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Univariate time series
Discrete univariate stochastic processes

V. Lefieux
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Time series

Let (xt)t∈T be a sequence of observations (for example in
the fields of economics, life sciences, physics. . . ).

Each observation xt , in Rd , is recorded at a specific time
t ∈ T .

(xt)t∈T is called time series.
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Discrete and continuous time series

Consider the set of times T .

I T is a countable set (in general T ⊂ Z) : discrete time
series. For example : when observations are made at
fixed time intervals.

I T isn’t a countable set (in general an interval of R) :
continous time series.
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Univariate and multivariate time series

Consider xt ∈ Rd .

I d = 1 : univariate time series.

I d > 1 : multivariate time series.
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Remark

In this course “time series” refers to univariate discrete time
series.



Stochastic
processes

Second-order
processes

Stationary
processes

Autocovariance
function

Autocorrelation
functions

Estimation of the
mean and
autocorrelation
functions

Tests for
randomness of the
residuals

Spectral density

8/62

Probabilistic model

I Observation xt is considered as the realization of a
random variable Xt .

I Time series (xt)t∈T is considered as the realization of a
stochastic process (Xt)t∈T .
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Random variable

X is said to be a random variable if the X function :

X : (Ω,A,P) →
(
Ω′,A′

)
ω 7→ X (ω)

is measurable, that means :

∀A′ ∈ A′ : X−1
(
A′
)
∈ A.
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Stochastic process

X is a stochastic process if the function :

X : (Ω,A,P)× T →
(
Ω′,A′

)
(ω, t) 7→ X (ω, t) = Xt (ω)

is such that for all t ∈ T , Xt is a random variable on the
probabilistic space (Ω,A,P).

(Ω′,A′), a measurable space, is called state space.
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Remark

We consider stochastic processes with :

I (Ω′,A′) = (R,B (R)),

I T = N or T = Z.
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Stochastic process distribution

A stochastic process can be considered as a random variable
X taking values in the product probabilistic space
(Ω′,A′)⊗T .

The distribution of the process X is the distribution of the

random variable on (Ω′,A′)⊗T =
(

(Ω′)t , (A′)⊗T
)

.

Distributions of (Xt1 , . . . ,Xtk ) with (t1, . . . , tk) ∈ T k

(k ∈ N∗) : finite-dimensional distributions of X .
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White noises

I (εt)t∈Z is said to be an i.i.d noise (strongly white noise)
if (εt)t∈Z are i.i.d and :

∀t ∈ Z : E (εt) = 0 ,

E
(
ε2t
)

= σ2 .

(in this course : σ2 > 0).

I A gaussian white noise is an i.i.d noise with distribution
N
(
0, σ2

)
.

I (εt)t∈Z is said to be a white noise (weakly white noise)
if (εt)t∈Z are square–integrable random variables (in
L2) and :

∀t ∈ Z : E (εt) = 0 ,

E
(
ε2t
)

= σ2 ,

∀
(
t, t ′
)
∈ Z2

/
t 6= t ′ : Cov (εt , εt′) = 0 .
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Random walk

Let (εt)t∈N a white noise.

(St)t∈N is said to be a random walk if :

I S0 = 0,

I ∀t ∈ N∗ : St =
∑t

i=1 εi .
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Markov chain

(xt)t∈Z is said to be a Markov chain (order p) if :

∀t ∈ Z : L
(
Xt/ (Xi )i<t

)
= L (Xt/Xt−1 . . .Xt−p) .
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Gaussian process

(Xt)t∈Z is said to be a gaussian process if all the margin
distributions are gaussian :

∀k ∈ N∗,∀ (t1, . . . , tk) ∈ Zk : (Xt1 , . . . ,Xtk )> is gaussian.
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L2 space

L2 (Ω,A,P) is the set of all square integrable random
variables defined on (Ω,A,P), that means

∫
X 2dP < +∞.

L2 (Ω,A,P) is an Hilbert space (complete inner-product
space) with the (almost) inner product :

〈X ,Y 〉 = E (XY )

and the induced norm :

‖X‖L2 =
[
E
(
X 2
)] 1

2 .

X and Y are said to be orthogonal random variables if :

〈X ,Y 〉 = 0.
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Cauchy-Schwarz inequality

Let X et Y two random variables in L2 (Ω,A,P).
We have :

‖XY ‖L1 ≤ ‖X‖L2 . ‖Y ‖L2

so :

E (|XY |) ≤
[
E
(
X 2
)] 1

2
[
E
(
Y 2
)] 1

2 .
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Projection theorem

Let H be a subspace of L2 (Ω,A,P).
Consider X ∈ L2 (Ω,A,P).
There is an unique random variable X̂ ∈ H such that :∥∥∥X − X̂

∥∥∥
L2

= min
Y∈H
‖X − Y ‖L2 .

X̂ is the projection of X on H, also written ΠH (X ).

We have X̂ ∈ H and X − X̂ ∈ H⊥.
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Projection theorem



Stochastic
processes

Second-order
processes

Stationary
processes

Autocovariance
function

Autocorrelation
functions

Estimation of the
mean and
autocorrelation
functions

Tests for
randomness of the
residuals

Spectral density

22/62

Mean square convergence

Let (Xn)n∈N be a sequence of random variables in
L2 (Ω,A,P).
Let X be a random variable in L2 (Ω,A,P).
(Xn)n∈N is said to converge in mean square (converge in L2)

towards X , and we note Xn
L2→ X , if :

‖Xn − X‖L2
n→+∞−−−−→ 0
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Proposition

Let (Xn)n∈Z be a sequence of random variables in
L2 (Ω,A,P).
If
∑n

i=−m Xi converges in mean square (towards
∑+∞

i=−∞ Xi )
then :

E

(
+∞∑

i=−∞
Xi

)
=

+∞∑
i=−∞

E (Xi ) .
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Proposition

Let (Xn)n∈Z et (Yn)n∈Z be two sequences of random
variables in L2 (Ω,A,P).

If
∑n

i=−m Xi et
∑n′

j=−m′ Yj converge in mean square then :

E

 +∞∑
i=−∞

Xi

+∞∑
j=−∞

Yj

 =
+∞∑

i=−∞

+∞∑
j=−∞

E (XiYj) .

and :

Cov

 +∞∑
i=−∞

Xi ,

+∞∑
j=−∞

Yj

 =
+∞∑

i=−∞

+∞∑
j=−∞

Cov (Xi ,Yj) .
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Second order process

(Xt)t∈Z is said to be a second-order process if :

∀t ∈ Z : E
(
X 2
t

)
< +∞.
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Strictly stationary processes

(Xt)t∈Z is said to be strictly stationary if the joint
distribution of (Xt1 , . . . ,Xtk ) is equal to the distribution of
(Xt1+h, . . . ,Xtk+h), for k ∈ N?, (t1, . . . , tk) ∈ Zk and h ∈ Z.
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(Weakly) stationary processes

A second-order process (xt)t∈Z is weakly stationary, if the
expectation E (xt) and the (auto)covariances Cov(Xs ,Xt)
are time-shifted invariant :

I ∀t ∈ Z : E (xt) = µ

I ∀ (s, t) ∈ Z2,∀h ∈ Z :

Cov(Xs ,Xt) = Cov(Xs+h,Xt+h).

In this case we have :

Cov (Xs ,Xt) = γ (t − s) .
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Remarks

I It’s easier to consider weak than strict stationary.

I Stationarity isn’t a so simple concept. . .

I The sum of two stationary processes isn’t necessarily
stationary.

I In this course “stationary process” refers to weakly
stationary process.
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Proposition

A second-order strictly stationary process is also weakly
stationary.

Weak stationarity doesn’t imply strict stationarity (except for
gaussian processes).
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Examples

I An i.i.d white noise is strictly stationary.

I A (weakly) white noise is (weakly) stationary.

I A random walk isn’t stationary.

I Time series with a trend and/or a seasonality can’t be
represented by stationary processes.
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Linear filter

Let (Xt)t∈Z be a stationary process.
Let (ai )t∈Z be a sequence such that

∑
i∈Z |ai | < +∞.

The process (Yt)t∈Z defined by Yt =
∑

i∈Z aiXt−i , is
stationary and :

I µY = µX
∑

i∈Z ai .

I Considering γX (h) = Cov (Xt ,Xt−h) :

γY (h) =
∑
i∈Z

∑
j∈Z

aiajγX (h + i − j) .

The transformation
Xt 7→ Yt =

(∑
i∈Z aiB

i
)
Xt =

∑
i∈Z aiXt−i ,

with
∑

i∈Z |ai | < +∞, is called linear filter.
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Some non-stationarities

I (Xt)t∈Z is a non-stationary TS (Trend Stationary)
process if we can write :

Xt = f (t) + Yt

where f is a deterministic function and (Yt)t∈Z is a
stationary process.

I (Xt)t∈Z is a non-stationary DS (Difference Stationary)
process if the process becomes stationary after being
differenced d times : ∇dXt = (I − B)d Xt (where
BXt = Xt−1) is a stationary process.
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Definition

Let (Xt)t∈Z be a stationary process.
The autocovariance function of X is the following γ
function :

∀h ∈ Z : γ (h) = Cov (Xt ,Xt−h) .
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Properties

I γ (0) ≥ 0

I ∀h ∈ Z : |γ (h)| ≤ γ (0).

I γ is even :
∀h ∈ Z : γ (−h) = γ (h) .

I γ is a nonnegative definite function :

∀n ∈ N∗,∀ (ai )i∈{1,...,n} ∈ Rn :
n∑

i=1

n∑
j=1

aiajγ (i − j) ≥ 0.
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Property

If a function γ checks :

I γ (−h) = γ (h),

I ∀n ∈ N∗,∀ (ai )i∈{1,...,n} ∈ Rn :∑n
i=1

∑n
j=1 aiajγ (i − j) ≥ 0,

then it is an autocovariance function.
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Definition

Let (Xt)t∈Z be a stationary process.
We call (simple) autocorrelation function of X the following
function ρ :

∀h ∈ Z : ρ (h) = Corr (Xt ,Xt−h) =
γ (h)

γ (0)
.

We have ρ (0) = 1.
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Autocorrelation matrix
Let (Xt)t∈Z be a stationary process.
The autocorrelation matrix of (Xt , . . . ,Xt−h+1) is :

Rh =



1 ρ (1) . . . ρ (h − 1)

ρ (1) 1
. . .

...

...
. . .

. . . ρ (1)

ρ (h − 1) . . . ρ (1) 1


.

We have :

Rh =



ρ (h − 1)

Rh−1
...

ρ (1)

ρ (h − 1) . . . ρ (1) 1


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Property

The two following assertions are equivalent :

1. ρ is a nonnegative definite function.

2. ∀h ∈ N∗ : detRh ≥ 0

The second condition implies for example :

I detR2 ≥ 0⇔ ρ2 (1) ≤ 1.

I detR3 ≥ 0⇔ [1− ρ (2)]
[
1 + ρ (2)− 2ρ2 (1)

]
≥ 0.
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Partial autocorrelation function
Let (Xt)t∈Z be a stationary process.
Let Ht−1

t−h+1 (X ) be the space spanned by linear
combinations of (Xi )i∈{t−h+1,...,t−1} and 1, h ∈ N \ {0, 1}.
Let E

(
Xt

/
Ht−1

t−h+1 (X )
)

and E
(
Xt−h

/
Ht−1

t−h+1 (X )
)

be
respectively the linear regressions of Xt and Xt−h on
Xt−1, . . . ,Xt−h+1.
We call partial autocorrelation function of X the function r
such that r (0) = 1, r (1) = ρ (1) and :

∀h ∈ N \ {0, 1} : r(h) = Corr (Xt ,Xt−h /Xt−1, . . . ,Xt−h+1 )

=
Cov (εt , εt−h)

Var (εt)

where :

εt = Xt − E
(
Xt

/
Ht−1

t−h+1 (X )
)
,

εt−h = Xt−h − E
(
Xt−h

/
Ht−1

t−h+1 (X )
)
.
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Theorem

Let (Xt)t∈Z be a stationary process.
Consider the linear regression of Xt on Xt−1, . . . ,Xt−h, h ∈
N∗ :

Xt = E
(
Xt

/
Ht−1

t−h (X )
)

+ εt

=
h∑

i=1

ai (h)Xt−i + εt

where :

I (εt)t∈Z is a white noise with variance σ2,

I ∀i ∈ {1, . . . , h} : E (εtXt−i ) = 0.

The last coefficient is such that ah (h) = r (h).
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Property

Consider the same regression :

Xt =
h∑

i=1

ai (h)Xt−i + εt

We have : 
ρ (1)

...

ρ (h)

 = Rh


a1 (h)

...

ah (h)

 .

We can estimate (a1 (h) , . . . , ah (h)) based on an estimation
of (ρ (1) , . . . , ρ (h)), and so have an estimation of de r (h).
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Durbin-Levinson algorithm

With the Durbin-Levinson algorithm, partial autocorrelations
can be recursively computed from the following equations :

I a1 (1) = ρ (1),

I ∀h ∈ N \ {0, 1} , ∀i ∈ {1, . . . , h − 1} :

ai (h) = ai (h − 1)− ah (h) ah−i (h − 1),

I ∀h ∈ N \ {0, 1} :

ah (h) =
ρ (h)−

∑h−1
i=1 ρ (h − i) ai (h − 1)

1−
∑h−1

i=1 ρ (i) ai (h − 1)
.
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Estimation of the mean

Let (Xt)t∈Z be a stationary process.
Based on (X1, . . . ,XT ), XT is a consistent and unbiased
estimator of E (X ) = µ :

XT =
1

T

T∑
t=1

Xt .

We have :

E
(
XT

)
= µ,

E
[(
XT − µ

)2]
= Var

(
XT

)
=

1

T

∑
|h|<T

(
1− |h|

T

)
γ(h).
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Property

I If γ(h)
h→+∞−→ 0 then :

Var
(
XT

) T→+∞−→ 0.

I If
∑+∞

h=−∞ |γ(h)| < +∞ then :

T Var
(
XT

) T→+∞−→
+∞∑

h=−∞
γ(h).
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Estimation of the autocorrelation functions

∀h ∈ {1, . . . ,T − 1} :

ρ̂ (h) =

∑T
t=h+1

(
Xt − XT

) (
Xt−h − XT

)∑T
t=1

(
Xt − XT

)2 .
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Remarks

I γ̂(h) and ρ̂(h) are consistent but biased estimators.

I In general we consider that we can estimate the T
4 first

autocorrelations.

I Partial autocorrelation function estimation is obtained
with the Durbin-Levinson algorithm.

I Warning : calculations are done by softwares even if the
process isn’t stationary.
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Portmanteau test
Let (Xt)t∈Z be a stationary process.
Consider the test :{

H0 : (Xt)t∈Z is a white noise

H1 : (Xt)t∈Z isn’t a white noise
.

Based on (X1, . . . ,XT ), the Portmanteau statistic is :

Qk = T
k∑

h=1

ρ̂2 (h)

Qk converges to the χ2
k distribution.

So we reject the null hypothesis at the α level if
Qk > χ2

k (1− α).
One can find other statistics, such the Ljung–Box one :

Q∗k = T (T + 2)
k∑

h=1

ρ̂2 (h)

T − h
.
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Shapiro-Wilk test
Consider the test :{

H0 : (X1, . . . ,Xn) is gaussian

H1 : (X1, . . . ,Xn) isn’t gaussian
.

The Shapiro-Wilk statistic is :

W =

(∑[ n2 ]
i=1 ai

(
X(n−i+1) − X(i)

))2

∑n
i=1

(
Xi − X n

)2
where X(i) is the i-th order statistic and [x ] the integer part
of x . Coefficients (ai )i∈{1,...,n} are computed in softwares .
We reject the null hypothesis at the α level if :

W <W threshold
n,α .

W threshold
n,α can be found in statistics tables or softwares (with

the p-value).
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Definition

Let (Xt)t∈Z be a stationary process with γ as autocovariance
function.
If
∑+∞

h=−∞ |γ (h)| < +∞, we define the spectral density of
(Xt)t∈Z as the function f :

f (ω) =
1

2π

+∞∑
h=−∞

γ (h) exp (−ihω) .

f is a continous, nonnegative, even and 2π-periodic function.
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Property

If f is the spectral density of (Xt)t∈Z then :

γ (h) =

∫ π

−π
f (ω) exp (ihω)dω.
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Example

Let (εt)t∈Z be a white noise with variance σ2.
We have :

γε (h) =

{
σ2 if h = 0

0 otherwise
.

So :

fε (ω) =
σ2

2π
.

Moreover, if the spectral density doesn’t depend on the
frequency then the associated process is a white noise.
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Linear filter spectral density

Let (Xt)t∈Z be a stationary process with a spectral density.
Consider the linear filter process (Yt)t∈Z such that :

Yt =
+∞∑

i=−∞
aiXt−i

where :
+∞∑

i=−∞
|ai | < +∞.

Then :

fY (ω) = fX (ω)

∣∣∣∣∣∣
+∞∑

j=−∞
aje
−iωj

∣∣∣∣∣∣
2

.
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Periodogram

Based on (X1, . . . ,XT ), we call periodogram the following
function :

IT (ω) =
1

T

∣∣∣∣∣
T∑
t=1

Xte
−itω

∣∣∣∣∣
2

.

If the spectral density of (Xt)t∈Z exists, then 1
2π IT (ω) is an

unbiased but non consistent estimation of this spectral
density.
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Discrete spectral average estimator

We consider the discrete spectral average estimator :

f̂ (ω) =
1

2π

∑
|j |≤mT

WT (j) IT

(
g (T , ω) +

2πj

T

)

where :

I g (T , ω) is the multiple of
2π

T
closest to ω,

I mT
T→+∞−−−−−→ +∞,

mT

T
T→+∞−−−−−→ 0,

I ∀j ∈ Z : WT (j) ≥ 0 et WT (−j) = WT (j),

I
∑
|j |≤mT

WT (j) = 1 ;
∑
|j |≤mT

W 2
T (j)

T→+∞−−−−−→ 0.
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Inverse autocovariance function

Let (Xt)t∈Z be a stationary process with γ as autocovariance
function.
We call inverse autocovariance function of (Xt)t∈Z the
autocovariance function associated to the inverse spectral
density 1/f :

1

f (ω)
=

1

2π

+∞∑
h=−∞

γ i (h) exp (−ihω)

where :

∀h ∈ Z : γ i (h) =

∫ π

−π

1

f (ω)
exp (ihω) dω.



Stochastic
processes

Second-order
processes

Stationary
processes

Autocovariance
function

Autocorrelation
functions

Estimation of the
mean and
autocorrelation
functions

Tests for
randomness of the
residuals

Spectral density

62/62

Inverse autocorrelation function

We call Inverse autocorrelation function the following
function :

∀h ∈ Z : ρi (h) =
γ i (h)

γ i (0)
.
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