Univariate time series

Discrete univariate stochastic processes
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Time series

Stochastic
processes

Let (xt),c7 be a sequence of observations (for example in
the fields of economics, life sciences, physics. .. ).

Each observation x;, in RY, is recorded at a specific time

teT.

(Xt) e is called time series.



Discrete and continuous time series

Stochastic
processes

Consider the set of times T .

» T is a countable set (in general 7 C Z) : discrete time
series. For example : when observations are made at
fixed time intervals.

» T isn't a countable set (in general an interval of R) :
continous time series.



Univariate and multivariate time series

Stochastic
processes

Consider x; € RY.
» d =1 : univariate time series.

» d > 1 : multivariate time series.



Remark

Stochastic
processes

In this course “time series” refers to univariate discrete time
series.



Probabilistic model

Stochastic
processes

» Observation x; is considered as the realization of a
random variable X;.

» Time series (xt),.7 is considered as the realization of a
stochastic process (Xt) o7



Random variable

Stochastic
processes

X is said to be a random variable if the X function :

X:(QAP) = (U, A4)
w i X (w)

is measurable, that means :

VA e A X7 (A) € A



Stochastic process

Stochastic
processes

X is a stochastic process if the function :

X (QLAP)xT — (2, A4)
(w, t) —= X (w, t) = X¢ (w)

is such that for all t € T, X; is a random variable on the
probabilistic space (22, 4, P).

(', A’), a measurable space, is called state space.



Remark

Stochastic
processes

We consider stochastic processes with :
> (2, A) = (R, B(R)),
» T=NorT=72.



Stochastic process distribution

Stochastic
processes

A stochastic process can be considered as a random variable

X taking values in the product probabilistic space
(Q”A’)@)T_

The distribution of the process X is the distribution of the
random variable on (€, A)®7 = ((Q/)t , (A’)®T).

Distributions of (Xy,, ..., X:, ) with (t1,...,t,) € T
(k € N*) : finite-dimensional distributions of X.



White noises

> (&t);ez is said to be an i.i.d noise (strongly white noise)
if (€¢);ez arei.id and :

VtEZ:]E(et):O,
E(e%):az :

(in this course : 02 > 0).
» A gaussian white noise is an i.i.d noise with distribution
N(0,0’z).
> (€t)¢ey is said to be a white noise (weakly white noise)
if (¢¢);cz are square—integrable random variables (in
£?) and :
VteZ: E(et)
E (ct)
V(t,t') €Z? /t#t' : Cov(er,ep) =0

2

0
o

Stochastic
processes



Random walk

Stochastic
processes

Let (e¢);cy @ White noise.

(St);en is said to be a random walk if :
> 50 = Or
» VteN* S =0 e



Markov chain

Stochastic
processes

(Xt)¢ez is said to be a Markov chain (order p) if :

VeeZ: L(Xe) (Xi)ie) = L(Xe/Xeo1. . Xep).



Gaussian process

Stochastic
processes

(Xt);ez is said to be a gaussian process if all the margin
distributions are gaussian :

Vk e N* YV (t1,...,t) € ZK - (X4,..., Xs,) | is gaussian.
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L? space

£?(Q, A, P) is the set of all square integrable random
variables defined on (£, A, P), that means [ X2dP < +oo0. Seaeteky

processes

£?(Q, A,P) is an Hilbert space (complete inner-product
space) with the (almost) inner product :

(X,Y) =E(XY)

and the induced norm :

N[

IXllz2 = [E(X*)]7.
X and Y are said to be orthogonal random variables if :

(X,Y) =0.



Cauchy-Schwarz inequality

Let X et Y two random variables in £2 (Q, A, P).

We have :
XYz < [[Xllg2- Y]l 22

| E(IXY]) < [E(X2)]? [E(Y2)]?.

Second-order
processes



Projection theorem

Second-order
processes

Let H be a subspace of £2(Q, A, P).
Consider X € £2(Q, A, P).
There is an unique random variable X € H such that :

Hx XH = min X = Y|z

X is the projection of X on #, also written My (X).

We have X € H and X — X € HL.



Projection theorem

Second-order
processes




Mean square convergence

Second-order
processes

Let (X5),cn be a sequence of random variables in
L£%(Q,AP).

Let X be a random variable in £2 (Q, A, P).

(Xn) ey is said to converge in mean square (converge in £2)

2
towards X, and we note X, £> X, if:

1Xp — X oo 2252 0



Proposition

Second-order
processes

Let (X5),cz be a sequence of random variables in
L£%(Q,A,P).
If S°7__ X: converges in mean square (towards >.7°°__X;)

then : . .
E(Z X,-) = > E(X).

i=—o00 i=—00



Proposition

Let (Xn) ez €t (Yn),cz be two sequences of random Second-order
variables in £2 (Q, A, P) "
If >0 Xiet S Y; converge in mean square then :

+oco  +4oo

: 2xz - ¥ 3 =oen

i=—00 Jj=—o j=—00 j=—00

and :

+oo 400

400 +oo
Cov | D X, D Y| =D > Cov(X,V

i=—o00 Jj=—00 i=—00 j=—00



Second order process

Second-order
processes

(Xt)tez is said to be a second-order process if :

VteZ:E(X?) < +oo.
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Strictly stationary processes

Stationary
processes

(Xt);ez is said to be strictly stationary if the joint
distribution of (X4, ..., X¢ ) is equal to the distribution of
(Xtyhy - - s Xeyn), for k € N*, (t1,...,t) € Z¥ and h € Z.



(Weakly) stationary processes

A second-order process (xt),cz is weakly stationary, if the
expectation E (x;) and the (auto)covariances Cov(Xs, X;) Stationary
are time-shifted invariant :

> VteZ:E(x)=p
> V(s t) € Z?,Yhe Z:

COV(XS, Xt) = COV(XS+h, Xt+h)'
In this case we have :

Cov (Xs, Xe) =y (t —5).



Remarks

Stationary
processes

> It's easier to consider weak than strict stationary.

» Stationarity isn't a so simple concept. ..

» The sum of two stationary processes isn't necessarily
stationary.

> In this course “stationary process’ refers to weakly
stationary process.



Proposition

Stationary
processes

A second-order strictly stationary process is also weakly
stationary.

Weak stationarity doesn't imply strict stationarity (except for
gaussian processes).



Examples

Stationary
processes

v

An i.i.d white noise is strictly stationary.

v

A (weakly) white noise is (weakly) stationary.

v

A random walk isn't stationary.

» Time series with a trend and/or a seasonality can't be
represented by stationary processes.



Linear filter

Let (X:),c; be a stationary process.

Let (a);cy be a sequence such that 3, |ai| < +o0.

The process (Y;),cz defined by Yy = ;p aiXe—j, is
stationary and :

> Ly = HX ez A

» Considering yx (h) = Cov (X¢, X¢—p) :

vy (h) =YY aiapyx (h+i—)).
i€z jeL

The transformation
Xe—= Yy = (ZiEZ aiBI) Xt = ZiEZ ajXe—i,
with >, |ai| < +oo, is called linear filter.

Stationary
processes



Some non-stationarities

> (Xt),cy is a non-stationary TS (Trend Stationary) ceiony
process if we can write : processes

Xt:f(t)+yt

where f is a deterministic function and (Y}), is a
stationary process.

> (Xt);cy is a non-stationary DS (Difference Stationary)
process if the process becomes stationary after being
differenced d times : V94X, = (I — B)? X, (where
BX: = X:_1) is a stationary process.
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Definition

Let (Xt),cz be a stationary process. Autocovariance
The autocovariance function of X is the following ~
function :

Vh e Z:~v(h) = Cov (X, Xe—p) -



Properties

v

v(0) >0
Vh 6 Z : ’/y (h)‘ S ’}/ (O) Autocovariance

function

v

> -y is even :
VheZ:v(—h)=~(h).

> v is a nonnegative definite function :

n n
¥n € N,V (a)icqy. .y ER" DD aiay (i —j) > 0.
i=1 j=1



Property

If a function  checks :
> (—h) = (),
doi1 21 @iy (i—j) >0,

then it is an autocovariance function.

Autocovariance
function



Table of contents

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions
Tests for randomness of the residuals

Spectral density

«O0>» «F»r «

it
v
a
it
v
it

DAt 38/62



Definition

Let (Xt),cz be a stationary process.
We call (simple) autocorrelation function of X the following

Autocorrelation

function p :
functions

Vh e Z: p(h) = Corr (X¢, Xe—n) = ’ZEQ;

We have p(0) = 1.



Autocorrelation matrix
Let (X¢);cz be a stationary process.

The autocorrelation matrix of (X¢,..., X;_py1) is:
1 p(1) ... p(h-1)
p(1 1
Ry = e )
P (1) 1:Auto<.:4:>rrelation
| p(h-1) b)) 1
We have :
p(h—1)
Rh—1
Ry =
p(1)
| o(h-1) b 1




Property

The two following assertions are equivalent :
1. pis a nonnegative definite function.
2. Vhe N* :detR, >0

Autocorrelation
functions

The second condition implies for example :
> detRy > 04 p2(1) < 1.
> detR3 >0 [1—p(2)] [1+p(2) —2p°(1)] > 0.



Partial autocorrelation function
Let (Xt)tez be a stationary process.
Let ’Ht py1 (X) be the space spanned by linear
combinations of ( Xi)iegt—h+1,.t-1y and 1, h€ N\ {0, 1}.
Let B (X, /H 3, (X)) and E (Xep /iS4 (X)) be
respectively the linear regressions of X; and X;_p on

Xe—1yeeos Xe—hi1-
We call partial autocorrelation function of X the function r Autocorrelation
such that r(0) =1, r(1) = p(1) and : funetons
Vh e N\ {0,1} : r(h) = Corr (Xe, Xe—n /Xe—1y- -, Xe—ht1)
~ Cov(et,et—n)
Var (g¢)

where :

= X B (R (),
o= Xen— E (Xen [H by (X)),



Theorem

Let (Xt);cz be a stationary process.
Consider the linear regression of X; on X;_1,
N* :

where :
> (&t);ez is @ white noise with variance o
» Vie{l,...,h} :E(e:Xe—i) = 0.

2

...,Xt_h, hG

Autocorrelation
functions

The last coefficient is such that ap (h) = r (h).



Property

Consider the same regression :

h
Xe = Z aj (h) Xe—j + €¢
i=1

Autocorrelation

We have : functions
p(1) a1 (h)
— R,
p(h) an (h)
We can estimate (a3 (h),...,an(h)) based on an estimation

of (p(1),...,p(h)), and so have an estimation of de r (h).



Durbin-Levinson algorithm

With the Durbin-Levinson algorithm, partial autocorrelations
can be recursively computed from the following equations :

> a1 (1) =p(1),
» Vhe N\ {0,1},Vie {1,...,h—1}:

Autocorrelation
functions

a; (h) = a; (h — 1) — dap (h) ah_,-(h — 1),
» Vhe N\ {0,1} :

p(h) =Sl p(h—i)ai(h—1)
1= p(i)ai(h—1)

ap (h) =
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Estimation of the mean

Let (X:),cz, be a stationary process.

Based on (X1,...,X7), X1 is a consistent and unbiased
estimator of E (X) = p :

1 T

Xr=32 %
t=1
We haVe . Eqs:;r:aatrizn of the
autocorrelation
N functions
E (XT) =K



Property

» Ify(h) — 21090 then :
Var (X-,-) T_>+°o 0.

> |f Zh—foo ’7(h)| < +OO then . Estimation of the

mean and
autocorrelation
functions

+oo
T Var (X7) Tohpo Z ~(h)

h=—oc0



Estimation of the autocorrelation functions

Vhe{l,...,T—1}:

ZtT:h+1 (Xt - yT) (Xt—h - YT)
= T — > . Estimation of the
D1 (Xe = X7) T ion

functions

p(h)



Remarks

» 7(h) and p(h) are consistent but biased estimators.

> In general we consider that we can estimate the % first
autocorrelations.

» Partial autocorrelation function estimation is obtained
with the Durbin-Levinson algorithm.

» Warning : calculations are done by softwares even if the
process isn't stationary.

Estimation of the
mean and
autocorrelation
functions



Table of contents

Stochastic processes

Second-order processes

Stationary processes

Autocovariance function

Autocorrelation functions

Estimation of the mean and autocorrelation functions
Tests for randomness of the residuals

Spectral density

«0O»r «Fr <

it
v
a
it
v
it

DA 51/62



Portmanteau test
Let (X¢);cz be a stationary process.
Consider the test :

Ho : (Xt)¢ez is a white noise
Hi : (Xt)¢ez isn't a white noise

Based on (Xi,...,X7), the Portmanteau statistic is :

h=1
Qx converges to the Xi distribution. Tests for
. . . randomness of the
So we reject the null hypothesis at the « level if residuals

Q > Xi (1-a).
One can find other statistics, such the Ljung—Box one :

k <
Q= T(T+2)Z[_;_2£hi)7.

h=1



Shapiro-Wilk test

Consider the test :

Ho : (X1,...,Xy) is gaussian
Hy : (X1,...,Xy,) isn't gaussian

The Shapiro-Wilk statistic is :

. 2
( [i]l aj (X(n—it1) — x(,-)))

- \2
27:1 (XI - Xn)
where X(;y is the i-th order statistic and [x] the integer part Testsfor
of x. Coefficients (a,-),-e{1 ..n} are computed in softwares . residuals

We reject the null hypothesis at the « level if :
W < Wthreshold
n,«a .

W,EZEShO’d can be found in statistics tables or softwares (with
the p-value).
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Definition

Let (X:),cy be a stationary process with v as autocovariance
function.
If S5 |y (h)| < +oo, we define the spectral density of

(Xt)tez as the function f

1 X
=5 v (h) exp (—ihw) .

h=—00

f(w)

f is a continous, nonnegative, even and 2m-periodic function.

Spectral density



Property

If f is the spectral density of (X;),c, then :

5 (h) = /W f () exp (ihw) doo.

Spectral density



Example

Let (¢),cz, be a white noise with variance o2.
We have :
2 .
oc ifh=0
h) = .
e (h) {O otherwise

So : )

o

Moreover, if the spectral density doesn't depend on the
frequency then the associated process is a white noise. Spectral density



Linear filter spectral density

Let (Xt),cz be a stationary process with a spectral density.
Consider the linear filter process (Y;),c; such that :

“+o00
Y: = Z aiXi_j
i=—00
where :
—+o00
Z lai| < +oo.
i=—o0
Then :

2

+OO . .
fy (w) = fx (w) Z aje” "

j=—oc0

Spectral density



Periodogram

Based on (Xi,...,X7), we call periodogram the following
function :
1< ’
Ir(w) == ;Xte_’t“

If the spectral density of (X¢),c;, exists, then 5= /7 (w) is an
unbiased but non consistent estimation of this spectral
density.

Spectral density



Discrete spectral average estimator

We consider the discrete spectral average estimator :

f@) =5 X Wi (2(Tw)+ 27

iI<mt

where :
. . 2T
» g (T,w) is the multiple of - closest to w,

— T T—
,m¢>+ _,_ﬁ)o'

> VjeZ: WT()>OetWT(—_j) WT(./):

. N T—+oo
> i<y WT () =10 X jem, W () — 0.

Spectral density



Inverse autocovariance function

Let (X¢),cz be a stationary process with « as autocovariance
function.

We call inverse autocovariance function of (Xt),s the
autocovariance function associated to the inverse spectral
density 1/f :

+oo

= 7' () exp (—ihw)

h=—o00

where :

m Spectral density

VheZ:~' (h) = /_ f(lw) exp (ihw) dw.



Inverse autocorrelation function

We call Inverse autocorrelation function the following
function : .
7' (h)

7 (0)

VheZ:p' (h) =

Spectral density
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