
ln (T )

T
.
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Definition

(Xt)t∈N is said to be an ARIMA process of order (p, d , q),
written ARIMA(p, d , q), if:

Φ (B)∇dXt = Θ (B) εt

where:

I ∇d = (I − B)d ,

I Φ (B) = I − ϕ1B − . . .− ϕpB
p where

(ϕ1, . . . , ϕp) ∈ Rp and ϕp 6= 0,

I Θ (B) = I + θ1B + . . .+ θqB
q where (θ1, . . . , θq) ∈ Rq

and θq 6= 0.
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Remarks

I An ARIMA process isn’t defined on Z but on N by
convention. Initial conditions are fixed with:

Z = (X−p, . . . ,X−1, ε−q, . . . , ε−1)> .

I ARIMA models can be applied on times series with a
trend.

I (I − B)d Xt is asympotically equivalent to an
ARMA(p, q) process.

I (Xt)t∈N isn’t a stationary process.
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Autoregressive and moving average
representations

We can’t obtain a AR (∞) nor MA (∞) representation but
it’s possible to obtain:

I Moving average representation:

Xt = εt +
t∑

i=1

ψiεt−i + ψ∗ (t)Z

where ψ∗ (t) is a p + q dimensional vector.

I Autoregressive representation:

Xt = −
t∑

i=1

πiXt−i − π∗ (t)Z + εt

where π∗ (t) is a p + q dimensional vector.
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Definition
(Xt)t∈N is said to be a SARIMA process of order
(p, d , q)(P,D,Q)s if:

Φ (B) Φ′ (Bs)∇d∇D
s Xt = Θ (B) Θ′ (Bs) εt

where:

I ∇d = (I − B)d ,

I ∇D
s = (I − Bs)D ,

I Φ (B) = I − ϕ1B − . . .− ϕpB
p where

(ϕ1, . . . , ϕp) ∈ Rp and ϕp 6= 0,

I Φ′ (B) = I − ϕ′1B − . . .− ϕ′PBP where
(ϕ′1, . . . , ϕ′P) ∈ RP and ϕ′P 6= 0,

I Θ (B) = I + θ1B + . . .+ θqB
q where (θ1, . . . , θq) ∈ Rq

and θq 6= 0,

I Θ′ (B) = I + θ′1B + . . .+ θ′QB
Q where(

θ′1, . . . , θ
′
Q

)
∈ RQ and θ′Q 6= 0.

We write: SARIMA(p, d , q)(P,D,Q)s .
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Remarks

I SARIMA models can be applied on times series with a
trend and a seasonality.

I Estimation of a SARIMA model: estimation of an
ARMA model on the differenced time series.
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Remark

The method is similar for SARIMA models than for ARIMA
models.

To forecast XT+h (with h ∈ N∗) based on (X1, . . . ,XT ), we
can use the autoregressive or the moving average
representation.
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Forecasting with the autoregressive
representation

X̂T (h)

= E
(
XT+h

/
HT∗

1 (X )
)

= E

(
−

T+h∑
i=1

πiXT+h−i − π∗ (T + h)Z + εT+h

/
HT∗

1 (X )

)

= E

(
−

h−1∑
i=1

πiXT+h−i −
T+h∑
i=h

πiXT+h−i − π∗ (T + h)Z + εT+h

/
HT∗

1 (X )

)

= −
h−1∑
i=1

πi X̂T (h − i)−
h−1∑
i=1

πiXT+h−i − π∗ (T + h)Z

' −
h−1∑
i=1

πi X̂T (h − i)−
h−1∑
i=1

πiXT+h−i car π∗ (T )
T→+∞−→ 0.
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Forecasting with the moving average
representation

X̂T (h) = E
(
XT+h

/
HT∗

1 (X )
)

= E

(
εT+h +

T+h∑
i=1

ψiεT+h−i + ψ∗ (T + h)Z
/
HT∗

1 (X )

)

=
T+h∑
i=h−1

ψiεT+h−i + ψ∗ (T + h)Z

'
T+h∑
i=h−1

ψiεT+h−i car ψ∗ (T )
T→+∞−→ 0.
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