## Spectral norm of sum of independent random matrices

## Set up

Let $n \in \mathbf{Z}_{+}$and $S_{1}, S_{2}, \ldots, S_{n}$ be an independent family of random $d_{1} \times d_{2}$ complex-valued matrices with $\mathbf{E}\left(S_{i}\right)=0$ and bounded spectral norm for every $1 \leq i \leq n$. Define:

$$
X:=\sum_{i=1}^{n} S_{i} .
$$

We are interested in results concerning $\|X\|$, both in expectation and large deviation.

## 1D case

Let us assume that $n=1$, then $X$ is just a some of independent centered random variables.

## Theorem (Bernstein's inequality)

Let $S_{1}, S_{2}, \ldots, S_{n}$ be independent zero-mean random variables such that $\left|S_{i}\right| \leq R$ almost surely for all $i$ and let $X=\sum S_{i}$. Then, for any $t>0$ we have:

$$
\mathbf{P}(X>t) \leq \exp \left(-\frac{t^{2} / 2}{\sum_{j} \mathbf{E}\left(S_{j}^{2}\right)+R t / 3}\right) .
$$

## Proof of Bernstein's inequality

## Lemma

Let $h$ be a random variable with $\mathbf{E}(h)=0$ and $|h| \leq R$ almost surely. Then, for $0<\theta<3 / R$,

$$
\mathbf{E}\left(e^{\theta h}\right) \leq \exp \left(\frac{\theta^{2} / 2}{1-\theta R / 3} \cdot \mathbf{E}\left(h^{2}\right)\right)
$$

and

$$
\log \left(\mathbf{E}\left(e^{\theta h}\right)\right) \leq \frac{\theta^{2} / 2}{1-\theta R / 3} \cdot \mathbf{E}\left(h^{2}\right)
$$

## Proof of Lemma

Note that if we prove the first relation, the second one follows by talking logarithm and using the fact that the $\log$ is a monotone function.

## Proof of Lemma

Note that if we prove the first relation, the second one follows by talking logarithm and using the fact that the log is a monotone function.

Fix parameter $\theta>0$. Write

$$
e^{\theta h}=I+\theta h+\left(e^{\theta h}-\theta h-1\right)=1+\theta h+h^{2} f(h)
$$

where $f$ is defined by:

$$
f(x)= \begin{cases}\frac{e^{\theta x}-\theta x-1}{x^{2}} & \text { if } x \neq 0 \\ f(x)=0 & \text { if } x=0\end{cases}
$$

## Proof of Lemma

Note that $f$ is increasing as its derivatives is positive, hence

$$
f(x) \leq f(R) \text { for } x \leq R
$$

## Proof of Lemma

Note that $f$ is increasing as its derivatives is positive, hence

$$
f(x) \leq f(R) \text { for } x \leq R
$$

Since $h \leq R$, we have that

$$
f(h) \leq f(R) .
$$

## Proof of Lemma

Note that $f$ is increasing as its derivatives is positive, hence

$$
f(x) \leq f(R) \text { for } x \leq R
$$

Since $h \leq R$, we have that

$$
f(h) \leq f(R) .
$$

It follows that

$$
e^{\theta h} \leq 1+\theta h+h^{2} f(R) .
$$

By Taylor, we can estimate $f(R)$ :

$$
f(R)=\frac{e^{\theta R}-\theta R-1}{R^{2}}=\frac{1}{R^{2}} \sum_{q=2}^{\infty} \frac{(\theta R)^{q}}{q!} \leq \frac{\theta^{2}}{2} \sum_{q=2}^{\infty} \frac{(\theta R)^{q-2}}{3^{q-2}}=\frac{\theta^{2} / 2}{1-\theta R / 3},
$$

where we used that $q!\geq 2 \cdot 3^{q-2}$, for $q \geq 2$.

## Proof of Lemma

Let

$$
g(\theta, R)=\frac{\theta^{2} / 2}{1-\theta R / 3}
$$

This translates as

$$
e^{\theta h} \leq 1+\theta h+g(\theta, R) h^{2}
$$

which implies, by the linearity of expectation and the fact that $\mathbf{E}(h)=0$,

$$
\mathbf{E}\left(e^{\theta h}\right) \leq 1+g(\theta, R) \mathbf{E}\left(h^{2}\right) \leq \exp \left(g(\theta, R) \mathbf{E}\left(h^{2}\right)\right)
$$

where in the last step we used that $1+a \leq e^{a}$, which completes the proof of lemma.

## Proof of Bernstein's inequality

Let $0<\theta<3 / R$ be a real number to be chosen later. By Markov inequality we have:

$$
\begin{aligned}
\mathbf{P}(X>t) & =\mathbf{P}\left(e^{\theta X}>e^{\theta t}\right) \\
& \leq e^{-\theta t} \mathbf{E}\left(e^{\theta X}\right)
\end{aligned}
$$

Note that since $S_{1}, S_{2}, \ldots, S_{n}$ are independent we have:

$$
\mathbf{E}\left(e^{\theta\left(\sum_{i=1}^{n} S_{i}\right)}\right)=e^{\sum_{i=1}^{n} \log E e^{\theta S_{i}}}
$$

which further implies:

$$
\mathbf{P}(X>t) \leq e^{-\theta t} e^{\sum_{i=1}^{n} \log E e^{\theta S_{i}}} .
$$

## Proof of Bernstein's inequality

We can apply our lemma to bound the logarithmic factors

$$
\begin{aligned}
\mathbf{P}(X>t) & \leq e^{-\theta t} e^{\sum_{i=1}^{n} \log \mathbf{E} e^{\theta S_{i}}} \\
& \leq e^{-\theta t} e^{\sum_{i=1}^{n} g(\theta) \mathbf{E}\left(S_{i}^{2}\right)} \\
& \leq e^{-\theta t} e^{g(\theta) \cdot \sum_{i=1}^{n} \mathbf{E}\left(S_{i}^{2}\right)}
\end{aligned}
$$

Pick $\theta=t /\left(\sum_{i=1}^{n} \mathbf{E}\left(S_{i}^{2}\right)+R t / 3\right)$ to conclude the proof of Bernstein's inequality.

## Matrix parameters

## Matrix parameters

## Definition

- The matrix variance parameter is defined by:

$$
\begin{aligned}
\nu(X) & :=\max \left\{\left\|\mathbf{E}\left[X X^{*}\right]\right\|,\left\|\mathbf{E}\left[X^{*} X\right]\right\|\right\} \\
& =\max \left\{\left\|\sum_{i=1}^{n} \mathbf{E}\left[S_{i} S_{i}^{*}\right]\right\|,\left\|\sum_{i=1}^{n} \mathbf{E}\left[S_{i}^{*} S_{i}\right]\right\|\right\}
\end{aligned}
$$

## Matrix parameters

## Definition

- The matrix variance parameter is defined by:

$$
\begin{aligned}
\nu(X) & :=\max \left\{\left\|\mathbf{E}\left[X X^{*}\right]\right\|,\left\|\mathbf{E}\left[X^{*} X\right]\right\|\right\} \\
& =\max \left\{\left\|\sum_{i=1}^{n} \mathbf{E}\left[S_{i} S_{i}^{*}\right]\right\|,\left\|\sum_{i=1}^{n} \mathbf{E}\left[S_{i}^{*} S_{i}\right]\right\|\right\}
\end{aligned}
$$

- The large deviation parameter is defined by:

$$
L:=\left(\mathbf{E}\left[\max _{i=1, \ldots, n}\left\|S_{i}\right\|^{2}\right]\right)^{1 / 2}
$$

## Matrix parameters

## Definition

- The matrix variance parameter is defined by:

$$
\begin{aligned}
\nu(X) & :=\max \left\{\left\|\mathbf{E}\left[X X^{*}\right]\right\|,\left\|\mathbf{E}\left[X^{*} X\right]\right\|\right\} \\
& =\max \left\{\left\|\sum_{i=1}^{n} \mathbf{E}\left[S_{i} S_{i}^{*}\right]\right\|,\left\|\sum_{i=1}^{n} \mathbf{E}\left[S_{i}^{*} S_{i}\right]\right\|\right\}
\end{aligned}
$$

- The large deviation parameter is defined by:

$$
L:=\left(\mathbf{E}\left[\max _{i=1, \ldots, n}\left\|S_{i}\right\|^{2}\right]\right)^{1 / 2}
$$

- The dimensional constant is defined by:

$$
C_{d}:=C\left(d_{1}, d_{2}\right):=4 \cdot\left(1+2 \log \left(d_{1}+d_{2}\right)\right)
$$

## Theorem 1

## Theorem (The norm of an independent sum of matrices)

Let $S_{1}, S_{2}, \ldots, S_{n}$ be independent $d_{1} \times d_{2}$ random matrices with $\mathbf{E}\left(S_{i}\right)=\mathbf{0}$ for each i. Let $X:=S_{1}+\ldots+S_{n}$ and $\nu(X), C_{d}$ and $L$ defined previously. Then the following is true:
(1) $\sqrt{\frac{1}{4} \cdot \nu(X)}+\frac{1}{4} \cdot L \leq\left(\mathbf{E}\left(\|X\|^{2}\right)\right)^{1 / 2} \leq \sqrt{C_{d} \cdot \nu(X)}+C_{d} \cdot L$.

## Theorem 1

## Theorem (The norm of an independent sum of matrices)

Let $S_{1}, S_{2}, \ldots, S_{n}$ be independent $d_{1} \times d_{2}$ random matrices with $\mathbf{E}\left(S_{i}\right)=\mathbf{0}$ for each i. Let $X:=S_{1}+\ldots+S_{n}$ and $\nu(X), C_{d}$ and $L$ defined previously. Then the following is true:
(1) $\sqrt{\frac{1}{4} \cdot \nu(X)}+\frac{1}{4} \cdot L \leq\left(\mathbf{E}\left(\|X\|^{2}\right)\right)^{1 / 2} \leq \sqrt{C_{d} \cdot \nu(X)}+C_{d} \cdot L$.
(2) Moreover, if there exists $R>0$ such that $\left\|S_{i}\right\|$ 's are uniformly bounded by $R$ then

$$
\mathbf{P}(\|X\| \geq t) \leq\left(d_{1}+d_{2}\right) \cdot \exp \left(\frac{-t^{2} / 2}{\nu(X)+R t / 3}\right)
$$

## Observations

## Observation

- In the case where $S_{i}$ 's are Hermitians, Theorem 1 can be used to get bounds for $\lambda_{\min }(X)$, by replacing $S_{i}$ with $-S_{i}$ and $X$ with $-X$.


## Observations

## Observation

- In the case where $S_{i}$ 's are Hermitians, Theorem 1 can be used to get bounds for $\lambda_{\min }(X)$, by replacing $S_{i}$ with $-S_{i}$ and $X$ with $-X$.
- Theorem 1 can be extended to non-centered matrices too, by replacing $S_{i}$ with $S_{i}-\mathbf{E}\left(S_{i}\right)$.


## Observations

## Observation

- In the case where $S_{i}$ 's are Hermitians, Theorem 1 can be used to get bounds for $\lambda_{\min }(X)$, by replacing $S_{i}$ with $-S_{i}$ and $X$ with $-X$.
- Theorem 1 can be extended to non-centered matrices too, by replacing $S_{i}$ with $S_{i}-\mathbf{E}\left(S_{i}\right)$.
- There exists a strong conection between $\left(\mathbf{E}\left(\|X\|^{2}\right)\right)^{1 / 2}$ and $\left(\mathbf{E}\left(\|X\|^{p}\right)\right)^{1 / p}$ due to Jensen and Khintchine inequalities, so there are equivalents of Theorem 1.1 for other norms too.


## Observations

## Observation

- In the case where $S_{i}$ 's are Hermitians, Theorem 1 can be used to get bounds for $\lambda_{\min }(X)$, by replacing $S_{i}$ with $-S_{i}$ and $X$ with $-X$.
- Theorem 1 can be extended to non-centered matrices too, by replacing $S_{i}$ with $S_{i}-\mathbf{E}\left(S_{i}\right)$.
- There exists a strong conection between $\left(\mathbf{E}\left(\|X\|^{2}\right)\right)^{1 / 2}$ and $\left(\mathbf{E}\left(\|X\|^{p}\right)\right)^{1 / p}$ due to Jensen and Khintchine inequalities, so there are equivalents of Theorem 1.1 for other norms too.
- The large deviation bound in Theorem 1.2 is an extension of the well-known Bernstein inequality for random matrices.


## The optimality of Theorem 1.1

## The optimality of Theorem 1.1

The lower and the upper bounds in Theorem 1.1 match, except for the dimensional factor $C_{d}(\approx 8 \log d)$. We will show by four examples that neither the lower bound nor the upper bound can be sharpened substantially without further assumptions.

## The optimality of Theorem 1.1

The lower and the upper bounds in Theorem 1.1 match, except for the dimensional factor $C_{d}(\approx 8 \log d)$. We will show by four examples that neither the lower bound nor the upper bound can be sharpened substantially without further assumptions.

In what follows, let $E_{i, j}$ denote the matrix with all entries 0 except the $(i, j)^{\text {th }}$ entry which is 1 .

## Optimality of the upper bound: variance term

## Optimality of the upper bound: variance term

## Example

Let

$$
Z:=\sum_{i=1}^{d} \sum_{j=1}^{d} \frac{1}{\sqrt{n}} \xi_{i j} E_{i i}
$$

where $\xi_{i j}$ 's are independently Rademacher random variables talking values $\pm 1$ each with probability $1 / 2$.

## Optimality of the upper bound: variance term

## Example

Let

$$
Z:=\sum_{i=1}^{d} \sum_{j=1}^{d} \frac{1}{\sqrt{n}} \xi_{i j} E_{i i}
$$

where $\xi_{i j}$ 's are independently Rademacher random variables talking values $\pm 1$ each with probability $1 / 2$.

It is easy to estimate directly

$$
\mathbf{E}\left(\|Z\|^{2}\right) \approx \mathbf{E}\left(\left\|\sum_{i=1}^{j} \gamma_{i} E_{i i}\right\|^{2}\right)=\mathbf{E} \max _{i}\left|\gamma_{i}\right|^{2} \approx 2 \log d
$$

where $\gamma_{i}$ 's are independent standard gaussian random variables.

## Optimality of the upper bound: variance term

## Optimality of the upper bound: variance term

The variance parameter satisfies:

$$
\nu(Z):=\left\|\sum_{i=1}^{d} \sum_{j=1}^{d} \frac{1}{n} E_{i i}\right\|=\left\|I_{d}\right\|=1 .
$$

## Optimality of the upper bound: variance term

The variance parameter satisfies:

$$
\nu(Z):=\left\|\sum_{i=1}^{d} \sum_{j=1}^{d} \frac{1}{n} E_{i i}\right\|=\left\|I_{d}\right\|=1 .
$$

The large deviation parameter satisfies:

$$
L^{2}=\mathbf{E} \max _{i, j}\left\|\frac{1}{\sqrt{n}} \xi_{i j} \mathbf{E}_{i i}\right\|^{2}=\frac{1}{n} .
$$

## Optimality of the upper bound: variance term

The variance parameter satisfies:

$$
\nu(Z):=\left\|\sum_{i=1}^{d} \sum_{j=1}^{d} \frac{1}{n} E_{i i}\right\|=\left\|I_{d}\right\|=1 .
$$

The large deviation parameter satisfies:

$$
L^{2}=\mathbf{E} \max _{i, j}\left\|\frac{1}{\sqrt{n}} \xi_{i j} \mathbf{E}_{i i}\right\|^{2}=\frac{1}{n} .
$$

It follows that

$$
\left(\mathbf{E}\|Z\|^{2}\right)^{1 / 2} \approx \sqrt{2 \log d \nu(Z)}
$$

so the logarithm factor in the variance term in the upper bound is needed.

## Optimality of the upper bound: large-deviation term

## Optimality of the upper bound: large-deviation term

## Example

Let

$$
Z:=\sum_{i=1}^{n} \sum_{j=1}^{n}\left(\delta_{i j}-n^{-1}\right) \cdot E_{i i}
$$

where $\delta_{i j}$ is an independent family of Bernoulli $(1 / n)$ random variables.
Using the properties of the Bernoulli random variables, we have

$$
\left(\mathbf{E}\left(\|Z\|^{2}\right)\right)^{1 / 2} \approx \text { constant } \cdot \frac{\log d}{\log \log d}
$$

## Optimality of the upper bound: large-deviation term

## Optimality of the upper bound: large-deviation term

The variance parameter satisfies:

$$
\nu(Z)=\left\|\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{E}\left(\delta_{i j}-n^{-1}\right)^{2} \cdot E_{i i}\right\| \approx 1 .
$$

## Optimality of the upper bound: large-deviation term

The variance parameter satisfies:

$$
\nu(Z)=\left\|\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{E}\left(\delta_{i j}-n^{-1}\right)^{2} \cdot E_{i i}\right\| \approx 1 .
$$

The large-deviation parameter is

$$
L^{2}=\mathbf{E}\left(\max _{i, j}\left\|\left(\delta_{i j}-n^{-1}\right) \cdot E_{i i}\right\|^{2}\right) \approx 1 .
$$

## Optimality of the upper bound: large-deviation term

The variance parameter satisfies:

$$
\nu(Z)=\left\|\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{E}\left(\delta_{i j}-n^{-1}\right)^{2} \cdot E_{i i}\right\| \approx 1 .
$$

The large-deviation parameter is

$$
L^{2}=\mathbf{E}\left(\max _{i, j}\left\|\left(\delta_{i j}-n^{-1}\right) \cdot E_{i i}\right\|^{2}\right) \approx 1 .
$$

This implies that the large-deviation parameter in the upper bound can not be improved, except by an iterated logarithm factor.

## Optimality of the lower bound: variance term

## Optimality of the lower bound: variance term

## Example

Let

$$
Z:=\sum_{i, j=1}^{d} \xi_{i j} E_{i j}
$$

where $\xi_{i j}$ 's are independent Rademacher variables.

## Optimality of the lower bound: variance term

## Example

Let

$$
Z:=\sum_{i, j=1}^{d} \xi_{i j} E_{i j}
$$

where $\xi_{i j}$ 's are independent Rademacher variables.

It is known that

$$
\left(\mathbf{E}\|Z\|^{2}\right)^{1 / 2} \approx \sqrt{2 d} .
$$

## Optimality of the lower bound: variance term

## Optimality of the lower bound: variance term

The variance parameter satisfies:

$$
\nu(Z)=\max \left\{\left\|d \cdot I_{d}\right\|,\left\|d \cdot I_{d}\right\|\right\}=d
$$

## Optimality of the lower bound: variance term

The variance parameter satisfies:

$$
\nu(Z)=\max \left\{\left\|d \cdot I_{d}\right\|,\left\|d \cdot I_{d}\right\|\right\}=d
$$

and the large deviation parameter is:

$$
L^{2}=\mathbf{E} \max _{i, j}\left\|\xi_{i j} E_{i j}\right\|^{2}=1
$$

## Optimality of the lower bound: variance term

The variance parameter satisfies:

$$
\nu(Z)=\max \left\{\left\|d \cdot I_{d}\right\|,\left\|d \cdot I_{d}\right\|\right\}=d
$$

and the large deviation parameter is:

$$
L^{2}=\mathbf{E} \max _{i, j}\left\|\xi_{i j} E_{i j}\right\|^{2}=1
$$

We conclude that the variance term in the lower bound can not have a logarithmic factor.

## Optimality of the lower bound: large-deviation term

## Optimality of the lower bound: large-deviation term

## Example

Let

$$
Z:=\sum_{i=1}^{d} P_{i} E_{i, i},
$$

where $\left\{P_{i}\right\}$ is an independent family of symmetric random variables whose tails satisfy:

$$
\mathbf{P}\left(\left|P_{i}\right| \geq t\right)= \begin{cases}t^{-4} & \text { if } t \geq 1 \\ 1 & \text { if } t \leq 1\end{cases}
$$

## Optimality of the lower bound: large-deviation term

## Example

Let

$$
Z:=\sum_{i=1}^{d} P_{i} E_{i, i},
$$

where $\left\{P_{i}\right\}$ is an independent family of symmetric random variables whose tails satisfy:

$$
\mathbf{P}\left(\left|P_{i}\right| \geq t\right)= \begin{cases}t^{-4} & \text { if } t \geq 1 \\ 1 & \text { if } t \leq 1\end{cases}
$$

The key properties of these variables are that:

$$
\mathbf{E}\left(P_{i}^{2}\right)=2 \text { and } \mathbf{E} \max _{i} P_{i}^{2} \approx \text { constant } \cdot d^{2}
$$

## Optimality of the lower bound: large-deviation term

## Optimality of the lower bound: large-deviation term

The variance parameter is:

$$
\nu(Z)=\left\|\sum_{i=1}^{d}\left(\mathbf{E} P_{i}^{2}\right) E_{i}\right\|=2,
$$

## Optimality of the lower bound: large-deviation term

The variance parameter is:

$$
\nu(Z)=\left\|\sum_{i=1}^{d}\left(\mathbf{E} P_{i}^{2}\right) E_{i}\right\|=2,
$$

and the large deviation parameter satisfy:

$$
L^{2}=\mathbf{E} \max _{i}\left\|P_{i} E_{i}\right\|^{2}=\mathbf{E} \max _{i}\left|P_{i}\right|^{2} \approx \text { constant } \cdot d^{2} . .
$$

## Optimality of the lower bound: large-deviation term

The variance parameter is:

$$
\nu(Z)=\left\|\sum_{i=1}^{d}\left(\mathbf{E} P_{i}^{2}\right) E_{i}\right\|=2,
$$

and the large deviation parameter satisfy:

$$
L^{2}=\mathbf{E} \max _{i}\left\|P_{i} E_{i}\right\|^{2}=\mathbf{E} \max _{i}\left|P_{i}\right|^{2} \approx \text { constant } \cdot d^{2} . .
$$

By direct calculation, we have:

$$
\left(\mathbf{E}\left(\|Z\|^{2}\right)\right)^{1 / 2} \approx \text { constant } \cdot d
$$

## Optimality of the lower bound: large-deviation term

The variance parameter is:

$$
\nu(Z)=\left\|\sum_{i=1}^{d}\left(\mathbf{E} P_{i}^{2}\right) E_{i}\right\|=2,
$$

and the large deviation parameter satisfy:

$$
L^{2}=\mathbf{E} \max _{i}\left\|P_{i} E_{i}\right\|^{2}=\mathbf{E} \max _{i}\left|P_{i}\right|^{2} \approx \text { constant } \cdot d^{2} . .
$$

By direct calculation, we have:

$$
\left(\mathbf{E}\left(\|Z\|^{2}\right)\right)^{1 / 2} \approx \text { constant } \cdot d
$$

We conclude that the large-deviation term in the lower bound can not carry a logarithmic factor.

## Other results

## Theorem (Matrix Chernoff Bound part 1)

Let $\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ be a finite sequence of independent $d \times d$ Hermitian random matrices such that for each $i, S_{i}$ is positive semi-definite and $\lambda_{\max }\left(S_{i}\right) \leq L$. Define $X=\sum_{i=1}^{n} S_{i}$ and let $\mu_{\min }:=\lambda_{\min }(\mathbf{E}(X))$ and $\mu_{\max }=\lambda_{\max }(\mathbf{E}(X))$. For any $\theta>0$ we have:

$$
\begin{align*}
& \mathbf{E}\left(\lambda_{\min }(X)\right) \geq \frac{1-e^{-\theta}}{\theta} \mu_{\min }-\frac{1}{\theta} L \log d  \tag{1}\\
& \mathbf{E}\left(\lambda_{\max }(X)\right) \leq \frac{e^{\theta}-1}{\theta} \mu_{\max }+\frac{1}{\theta} L \log d \tag{2}
\end{align*}
$$

## Theorem (Matrix Chenoff Bound part 2)

Also, for any $\epsilon>0$ we have:

$$
\begin{equation*}
\mathbf{P}\left(\lambda_{\max }(X) \geq(1+\epsilon) \mu_{\max }\right) \leq d\left[\frac{e^{\epsilon}}{(1+\epsilon)^{1+\epsilon}}\right]^{\mu_{\max } / L} \tag{3}
\end{equation*}
$$

and for any $\epsilon \in[0,1]$ we have:

$$
\begin{equation*}
\mathbf{P}\left(\lambda_{\min }(X) \leq(1-\epsilon) \mu_{\min }\right) \leq d\left[\frac{e^{-\epsilon}}{(1-\epsilon)^{1-\epsilon}}\right]^{\mu_{\min } / L} . \tag{4}
\end{equation*}
$$

## Observations

## Observation

- If we pick $\theta$ to be 1 , we get

$$
\begin{aligned}
& \mathbf{E} \lambda_{\text {min }}(X) \geq 0.63 \mu_{\text {min }}-L \log d \text { and } \\
& \mathbf{E} \lambda_{\max }(X) \leq 1.72 \mu_{\text {max }}+L \log d .
\end{aligned}
$$

- If the matrices $S_{i}$ are unbounded, we have:

$$
\mathbf{E} \lambda_{\max }(X) \leq 2 \mu_{\max }+8 e\left(\mathbf{E}\left(\max _{k} \lambda_{\max }\left(S_{k}\right)\right)\right) \log d
$$

## Other results

## Theorem (Matrix Azuma Inequality)

Let $\left\{X_{1}, X_{2}, \ldots, X_{k}\right\}$ be a finite adapted sequence of self-adjoint $d \times d$ random matrices and let $\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ be a fixed sequence of self-adjoint matrices. Assume that each random variables satisfies $\mathbf{E}_{i-1} X_{i}=\mathbf{0}$ and $X_{i}^{2} \preceq A_{i}^{2}$ almost surely for any $\mathbf{1} \leq i \leq k$, where $\mathbf{0}$ is the zero $d \times d$ matrix. Let

$$
\sigma^{2}=\left\|\sum_{k} A_{k}^{2}\right\|,
$$

then for all $t \geq 0$ we have:

$$
\mathbf{P}\left(\lambda_{\max }\left(\sum_{k} X_{k}\right) \geq t\right) \leq d \cdot e^{-t^{2} /\left(8 \sigma^{2}\right)} .
$$

## Other results

## Theorem (Matrix McDiarmid Inequality)

Let $\left\{Z_{1}, Z_{2}, \ldots, Z_{n}\right\}$ be independent random variables and $\mathbf{z}:=\left(Z_{1}, Z_{2}, \ldots, Z_{n}\right)$. Let $H$ be a function that maps $n$ variables to a $d \times d$ self-adjoint matrix. Consider a sequence $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ of fixed self-adjoint matrices that satisfy:

$$
\left(H\left(z_{1}, \ldots, z_{k}, \ldots, z_{n}\right)-H\left(z_{1}, \ldots, z_{k}^{\prime}, \ldots, z_{n}\right)\right)^{2} \preceq A_{k}^{2},
$$

where $z_{i}$ and $z_{i}^{\prime}$ range over all possible values of $Z_{i}$ for each $1 \leq i \leq n$. Let

$$
\sigma^{2}:=\left\|\sum_{k} A_{k}^{2}\right\|,
$$

then for any $t \geq 0$ we have:

$$
\mathbf{P}\left(\lambda_{\max }(H(\mathbf{z})-\mathbf{E}(H(\mathbf{z}))) \leq d \cdot e^{-t^{2} / 8 \sigma^{2}} .\right.
$$

## Other results

## Theorem (Matrix Hoeffding Inequality)

Let $\left(X_{i}\right)_{i \geq 0}$ be a sequence of independent, self-adjoint $d \times d$ random matrices and let $\left(A_{i}\right)_{i \geq 0}$ be a fixed sequence of self-adjoint matrices. Assume that each random variables satisfies $\mathbf{E} X_{i}=\mathbf{0}$ and $X_{i} \preceq A_{i}$ almost surely for any $i \geq 0$, where $\mathbf{0}$ is the zero $d \times d$ matrix. Let

$$
\sigma^{2}=\frac{1}{2}\left\|\sum_{k} A_{k}^{2}+\mathbf{E} X_{k}^{2}\right\| \leq\left\|\sum_{k} A_{k}^{2}\right\|,
$$

then for all $t \geq 0$ we have:

$$
\mathbf{P}\left(\lambda_{\max }\left(\sum_{k} X_{k}\right) \geq t\right) \leq d \cdot e^{-t^{2} /\left(2 \sigma^{2}\right)}
$$

## Proof of Theorem 1

We direct our attention to the proof of Theorem 1 as the other theorems have similar proofs.

## Proof of Theorem 1

We direct our attention to the proof of Theorem 1 as the other theorems have similar proofs. We start with the proof of Theorem 1.1. Recall

## Theorem (Theorem 1.1)

Let $S_{1}, S_{2}, \ldots, S_{n}$ be independent $d_{1} \times d_{2}$ random matrices with $\mathbf{E}\left(S_{i}\right)=\mathbf{0}$ for each i. Then the following is true:

$$
\sqrt{\frac{1}{4} \cdot \nu(X)}+\frac{1}{4} \cdot L \leq\left(\mathbf{E}\left(\|X\|^{2}\right)\right)^{1 / 2} \leq \sqrt{C_{d} \cdot \nu(X)}+C_{d} \cdot L .
$$

## Hermitian dilatation

## Hermitian dilatation

## Definition

Let $M$ be a $d_{1} \times d_{2}$ matrix. We define the Hermitian dilatation $H(M)$ of $M$ by:

$$
H(M):=\left[\begin{array}{cc}
0 & M \\
M^{*} & 0
\end{array}\right] .
$$

Note that $H(M)$ is symmetric and satisfies:

$$
\|H(M)\|=\|M\|
$$

and

$$
\begin{equation*}
\left\|\mathbf{E} H(M)^{2}\right\|=\max \left\{\left\|\mathbf{E}\left(M M^{*}\right)\right\|,\left\|\mathbf{E}\left(M^{*} M\right)\right\|\right\} . \tag{5}
\end{equation*}
$$

## Hermitian dilatation

As the Hermitian dilation is a linear map, we have:

$$
H(X)=\sum_{i=1}^{n} H\left(S_{i}\right)
$$

and so, we can assume without loss of generality that $X$ and $S_{i}$ 's are centered Hermitian for any $1 \leq i \leq n$.

## Main idea of the proof

The main idea behind the proof is that if we let $\xi_{1}, \xi_{2}, \ldots, \xi_{n}$ be $n$ Rademacher random variables talking values $\pm 1$ each with probability $1 / 2$ independent of the $S_{i}$ 's, then

$$
X^{\prime}:=\sum_{i} \xi_{i} S_{i},
$$

has the same distribution as $X$. The advantage of working with $X^{\prime}$ is that we can condition on the values of $S_{i}$ 's and still get good bounds for $\left\|X^{\prime}\right\|$.

## Main Lemma

## Lemma (Lemma 1)

Let $H_{1}, H_{2}, \ldots, H_{n}$ be fixed $d \times d$ Hermitian matrices and let $\xi_{1}, \ldots, \xi_{n}$ be independent Rademacher random variables. Then the following holds:

$$
\left(\mathbf{E}\left\|\sum_{i=1}^{n} \xi_{i} H_{i}\right\|^{2}\right)^{1 / 2} \leq \sqrt{1+2 \log d} \cdot\left\|\sum_{i=1}^{n} H_{i}^{2}\right\|^{1 / 2}
$$

## Other version of the lemma

The same result holds if we replace the Rademacher random variables with standard normal ones. The proofs are almost identical.

## Other version of the lemma

The same result holds if we replace the Rademacher random variables with standard normal ones. The proofs are almost identical.

## Lemma (Lemma for Gaussian random variables)

Let $H_{1}, H_{2}, \ldots, H_{n}$ be fixed $d \times d$ Hermitian matrices and let $\gamma_{1}, \ldots, \gamma_{n}$ be independent $\mathcal{N}(0,1)$ random variables. Then the following holds:

$$
\left(\mathbf{E}\left\|\sum_{i=1}^{n} \gamma_{i} H_{i}\right\|^{2}\right)^{1 / 2} \leq \sqrt{1+2 \log d} \cdot\left\|\sum_{i=1}^{n} H_{i}^{2}\right\|^{1 / 2}
$$

## Proof of Lemma 1

The proof of Lemma 1 is based on the moment method. Define

$$
Y:=\sum_{i=1}^{n} \xi_{i} H_{i} .
$$

## Proof of Lemma 1

The proof of Lemma 1 is based on the moment method. Define

$$
Y:=\sum_{i=1}^{n} \xi_{i} H_{i} .
$$

Let $p$ be a fixed integer that we will choose it later. By Jensen we have:

$$
\left(\mathbf{E}\left(\|Y\|^{2}\right)^{1 / 2} \leq\left(\mathbf{E}\left(\|Y\|^{2 p}\right)^{1 / 2 p}\right.\right.
$$

## Proof of Lemma 1

The proof of Lemma 1 is based on the moment method. Define

$$
Y:=\sum_{i=1}^{n} \xi_{i} H_{i} .
$$

Let $p$ be a fixed integer that we will choose it later. By Jensen we have:

$$
\left(\mathbf{E}\left(\|Y\|^{2}\right)^{1 / 2} \leq\left(\mathbf{E}\left(\|Y\|^{2 p}\right)^{1 / 2 p}\right.\right.
$$

Since all the eigenvalues of a Hermitian matrix are real, we have:

$$
\left(\mathbf{E}\left(\|Y\|^{2}\right)^{1 / 2} \leq\left(\mathbf{E}\left(\|Y\|^{2 p}\right)^{1 / 2 p} \leq\left(\mathbf{E}\left(\operatorname{Trace}\left(Y^{2 p}\right)\right)^{1 / 2 p} .\right.\right.\right.
$$

## Proof of Lemma

## Proof of Lemma

Let $Y_{+i}$ be the value of $Y$ conditioned on the event that $Y_{i}=1$ and define $Y_{-i}$ similarly.

Precisely, we have

$$
Y_{+i}:=H_{i}+\sum_{j \neq i} \xi_{j} H_{j} \text { and } Y_{-i}:=-H_{i}+\sum_{j \neq i} \xi_{j} H_{j} .
$$

## Proof of Lemma

Let $Y_{+i}$ be the value of $Y$ conditioned on the event that $Y_{i}=1$ and define $Y_{-i}$ similarly.

Precisely, we have

$$
Y_{+i}:=H_{i}+\sum_{j \neq i} \xi_{j} H_{j} \text { and } Y_{-i}:=-H_{i}+\sum_{j \neq i} \xi_{j} H_{j} .
$$

$\mathbf{E}\left(\operatorname{Trace}\left(Y^{2 p}\right)\right)=\mathbf{E} \operatorname{Trace}\left(Y \cdot Y^{2 p-1}\right)$

$$
\begin{aligned}
& =\sum_{i=1}^{n} \mathbf{E}\left(\mathbf{E}_{\xi_{i}} \operatorname{Trace}\left(\xi_{i} H_{i} \cdot Y^{2 p-1}\right)\right) \\
& =\frac{1}{2} \sum_{i=1}^{n} \mathbf{E} \operatorname{Trace}\left(H_{i} \cdot\left(Y_{+i}^{2 p-1}-Y_{-i}^{2 p-1}\right)\right)
\end{aligned}
$$

## Proof of Lemma

## Proof of Lemma

## We can write

$$
Y_{+i}^{2 p-1}-Y_{-i}^{2 p-1}=\sum_{q=0}^{2 p-2} Y_{+i}^{q}\left(Y_{+i}-Y_{-i}\right) Y_{-i}^{2 p-q-2}
$$

## Proof of Lemma

We can write

$$
Y_{+i}^{2 p-1}-Y_{-i}^{2 p-1}=\sum_{q=0}^{2 p-2} Y_{+i}^{q}\left(Y_{+i}-Y_{-i}\right) Y_{-i}^{2 p-q-2}
$$

It follows that

$$
\begin{aligned}
\mathbf{E}\left(\operatorname{Trace}\left(Y^{2 p}\right)\right) & =\frac{1}{2} \sum_{i=1}^{n} \mathbf{E} \operatorname{Trace}\left(H_{i} \cdot\left(\sum_{j=0}^{2 p-2} Y_{+i}^{j}\left(Y_{+i}-Y_{-i}\right) Y_{-i}^{2 p-2-j}\right)\right) \\
& =\sum_{i=1}^{n} \sum_{j=0}^{2 p-2} \mathbf{E} \operatorname{Trace}\left(H_{i}^{2} \cdot\left(Y_{+i}^{j} Y_{-i}^{2 p-2-j}\right)\right)
\end{aligned}
$$

since $Y_{+i}-Y_{-i}=2 H_{i}$.

## Proof of Lemma

## Proof of Lemma

For real numbers $a$ and $b$ we have by AM-GM that:

$$
a^{j} b^{2 p-2-j}+a^{2 p-2-j} b^{j} \leq a^{2 p-2}+b^{2 p-2} .
$$

## Proof of Lemma

For real numbers $a$ and $b$ we have by AM-GM that:

$$
a^{j} b^{2 p-2-j}+a^{2 p-2-j} b^{j} \leq a^{2 p-2}+b^{2 p-2}
$$

The equivalent version for the trace of matrices is the following fact

## Fact (The trace fomula)

$$
\operatorname{Trace}\left(Y_{+i}^{j} Y_{-i}^{2 p-2-j}+Y_{+i}^{2 p-2-j} Y_{-i}^{j}\right) \leq \operatorname{Trace}\left(Y^{2 p-2}+Y^{2 p-2}\right) .
$$

## Proof of the Trace formula

## Proof of the Trace formula

To see this, let $Y_{+i}=\sum_{k} \lambda_{k} u_{k} u_{k}^{*}$ and $Y_{-i}=\sum_{k} \mu_{k} v_{k} v_{k}^{*}$ be the SVD decompositions of $Y_{+i}$ and $Y_{-i}$ respectively. Then:

$$
\begin{aligned}
\operatorname{Trace}\left(Y_{+i}^{j} Y_{-i}^{2 p-2-j}\right) & =\operatorname{Trace}\left(\left(\sum_{k=1}^{d} \lambda_{k}^{j} u_{k} u_{k}^{*}\right)\left(\sum_{k=1}^{d} \mu_{k}^{2 p-2-j} v_{k} v_{k}^{*}\right)\right) \\
& =\sum_{k_{1}, k_{2}=1}^{d} \lambda_{k_{1}}^{j} \mu_{k_{2}}^{2 p-2-j} \operatorname{Trace}\left(u_{k_{1}} u_{k_{1}}^{*} v_{k_{2}} v_{k_{2}}^{*}\right) \\
& \leq \sum_{k_{1}, k_{2}=1}^{d}\left|\lambda_{k_{1}}\right|^{j}\left|\mu_{k_{2}}\right|^{2 p-2-j}\left|u_{k_{1}}^{*} v_{k_{2}}\right|^{2}
\end{aligned}
$$

## Proof of the Trace formula

## Proof of the Trace formula

It follows that:

$$
\begin{aligned}
\operatorname{Trace}\left(Y_{+i}^{j} Y_{-i}^{2 p-2-j}\right. & \left.+Y_{+i}^{2 p-2-j} Y_{-i}^{j}\right) \\
& \leq \sum_{k_{1}, k_{2}=1}^{d}\left(\lambda_{k_{1}}^{2 p-2}+\mu_{k_{2}}^{2 p-2}\right)\left|u_{k_{1}}^{*} v_{k_{2}}\right|^{2} \\
& =\sum_{k_{1}, k_{2}=1}^{d}\left(\lambda_{k_{1}}^{2 p-2}+\mu_{k_{2}}^{2 p-2}\right) \operatorname{Trace}\left(u_{k_{1}} u_{k_{1}}^{*} v_{k_{2}} v_{k_{2}}^{*}\right) \\
& =\operatorname{Trace}\left(\left(\sum_{k=1}^{d} \lambda_{k}^{2 p-2} u_{k} u_{k}^{*}\right)\left(\sum_{k=1}^{d} v_{k} v_{k}^{*}\right)\right)+ \\
& +\operatorname{Trace}\left(\left(\sum_{k=1}^{d} \mu_{k}^{2 p-2} v_{k} v_{k}^{*}\right)\left(\sum_{k=1}^{d} u_{k} u_{k}^{*}\right)\right) \\
& =\operatorname{Trace}\left(Y_{+i}^{2 p-2}+Y_{-i}^{2 p-2}\right)
\end{aligned}
$$

## Back to the proof of Lemma

## Back to the proof of Lemma

We established that

$$
\operatorname{Trace}\left(Y_{+i}^{j} Y_{-i}^{2 p-2-j}+Y_{+i}^{2 p-2-j} Y_{-i}^{j}\right) \leq \operatorname{Trace}\left(Y_{+i}^{2 p-2}+Y_{-i}^{2 p-2}\right) .
$$

## Back to the proof of Lemma

We established that

$$
\operatorname{Trace}\left(Y_{+i}^{j} Y_{-i}^{2 p-2-j}+Y_{+i}^{2 p-2-j} Y_{-i}^{j}\right) \leq \operatorname{Trace}\left(Y_{+i}^{2 p-2}+Y_{-i}^{2 p-2}\right) .
$$

The same proof is valid for

$$
\operatorname{Trace}\left(H_{i}^{2}\left(Y_{+i}^{j} Y_{-i}^{2 p-2-j}+Y_{+i}^{2 p-2-j} Y_{-i}^{j}\right)\right) \leq \operatorname{Trace}\left(H_{i}^{2}\left(Y_{+i}^{2 p-2}+Y_{-i}^{2 p-2}\right)\right) .
$$

as the trace is linear.

## Proof of Lemma

## We have

## Proof of Lemma

We have

$$
\begin{aligned}
\mathbf{E}\left(\operatorname{Trace}\left(Y^{2 p}\right)\right) & =\sum_{i=1}^{n} \sum_{j=0}^{2 p-2} \mathbf{E} \operatorname{Trace}\left(H_{i}^{2} \cdot\left(Y_{+i}^{j} Y_{-i}^{2 p-2-j}\right)\right) \\
& \leq \sum_{i=1}^{n} \frac{2 p-1}{2} \mathbf{E} \operatorname{Trace}\left(H_{i}^{2} \cdot\left(Y_{+i}^{2 p-2}+Y_{-i}^{2 p-2-j}\right)\right) \\
& =(2 p-1) \sum_{i=1}^{n} \mathbf{E} \operatorname{Trace}\left(H_{i}^{2}\left(\mathbf{E}_{\xi_{i}} Y^{2 p-2}\right)\right) \\
& =(2 p-1) \mathbf{E}\left(\operatorname{Trace}\left(\sum_{i=1}^{n} H_{i}^{2}\right) Y^{2 p-2}\right) \\
& \leq(2 p-1)\left\|\sum_{i=1}^{n} H_{i}^{2}\right\| \mathbf{E}\left(\operatorname{Trace}\left(Y^{2 p-2}\right)\right)
\end{aligned}
$$

## Proof of Lemma

## Proof of Lemma

Recursively it follows that:

$$
\begin{aligned}
\mathbf{E}\left(\operatorname{Trace} Y^{2 p}\right) & \leq(2 p-1)!!\cdot\left\|\sum_{i=1}^{n} H_{i}^{2}\right\|^{p} \cdot \operatorname{Trace} Y^{0} \\
& =d \cdot(2 p-1)!!\cdot\left\|\sum_{i=1}^{n} H_{i}^{2}\right\|^{p}
\end{aligned}
$$

where $(2 p-1)!!=1 \cdot 3 \cdot \ldots \cdot(2 p-1)$.

## Proof of Lemma

Recursively it follows that:

$$
\begin{aligned}
\mathbf{E}\left(\text { Trace } Y^{2 p}\right) & \leq(2 p-1)!!\cdot\left\|\sum_{i=1}^{n} H_{i}^{2}\right\|^{p} \cdot \text { Trace } Y^{0} \\
& =d \cdot(2 p-1)!!\cdot\left\|\sum_{i=1}^{n} H_{i}^{2}\right\|^{p}
\end{aligned}
$$

where $(2 p-1)!!=1 \cdot 3 \cdot \ldots \cdot(2 p-1)$.

$$
\mathbf{E}\left(\|Y\|^{2}\right)^{1 / 2} \leq\left(\mathbf{E}\left(\operatorname{Trace}\left(Y^{2 p}\right)\right)^{1 / 2 p} \leq(d \cdot(2 p-1)!!)^{1 / 2 p} \cdot\left\|\sum_{i=1}^{n} H_{i}^{2}\right\|^{1 / 2} .\right.
$$

## Proof of Lemma 1

## Proof of Lemma 1

Note that:

$$
(2 p-1)!!\leq\left(\frac{2 p+1}{e}\right)^{p}
$$

pick $p=\lceil\log d\rceil$ to get

$$
\mathbf{E}\left\|Y^{2}\right\|^{1 / 2} \leq \sqrt{1+2 \log d} \cdot\left\|\sum_{i=1}^{n} H_{i}^{2}\right\|^{1 / 2},
$$

which completes the proof of Lemma 1.

## Proposition

## Proposition (Symmetrization)

Let $W_{1}, W_{2}, \ldots, W_{n}$ be $d_{1} \times d_{2}$ independent random matrices. Let $\xi_{1}, \xi_{2}, \ldots, \xi_{n}$ be independent Rademacher variables that are also independent of the $W$ 's. The following is true:
$\frac{1}{2}\left(\mathbf{E}\left\|\sum_{i=1}^{n} \xi_{i} W_{i}\right\|^{r}\right)^{1 / r} \leq\left(\mathbf{E}\left\|\sum_{i=1}^{n}\left(W_{i}-\mathbf{E}\left(W_{i}\right)\right)\right\|^{r}\right)^{1 / r} \leq 2\left(\mathbf{E}\left\|\sum_{i=1}^{n} \xi_{i} W_{i}\right\|^{r}\right)^{1 / r}$.

## Proof of Proposition

Assume $r=1$ (the proof for the general case is similar and it uses the convexity of $\left.\|\cdot\|^{r}\right)$.

## Proof of Proposition

Assume $r=1$ (the proof for the general case is similar and it uses the convexity of $\left.\|\cdot\|^{r}\right)$.

Let $W_{1}^{\prime}, W_{2}^{\prime}, \ldots W_{n}^{\prime}$ be an identical copies of $W_{i}$ 's and let $\mathbf{E}^{\prime}$ be the expectation with respect to those. Since $\|\cdot\|$ is convex, by Jensen we have

$$
\begin{aligned}
\mathbf{E}\left\|\sum_{i=1}^{n}\left(W_{i}-\mathbf{E} W_{i}\right)\right\| & =\mathbf{E}\left\|\sum_{i=1}^{n}\left[\left(W_{i}-\mathbf{E} W_{i}\right)-\mathbf{E}^{\prime}\left(W_{i}^{\prime}-\mathbf{E}^{\prime} W_{i}^{\prime}\right)\right]\right\| \\
& \leq \mathbf{E}\left[\mathbf{E}^{\prime}\left\|\sum_{i=1}^{n}\left(W_{i}-\mathbf{E} W_{i}\right)-\left(W_{i}^{\prime}-\mathbf{E}\left(W_{i}\right)\right)\right\| \|\right] \\
& =\mathbf{E}\left\|\sum_{i=1}^{n}\left(W_{i}-W_{i}^{\prime}\right)\right\| .
\end{aligned}
$$

## Proof of Proposition

## Proof of Proposition

Recall that $\xi_{1}, . ., \xi_{n}$ are independent Rademacher random variables.

$$
\begin{aligned}
\mathbf{E}\left\|\sum_{i=1}^{n}\left(W_{i}-\mathbf{E} W_{i}\right)\right\| & =\mathbf{E}\left\|\sum_{i=1}^{n}\left(W_{i}-W_{i}^{\prime}\right)\right\| \\
& =\mathbf{E}\left\|\sum_{i=1}^{n} \xi_{i}\left(W_{i}-W_{i}^{\prime}\right)\right\| \\
& \leq \mathbf{E}\left\|\sum_{i=1}^{n} \xi_{i} W_{i}\right\|+\mathbf{E}\left\|\sum_{i=1}^{n}-\xi_{i} W_{i}^{\prime}\right\| \\
& =2 \mathbf{E}\left\|\sum_{i=1}^{n} \xi_{i} W_{i}\right\|
\end{aligned}
$$

## Proof of Proposition

Recall that $\xi_{1}, . ., \xi_{n}$ are independent Rademacher random variables.

$$
\begin{aligned}
\mathbf{E}\left\|\sum_{i=1}^{n}\left(W_{i}-\mathbf{E} W_{i}\right)\right\| & =\mathbf{E}\left\|\sum_{i=1}^{n}\left(W_{i}-W_{i}^{\prime}\right)\right\| \\
& =\mathbf{E}\left\|\sum_{i=1}^{n} \xi_{i}\left(W_{i}-W_{i}^{\prime}\right)\right\| \\
& \leq \mathbf{E}\left\|\sum_{i=1}^{n} \xi_{i} W_{i}\right\|+\mathbf{E}\left\|\sum_{i=1}^{n}-\xi_{i} W_{i}^{\prime}\right\| \\
& =2 \mathbf{E}\left\|\sum_{i=1}^{n} \xi_{i} W_{i}\right\|
\end{aligned}
$$

The lower bound uses similar techniques.

## Simple fact about positive-definite matrices

## Simple fact about positive-definite matrices

## Fact (Fact 1)

Let $A_{1}, A_{2}, \ldots, A_{n}$ be $d \times d$ positive-semidefinite matrices. Then:

$$
\left\|\sum_{i=1}^{n} A_{i}^{2}\right\| \leq \max _{i}\left\|A_{i}\right\| \cdot\left\|\sum_{i=1}^{n} A_{i}\right\| .
$$

## Simple fact about positive-definite matrices

## Fact (Fact 1)

Let $A_{1}, A_{2}, \ldots, A_{n}$ be $d \times d$ positive-semidefinite matrices. Then:

$$
\left\|\sum_{i=1}^{n} A_{i}^{2}\right\| \leq \max _{i}\left\|A_{i}\right\| \cdot\left\|\sum_{i=1}^{n} A_{i}\right\| .
$$

## Proof.

Let $m \geq \lambda_{\max }(A)$, by writing the eigenvalue decomposition of $A$ we have $A^{2} \preceq m A$. Pick $m=\max _{i} \lambda_{\max }\left(A_{i}\right)$, then

$$
\sum_{i=1}^{n} A_{i}^{2} \preceq m \sum_{i=1}^{n} A_{i}
$$

The conclusion follows by talking the spectral norm of both sides.

## Proof structure

Now we have all the ingredients to finish our proof. We will first proof the equivalent for the positive-semidefinite case and then for the centered Hermitian case which implies Theorem 1. Note that in the positive-semidefinite case we do not require the matrices to be centered, so, the bounds are slightly different then the ones in Theorem 1.1.

## Proof structure

Now we have all the ingredients to finish our proof. We will first proof the equivalent for the positive-semidefinite case and then for the centered Hermitian case which implies Theorem 1. Note that in the positive-semidefinite case we do not require the matrices to be centered, so, the bounds are slightly different then the ones in Theorem 1.1.

## Theorem (Theorem 1.1 for positive-semidefinite matrices)

Assume that $S_{i}$ 's are $d \times d$ independent positive-semidefinite random matrices.

$$
\begin{aligned}
\frac{1}{4}\left(\|\mathbf{E} X\|^{1 / 2}+\right. & \left.\left(\mathbf{E} \max _{i}\left\|S_{i}\right\|\right)^{1 / 2}\right)^{2} \leq \\
& \leq \mathbf{E}\|X\| \leq\left(\|\mathbf{E} X\|^{1 / 2}+\sqrt{C_{d}} \cdot\left(\mathbf{E} \max _{i}\left\|S_{i}\right\|\right)^{1 / 2}\right)^{2}
\end{aligned}
$$

## Proof of the upper bound for the positive-semidefinite case

## Proof of the upper bound for the positive-semidefinite case

We want to proof that when $S_{i}$ 's are positive-semidefinite we have

$$
\mathbf{E}\|X\| \leq\left(\|\mathbf{E} X\|^{1 / 2}+\sqrt{C_{d}} \cdot\left(\mathbf{E} \max _{i}\left\|S_{i}\right\|\right)^{1 / 2}\right)^{2}
$$

## Proof of the upper bound for the positive-semidefinite case

We want to proof that when $S_{i}$ 's are positive-semidefinite we have

$$
\mathbf{E}\|X\| \leq\left(\|\mathbf{E} X\|^{1 / 2}+\sqrt{C_{d}} \cdot\left(\mathbf{E} \max _{i}\left\|S_{i}\right\|\right)^{1 / 2}\right)^{2}
$$

By the triangle inequality and the Proposition 1, we have:

$$
\begin{aligned}
\mathbf{E}\|X\|=\mathbf{E}\left\|\sum_{i=1}^{n} S_{i}\right\| & \leq\left\|\sum_{i=1}^{n} \mathbf{E} S_{i}\right\|+\mathbf{E}\left\|\sum_{i=1}^{n}\left(S_{i}-\mathbf{E} S_{i}\right)\right\| \\
& \leq\left\|\sum_{i=1}^{n} \mathbf{E} S_{i}\right\|+2 \mathbf{E}\left\|\sum_{i=1}^{n} \xi_{i} S_{i}\right\|
\end{aligned}
$$

where $\xi_{i}$ 's are independent Rademacher random variables.

## Proof of upper bound for the positive-semidefinite case

Condition on the matrices $S_{i}$ 's and use Lemma 1:

$$
\mathbf{E}\left\|\sum_{i=1}^{n} \xi_{i} S_{i}\right\|=\mathbf{E}\left(\mathbf{E}_{\xi}\left\|\sum_{i=1}^{n} \xi_{i} S_{i}\right\|\right) \leq \sqrt{1+2 \log d} \cdot \mathbf{E}\left(\left\|\sum_{i=1}^{n} S_{i}^{2}\right\|^{1 / 2}\right)
$$

## Proof of upper bound for the positive-semidefinite case

Condition on the matrices $S_{i}$ 's and use Lemma 1:

$$
\mathbf{E}\left\|\sum_{i=1}^{n} \xi_{i} S_{i}\right\|=\mathbf{E}\left(\mathbf{E}_{\xi}\left\|\sum_{i=1}^{n} \xi_{i} S_{i}\right\|\right) \leq \sqrt{1+2 \log d} \cdot \mathbf{E}\left(\left\|\sum_{i=1}^{n} S_{i}^{2}\right\|^{1 / 2}\right)
$$

By Fact 1 and Cauchy inequality we have:

$$
\begin{aligned}
\mathbf{E}\left(\left\|\sum_{i=1}^{n} S_{i}^{2}\right\|^{1 / 2}\right) & \leq \mathbf{E}\left(\left(\max _{i}\left\|S_{i}\right\|\right)^{1 / 2} \cdot\left\|\sum_{i=1}^{n} S_{i}\right\|^{1 / 2}\right) \\
& \leq\left(\mathbf{E} \max _{i}\left\|S_{i}\right\|\right)^{1 / 2} \cdot\left(\mathbf{E}\left\|\sum_{i=1}^{n} S_{i}\right\|\right)^{1 / 2} \\
& =\left(\mathbf{E} \max _{i}\left\|S_{i}\right\|\right)^{1 / 2} \cdot(\mathbf{E}\|X\|)^{1 / 2}
\end{aligned}
$$

## Proof of the upper bound for the positive-semidefinite case

## Proof of the upper bound for the positive-semidefinite case

It follows that:

$$
\mathbf{E}\|X\| \leq\left\|\sum_{i=1}^{n} \mathbf{E} S_{i}\right\|+\sqrt{4+8 \log d} \cdot\left(\mathbf{E} \max _{i}\left\|S_{i}\right\|\right)^{1 / 2} \cdot(\mathbf{E}\|X\|)^{1 / 2} .
$$

## Proof of the upper bound for the positive-semidefinite case

It follows that:

$$
\mathbf{E}\|X\| \leq\left\|\sum_{i=1}^{n} \mathbf{E} S_{i}\right\|+\sqrt{4+8 \log d} \cdot\left(\mathbf{E} \max _{i}\left\|S_{i}\right\|\right)^{1 / 2} \cdot(\mathbf{E}\|X\|)^{1 / 2} .
$$

This implies:

$$
\mathbf{E}\|X\|^{1 / 2} \leq\left\|\sum_{i=1}^{n} \mathbf{E} S_{i}\right\|^{1 / 2}+\sqrt{4+8 \log d} \cdot\left(\mathbf{E} \max _{i}\left\|S_{i}\right\|\right)^{1 / 2},
$$

which completes the proof for the upper bound.

## Proof of the lower bound for the positive-semidefinite case

## Proof of the lower bound for the positive-semidefinite case

Note that since $S_{1}, \ldots, S_{n}$ are positive-definite we have:

$$
\mathbf{E}\|X\| \geq \mathbf{E} \max _{i}\left\|S_{i}\right\| .
$$

## Proof of the lower bound for the positive-semidefinite case

Note that since $S_{1}, \ldots, S_{n}$ are positive-definite we have:

$$
\mathbf{E}\|X\| \geq \mathbf{E} \max _{i}\left\|S_{i}\right\| .
$$

By Jensen, we also have:

$$
\mathbf{E}\|X\| \geq\|\mathbf{E} X\| .
$$

## Proof of the lower bound for the positive-semidefinite case

Note that since $S_{1}, \ldots, S_{n}$ are positive-definite we have:

$$
\mathbf{E}\|X\| \geq \mathbf{E} \max _{i}\left\|S_{i}\right\| .
$$

By Jensen, we also have:

$$
\mathbf{E}\|X\| \geq\|\mathbf{E} X\| .
$$

This implies that:

$$
\mathbf{E}\|X\| \geq \frac{1}{4}\left(\|\mathbf{E} X\|^{1 / 2}+\left(\mathbf{E} \max _{i}\left\|S_{i}\right\|\right)^{1 / 2}\right)^{2}
$$

which completes the proof for positive-semidefinite case.

## Centered-Hermitian case

## Theorem (Theorem 1.1 for centered Hermitian matrices)

Assume that $S_{i}$ 's are $d \times d$ independent centered Hermitian random matrices.

$$
\begin{aligned}
\frac{1}{2}\left\|\mathbf{E} X^{2}\right\|^{1 / 2}+ & \frac{1}{4}\left(\mathbf{E} \max _{i}\left\|S_{i}\right\|^{2}\right)^{1 / 2} \leq \\
& \left(\mathbf{E}\left(\|X\|^{2}\right)\right)^{1 / 2} \leq \sqrt{C_{d}} \cdot\left\|\mathbf{E}\left(X^{2}\right)\right\|^{1 / 2}+C_{d} \cdot\left(\mathbf{E} \max _{i}\left\|S_{i}\right\|^{2}\right)^{1 / 2}
\end{aligned}
$$

## Proof of the upper bound for the centered Hermitian case

## Proof of the upper bound for the centered Hermitian case

Assume that $S_{i}$ 's are centered Hermitian matrices. We want to prove that:

$$
\left(\mathbf{E}\left(\|X\|^{2}\right)\right)^{1 / 2} \leq \sqrt{C_{d}} \cdot\left\|\mathbf{E}\left(X^{2}\right)\right\|^{1 / 2}+C_{d} \cdot\left(\mathbf{E} \max _{i}\left\|S_{i}\right\|^{2}\right)^{1 / 2}
$$

## Proof of the upper bound for the centered Hermitian case

Assume that $S_{i}$ 's are centered Hermitian matrices. We want to prove that:

$$
\left(\mathbf{E}\left(\|X\|^{2}\right)\right)^{1 / 2} \leq \sqrt{C_{d}} \cdot\left\|\mathbf{E}\left(X^{2}\right)\right\|^{1 / 2}+C_{d} \cdot\left(\mathbf{E} \max _{i}\left\|S_{i}\right\|^{2}\right)^{1 / 2}
$$

Condition on the values of $S_{i}$ 's and apply Lemma 1 :

$$
\begin{aligned}
\left(\mathbf{E}\|X\|^{2}\right)^{1 / 2} & =\left(\mathbf{E}\left\|\sum_{i=1}^{n} S_{i}\right\|^{2}\right)^{1 / 2} \leq 2\left(\mathbf{E}\left[\mathbf{E}_{\xi}\left\|\sum_{i=1}^{n} \xi_{i} S_{i}\right\|^{2}\right]\right)^{1 / 2} \\
& \leq \sqrt{4+8 \log d} \cdot\left(\mathbf{E}\left\|\sum_{i=1}^{n} S_{i}^{2}\right\|\right)^{1 / 2}
\end{aligned}
$$

## Proof of the upper bound for the centered Hermitian case

Note that $S_{i}^{2}$ 's are positive definite matrices, we have just proved that

$$
\mathbf{E}\left\|\sum_{i=1}^{n} S_{i}^{2}\right\| \leq\left(\left\|\mathbf{E} \sum_{i=1}^{n} S_{i}^{2}\right\|^{1 / 2}+\sqrt{C_{d}} \cdot\left(\mathbf{E} \max _{i}\left\|S_{i}^{2}\right\|\right)^{1 / 2}\right)^{2} .
$$

## Proof of the upper bound for the centered Hermitian case

Note that $S_{i}^{2}$ 's are positive definite matrices, we have just proved that

$$
\mathbf{E}\left\|\sum_{i=1}^{n} S_{i}^{2}\right\| \leq\left(\left\|\mathbf{E} \sum_{i=1}^{n} S_{i}^{2}\right\|^{1 / 2}+\sqrt{C_{d}} \cdot\left(\mathbf{E} \max _{i}\left\|S_{i}^{2}\right\|\right)^{1 / 2}\right)^{2} .
$$

This implies

$$
\left(\mathbf{E}\|X\|^{2}\right)^{1 / 2} \leq \sqrt{C_{d}}\left(\left\|\mathrm{E} \sum_{i=1}^{n} S_{i}^{2}\right\|^{1 / 2}+\sqrt{C_{d}} \cdot\left(\mathrm{E} \max _{i}\left\|S_{i}^{2}\right\|\right)^{1 / 2}\right)
$$

which completes the proof for the upper bound.

## Proof of the lower bound for the centered Hermitian case

## Proof of the lower bound for the centered Hermitian case

Let $S_{i}$ 's be centered Hermitian matrices. We want to prove that:

$$
\left(\mathbf{E}\left(\|X\|^{2}\right)\right)^{1 / 2} \geq \frac{1}{2}\left\|\mathbf{E}\left(X^{2}\right)\right\|^{1 / 2}+\frac{1}{4}\left(\mathbf{E}\left(\max _{i}\left\|S_{i}\right\|^{2}\right)\right)^{1 / 2} .
$$

## Proof of the lower bound for the centered Hermitian case

Let $S_{i}$ 's be centered Hermitian matrices. We want to prove that:

$$
\left(\mathbf{E}\left(\|X\|^{2}\right)\right)^{1 / 2} \geq \frac{1}{2}\left\|\mathbf{E}\left(X^{2}\right)\right\|^{1 / 2}+\frac{1}{4}\left(\mathbf{E}\left(\max _{i}\left\|S_{i}\right\|^{2}\right)\right)^{1 / 2}
$$

Using Fact 1 we have:

$$
\mathbf{E}\left(\|X\|^{2}\right)=\mathbf{E}\left(\left\|\sum_{i=1}^{n} S_{i}\right\|^{2}\right) \geq \frac{1}{4} \mathbf{E}\left(\left\|\sum_{i=1}^{n} \xi_{i} S_{i}\right\|^{2}\right)
$$

where $\xi_{i}$ 's are Rademacher independent random variables.

## Proof of the lower bound for the centered Hermitian case

Condition on the values of $S_{i}$. Without loss of generality we assume that $\left\|S_{1}\right\|=\max _{i}\left\|S_{i}\right\|$. Condition further on the value of $\xi_{1}$ and so, by Jensen we have:

$$
\begin{aligned}
\mathbf{E}_{\xi}\left(\left\|\sum_{i=1}^{n} \xi_{i} S_{i}\right\|^{2}\right) & \geq \mathbf{E}_{\xi_{1}}\left(\left\|\mathbf{E}\left(\sum_{i=1}^{n} \xi_{i} S_{i} \mid \xi_{1}\right)\right\|^{2}\right) \\
& =\mathbf{E}_{\xi_{1}}\left(\left\|\xi_{1} S_{1}\right\|^{2}\right)=\left\|S_{1}\right\| \\
& =\max _{i}\left\|S_{i}\right\|
\end{aligned}
$$

## Proof of the lower bound for the centered Hermitian case

Combining the last two inequalities and take square root we have:

$$
\mathbf{E}\left(\|X\|^{2}\right)^{1 / 2} \geq \frac{1}{2}\left(E \max _{i}\left\|S_{i}\right\|^{2}\right)^{1 / 2}
$$

## Proof of the lower bound for the centered Hermitian case

Combining the last two inequalities and take square root we have:

$$
\mathbf{E}\left(\|X\|^{2}\right)^{1 / 2} \geq \frac{1}{2}\left(\mathbf{E} \max _{i}\left\|S_{i}\right\|^{2}\right)^{1 / 2} .
$$

Using that $S_{i}$ 's are centered and Jensen's inequality we have:

$$
\left(\mathbf{E}\left(\|X\|^{2}\right)\right)^{1 / 2}=\left(\mathbf{E}\left\|X^{2}\right\|\right)^{1 / 2} \geq\left\|\mathbf{E} X^{2}\right\|^{1 / 2}
$$

## Proof of the lower bound for the centered Hermitian case

Combining the last two inequalities and take square root we have:

$$
\mathbf{E}\left(\|X\|^{2}\right)^{1 / 2} \geq \frac{1}{2}\left(\mathbf{E} \max _{i}\left\|S_{i}\right\|^{2}\right)^{1 / 2} .
$$

Using that $S_{i}$ 's are centered and Jensen's inequality we have:

$$
\left(\mathbf{E}\left(\|X\|^{2}\right)\right)^{1 / 2}=\left(\mathbf{E}\left\|X^{2}\right\|\right)^{1 / 2} \geq\left\|\mathbf{E} X^{2}\right\|^{1 / 2}
$$

Averaging the last two inequalities leads to:

$$
\left(\mathbf{E}\left(\|X\|^{2}\right)\right)^{1 / 2} \geq \frac{1}{2}\left\|\mathbf{E}\left(X^{2}\right)\right\|^{1 / 2}+\frac{1}{4}\left(\mathbf{E}\left(\max _{i}\left\|S_{i}\right\|^{2}\right)\right)^{1 / 2}
$$

which completes the proof of the Hermitian case and hence Theorem 1.1.

## Proof of Theorem 1.2

In order to proof Theorem 1.2 we need to define the exponential and the logarithm function of a matrix and discuss some properties.

## Definition

- Let $A$ be a fixed Hermitian matrix, define:

$$
e^{A}:=I+\sum_{q=1}^{\infty} \frac{A^{q}}{q!} .
$$

A more rigurose definition can be done using the SVD decomposition.

## Proof of Theorem 1.2

In order to proof Theorem 1.2 we need to define the exponential and the logarithm function of a matrix and discuss some properties.

## Definition

- Let $A$ be a fixed Hermitian matrix, define:

$$
e^{A}:=I+\sum_{q=1}^{\infty} \frac{A^{q}}{q!}
$$

A more rigurose definition can be done using the SVD decomposition.

- Let $A$ be a fixed Hermitian matrix, define:

$$
\log \left(e^{A}\right)=A
$$

## Proof of Theorem 1.2

We recall some properties from the Linear Algebra that we will use in the proof.
Properties

- Let $A$ and $B$ be Hermitian matrices, then:

$$
A \preceq B \text { implies } \lambda_{i}(A) \leq \lambda_{i}(B) \text { for each } i .
$$

## Proof of Theorem 1.2

We recall some properties from the Linear Algebra that we will use in the proof.

## Properties

- Let $A$ and $B$ be Hermitian matrices, then:

$$
A \preceq B \text { implies } \lambda_{i}(A) \leq \lambda_{i}(B) \text { for each } i .
$$

- Let $A$ and $B$ be Hermitian matrices, then:

$$
A \preceq B \text { implies Trace } e^{A} \leq \operatorname{Trace} e^{B} .
$$

## Proof of Theorem 1.2

We recall some properties from the Linear Algebra that we will use in the proof.

## Properties

- Let $A$ and $B$ be Hermitian matrices, then:

$$
A \preceq B \text { implies } \lambda_{i}(A) \leq \lambda_{i}(B) \text { for each } i .
$$

- Let $A$ and $B$ be Hermitian matrices, then:

$$
A \preceq B \text { implies Trace } e^{A} \leq \operatorname{Trace} e^{B} .
$$

- Let $A$ and $B$ be positive-semidefinite matrices, then:

$$
A \preceq B \text { implies } \log (A) \leq \log (B) .
$$

## Two important facts

## Proposition (Conjugation Rule)

Let $A$ and $B$ be two Hermitian matrices of the same dimension, and let $H$ be a general matrix with compatible dimensions. Then

$$
A \preceq B \text { implies } H A H^{*} \preceq H B H^{*} .
$$

## Two important facts

## Proposition (Conjugation Rule)

Let $A$ and $B$ be two Hermitian matrices of the same dimension, and let $H$ be a general matrix with compatible dimensions. Then

$$
A \preceq B \text { implies } H A H^{*} \preceq H B H^{*} .
$$

## Proposition (Transfer Rule)

Let $f$ and $g$ be real-valued functions defined on the interval I of the real line, and let $A$ be an Hermitian matrix whose eigenvalues are contained in I. Then

$$
f(a) \leq g(a) \text { for each } a \in I \text { implies } f(A) \preceq g(A) .
$$

## Lieb's Theorem

## Theorem (Lieb's Theorem)

Let $H$ be a fixed Hermitian matrix. The function:

$$
A \longrightarrow \text { Trace } e^{H+\log A},
$$

is a concave map on the convex cone of positive-definite matrices. As a consequence, we have:

$$
\mathbf{E} \text { Trace } e^{H+X} \leq \operatorname{Trace} e^{H+\log \left(E e^{X}\right)},
$$

where $X$ is a random Hermitian matrix.

## Main lemma

## Lemma (Lemma 2)

Let $H$ be a random centered Hermitian matrix such that $\lambda_{\max }(H) \leq R$. Then, for $0<\theta<3 / R$,

$$
\mathbf{E}\left(e^{\theta H}\right) \preceq \exp \left(\frac{\theta^{2} / 2}{1-\theta R / 3} \cdot \mathbf{E}\left(H^{2}\right)\right)
$$

and

$$
\log \left(\mathbf{E}\left(e^{\theta H}\right)\right) \preceq \frac{\theta^{2} / 2}{1-\theta R / 3} \cdot \mathbf{E}\left(H^{2}\right) .
$$

## Proof of Lemma 2

Note that if we prove the first relation, the second one follows by talking logarithm and using the fact that the log is a monotone function.

## Proof of Lemma 2

Note that if we prove the first relation, the second one follows by talking logarithm and using the fact that the log is a monotone function.
Fix parameter $\theta>0$. Write

$$
e^{\theta H}=I+\theta H+\left(e^{\theta H}-\theta H-I\right)=I+\theta H+H \cdot f(H) \cdot H,
$$

where $f$ is defined by:

$$
f(x)= \begin{cases}\frac{e^{\theta x}-\theta x-1}{x^{2}} & \text { if } x \neq 0 \\ f(x)=0 & \text { if } x=0 .\end{cases}
$$

## Proof of Lemma 2

Note that $f$ is increasing as its derivatives is positive, hence

$$
f(x) \leq f(R) \text { for } x \leq R
$$

## Proof of Lemma 2

Note that $f$ is increasing as its derivatives is positive, hence

$$
f(x) \leq f(R) \text { for } x \leq R
$$

Since $\|H\| \leq R$, we have, by Transfer Rule

$$
f(H) \preceq f(R) I .
$$

## Proof of Lemma 2

Note that $f$ is increasing as its derivatives is positive, hence

$$
f(x) \leq f(R) \text { for } x \leq R
$$

Since $\|H\| \leq R$, we have, by Transfer Rule

$$
f(H) \preceq f(R) I .
$$

By Conjugation Rule we have:

$$
e^{\theta H} \preceq I+\theta H+H(f(R) \cdot I) H=I+\theta H+f(R) \cdot H^{2}
$$

## Proof of Lemma 2

By Taylor, we can estimate $f(R)$ :

$$
f(R)=\frac{e^{\theta R}-\theta R-1}{R^{2}}=\frac{1}{R^{2}} \sum_{q=2}^{\infty} \frac{(\theta R)^{q}}{q!} \leq \frac{\theta^{2}}{2} \sum_{q=2}^{\infty} \frac{(\theta R)^{q-2}}{3^{q-2}}=\frac{\theta^{2} / 2}{1-\theta R / 3}
$$

where we used that $q!\geq 2 \cdot 3^{q-2}$, for $q \geq 2$.

## Proof of Lemma 2

By Taylor, we can estimate $f(R)$ :

$$
f(R)=\frac{e^{\theta R}-\theta R-1}{R^{2}}=\frac{1}{R^{2}} \sum_{q=2}^{\infty} \frac{(\theta R)^{q}}{q!} \leq \frac{\theta^{2}}{2} \sum_{q=2}^{\infty} \frac{(\theta R)^{q-2}}{3^{q-2}}=\frac{\theta^{2} / 2}{1-\theta R / 3},
$$

where we used that $q!\geq 2 \cdot 3^{q-2}$, for $q \geq 2$. As $H^{2}$ is positive-semidefinite, this implies,

$$
e^{\theta H} \preceq I+\theta H+\frac{\theta^{2} / 2}{1-\theta R / 3} H^{2}:=I+\theta H+g(\theta) H^{2} .
$$

## Proof of Lemma 2

By Taylor, we can estimate $f(R)$ :

$$
f(R)=\frac{e^{\theta R}-\theta R-1}{R^{2}}=\frac{1}{R^{2}} \sum_{q=2}^{\infty} \frac{(\theta R)^{q}}{q!} \leq \frac{\theta^{2}}{2} \sum_{q=2}^{\infty} \frac{(\theta R)^{q-2}}{3^{q-2}}=\frac{\theta^{2} / 2}{1-\theta R / 3},
$$

where we used that $q!\geq 2 \cdot 3^{q-2}$, for $q \geq 2$. As $H^{2}$ is positive-semidefinite, this implies,

$$
e^{\theta H} \preceq I+\theta H+\frac{\theta^{2} / 2}{1-\theta R / 3} H^{2}:=I+\theta H+g(\theta) H^{2} .
$$

The expectation preserves the semidefinite order:

$$
\mathbf{E}\left(e^{\theta H}\right) \preceq I+g(\theta) \cdot \mathbf{E}\left(H^{2}\right) \preceq \exp \left(g(\theta) \cdot \mathbf{E}\left(H^{2}\right)\right),
$$

where in the last step we used that $1+a \leq e^{a}$.

## Proof of Theorem 1.2

Let $0<\theta<3 / R$ be a real number to be chosen later. Recall that we are working under the assumptions that $X$ is a Hermitian matrix. By Markov's inequality we have:

$$
\begin{aligned}
\mathbf{P}\left(\lambda_{\max }(X) \geq t\right) & =\mathbf{P}\left(e^{\theta \lambda_{\max }(X)} \geq e^{\theta t}\right) \\
& \leq e^{-\theta t} \mathbf{E}\left(e^{\theta \lambda_{\max }(X)}\right) \\
& =e^{-\theta t} \mathbf{E}\left(e^{\lambda_{\max }(\theta X)}\right) \\
& =e^{-\theta t} \mathbf{E}\left(\lambda_{\max }\left(e^{\theta X}\right)\right) \\
& =e^{-\theta t} \mathbf{E}\left(\operatorname{Trace} e^{\theta X}\right)
\end{aligned}
$$

## Proof of Theorem 1.2

If we apply the Lieb's theorem recursively, for each $S_{i}$ we have:

$$
\mathbf{E}\left(\operatorname{Trace} e^{\theta\left(\sum_{i=1}^{n} S_{i}\right)}\right) \leq \operatorname{Trace}\left(e^{\sum_{i=1}^{n} \log E e^{\theta S_{i}}}\right)
$$

By Lemma 2 we have:

$$
\begin{aligned}
\mathbf{P}\left(\lambda_{\max }(X) \geq t\right) & \leq e^{-\theta t} \operatorname{Trace}\left(e^{\sum_{i=1}^{n} \log \mathbf{E} e^{\theta S_{i}}}\right) \\
& \leq e^{-\theta t} \operatorname{Trace}\left(e^{\sum_{i=1}^{n} g(\theta) \mathbf{E}\left(S_{i}^{2}\right)}\right) \\
& \leq d e^{-\theta t} e^{g(\theta) \cdot \nu(X)},
\end{aligned}
$$

where in the last step we bounded the trace of a hermitian matrix by $d$ times its largest eigenvalue.

## Proof of Theorem 1.2

If we apply the Lieb's theorem recursively, for each $S_{i}$ we have:

$$
\mathbf{E}\left(\operatorname{Trace} e^{\theta\left(\sum_{i=1}^{n} S_{i}\right)}\right) \leq \operatorname{Trace}\left(e^{\sum_{i=1}^{n} \log \mathrm{E} e^{\theta S_{i}}}\right)
$$

By Lemma 2 we have:

$$
\begin{aligned}
\mathbf{P}\left(\lambda_{\max }(X) \geq t\right) & \leq e^{-\theta t} \operatorname{Trace}\left(e^{\sum_{i=1}^{n} \log \mathbf{E} e^{\theta S_{i}}}\right) \\
& \leq e^{-\theta t} \operatorname{Trace}\left(e^{\sum_{i=1}^{n} g(\theta) \mathbf{E}\left(S_{i}^{2}\right)}\right) \\
& \leq d e^{-\theta t} e^{g(\theta) \cdot \nu(X)},
\end{aligned}
$$

where in the last step we bounded the trace of a hermitian matrix by $d$ times its largest eigenvalue.
Pick $\theta=t /(\nu(X)+R t / 3)$ to conclude the proof of Theorem 1.2.

## Application: Randomized Sparsification of a Matrix

Sparse matrices has several potential advantages. Firstly, it is considerably less expansive to store than a dense one. Secondly, many algorithms run more efficient and faster on sparse matrices.

Our task is that given a dense $d_{1} \times d_{2}$ matrix $A$, find a sparse matrix $R$, which approximate $A$ with respect to the spectral norm, that is we want $\|A-R\|_{2}$ to be as small as possible.

## Application: Randomized Sparsification of a Matrix

We start by expressing the matrix $A$ as a sum of its entries,

$$
A=\sum_{i=1}^{d_{1}} \sum_{j=1}^{d_{2}} a_{i j} E_{i j},
$$

where $E_{i j}$ is the matrix with all zero entries, but its $(i, j)^{t h}$ which is 1 .

## Application: Randomized Sparsification of a Matrix

Define the following sampling probabilities:

$$
p_{i j}=\frac{1}{2}\left(\frac{\left|a_{i j}\right|^{2}}{\|A\|_{F}^{2}}+\frac{\left|a_{i j}\right|}{\|A\|_{1}}\right),
$$

where $\|A\|_{1}:=\sum_{i, j}\left|a_{i j}\right|$. Note that:

$$
\sum_{i=1}^{d_{1}} \sum_{j=1}^{d_{2}} p_{i j}=1
$$

Define $R$ to be the random matrix that has exactly one entry:

$$
R=\frac{1}{p_{i j}} a_{i j} E_{i j} \text { with probability } p_{i j} .
$$

## Application: Randomized Sparsification of a Matrix

Note that

$$
\mathbf{E}(R)=\sum_{i, j}\left(\frac{1}{p_{i j}} a_{i j} E_{i j}\right) p_{l j}=A .
$$

The problem with $R$ to be an approximation for $A$ is that it has huge variance. This can be overcome if we take the average of $n$ of them, where $n$ is big. Fix $n$ big and define:

$$
R_{n}=\frac{1}{n} \sum_{i=1}^{n} R(i)
$$

where $R(i)$ 's are independent copies of $R$.

## Application: Randomized Sparsification of a Matrix

## Proposition

$$
\mathbf{E}\left\|R_{n}-A\right\| \leq \sqrt{\frac{4\|A\|_{F}^{2} \cdot \max \left(d_{1}, d_{2}\right) \log \left(d_{1}+d_{2}\right)}{n}}+\frac{4\|A\|_{1} \log \left(d_{1}+d_{2}\right)}{3 n}
$$

## Application: Randomized Sparsification of a Matrix

Let $D:=\max \left(d_{1}, d_{2}\right) \log \left(d_{1}+d_{2}\right)$. Note that $\|A\|_{1} \leq \max \left(d_{1}, d_{2}\right)\|A\|_{F}$ so the bound can be interpreted also as:

$$
\begin{aligned}
\frac{\mathbf{E}\left\|R_{n}-A\right\|}{\|A\|} & \leq \frac{\|A\|_{F}}{\|A\|} \cdot\left(\sqrt{\frac{4 D}{n}}+\frac{4 D}{3 n}\right) \\
& =\operatorname{srank}(A) \cdot\left(\sqrt{\frac{4 D}{n}}+\frac{4 D}{3 n}\right)
\end{aligned}
$$

where $\operatorname{srank}(A):=\|A\|_{F} /\|A\|$ is the stable rank.

## Application: Randomized Sparsification of a Matrix

The proof of the proposition will follow by Theorem 1. Note that by definition

$$
p_{i j} \geq \frac{1}{2} \frac{\left|a_{i j}\right|}{\|A\|_{1}} \text { and } p_{i j} \geq \frac{1}{2} \cdot \frac{\left|a_{i j}\right|^{2}}{\|A\|_{F}^{2}} .
$$

This implies that:

$$
\|R\| \leq \max _{i, j}\left\|p_{i j}^{-1} a_{i j} E_{i j}\right\|=\max _{i, j} \frac{\left|a_{i} j\right|}{p_{i j}} \leq 2\|A\|_{1}
$$

and

$$
\begin{aligned}
& \mathbf{E}\left(R R^{*}\right)=\sum_{i, j} \frac{\left|a_{i j}\right|^{2}}{p_{i j}} E_{i i} \preceq 2 d_{2}\|A\|_{F}^{2} \cdot I_{d_{1}}, \\
& \mathbf{E}\left(R R^{*}\right)=\sum_{i, j} \frac{\left|a_{i j}\right|^{2}}{p_{i j}} E_{i i} \preceq 2 d_{1}\|A\|_{F}^{2} \cdot I_{d_{2}},
\end{aligned}
$$

which implies

$$
\nu\left(R_{n}\right) \leq 2 \max \left(d_{1}, d_{2}\right) .
$$

## Questions?

