Univariate time series Discrete univariate stochastic processes

V. Lefieux

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Table of contents

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Tests for randomness of the residuals

Spectral density

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Table of contents

Stochastic processes

- Second-order processes
- Stationary processes
- Autocovariance function
- Autocorrelation functions
- Estimation of the mean and autocorrelation functions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Tests for randomness of the residuals
- Spectral density

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Time series

Let $(x_t)_{t\in\mathcal{T}}$ be a sequence of observations (for example in the fields of economics, life sciences, physics...).

Each observation x_t , in \mathbb{R}^d , is recorded at a specific time $t \in \mathcal{T}$.

 $(x_t)_{t\in\mathcal{T}}$ is called time series.

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Spectral density

4/62

Discrete and continuous time series

Consider the set of times \mathcal{T} .

- T is a countable set (in general *T* ⊂ ℤ) : discrete time series. For example : when observations are made at fixed time intervals.
- *T* isn't a countable set (in general an interval of ℝ):

 continous time series.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Univariate and multivariate time series

Consider $x_t \in \mathbb{R}^d$.

- d = 1 : univariate time series.
- d > 1 : multivariate time series.

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Spectral density

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Remark

In this course "time series" refers to univariate discrete time series.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Probabilistic model

- Observation x_t is considered as the realization of a random variable X_t.
- ► Time series (x_t)_{t∈T} is considered as the realization of a stochastic process (X_t)_{t∈T}.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Random variable

X is said to be a random variable if the X function :

$$egin{aligned} X : (\Omega, \mathcal{A}, \mathbb{P}) &
ightarrow ig(\Omega', \mathcal{A}') \ & \omega \mapsto X \left(\omega
ight) \end{aligned}$$

is measurable, that means :

$$\forall A' \in \mathcal{A}' : X^{-1}(A') \in \mathcal{A}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Spectral density

9/62

Stochastic process

X is a stochastic process if the function :

$$egin{aligned} X : (\Omega, \mathcal{A}, \mathbb{P}) imes \mathcal{T} &
ightarrow (\Omega', \mathcal{A}') \ (\omega, t) &\mapsto X \left(\omega, t
ight) = X_t \left(\omega
ight) \end{aligned}$$

is such that for all $t \in \mathcal{T}$, X_t is a random variable on the probabilistic space $(\Omega, \mathcal{A}, \mathbb{P})$.

 (Ω', \mathcal{A}') , a measurable space, is called state space.

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Remark

We consider stochastic processes with :

•
$$(\Omega', \mathcal{A}') = (\mathbb{R}, \mathcal{B}(\mathbb{R})),$$

•
$$\mathcal{T} = \mathbb{N}$$
 or $\mathcal{T} = \mathbb{Z}$.

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Spectral density

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Stochastic process distribution

A stochastic process can be considered as a random variable X taking values in the product probabilistic space $(\Omega', \mathcal{A}')^{\otimes \mathcal{T}}$.

The distribution of the process X is the distribution of the random variable on $(\Omega', \mathcal{A}')^{\otimes \mathcal{T}} = ((\Omega')^t, (\mathcal{A}')^{\otimes \mathcal{T}}).$

Distributions of $(X_{t_1}, \ldots, X_{t_k})$ with $(t_1, \ldots, t_k) \in \mathcal{T}^k$ $(k \in \mathbb{N}^*)$: finite-dimensional distributions of X.

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

White noises

(ε_t)_{t∈Z} is said to be an i.i.d noise (strongly white noise) if (ε_t)_{t∈Z} are i.i.d and :

$$orall t \in \mathbb{Z}: \mathbb{E}\left(arepsilon_t
ight) = 0$$
 , $\mathbb{E}\left(arepsilon_t^2
ight) = \sigma^2$

(in this course : $\sigma^2 > 0$).

- A gaussian white noise is an i.i.d noise with distribution N (0, σ²).
- (ε_t)_{t∈Z} is said to be a white noise (weakly white noise) if (ε_t)_{t∈Z} are square-integrable random variables (in L²) and :

$$orall t \in \mathbb{Z} : \mathbb{E}(\varepsilon_t) = 0$$
,
 $\mathbb{E}(\varepsilon_t^2) = \sigma^2$,
 $orall (t, t') \in \mathbb{Z}^2 / t \neq t' : \operatorname{Cov}(\varepsilon_t, \varepsilon_{t'}) = 0$.

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Random walk

Let $(\varepsilon_t)_{t\in\mathbb{N}}$ a white noise.

 $(S_t)_{t\in\mathbb{N}}$ is said to be a random walk if : $S_0 = 0$,

$$\blacktriangleright \quad \forall t \in \mathbb{N}^* : S_t = \sum_{i=1}^t \varepsilon_i.$$

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Spectral density

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Markov chain

$(x_t)_{t\in\mathbb{Z}}$ is said to be a Markov chain (order p) if :

$$orall t \in \mathbb{Z} : \mathcal{L}\left(X_t/(X_i)_{i < t}\right) = \mathcal{L}\left(X_t/X_{t-1} \dots X_{t-p}\right).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへで

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Gaussian process

$(X_t)_{t\in\mathbb{Z}}$ is said to be a gaussian process if all the margin distributions are gaussian :

$$orall k \in \mathbb{N}^*, orall \left(t_1, \ldots, t_k
ight) \in \mathbb{Z}^k : \left(X_{t_1}, \ldots, X_{t_k}
ight)^ op$$
 is gaussian

+ ロ ト + 母 ト + 三 ト + 三 ト つ へ ()

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Table of contents

Stochastic processes

- Second-order processes
- Stationary processes
- Autocovariance function
- Autocorrelation functions
- Estimation of the mean and autocorrelation functions
- Tests for randomness of the residuals
- Spectral density

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Spectral density

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 圖 - 釣�� 17/62

\mathcal{L}^2 space

 $\mathcal{L}^{2}(\Omega, \mathcal{A}, \mathbb{P})$ is the set of all square integrable random variables defined on $(\Omega, \mathcal{A}, \mathbb{P})$, that means $\int X^{2} d\mathbb{P} < +\infty$.

 $\mathcal{L}^{2}(\Omega, \mathcal{A}, \mathbb{P})$ is an Hilbert space (complete inner-product space) with the (almost) inner product :

$$\langle X,Y
angle = \mathbb{E}\left(XY
ight)$$

and the induced norm :

$$\|X\|_{\mathcal{L}^2} = \left[\mathbb{E}\left(X^2
ight)
ight]^{rac{1}{2}}$$

X and Y are said to be orthogonal random variables if :

$$\langle X, Y \rangle = 0.$$

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Cauchy-Schwarz inequality

Let X et Y two random variables in $\mathcal{L}^2(\Omega, \mathcal{A}, \mathbb{P})$. We have :

 $\|XY\|_{\mathcal{L}^1} \le \|X\|_{\mathcal{L}^2} \cdot \|Y\|_{\mathcal{L}^2}$

SO :

$$\mathbb{E}\left(|XY|\right) \leq \left[\mathbb{E}\left(X^{2}\right)\right]^{\frac{1}{2}} \left[\mathbb{E}\left(Y^{2}\right)\right]^{\frac{1}{2}}.$$

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Projection theorem

Let \mathcal{H} be a subspace of $\mathcal{L}^{2}(\Omega, \mathcal{A}, \mathbb{P})$. Consider $X \in \mathcal{L}^{2}(\Omega, \mathcal{A}, \mathbb{P})$.

There is an unique random variable $\widehat{X} \in \mathcal{H}$ such that :

$$\left\|X-\widehat{X}\right\|_{\mathcal{L}^2}=\min_{Y\in\mathcal{H}}\|X-Y\|_{\mathcal{L}^2}.$$

 \widehat{X} is the projection of X on \mathcal{H} , also written $\Pi_{\mathcal{H}}(X)$.

We have $\widehat{X} \in \mathcal{H}$ and $X - \widehat{X} \in \mathcal{H}^{\perp}$.

Stochastic processes

Second-order processes

Stationary processes

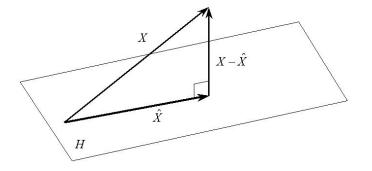
Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Projection theorem



Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Spectral density

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ > 21/62

Mean square convergence

Let $(X_n)_{n \in \mathbb{N}}$ be a sequence of random variables in $\mathcal{L}^2(\Omega, \mathcal{A}, \mathbb{P})$. Let X be a random variable in $\mathcal{L}^2(\Omega, \mathcal{A}, \mathbb{P})$. $(X_n)_{n \in \mathbb{N}}$ is said to converge in mean square (converge in \mathcal{L}^2) towards X, and we note $X_n \xrightarrow{\mathcal{L}^2} X$, if :

$$\|X_n-X\|_{\mathcal{L}^2}\xrightarrow{n\to+\infty}0$$

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Proposition

Let $(X_n)_{n \in \mathbb{Z}}$ be a sequence of random variables in $\mathcal{L}^2(\Omega, \mathcal{A}, \mathbb{P})$. If $\sum_{i=-m}^n X_i$ converges in mean square (towards $\sum_{i=-\infty}^{+\infty} X_i$) then :

$$\mathbb{E}\left(\sum_{i=-\infty}^{+\infty}X_i\right)=\sum_{i=-\infty}^{+\infty}\mathbb{E}\left(X_i\right).$$

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Proposition

Let $(X_n)_{n \in \mathbb{Z}}$ et $(Y_n)_{n \in \mathbb{Z}}$ be two sequences of random variables in $\mathcal{L}^2(\Omega, \mathcal{A}, \mathbb{P})$. If $\sum_{i=-m}^n X_i$ et $\sum_{j=-m'}^{n'} Y_j$ converge in mean square then :

$$\mathbb{E}\left(\sum_{i=-\infty}^{+\infty} X_i \sum_{j=-\infty}^{+\infty} Y_j\right) = \sum_{i=-\infty}^{+\infty} \sum_{j=-\infty}^{+\infty} \mathbb{E}\left(X_i Y_j\right).$$

and :

$$\operatorname{Cov}\left(\sum_{i=-\infty}^{+\infty} X_i, \sum_{j=-\infty}^{+\infty} Y_j\right) = \sum_{i=-\infty}^{+\infty} \sum_{j=-\infty}^{+\infty} \operatorname{Cov}\left(X_i, Y_j\right).$$

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Spectral density

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 → ○ ○ 24/62

Second order process

 $(X_t)_{t\in\mathbb{Z}}$ is said to be a second-order process if :

$$\forall t \in \mathbb{Z} : \mathbb{E}\left(X_t^2\right) < +\infty.$$

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Table of contents

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Spectral density

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Spectral density

<□▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □> 26/62

Strictly stationary processes

$(X_t)_{t\in\mathbb{Z}}$ is said to be strictly stationary if the joint distribution of $(X_{t_1}, \ldots, X_{t_k})$ is equal to the distribution of $(X_{t_1+h}, \ldots, X_{t_k+h})$, for $k \in \mathbb{N}^*$, $(t_1, \ldots, t_k) \in \mathbb{Z}^k$ and $h \in \mathbb{Z}$.

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

(Weakly) stationary processes

A second-order process $(x_t)_{t\in\mathbb{Z}}$ is weakly stationary, if the expectation $\mathbb{E}(x_t)$ and the (auto)covariances $Cov(X_s, X_t)$ are time-shifted invariant :

$$\blacktriangleright \forall t \in \mathbb{Z} : \mathbb{E}(x_t) = \mu$$

▶
$$\forall$$
 (s, t) \in \mathbb{Z}^2 , \forall h \in \mathbb{Z} :

$$\operatorname{Cov}(X_s, X_t) = \operatorname{Cov}(X_{s+h}, X_{t+h}).$$

In this case we have :

$$\operatorname{Cov}(X_s,X_t)=\gamma(t-s).$$

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Remarks

- It's easier to consider weak than strict stationary.
- Stationarity isn't a so simple concept...
- The sum of two stationary processes isn't necessarily stationary.
- In this course "stationary process" refers to weakly stationary process.

イロト (周) (ヨ) (ヨ) (ヨ) () ()

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Proposition

A second-order strictly stationary process is also weakly stationary.

Weak stationarity doesn't imply strict stationarity (except for gaussian processes).

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Spectral density

30/62

Examples

- An i.i.d white noise is strictly stationary.
- A (weakly) white noise is (weakly) stationary.
- A random walk isn't stationary.
- Time series with a trend and/or a seasonality can't be represented by stationary processes.

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Linear filter

Let $(X_t)_{t\in\mathbb{Z}}$ be a stationary process. Let $(a_i)_{t\in\mathbb{Z}}$ be a sequence such that $\sum_{i\in\mathbb{Z}} |a_i| < +\infty$. The process $(Y_t)_{t\in\mathbb{Z}}$ defined by $Y_t = \sum_{i\in\mathbb{Z}} a_i X_{t-i}$, is stationary and :

•
$$\mu_{\mathbf{Y}} = \mu_{\mathbf{X}} \sum_{i \in \mathbb{Z}} a_i$$

• Considering $\gamma_X(h) = \operatorname{Cov}(X_t, X_{t-h})$:

$$\gamma_{\mathbf{Y}}(h) = \sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} a_i a_j \gamma_{\mathbf{X}}(h+i-j).$$

The transformation

$$X_t \mapsto Y_t = \left(\sum_{i \in \mathbb{Z}} a_i B^i\right) X_t = \sum_{i \in \mathbb{Z}} a_i X_{t-i},$$

with $\sum_{i \in \mathbb{Z}} |a_i| < +\infty$, is called linear filter.

Stochastic processes

> Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Spectral density

Some non-stationarities

(X_t)_{t∈ℤ} is a non-stationary TS (Trend Stationary) process if we can write :

$$X_t = f(t) + Y_t$$

where f is a deterministic function and $(Y_t)_{t \in \mathbb{Z}}$ is a stationary process.

(X_t)_{t∈Z} is a non-stationary DS (Difference Stationary) process if the process becomes stationary after being differenced d times : ∇^dX_t = (I − B)^d X_t (where BX_t = X_{t−1}) is a stationary process.

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Table of contents

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Spectral density

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Spectral density

<□▶ < @▶ < ≧▶ < ≧▶ ≧ の Q (* 34/62

Definition

Let $(X_t)_{t \in \mathbb{Z}}$ be a stationary process. The autocovariance function of X is the following γ function :

$$\forall h \in \mathbb{Z} : \gamma(h) = \operatorname{Cov}(X_t, X_{t-h}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへで

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Properties

γ(0) ≥ 0

 $\blacktriangleright \forall h \in \mathbb{Z} : |\gamma(h)| \le \gamma(0).$

 $\blacktriangleright~\gamma$ is even :

$$\forall h \in \mathbb{Z} : \gamma(-h) = \gamma(h).$$

• γ is a nonnegative definite function :

$$\forall n \in \mathbb{N}^*, \forall (a_i)_{i \in \{1,\dots,n\}} \in \mathbb{R}^n : \sum_{i=1}^n \sum_{j=1}^n a_i a_j \gamma (i-j) \ge 0.$$

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Spectral density

36/62

Property

If a function γ checks :

$$\gamma (-h) = \gamma (h), \forall n \in \mathbb{N}^*, \forall (a_i)_{i \in \{1,...,n\}} \in \mathbb{R}^n :$$

$$\sum_{i=1}^n \sum_{j=1}^n a_i a_j \gamma (i-j) \ge 0,$$

then it is an autocovariance function.

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Spectral density

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ● ●

Table of contents

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Spectral density

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Spectral density

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ○ へ ○ 38/62

Definition

Let $(X_t)_{t\in\mathbb{Z}}$ be a stationary process. We call (simple) autocorrelation function of X the following function ρ :

Autocorrelation functions

$$\forall h \in \mathbb{Z} : \rho(h) = \operatorname{Corr}(X_t, X_{t-h}) = \frac{\gamma(h)}{\gamma(0)}.$$

We have $\rho(0) = 1$.

Autocorrelation matrix

Let $(X_t)_{t\in\mathbb{Z}}$ be a stationary process. The autocorrelation matrix of (X_t, \ldots, X_{t-h+1}) is :

$$R_{h} = \begin{bmatrix} 1 & \rho(1) & \dots & \rho(h-1) \\ \rho(1) & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \rho(1) \\ \rho(h-1) & \dots & \rho(1) & 1 \end{bmatrix}$$

We have :

$$R_{h} = \begin{bmatrix} \rho(h-1) \\ \vdots \\ \rho(h-1) \\ \rho(h-1) \\ \vdots \\ \rho(1) \end{bmatrix}$$

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Property

The two following assertions are equivalent :

- 1. ρ is a nonnegative definite function.
- 2. $\forall h \in \mathbb{N}^*$: det $R_h \ge 0$

The second condition implies for example :

• det
$$R_2 \ge 0 \Leftrightarrow \rho^2(1) \le 1$$
.

• det
$$R_3 \ge 0 \Leftrightarrow [1 - \rho(2)] [1 + \rho(2) - 2\rho^2(1)] \ge 0.$$

イロト (周) (ヨ) (ヨ) (ヨ) () ()

Stochastic processes

> Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Spectral density

41/62

Partial autocorrelation function

Let $(X_t)_{t \in \mathbb{Z}}$ be a stationary process. Let $\mathcal{H}_{t-h+1}^{t-1}(X)$ be the space spanned by linear combinations of $(X_i)_{i \in \{t-h+1,\dots,t-1\}}$ and 1, $h \in \mathbb{N} \setminus \{0,1\}$. Let $\mathbb{E}(X_t / \mathcal{H}_{t-h+1}^{t-1}(X))$ and $\mathbb{E}(X_{t-h} / \mathcal{H}_{t-h+1}^{t-1}(X))$ be respectively the linear regressions of X_t and X_{t-h} on X_{t-1},\dots,X_{t-h+1} . We call partial autocorrelation function of X the function rsuch that r(0) = 1, $r(1) = \rho(1)$ and :

$$\forall h \in \mathbb{N} \setminus \{0, 1\} : r(h) = \operatorname{Corr} \left(X_t, X_{t-h} / X_{t-1}, \dots, X_{t-h+1}\right) \\ = \frac{\operatorname{Cov} \left(\varepsilon_t, \varepsilon_{t-h}\right)}{\operatorname{Var} \left(\varepsilon_t\right)}$$

where :

$$\varepsilon_{t} = X_{t} - \mathbb{E} \left(X_{t} / \mathcal{H}_{t-h+1}^{t-1}(X) \right),$$

$$\varepsilon_{t-h} = X_{t-h} - \mathbb{E} \left(X_{t-h} / \mathcal{H}_{t-h+1}^{t-1}(X) \right).$$

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Theorem

Let $(X_t)_{t\in\mathbb{Z}}$ be a stationary process. Consider the linear regression of X_t on X_{t-1}, \ldots, X_{t-h} , $h \in \mathbb{N}^*$:

$$X_{t} = \mathbb{E}\left(X_{t} / \mathcal{H}_{t-h}^{t-1}(X)\right) + \varepsilon_{t}$$
$$= \sum_{i=1}^{h} a_{i}(h) X_{t-i} + \varepsilon_{t}$$

イロト (周) (ヨ) (ヨ) (ヨ) () ()

where :

• $(\varepsilon_t)_{t \in \mathbb{Z}}$ is a white noise with variance σ^2 , • $\forall i \in \{1, \dots, h\} : \mathbb{E}(\varepsilon_t X_{t-i}) = 0.$

The last coefficient is such that $a_h(h) = r(h)$.

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Spectral density

43/62

Property

Consider the same regression :

$$X_{t} = \sum_{i=1}^{h} a_{i}(h) X_{t-i} + \varepsilon_{t}$$

We have :

$$\left(\begin{array}{c} \rho\left(1\right)\\ \vdots\\ \rho\left(h\right) \end{array}\right) = R_{h} \left(\begin{array}{c} a_{1}\left(h\right)\\ \vdots\\ a_{h}\left(h\right) \end{array}\right).$$

processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Spectral density

We can estimate $(a_1(h), \ldots, a_h(h))$ based on an estimation of $(\rho(1), \ldots, \rho(h))$, and so have an estimation of de r(h).

Durbin-Levinson algorithm

With the Durbin-Levinson algorithm, partial autocorrelations can be recursively computed from the following equations :

*a*₁ (1) =
$$\rho$$
 (1),
∀*h* ∈ ℕ \ {0,1}, ∀*i* ∈ {1,..., *h* − 1} :
a_i (*h*) = *a_i* (*h* − 1) − *a_h* (*h*) *a_{h−i}*(*h* − 1),
∀*h* ∈ ℕ \ {0,1} :

$$a_{h}(h) = \frac{\rho(h) - \sum_{i=1}^{h-1} \rho(h-i) a_{i}(h-1)}{1 - \sum_{i=1}^{h-1} \rho(i) a_{i}(h-1)}.$$

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Spectral density

45/62

Table of contents

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Spectral density

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Spectral density

Estimation of the mean

Let $(X_t)_{t \in \mathbb{Z}}$ be a stationary process. Based on (X_1, \ldots, X_T) , \overline{X}_T is a consistent and unbiased estimator of $\mathbb{E}(X) = \mu$:

$$\overline{X}_T = \frac{1}{T} \sum_{t=1}^T X_t.$$

We have :

$$\mathbb{E}(\overline{X}_{T}) = \mu,$$

$$\mathbb{E}\left[\left(\overline{X}_{T} - \mu\right)^{2}\right] = \operatorname{Var}(\overline{X}_{T})$$

$$= \frac{1}{T}\sum_{|h| < T} \left(1 - \frac{|h|}{T}\right)\gamma(h).$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ≣ - のへで 47/62

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Property

• If
$$\gamma(h) \stackrel{h \to +\infty}{\longrightarrow} 0$$
 then :

$$\operatorname{Var}\left(\overline{X}_{T}\right) \stackrel{T \to +\infty}{\longrightarrow} 0.$$

• If $\sum_{h=-\infty}^{+\infty} |\gamma(h)| < +\infty$ then :

$$T \operatorname{Var}\left(\overline{X}_{T}\right) \xrightarrow{T \to +\infty} \sum_{h=-\infty}^{+\infty} \gamma(h).$$

(ロ)、(型)、(E)、(E)、(E)、(D)、(O)、(O)

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Spectral density

48/62

Estimation of the autocorrelation functions

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Spectral density

$$\forall h \in \{1,\ldots,T-1\}$$
:

$$\widehat{\rho}(h) = \frac{\sum_{t=h+1}^{T} \left(X_t - \overline{X}_T \right) \left(X_{t-h} - \overline{X}_T \right)}{\sum_{t=1}^{T} \left(X_t - \overline{X}_T \right)^2}.$$

< □ ▶ < @ ▶ < E ▶ < E ▶ ○ Q ○ 49/62

Remarks

- $\widehat{\gamma}(h)$ and $\widehat{\rho}(h)$ are consistent but biased estimators.
- ► In general we consider that we can estimate the ^T/₄ first autocorrelations.
- Partial autocorrelation function estimation is obtained with the Durbin-Levinson algorithm.
- Warning : calculations are done by softwares even if the process isn't stationary.

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Spectral density

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の < の 50/62

Table of contents

- Stochastic processes
- Second-order processes
- Stationary processes
- Autocovariance function
- Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Spectral density

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Spectral density

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣 ● ○ ○ 51/62

Portmanteau test

Let $(X_t)_{t\in\mathbb{Z}}$ be a stationary process. Consider the test :

$$egin{cases} H_0: (X_t)_{t\in\mathbb{Z}} ext{ is a white noise} \ H_1: (X_t)_{t\in\mathbb{Z}} ext{ isn't a white noise} \end{cases}$$

Based on (X_1, \ldots, X_T) , the Portmanteau statistic is :

$$Q_{k}=T\sum_{h=1}^{k}\widehat{
ho}^{2}\left(h
ight)$$

 Q_k converges to the χ_k^2 distribution. So we reject the null hypothesis at the α level if $Q_k > \chi_k^2 (1 - \alpha)$. One can find other statistics, such the Ljung–Box one :

$$Q_{k}^{*} = T(T+2) \sum_{h=1}^{k} \frac{\widehat{\rho}^{2}(h)}{T-h}.$$

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Shapiro-Wilk test

Consider the test :

 $\begin{cases} H_0 : (X_1, \dots, X_n) \text{ is gaussian} \\ H_1 : (X_1, \dots, X_n) \text{ isn't gaussian} \end{cases}$

The Shapiro-Wilk statistic is :

$$W = \frac{\left(\sum_{i=1}^{\left[\frac{n}{2}\right]} a_i \left(X_{(n-i+1)} - X_{(i)}\right)\right)^2}{\sum_{i=1}^{n} \left(X_i - \overline{X}_n\right)^2}$$

where $X_{(i)}$ is the *i*-th order statistic and [x] the integer part of x. Coefficients $(a_i)_{i \in \{1,...,n\}}$ are computed in softwares . We reject the null hypothesis at the α level if :

$$W < W^{threshold}_{n,lpha}$$

 $W_{n,\alpha}^{threshold}$ can be found in statistics tables or softwares (with the p-value).

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Table of contents

- Stochastic processes
- Second-order processes
- Stationary processes
- Autocovariance function
- Autocorrelation functions
- Estimation of the mean and autocorrelation functions

イロト (周) (ヨ) (ヨ) (ヨ) () ()

- Tests for randomness of the residuals
- Spectral density

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Spectral density

54/62

Definition

Let $(X_t)_{t\in\mathbb{Z}}$ be a stationary process with γ as autocovariance function.

If $\sum_{h=-\infty}^{+\infty} |\gamma(h)| < +\infty$, we define the spectral density of $(X_t)_{t\in\mathbb{Z}}$ as the function f:

$$f(\omega) = \frac{1}{2\pi} \sum_{h=-\infty}^{+\infty} \gamma(h) \exp(-ih\omega).$$

f is a continous, nonnegative, even and 2π -periodic function.

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Property

If f is the spectral density of $(X_t)_{t\in\mathbb{Z}}$ then :

$$\gamma(h) = \int_{-\pi}^{\pi} f(\omega) \exp(ih\omega) \,\mathrm{d}\omega.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Example

Let $(\varepsilon_t)_{t\in\mathbb{Z}}$ be a white noise with variance σ^2 . We have :

$$\gamma_{arepsilon}\left(h
ight)= egin{cases} \sigma^2 & ext{if } h=0 \ 0 & ext{otherwise} \end{cases}$$

.

So :

$$f_{\varepsilon}(\omega)=\frac{\sigma^2}{2\pi}.$$

Moreover, if the spectral density doesn't depend on the frequency then the associated process is a white noise.

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Linear filter spectral density

Let $(X_t)_{t \in \mathbb{Z}}$ be a stationary process with a spectral density. Consider the linear filter process $(Y_t)_{t \in \mathbb{Z}}$ such that :

$$Y_t = \sum_{i=-\infty}^{+\infty} a_i X_{t-i}$$

$$\sum_{i=-\infty}^{+\infty} |a_i| < +\infty.$$

Then :

$$f_{Y}(\omega) = f_{X}(\omega) \left| \sum_{j=-\infty}^{+\infty} a_{j} e^{-i\omega j} \right|^{2}$$

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Spectral density

Periodogram

Based on (X_1, \ldots, X_T) , we call periodogram the following function :

$$I_{T}(\omega) = \frac{1}{T} \left| \sum_{t=1}^{T} X_{t} e^{-it\omega} \right|^{2}.$$

If the spectral density of $(X_t)_{t\in\mathbb{Z}}$ exists, then $\frac{1}{2\pi}I_T(\omega)$ is an unbiased but non consistent estimation of this spectral density.

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Discrete spectral average estimator

We consider the discrete spectral average estimator :

$$\widehat{f}(\omega) = \frac{1}{2\pi} \sum_{|j| \le m_T} W_T(j) I_T\left(g(T, \omega) + \frac{2\pi j}{T}\right)$$

~

where :

•
$$g(T, \omega)$$
 is the multiple of $\frac{2\pi}{T}$ closest to ω ,
• $m_T \xrightarrow{T \to +\infty} +\infty, \ \frac{m_T}{T} \xrightarrow{T \to +\infty} 0$,
• $\forall j \in \mathbb{Z} : W_T(j) \ge 0$ et $W_T(-j) = W_T(j)$,
• $\sum_{|j| \le m_T} W_T(j) = 1; \ \sum_{|j| \le m_T} W_T^2(j) \xrightarrow{T \to +\infty} 0$.

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Spectral density

< □ ▶ < @ ▶ < E ▶ < E > ○ Q ○ 60/62

Inverse autocovariance function

Let $(X_t)_{t\in\mathbb{Z}}$ be a stationary process with γ as autocovariance function.

We call inverse autocovariance function of $(X_t)_{t\in\mathbb{Z}}$ the autocovariance function associated to the inverse spectral density 1/f:

$$\frac{1}{f(\omega)} = \frac{1}{2\pi} \sum_{h=-\infty}^{+\infty} \gamma^{i}(h) \exp(-ih\omega)$$

where :

$$\forall h \in \mathbb{Z} : \gamma^{i}(h) = \int_{-\pi}^{\pi} \frac{1}{f(\omega)} \exp(ih\omega) d\omega.$$

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals

Inverse autocorrelation function

We call Inverse autocorrelation function the following function :

$$\forall h \in \mathbb{Z} : \rho^i(h) = rac{\gamma^i(h)}{\gamma^i(0)}.$$

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions

Tests for randomness of the residuals