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Introduction

Set up

Let n ∈ Z+ and S1,S2, ...,Sn be an independent family of random d1 × d2
complex-valued matrices with E(Si ) = 0 and bounded spectral norm for every
1 ≤ i ≤ n. Define:

X :=
n∑

i=1

Si .

We are interested in results concerning ‖X‖, both in expectation and large
deviation.
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Introduction

1D case

Let us assume that n = 1, then X is just a some of independent centered random
variables.

Theorem (Bernstein’s inequality)

Let S1,S2, ...,Sn be independent zero-mean random variables such that |Si | ≤ R
almost surely for all i and let X =

∑
Si . Then, for any t > 0 we have:

P (X > t) ≤ exp

(
− t2/2∑

j E(S2
j ) + Rt/3

)
.
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Introduction

Proof of Bernstein’s inequality

Lemma

Let h be a random variable with E(h) = 0 and |h| ≤ R almost surely. Then, for
0 < θ < 3/R,

E
(
eθh
)
≤ exp

(
θ2/2

1− θR/3
· E(h2)

)
and

log
(
E
(
eθh
))
≤ θ2/2

1− θR/3
· E(h2).
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Introduction

Proof of Lemma

Note that if we prove the first relation, the second one follows by talking
logarithm and using the fact that the log is a monotone function.

Fix parameter θ > 0. Write

eθh = I + θh +
(
eθh − θh − 1

)
= 1 + θh + h2f (h)

where f is defined by:

f (x) =

{
eθx−θx−1

x2 if x 6= 0

f (x) = 0 if x = 0.
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Introduction

Proof of Lemma

Note that f is increasing as its derivatives is positive, hence

f (x) ≤ f (R) for x ≤ R.

Since h ≤ R, we have that
f (h) ≤ f (R).

It follows that
eθh ≤ 1 + θh + h2f (R).

By Taylor, we can estimate f (R):

f (R) =
eθR − θR − 1

R2
=

1

R2

∞∑
q=2

(θR)q

q!
≤ θ2

2

∞∑
q=2

(θR)q−2

3q−2 =
θ2/2

1− θR/3
,

where we used that q! ≥ 2 · 3q−2, for q ≥ 2.
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Introduction

Proof of Lemma

Let

g(θ,R) =
θ2/2

1− θR/3
.

This translates as
eθh ≤ 1 + θh + g(θ,R)h2,

which implies, by the linearity of expectation and the fact that E(h) = 0,

E
(
eθh
)
≤ 1 + g(θ,R)E(h2) ≤ exp

(
g(θ,R)E(h2)

)
,

where in the last step we used that 1 + a ≤ ea, which completes the proof of
lemma.
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Introduction

Proof of Bernstein’s inequality

Let 0 < θ < 3/R be a real number to be chosen later. By Markov inequality we
have:

P(X > t) = P
(
eθX > eθt

)
≤ e−θtE

(
eθX
)

Note that since S1,S2, ...,Sn are independent we have:

E
(
eθ(

∑n
i=1 Si )

)
= e

∑n
i=1 log Ee

θSi
,

which further implies:

P(X > t) ≤ e−θte
∑n

i=1 log Ee
θSi
.
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Introduction

Proof of Bernstein’s inequality

We can apply our lemma to bound the logarithmic factors

P(X > t) ≤ e−θte
∑n

i=1 log Ee
θSi

≤ e−θte
∑n

i=1 g(θ)E(S
2
i )

≤ e−θteg(θ)·
∑n

i=1 E(S
2
i ),

Pick θ = t/
(∑n

i=1 E(S2
i ) + Rt/3

)
to conclude the proof of Bernstein’s inequality.
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Introduction

Matrix parameters

Definition

The matrix variance parameter is defined by:

ν(X ) := max
{
‖E[XX ∗]‖, ‖E[X ∗X ]‖

}
= max

{∥∥∥∥∥
n∑

i=1

E[SiS
∗
i ]

∥∥∥∥∥ ,
∥∥∥∥∥

n∑
i=1

E[S∗i Si ]

∥∥∥∥∥
}

The large deviation parameter is defined by:

L :=

(
E

[
max

i=1,...,n
‖Si‖2

])1/2

The dimensional constant is defined by:

Cd := C (d1, d2) := 4 · (1 + 2 log(d1 + d2))
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Introduction

Theorem 1

Theorem (The norm of an independent sum of matrices)

Let S1,S2, ...,Sn be independent d1 × d2 random matrices with E(Si ) = 0 for each
i . Let X := S1 + ...+ Sn and ν(X ),Cd and L defined previously. Then the
following is true:

1

√
1
4 · ν(X ) + 1

4 · L ≤
(
E
(
‖X‖2

))1/2 ≤√Cd · ν(X ) + Cd · L.

2 Moreover, if there exists R > 0 such that ‖Si‖’s are uniformly bounded by R
then

P(‖X‖ ≥ t) ≤ (d1 + d2) · exp

(
−t2/2

ν(X ) + Rt/3

)
.
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Introduction

Observations

Observation

In the case where Si ’s are Hermitians, Theorem 1 can be used to get bounds
for λmin(X ), by replacing Si with −Si and X with −X .

Theorem 1 can be extended to non-centered matrices too, by replacing Si
with Si − E(Si ).

There exists a strong conection between
(
E(‖X‖2)

)1/2
and (E(‖X‖p))1/p due

to Jensen and Khintchine inequalities, so there are equivalents of Theorem
1.1 for other norms too.

The large deviation bound in Theorem 1.2 is an extension of the well-known
Bernstein inequality for random matrices.
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Introduction

The optimality of Theorem 1.1

The lower and the upper bounds in Theorem 1.1 match, except for the dimensional
factor Cd (≈ 8 log d). We will show by four examples that neither the lower bound
nor the upper bound can be sharpened substantially without further assumptions.

In what follows, let Ei,j denote the matrix with all entries 0 except the (i , j)th

entry which is 1.
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Introduction

Optimality of the upper bound: variance term

Example

Let

Z :=
d∑

i=1

d∑
j=1

1√
n
ξijEii ,

where ξij ’s are independently Rademacher random variables talking values ±1
each with probability 1/2.

It is easy to estimate directly

E(‖Z‖2) ≈ E

∥∥∥∥∥
j∑

i=1

γiEii

∥∥∥∥∥
2
 = Emax

i
|γi |2 ≈ 2 log d ,

where γi ’s are independent standard gaussian random variables.
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Introduction

Optimality of the upper bound: variance term

The variance parameter satisfies:

ν(Z ) :=

∥∥∥∥∥∥
d∑

i=1

d∑
j=1

1

n
Eii

∥∥∥∥∥∥ = ‖Id‖ = 1.

The large deviation parameter satisfies:

L2 = Emax
i,j

∥∥∥∥ 1√
n
ξijEii

∥∥∥∥2 =
1

n
.

It follows that (
E‖Z‖2

)1/2 ≈√2 log d ν(Z ),

so the logarithm factor in the variance term in the upper bound is needed.
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Optimality of the upper bound: large-deviation term

Example

Let

Z :=
n∑

i=1

n∑
j=1

(δij − n−1) · Eii ,

where δij is an independent family of Bernoulli (1/n) random variables.

Using the properties of the Bernoulli random variables, we have(
E(‖Z‖2)

)1/2 ≈ constant · log d

log log d
,
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Optimality of the upper bound: large-deviation term

The variance parameter satisfies:

ν(Z ) =

∥∥∥∥∥∥
n∑

i=1

n∑
j=1

E(δij − n−1)2 · Eii

∥∥∥∥∥∥ ≈ 1.

The large-deviation parameter is

L2 = E

(
max
i,j
‖(δij − n−1) · Eii‖2

)
≈ 1.

This implies that the large-deviation parameter in the upper bound can not be
improved, except by an iterated logarithm factor.
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Optimality of the lower bound: variance term

Example

Let

Z :=
d∑

i,j=1

ξijEij ,

where ξij ’s are independent Rademacher variables.

It is known that
(E‖Z‖2)1/2 ≈

√
2d .
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Introduction

Optimality of the lower bound: variance term

The variance parameter satisfies:

ν(Z ) = max{‖d · Id‖, ‖d · Id‖} = d

and the large deviation parameter is:

L2 = Emax
i,j
‖ξijEij‖2 = 1.

We conclude that the variance term in the lower bound can not have a logarithmic
factor.
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Optimality of the lower bound: large-deviation term

Example

Let

Z :=
d∑

i=1

PiEi,i ,

where {Pi} is an independent family of symmetric random variables whose tails
satisfy:

P (|Pi | ≥ t) =

{
t−4 if t ≥ 1

1 if t ≤ 1.

The key properties of these variables are that:

E(P2
i ) = 2 and Emax

i
P2
i ≈ constant · d2.
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t−4 if t ≥ 1

1 if t ≤ 1.

The key properties of these variables are that:

E(P2
i ) = 2 and Emax

i
P2
i ≈ constant · d2.
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Introduction

Optimality of the lower bound: large-deviation term

The variance parameter is:

ν(Z ) =

∥∥∥∥∥
d∑

i=1

(EP2
i )Ei

∥∥∥∥∥ = 2,

and the large deviation parameter satisfy:

L2 = Emax
i
‖PiEi‖2 = Emax

i
|Pi |2 ≈ constant · d2..

By direct calculation, we have:(
E(‖Z‖2)

)1/2 ≈ constant · d .

We conclude that the large-deviation term in the lower bound can not carry a
logarithmic factor.
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Introduction

Other results

Theorem (Matrix Chernoff Bound part 1)

Let {S1,S2, ...,Sn} be a finite sequence of independent d × d Hermitian random
matrices such that for each i , Si is positive semi-definite and λmax(Si ) ≤ L. Define
X =

∑n
i=1 Si and let µmin := λmin(E(X )) and µmax = λmax(E(X )). For any θ > 0

we have:

E (λmin (X )) ≥ 1− e−θ

θ
µmin −

1

θ
L log d (1)

E (λmax (X )) ≤ eθ − 1

θ
µmax +

1

θ
L log d (2)

Spectral norm of sum of independent random matrices 22 / 76



Introduction

Theorem (Matrix Chenoff Bound part 2)

Also, for any ε > 0 we have:

P (λmax (X ) ≥ (1 + ε)µmax) ≤ d

[
eε

(1 + ε)1+ε

]µmax/L

, (3)

and for any ε ∈ [0, 1] we have:

P (λmin (X ) ≤ (1− ε)µmin) ≤ d

[
e−ε

(1− ε)1−ε

]µmin/L

. (4)
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Introduction

Observations

Observation

If we pick θ to be 1, we get

Eλmin(X ) ≥ 0.63µmin − L log d and

Eλmax(X ) ≤ 1.72µmax + L log d .

If the matrices Si are unbounded, we have:

Eλmax(X ) ≤ 2µmax + 8e

(
E

(
max
k
λmax(Sk)

))
log d .
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Proof of Theorem 1

Other results

Theorem (Matrix Azuma Inequality)

Let {X1,X2, ...,Xk} be a finite adapted sequence of self-adjoint d × d random
matrices and let {A1,A2, ...,Ak} be a fixed sequence of self-adjoint matrices.
Assume that each random variables satisfies Ei−1Xi = 0 and X 2

i � A2
i almost

surely for any 1 ≤ i ≤ k , where 0 is the zero d × d matrix. Let

σ2 =

∥∥∥∥∥∑
k

A2
k

∥∥∥∥∥ ,
then for all t ≥ 0 we have:

P

(
λmax

(∑
k

Xk

)
≥ t

)
≤ d · e−t

2/(8σ2).
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Proof of Theorem 1

Other results

Theorem (Matrix McDiarmid Inequality)

Let {Z1,Z2, ...,Zn} be independent random variables and z := (Z1,Z2, ...,Zn). Let
H be a function that maps n variables to a d × d self-adjoint matrix. Consider a
sequence {A1,A2, ...,An} of fixed self-adjoint matrices that satisfy:

(H(z1, ..., zk , ..., zn)− H(z1, ..., z
′
k , ..., zn))

2 � A2
k ,

where zi and z ′i range over all possible values of Zi for each 1 ≤ i ≤ n. Let

σ2 :=

∥∥∥∥∥∑
k

A2
k

∥∥∥∥∥ ,
then for any t ≥ 0 we have:

P (λmax (H(z)− E(H(z))) ≤ d · e−t
2/8σ2

.
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Proof of Theorem 1

Other results

Theorem (Matrix Hoeffding Inequality)

Let (Xi )i≥0 be a sequence of independent, self-adjoint d × d random matrices and
let (Ai )i≥0 be a fixed sequence of self-adjoint matrices . Assume that each
random variables satisfies EXi = 0 and Xi � Ai almost surely for any i ≥ 0, where
0 is the zero d × d matrix. Let

σ2 =
1

2

∥∥∥∥∥∑
k

A2
k + EX 2

k

∥∥∥∥∥ ≤
∥∥∥∥∥∑

k

A2
k

∥∥∥∥∥ ,
then for all t ≥ 0 we have:

P

(
λmax

(∑
k

Xk

)
≥ t

)
≤ d · e−t

2/(2σ2).

Spectral norm of sum of independent random matrices 27 / 76



Proof of Theorem 1

Proof of Theorem 1

We direct our attention to the proof of Theorem 1 as the other theorems have
similar proofs.

We start with the proof of Theorem 1.1. Recall

Theorem (Theorem 1.1)

Let S1,S2, ...,Sn be independent d1 × d2 random matrices with E(Si ) = 0 for each
i . Then the following is true:√

1

4
· ν(X ) +

1

4
· L ≤

(
E
(
‖X‖2

))1/2 ≤√Cd · ν(X ) + Cd · L.
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Proof of Theorem 1

Hermitian dilatation

Definition

Let M be a d1 × d2 matrix. We define the Hermitian dilatation H(M) of M by:

H(M) :=

[
0 M
M∗ 0

]
.

Note that H(M) is symmetric and satisfies:

‖H(M)‖ = ‖M‖

and
‖EH(M)2‖ = max {‖E(MM∗)‖, ‖E(M∗M)‖} . (5)
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Proof of Theorem 1

Hermitian dilatation

As the Hermitian dilation is a linear map, we have:

H(X ) =
n∑

i=1

H(Si )

and so, we can assume without loss of generality that X and Si ’s are centered
Hermitian for any 1 ≤ i ≤ n.
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Proof of Theorem 1.1

Main idea of the proof

The main idea behind the proof is that if we let ξ1, ξ2, ..., ξn be n Rademacher
random variables talking values ±1 each with probability 1/2 independent of the
Si ’s, then

X ′ :=
∑
i

ξiSi ,

has the same distribution as X . The advantage of working with X ′ is that we can
condition on the values of Si ’s and still get good bounds for ‖X ′‖.

Spectral norm of sum of independent random matrices 31 / 76



Proof of Theorem 1.1

Main Lemma

Lemma (Lemma 1)

Let H1,H2, ...,Hn be fixed d × d Hermitian matrices and let ξ1, ..., ξn be
independent Rademacher random variables. Then the following holds:E

∥∥∥∥∥
n∑

i=1

ξiHi

∥∥∥∥∥
2
1/2

≤
√

1 + 2 log d ·

∥∥∥∥∥
n∑

i=1

H2
i

∥∥∥∥∥
1/2

.
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Proof of Theorem 1.1

Other version of the lemma

The same result holds if we replace the Rademacher random variables with
standard normal ones. The proofs are almost identical.

Lemma (Lemma for Gaussian random variables)

Let H1,H2, ...,Hn be fixed d × d Hermitian matrices and let γ1, ..., γn be
independent N (0, 1) random variables. Then the following holds:E

∥∥∥∥∥
n∑

i=1

γiHi

∥∥∥∥∥
2
1/2

≤
√

1 + 2 log d ·

∥∥∥∥∥
n∑

i=1

H2
i

∥∥∥∥∥
1/2

.
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Proof of Theorem 1.1 Proof of Lemma 1

Proof of Lemma 1

The proof of Lemma 1 is based on the moment method. Define

Y :=
n∑

i=1

ξiHi .

Let p be a fixed integer that we will choose it later. By Jensen we have:(
E(‖Y ‖2

)1/2 ≤ (E(‖Y ‖2p
)1/2p

.

Since all the eigenvalues of a Hermitian matrix are real, we have:(
E(‖Y ‖2

)1/2 ≤ (E(‖Y ‖2p
)1/2p ≤ (E(Trace(Y 2p)

)1/2p
.
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Proof of Theorem 1.1 Proof of Lemma 1

Proof of Lemma

Let Y+i be the value of Y conditioned on the event that Yi = 1 and define Y−i
similarly.

Precisely, we have

Y+i := Hi +
∑
j 6=i

ξjHj and Y−i := −Hi +
∑
j 6=i

ξjHj .

E
(
Trace(Y 2p)

)
= ETrace(Y · Y 2p−1)

=
n∑

i=1

E
(
Eξi Trace(ξiHi · Y 2p−1)

)
=

1

2

n∑
i=1

ETrace
(
Hi ·

(
Y 2p−1
+i − Y 2p−1

−i

))
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Proof of Theorem 1.1 Proof of Lemma 1

Proof of Lemma

We can write

Y 2p−1
+i − Y 2p−1

−i =

2p−2∑
q=0

Y q
+i (Y+i − Y−i )Y

2p−q−2
−i ,

It follows that

E
(
Trace(Y 2p)

)
=

1

2

n∑
i=1

ETrace

Hi ·

2p−2∑
j=0

Y j
+i (Y+i − Y−i )Y

2p−2−j
−i


=

n∑
i=1

2p−2∑
j=0

ETrace
(
H2

i ·
(
Y j
+iY

2p−2−j
−i

))
since Y+i − Y−i = 2Hi .
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Proof of Theorem 1.1 Proof of Lemma 1

Proof of Lemma

For real numbers a and b we have by AM-GM that:

ajb2p−2−j + a2p−2−jbj ≤ a2p−2 + b2p−2.

The equivalent version for the trace of matrices is the following fact

Fact (The trace fomula)

Trace(Y j
+iY

2p−2−j
−i + Y 2p−2−j

+i Y j
−i ) ≤ Trace(Y 2p−2 + Y 2p−2).
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Proof of Theorem 1.1 Proof of Lemma 1

Proof of the Trace formula

To see this, let Y+i =
∑

k λkuku
∗
k and Y−i =

∑
k µkvkv

∗
k be the SVD

decompositions of Y+i and Y−i respectively. Then:

Trace(Y j
+iY

2p−2−j
−i ) = Trace

((
d∑

k=1

λjkuku
∗
k

)(
d∑

k=1

µ2p−2−j
k vkv

∗
k

))

=
d∑

k1,k2=1

λjk1µ
2p−2−j
k2

Trace(uk1u
∗
k1vk2v

∗
k2)

≤
d∑

k1,k2=1

|λk1 |j |µk2 |2p−2−j
∣∣u∗k1vk2 ∣∣2
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Proof of Theorem 1.1 Proof of Lemma 1

Proof of the Trace formula

It follows that:

Trace(Y j
+iY

2p−2−j
−i + Y 2p−2−j

+i Y j
−i )

≤
d∑

k1,k2=1

(
λ2p−2k1

+ µ2p−2
k2

) ∣∣u∗k1vk2∣∣2
=

d∑
k1,k2=1

(
λ2p−2k1

+ µ2p−2
k2

)
Trace(uk1u

∗
k1vk2v

∗
k2)

= Trace

((
d∑

k=1

λ2p−2k uku
∗
k

)(
d∑

k=1

vkv
∗
k

))
+

+ Trace

((
d∑

k=1

µ2p−2
k vkv

∗
k

)(
d∑

k=1

uku
∗
k

))
= Trace

(
Y 2p−2
+i + Y 2p−2

−i

)
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∗
k
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d∑
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vkv
∗
k
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d∑
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k vkv

∗
k

)(
d∑
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uku
∗
k

))
= Trace
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Proof of Theorem 1.1 Proof of Lemma 1

Back to the proof of Lemma

We established that

Trace(Y j
+iY

2p−2−j
−i + Y 2p−2−j

+i Y j
−i ) ≤ Trace(Y 2p−2

+i + Y 2p−2
−i ).

The same proof is valid for

Trace
(
H2

i

(
Y j
+iY

2p−2−j
−i + Y 2p−2−j

+i Y j
−i

))
≤ Trace

(
H2

i

(
Y 2p−2
+i + Y 2p−2

−i

))
.

as the trace is linear.
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Proof of Theorem 1.1 Proof of Lemma 1

Proof of Lemma

We have

E
(
Trace(Y 2p)

)
=

n∑
i=1

2p−2∑
j=0

ETrace
(
H2

i ·
(
Y j
+iY

2p−2−j
−i

))
≤

n∑
i=1

2p − 1

2
ETrace

(
H2

i ·
(
Y 2p−2
+i + Y 2p−2−j

−i

))
= (2p − 1)

n∑
i=1

ETrace
(
H2

i

(
EξiY

2p−2))
= (2p − 1)E

(
Trace

(
n∑

i=1

H2
i

)
Y 2p−2

)

≤ (2p − 1)

∥∥∥∥∥
n∑

i=1

H2
i

∥∥∥∥∥E (Trace(Y 2p−2)
)
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Proof of Theorem 1.1 Proof of Lemma 1

Proof of Lemma

Recursively it follows that:

E
(
TraceY 2p

)
≤ (2p − 1)!! ·

∥∥∥∥∥
n∑

i=1

H2
i

∥∥∥∥∥
p

· TraceY 0

= d · (2p − 1)!! ·

∥∥∥∥∥
n∑

i=1

H2
i

∥∥∥∥∥
p

where (2p − 1)!! = 1 · 3 · ... · (2p − 1).

E(‖Y ‖2)1/2 ≤
(
E(Trace(Y 2p)

)1/2p ≤ (d · (2p − 1)!!)1/2p ·

∥∥∥∥∥
n∑

i=1

H2
i

∥∥∥∥∥
1/2

.
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Proof of Theorem 1.1 Proof of Lemma 1

Proof of Lemma 1

Note that:

(2p − 1)!! ≤
(

2p + 1

e

)p

,

pick p = dlog de to get

E
∥∥Y 2

∥∥1/2 ≤√1 + 2 log d ·

∥∥∥∥∥
n∑

i=1

H2
i

∥∥∥∥∥
1/2

,

which completes the proof of Lemma 1.
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Proof of Theorem 1.1 Proposition

Proposition

Proposition (Symmetrization)

Let W1,W2, ...,Wn be d1 × d2 independent random matrices. Let ξ1, ξ2, ..., ξn be
independent Rademacher variables that are also independent of the W ’s. The
following is true:

1

2

(
E

∥∥∥∥∥
n∑

i=1

ξiWi

∥∥∥∥∥
r)1/r

≤

(
E

∥∥∥∥∥
n∑

i=1

(Wi − E(Wi ))

∥∥∥∥∥
r)1/r

≤ 2

(
E

∥∥∥∥∥
n∑

i=1

ξiWi

∥∥∥∥∥
r)1/r

.
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Proof of Theorem 1.1 Proposition

Proof of Proposition

Assume r = 1 (the proof for the general case is similar and it uses the convexity of
‖ · ‖r ).

Let W ′1,W
′
2, ...W

′
n be an identical copies of Wi ’s and let E′ be the expectation

with respect to those. Since ‖ · ‖ is convex, by Jensen we have

E

∥∥∥∥∥
n∑

i=1

(Wi − EWi )

∥∥∥∥∥ = E

∥∥∥∥∥
n∑

i=1

[(Wi − EWi )− E′ (W ′i − E′W ′i )]

∥∥∥∥∥
≤ E

[
E′

∥∥∥∥∥
n∑

i=1

(Wi − EWi )− (W ′i − E(Wi ))

∥∥∥∥∥
]

= E

∥∥∥∥∥
n∑

i=1

(Wi −W ′i )

∥∥∥∥∥ .
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Proof of Theorem 1.1 Proposition

Proof of Proposition

Recall that ξ1, .., ξn are independent Rademacher random variables.

E

∥∥∥∥∥
n∑

i=1

(Wi − EWi )

∥∥∥∥∥ = E

∥∥∥∥∥
n∑

i=1

(Wi −W ′i )

∥∥∥∥∥
= E

∥∥∥∥∥
n∑

i=1

ξi (Wi −W ′i )

∥∥∥∥∥
≤ E

∥∥∥∥∥
n∑

i=1

ξiWi

∥∥∥∥∥+ E

∥∥∥∥∥
n∑

i=1

−ξiW ′i

∥∥∥∥∥
= 2E

∥∥∥∥∥
n∑

i=1

ξiWi

∥∥∥∥∥
The lower bound uses similar techniques.
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Proof of Theorem 1.1 Proposition

Simple fact about positive-definite matrices

Fact (Fact 1)

Let A1,A2, ...,An be d × d positive-semidefinite matrices. Then:∥∥∥∥∥
n∑

i=1

A2
i

∥∥∥∥∥ ≤ max
i
‖Ai‖ ·

∥∥∥∥∥
n∑

i=1

Ai

∥∥∥∥∥ .
Proof.

Let m ≥ λmax(A), by writing the eigenvalue decomposition of A we have
A2 � mA. Pick m = maxi λmax(Ai ), then

n∑
i=1

A2
i � m

n∑
i=1

Ai .

The conclusion follows by talking the spectral norm of both sides.
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Proof of Theorem 1.1 Proposition

Proof structure

Now we have all the ingredients to finish our proof. We will first proof the
equivalent for the positive-semidefinite case and then for the centered Hermitian
case which implies Theorem 1. Note that in the positive-semidefinite case we do
not require the matrices to be centered, so, the bounds are slightly different then
the ones in Theorem 1.1.

Theorem (Theorem 1.1 for positive-semidefinite matrices)

Assume that Si ’s are d × d independent positive-semidefinite random matrices.

1

4

(
‖EX‖1/2+

(
Emax

i
‖Si‖

)1/2)2

≤

≤ E‖X‖ ≤
(
‖EX‖1/2 +

√
Cd ·

(
Emax

i
‖Si‖

)1/2)2

.
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Proof of Theorem 1.1 Proposition

Proof of the upper bound for the positive-semidefinite case

We want to proof that when Si ’s are positive-semidefinite we have

E‖X‖ ≤
(
‖EX‖1/2 +

√
Cd ·

(
Emax

i
‖Si‖

)1/2)2

.

By the triangle inequality and the Proposition 1, we have:

E‖X‖ = E

∥∥∥∥∥
n∑

i=1

Si

∥∥∥∥∥ ≤
∥∥∥∥∥

n∑
i=1

ESi

∥∥∥∥∥+ E

∥∥∥∥∥
n∑

i=1

(Si − ESi )

∥∥∥∥∥
≤

∥∥∥∥∥
n∑

i=1

ESi

∥∥∥∥∥+ 2E

∥∥∥∥∥
n∑

i=1

ξiSi

∥∥∥∥∥ ,
where ξi ’s are independent Rademacher random variables.
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Proof of Theorem 1.1 Proposition

Proof of upper bound for the positive-semidefinite case

Condition on the matrices Si ’s and use Lemma 1:

E

∥∥∥∥∥
n∑

i=1

ξiSi

∥∥∥∥∥ = E

(
Eξ

∥∥∥∥∥
n∑

i=1

ξiSi

∥∥∥∥∥
)
≤
√

1 + 2 log d · E

∥∥∥∥∥
n∑

i=1

S2
i

∥∥∥∥∥
1/2


By Fact 1 and Cauchy inequality we have:

E

∥∥∥∥∥
n∑

i=1

S2
i

∥∥∥∥∥
1/2
 ≤ E

(max
i
‖Si‖)1/2 ·

∥∥∥∥∥
n∑

i=1

Si

∥∥∥∥∥
1/2


≤
(
Emax

i
‖Si‖

)1/2
·

(
E

∥∥∥∥∥
n∑

i=1

Si

∥∥∥∥∥
)1/2

=
(
Emax

i
‖Si‖

)1/2
· (E‖X‖)1/2
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Proof of Theorem 1.1 Proposition

Proof of the upper bound for the positive-semidefinite case

It follows that:

E‖X‖ ≤

∥∥∥∥∥
n∑

i=1

ESi

∥∥∥∥∥+
√

4 + 8 log d ·
(
Emax

i
‖Si‖

)1/2
· (E‖X‖)1/2 .

This implies:

E‖X‖1/2 ≤

∥∥∥∥∥
n∑

i=1

ESi

∥∥∥∥∥
1/2

+
√

4 + 8 log d ·
(
Emax

i
‖Si‖

)1/2
,

which completes the proof for the upper bound.
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Proof of Theorem 1.1 Proposition

Proof of the lower bound for the positive-semidefinite case

Note that since S1, ...,Sn are positive-definite we have:

E‖X‖ ≥ Emax
i
‖Si‖.

By Jensen, we also have:
E‖X‖ ≥ ‖EX‖.

This implies that:

E‖X‖ ≥ 1

4

(
‖EX‖1/2 + (Emax

i
‖Si‖)1/2

)2
,

which completes the proof for positive-semidefinite case.
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‖Si‖)1/2

)2
,

which completes the proof for positive-semidefinite case.
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Proof of Theorem 1.1 Proposition

Centered-Hermitian case

Theorem (Theorem 1.1 for centered Hermitian matrices)

Assume that Si ’s are d × d independent centered Hermitian random matrices.

1

2
‖EX 2‖1/2+

1

4

(
Emax

i
‖Si‖2

)1/2
≤(

E(‖X‖2)
)1/2 ≤√Cd · ‖E(X 2)‖1/2 + Cd ·

(
Emax

i
‖Si‖2

)1/2
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Proof of Theorem 1.1 Proposition

Proof of the upper bound for the centered Hermitian case

Assume that Si ’s are centered Hermitian matrices. We want to prove that:

(
E(‖X‖2)

)1/2 ≤√Cd · ‖E(X 2)‖1/2 + Cd ·
(
Emax

i
‖Si‖2

)1/2
.

Condition on the values of Si ’s and apply Lemma 1:

(E‖X‖2)1/2 =

E

∥∥∥∥∥
n∑

i=1

Si

∥∥∥∥∥
2
1/2

≤ 2

E

Eξ
∥∥∥∥∥

n∑
i=1

ξiSi

∥∥∥∥∥
2
1/2

≤
√

4 + 8 log d ·

(
E

∥∥∥∥∥
n∑

i=1

S2
i

∥∥∥∥∥
)1/2
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Proof of Theorem 1.1 Proposition

Proof of the upper bound for the centered Hermitian case

Note that S2
i ’s are positive definite matrices, we have just proved that

E

∥∥∥∥∥
n∑

i=1

S2
i

∥∥∥∥∥ ≤
∥∥∥∥∥E

n∑
i=1

S2
i

∥∥∥∥∥
1/2

+
√
Cd ·

(
Emax

i
‖S2

i ‖
)1/22

.

This implies

(E‖X‖2)1/2 ≤
√
Cd

∥∥∥∥∥E
n∑

i=1

S2
i

∥∥∥∥∥
1/2

+
√
Cd ·

(
Emax

i
‖S2

i ‖
)1/2 ,

which completes the proof for the upper bound.
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Proof of Theorem 1.1 Proposition

Proof of the lower bound for the centered Hermitian case

Let Si ’s be centered Hermitian matrices. We want to prove that:

(
E(‖X‖2)

)1/2 ≥ 1

2
‖E(X 2)‖1/2 +

1

4

(
E
(

max
i
‖Si‖2

))1/2
.

Using Fact 1 we have:

E(‖X‖2) = E

∥∥∥∥∥
n∑

i=1

Si

∥∥∥∥∥
2
 ≥ 1

4
E

∥∥∥∥∥
n∑

i=1

ξiSi

∥∥∥∥∥
2
 ,

where ξi ’s are Rademacher independent random variables.
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Proof of Theorem 1.1 Proposition

Proof of the lower bound for the centered Hermitian case

Condition on the values of Si . Without loss of generality we assume that
‖S1‖ = maxi ‖Si‖. Condition further on the value of ξ1 and so, by Jensen we have:

Eξ

∥∥∥∥∥
n∑

i=1

ξiSi

∥∥∥∥∥
2
 ≥ Eξ1

∥∥∥∥∥E
(

n∑
i=1

ξiSi |ξ1

)∥∥∥∥∥
2


= Eξ1
(
‖ξ1S1‖2

)
= ‖S1‖

= max
i
‖Si‖
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Proof of Theorem 1.1 Proposition

Proof of the lower bound for the centered Hermitian case

Combining the last two inequalities and take square root we have:

E(‖X‖2)1/2 ≥ 1

2

(
Emax

i
‖Si‖2

)1/2
.

Using that Si ’s are centered and Jensen’s inequality we have:(
E(‖X‖2)

)1/2
=
(
E‖X 2‖

)1/2 ≥ ‖EX 2‖1/2.

Averaging the last two inequalities leads to:

(
E(‖X‖2)

)1/2 ≥ 1

2
‖E(X 2)‖1/2 +

1

4

(
E
(

max
i
‖Si‖2

))1/2
,

which completes the proof of the Hermitian case and hence Theorem 1.1.
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Proof of Theorem 1.1 Proposition
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Proof of Theorem 1.2 Background

Proof of Theorem 1.2

In order to proof Theorem 1.2 we need to define the exponential and the
logarithm function of a matrix and discuss some properties.

Definition

Let A be a fixed Hermitian matrix, define:

eA := I +
∞∑
q=1

Aq

q!
.

A more rigurose definition can be done using the SVD decomposition.

Let A be a fixed Hermitian matrix, define:

log
(
eA
)

= A.
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Proof of Theorem 1.2 Background

Proof of Theorem 1.2

We recall some properties from the Linear Algebra that we will use in the proof.

Properties

Let A and B be Hermitian matrices, then:

A � B implies λi (A) ≤ λi (B) for each i .

Let A and B be Hermitian matrices, then:

A � B implies Trace eA ≤ Trace eB .

Let A and B be positive-semidefinite matrices, then:

A � B implies log(A) ≤ log(B).
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Proof of Theorem 1.2 Background

Two important facts

Proposition (Conjugation Rule)

Let A and B be two Hermitian matrices of the same dimension, and let H be a
general matrix with compatible dimensions. Then

A � B implies HAH∗ � HBH∗.

Proposition (Transfer Rule)

Let f and g be real-valued functions defined on the interval I of the real line, and
let A be an Hermitian matrix whose eigenvalues are contained in I . Then

f (a) ≤ g(a) for each a ∈ I implies f (A) � g(A).
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Proof of Theorem 1.2 Background

Lieb’s Theorem

Theorem (Lieb’s Theorem)

Let H be a fixed Hermitian matrix. The function:

A −→ Trace eH+logA,

is a concave map on the convex cone of positive-definite matrices. As a
consequence, we have:

ETrace eH+X ≤ Trace eH+log(EeX ),

where X is a random Hermitian matrix.
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Proof of Theorem 1.2 Main lemma

Main lemma

Lemma (Lemma 2)

Let H be a random centered Hermitian matrix such that λmax(H) ≤ R. Then, for
0 < θ < 3/R,

E
(
eθH
)
� exp

(
θ2/2

1− θR/3
· E(H2)

)
and

log
(
E
(
eθH
))
� θ2/2

1− θR/3
· E(H2).
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Proof of Theorem 1.2 Main lemma

Proof of Lemma 2

Note that if we prove the first relation, the second one follows by talking
logarithm and using the fact that the log is a monotone function.

Fix parameter θ > 0. Write

eθH = I + θH +
(
eθH − θH − I

)
= I + θH + H · f (H) · H,

where f is defined by:

f (x) =

{
eθx−θx−1

x2 if x 6= 0

f (x) = 0 if x = 0.
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Proof of Theorem 1.2 Main lemma

Proof of Lemma 2

Note that f is increasing as its derivatives is positive, hence

f (x) ≤ f (R) for x ≤ R.

Since ‖H‖ ≤ R, we have, by Transfer Rule

f (H) � f (R)I .

By Conjugation Rule we have:

eθH � I + θH + H (f (R) · I )H = I + θH + f (R) · H2
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Proof of Theorem 1.2 Main lemma

Proof of Lemma 2

By Taylor, we can estimate f (R):

f (R) =
eθR − θR − 1

R2
=

1

R2

∞∑
q=2

(θR)q

q!
≤ θ2

2

∞∑
q=2

(θR)q−2

3q−2 =
θ2/2

1− θR/3
,

where we used that q! ≥ 2 · 3q−2, for q ≥ 2.

As H2 is positive-semidefinite, this
implies,

eθH � I + θH +
θ2/2

1− θR/3
H2 := I + θH + g(θ)H2.

The expectation preserves the semidefinite order:

E
(
eθH
)
� I + g(θ) · E(H2) � exp

(
g(θ) · E(H2)

)
,

where in the last step we used that 1 + a ≤ ea.
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Proof of Theorem 1.2 Main lemma

Proof of Theorem 1.2

Let 0 < θ < 3/R be a real number to be chosen later. Recall that we are working
under the assumptions that X is a Hermitian matrix. By Markov’s inequality we
have:

P(λmax(X ) ≥ t) = P
(
eθλmax(X ) ≥ eθt

)
≤ e−θtE

(
eθλmax(X )

)
= e−θtE

(
eλmax(θX )

)
= e−θtE

(
λmax(eθX )

)
= e−θtE

(
Trace eθX

)
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Proof of Theorem 1.2 Main lemma

Proof of Theorem 1.2

If we apply the Lieb’s theorem recursively, for each Si we have:

E
(

Trace eθ(
∑n

i=1 Si )
)
≤ Trace

(
e
∑n

i=1 log Ee
θSi
)
.

By Lemma 2 we have:

P(λmax(X ) ≥ t) ≤ e−θt Trace
(
e
∑n

i=1 log Ee
θSi
)

≤ e−θt Trace
(
e
∑n

i=1 g(θ)E(S
2
i )
)

≤ de−θteg(θ)·ν(X ),

where in the last step we bounded the trace of a hermitian matrix by d times its
largest eigenvalue.

Pick θ = t/(ν(X ) + Rt/3) to conclude the proof of Theorem 1.2.
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Proof of Theorem 1.2 Main lemma

Application: Randomized Sparsification of a Matrix

Sparse matrices has several potential advantages. Firstly, it is considerably less
expansive to store than a dense one. Secondly, many algorithms run more efficient
and faster on sparse matrices.

Our task is that given a dense d1 × d2 matrix A, find a sparse matrix R, which
approximate A with respect to the spectral norm, that is we want ‖A− R‖2 to be
as small as possible.
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Proof of Theorem 1.2 Main lemma

Application: Randomized Sparsification of a Matrix

We start by expressing the matrix A as a sum of its entries,

A =

d1∑
i=1

d2∑
j=1

aijEij ,

where Eij is the matrix with all zero entries, but its (i , j)th which is 1.
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Proof of Theorem 1.2 Main lemma

Application: Randomized Sparsification of a Matrix

Define the following sampling probabilities:

pij =
1

2

(
|aij |2

‖A‖2F
+
|aij |
‖A‖1

)
,

where ‖A‖1 :=
∑

i,j |aij |. Note that:

d1∑
i=1

d2∑
j=1

pij = 1.

Define R to be the random matrix that has exactly one entry:

R =
1

pij
aijEij with probability pij .
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Proof of Theorem 1.2 Main lemma

Application: Randomized Sparsification of a Matrix

Note that

E(R) =
∑
i,j

(
1

pij
aijEij

)
pIj = A.

The problem with R to be an approximation for A is that it has huge variance.
This can be overcome if we take the average of n of them, where n is big. Fix n
big and define:

Rn =
1

n

n∑
i=1

R(i),

where R(i)’s are independent copies of R.
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Proof of Theorem 1.2 Main lemma

Application: Randomized Sparsification of a Matrix

Proposition

E‖Rn − A‖ ≤
√

4‖A‖2F ·max(d1, d2) log(d1 + d2)

n
+

4‖A‖1 log(d1 + d2)

3n
.
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Proof of Theorem 1.2 Main lemma

Application: Randomized Sparsification of a Matrix

Let D := max(d1, d2) log(d1 + d2). Note that ‖A‖1 ≤ max(d1, d2)‖A‖F so the
bound can be interpreted also as:

E‖Rn − A‖
‖A‖

≤ ‖A‖F
‖A‖

·

(√
4D

n
+

4D

3n

)

= srank(A) ·

(√
4D

n
+

4D

3n

)
,

where srank(A) := ‖A‖F/‖A‖ is the stable rank.
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Proof of Theorem 1.2 Main lemma

Application: Randomized Sparsification of a Matrix

The proof of the proposition will follow by Theorem 1. Note that by definition

pij ≥
1

2

|aij |
‖A‖1

and pij ≥
1

2
· |aij |

2

‖A‖2F
.

This implies that:

‖R‖ ≤ max
i,j
‖p−1ij aijEij‖ = max

i,j

|ai j |
pij
≤ 2‖A‖1

and

E(RR∗) =
∑
i,j

|aij |2

pij
Eii � 2d2‖A‖2F · Id1 ,

E(RR∗) =
∑
i,j

|aij |2

pij
Eii � 2d1‖A‖2F · Id2 ,

which implies
ν(Rn) ≤ 2 max(d1, d2).
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Proof of Theorem 1.2 Main lemma

Questions?
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