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Let me start with the intertwinement between boundedness and periodicity for solutions to differential
equations. Such a relation was discovered for the first time by Massera [20]. Since then the method posed by
Massera has became a folklore methodology for periodic solutions to Ordinary Differential Equations (which
roughly said that if an ODE has a bounded solution then it has a periodic one). We would like to note that
such a methodology has been extended to various types of equations in Banach spaces, and we refer the
reader to Zubelevich [33] for a survey on the state of the art and a nice generalization of such Massera-type
Theorems.

When invoking the Massera’s methodology in researching for the periodic solutions to fluid flow problems
in unbounded domains, one of the main difficulties, as announced by Maremonti [17], is lying in the following
important theorem related to bounded solutions of Navier-Stokes equations in unbounded (in all directions)
domains saying that

“Theorem A. Denote by f(t, x) the body force and u(t, x) a solution to the Navier-Stokes equations
ut − ∆u + (u · ∇)u + ∇p = f ; X and Y two Banach spaces with norms ‖ · ‖X and ‖ · ‖Y respectively. If
f(t, ·) ∈ X with ‖f(t, ·)‖X uniformly bounded in time, then u(t, ·) ∈ Y with ‖u(t, ·)‖Y uniformly bounded in
the time.”

If the domain Ω is bounded (in some direction), then using the Poincaré inequality and some compact
embeddings it is convenient to prove the validity of Theorem A. The situation becomes more complicated
when one considers the unbounded domain Ω in all directions since the Poincaré inequality is no longer true
and compact embeddings are not valid. Therefore, some new approaches have been introduced to overcome
this difficulty.

Maremonti [17, 18] and Maremonti-Padula [19] used some geometric properties of the domains such as
the symmetry of Ω and/or the smallness of the complement Rd \Ω to show the validity of Theorem A. Galdi
and Sohr [5] discovered the fact that the specific structures of the phase-spaces X and Y played important
roles when looking for bounded solutions (and also periodic ones) to Navier-Stokes equations in exterior
domains. Consequently, they introduced in [5] some relevant function spaces featuring the decay of the
solutions at spatial infinity to prove Theorem A on an exterior domain without restricted conditions on the
domain. The last approach that we would like to mention was given by Yamazaki [31], and exploited the
interpolation features of the weak-Ld spaces to prove the existence of bounded (in time) weak mild solutions
of Navier-Stokes equations on exterior domains for each bounded external force. This approach has then
been extended in [22] to obtain bounded strong mild solutions in weak-L3 spaces of Navier-Stokes equations
around rotating obstacles.

In this short lecture, I will take a survey of our recent results published in [8, 22, 23] on boundedness,
periodicity and stability of solutions to fluid flow problems in unbounded (in all directions) domains. We
start from a general framework to study the Theorem A on an unbounded domain Ω, namely, we consider
the general semi-linear equations on Ω of the form{

ut + Au = Pdiv(G(u) + F (t))
u(0) = u0,

(1)

where −A generates a C0-semigroup (e−tA)t≥0 on Ld
σ,w(Ω), P is Helmholtz projection; G is a nonlinear and

local Lipschitz operator acting from Ld
σ,w(Ω) into L

d/2
σ,w(Ω)d2

, and F (·) is a time-dependent second-order

tensor in L
d/2
σ,w(Ω)d2

. Under assumptions on Lp − Lq smoothing properties of (e−tA)t≥0 and local Lipschitz
1
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properties of G, and using the interpolation techniques combined with differential inequalities and fixed
point arguments we are able to prove the existence of bounded (in time t) solutions to (1) for each bounded
tensor F (·). Then, we can use either ergodic approach (see [22]) or topology arguments (see [8]) to prove
the existence of periodic solutions to fluid flow problems. Moreover, our methods can be extended to obtain
the stability of bounded as well as periodic solutions to such problem.

In our strategy we consider the mild solution to (1) i.e. a function u satisfying the following integral
equation

u(t) = e−tAu(0) +
∫ t

0

e−(t−τ)APdiv(G(u) + F (τ))dτ. (2)

We would like to note that in case −A generates a bounded analytic semigroup (e−tA)t≥0, by the standard
method one can see that the mild solution to (1) is also the classical solution in the sense of [1, Prop. 3.1.16
]. The converse is clearly true for all (not necessarily analytic) C0-semigroup (e−tA)t≥0.

To show the existence and uniqueness of the bounded and periodic mild solution to (1) we need the
following space of bounded continuous functions with values in a Banach space X (with norm ‖·‖X ) defined
as

Cb(R+, X) := {v : R+ → X | v is continuous and sup
t∈R+

‖v(t)‖X < ∞} (3)

endowed with the norm
‖v‖∞,X := sup

t∈R+

‖v(t)‖X .

Assumption 1. We suppose that the operator −A and its dual −A′ generate bounded C0-semigroups
(e−tA)t≥0 and (e−tA′)t≥0 (respectively) satisfying the following Lp − Lq smoothing estimates.
(1) For some r > d:

‖e−tAx‖r,w 6 Mt−
d
2 ( 1

d−
1
r )‖x‖d,w. (4)

(2) For all 1 < p < d
d−2 :

‖∇e−tA′x‖ d
d−2 ,1 6 Mt−

1
2−

d
2 ( 1

p−
d−2

d )‖x‖p,∞. (5)

(3) For the number r > d appearing in Item (1):

‖∇e−tA′x‖ d
d−2 ,1 6 Mt−

3
2+ d

2r ‖x‖ r
r−1 ,1. (6)

The following lemma is one of the keys in our strategy. It asserts the boundedness of the mild solutions to
the linearized problem of Equation (1). Its proof is relying on the interpolation functor and duality estimates.

Lemma 2 ([8]). For F ∈ Cb(R+, L
d/2
σ,w(Ω))d2

and u0 ∈ Ld
σ,w(Ω) we have that the function u defined by

u(t) = e−tAu0 +
∫ t

0

e−(t−τ)APdivF (τ)dτ (7)

belongs to Cb(R+, Ld
σ,w(Ω)) and satisfies

‖u‖∞,d,w 6 M‖u0‖d,w + M̃‖F‖∞, d
2 ,w (8)

for positive constants M and M̃ independent of u0 and F .

Using topological arguments we can invoke Massera’s methodology to obtain the existence and uniqueness
of periodic solutions of the linearized equation of (1) in the following theorem.

Theorem 3 ([8]). Let Assumption 1 hold. Then, for a T -periodic function F ∈ Cb(R+, L
d/2
σ,w(Ω))d2

, there
exists a unique u0 ∈ Ld

σ,w(Ω) such that the function u defined by (7) is a T -periodic, and moreover

‖u‖L∞(R+;Y ) 6 M̃(M + 1)‖F‖L∞(R+;X). (9)

Remark 4. i) In [8] we obtain a more general result of the existence and uniqueness of periodic
solutions to linear equations in general interpolation spaces that can be applied to various types
of linearized equations appearing fluid dynamics as well as to diffusion equations in rough domains
with rough coefficient and Ornstein-Uhlenbeck equations. For simplicity of presentation we present
here the version on the weak-Ld spaces over exterior domains as in the above theorem.
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ii) In [22] we used an ergodic approach to prove the existence and uniqueness of periodic solutions to
Stokes equations around a rotating obstacle.

Theorem 5 ([8, 23]). Let F ∈ Cb(R+, L
d/2
w (Ω)d2

). Suppose that G : Ld
σ,w(Ω) → L

d/2
w (Ω)d2

satisfies

(1) G(0) = 0, and

(2) ‖G(v1)−G(v2)‖d/2,w 6 (κ + ‖v1‖d,w + ‖v2‖d,w)‖v1 − v2‖d,w for all v1, v2 ∈ Ld
σ,w(Ω),

(10)

where κ ≥ 0 is a constant; −A satisfies Assumption 1, and u0 ∈ Ld
σ,w(Ω).

Then, the following assertions hold.
i) If κ, ‖u0‖d,ω , ‖F‖∞, d

2 ,w and ρ are small enough, the problem (1) has a unique mild solution û in the
ball Bρ := {v ∈ Cb(R+, Ld

σ,w(Ω)) : ‖v‖∞,d,w 6 ρ}.
ii) If in addition, F is T -periodic, then there exists a unique T -periodic mild solution to (1).

Similarly as mentioned in Remark 4, in [8] we have proved a more general version of the above theorem
for general semi-linear equations in general interpolation spaces that can be applied to show the existence
and uniqueness of periodic solutions to Navier-Stokes-Oseen flow, the Navier-Stokes flow past rotating ob-
stacles, and, in the geophysical setting, for Ornstein-Uhlenbeck and various diffusion equations with rough
coefficients.

Lastly, using interpolation functors together with differential inequalities and rescaling techniques we
obtained in [23] the following theorem on the stability of mild solutions to (1).

Theorem 6 ([23]). Under the conditions of Theorem 5 we consider Equation (1) on an exterior domain
Ω ⊂ Rd (d ≥ 3) with a C3-boundary. For the number r > d appearing in Assumption 1 we suppose that
(a) for all 1 < p < dr

dr−r−d :

‖∇e−tA′x‖ dr
dr−r−d ,1 6 Mt−

1
2−

d
2 ( 1

p−
dr−r−d

dr )‖x‖p,∞ for all x ∈ Ld
σ,w(Ω), (11)

(b) G satisfies

‖G(v1)−G(v2)‖ dr
d+r ,w 6(κ + ‖v1‖d,w + ‖v2‖d,w)‖v1 − v2‖r,w for v1, v2 ∈ Ld

σ,w(Ω) ∩ Lr
σ,w(Ω) (12)

with a small constant κ ≥ 0.
Then, the small mild solution û of (1) is stable in the sense that for any other mild solution u ∈

Cb(R+, Ld
σ,w(Ω)) of (1) such that ‖u(0)− û(0)‖d,w is small enough we have

‖u(t)− û(t)‖r,w 6
C

t
1
2−

d
2r

for all t > 0, (13)

with the number r > d as in (11).

This abstract result can be applied to establish the stability results on Navier-Stokes flows on exterior
domains (Yamazaki [31]) and/or around rotating obstacles ([22]), and to obtain the existence and polynomial
stability of bounded solutions to Navier-Stokes-Oseen equations on exterior domains in our recent work [23].
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