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Discrete least square

Objective: Approximate h ∈ L2(U , d%)

h(y) =
∑
ν∈Nd0

ĥνΨν(y), with ĥν = 〈h,Ψν〉.

Parametric discretization: global polynomial space

PΛ(U) = span
{∏d

i=1 yi
νi , with ν ∈ Λ

}
⊂ L2(U , d%).

The best approximation of h on PΛ(U) is hΛ(y) :=
∑
ν∈Λ ĥνΨν(y):

‖h− hΛ‖% = min
q∈PΛ(U)

‖h− q‖%.

In general, we can only access h from the observations at the points (yi)
m
i=1.

Discrete least square (DLS) problem:

hLS := arg min
q∈PΛ(U)

m∑
i=1

|h(yi)− q(yi)|2.
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Discrete least square

Recall: s = #Λ = dim[PΛ(U)]. Assume hLS =
∑
ν∈Λ cνΨν(y), then

(cν)ν∈Λ := arg min
z=(zν )∈Cs

m∑
i=1

∣∣∣∣∣h(yi)−
∑
ν∈Λ

zνΨν(yi)

∣∣∣∣∣
2

.

Taking derivative with respect to zν yields

0 =

m∑
i=1

(
h(yi)−

∑
ν′∈Λ

zν′Ψν′(yi)

)
Ψν(yi)

=

m∑
i=1

h(yi)Ψν(yi)−
∑
ν′∈Λ

zν′

m∑
i=1

Ψν′(yi)Ψν(yi)

c = (cν)ν∈Λ is the solution of

Gc = h

where G is an s× s matrix and h is an s× 1 vector given by

Gν,ν′ =
1

m

m∑
i=1

Ψν(yi)Ψν′(yi), hν =
1

m

m∑
i=1

h(yi)Ψν(yi)
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Discrete least square

Consider the least square problem

Gc = h

where G is an s× s matrix and h is an s× 1 vector given by

Gν,ν′ =
1

m

m∑
i=1

Ψν(yi)Ψν′(yi), hν =
1

m

m∑
i=1

h(yi)Ψν(yi)

For the stability, G needs to be well-conditioned.

Observation: assume yi is randomly sampled according to the measure %,

for m→∞, Gν,ν′ →
∫
U

Ψν(y)Ψν′(y)%(y)dy = δν,ν′

E(G) = I.

how to quantify the proximity of the matrices G and I ?
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Discrete least square

Introduce the quantity: K(Λ) = sup
y∈U

∑
ν∈Λ

|Ψν(y)|2

Spectral norm: |||G||| = max
z 6=0

|〈Gz,z〉|
‖z‖2

Theorem [Cohen, Davenport, Leviatan ’13]

For 0 < δ < 1:

P(|||G− I||| ≤ δ) > 1− 2s exp

(
− cδm

K(Λ)

)
where cδ := δ + (1− δ) log(1− δ) > 0.

|||G− I||| ≤ δ ⇐⇒ max
z 6=0

|〈Gz,z〉 − ‖z‖2|
‖z‖2 ≤ δ

⇐⇒ (1− δ)‖z‖2 ≤ 〈Gz,z〉 ≤ (1 + δ)‖z‖2, ∀z ∈ Cs

⇐⇒ (1− δ)‖z‖2 ≤ ‖Az‖2 ≤ (1 + δ)‖z‖2, ∀z ∈ Cs,
where A is an m× s sampling matrix with Ai,ν = 1√

m
Ψν(yi).
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Discrete least square
“Isometry property”

Theorem [CDL13] restated

Let A is a sampling matrix with size m× s

Ai,ν =
1√
m

Ψν(yi).

For 0 < δ < 1 and cδ = δ + (1− δ) log(1− δ) > 0, with probability exceeding

1− 2s exp
(
− cδm
K(Λ)

)
then

(1− δ)‖z‖2 ≤ ‖Az‖2 ≤ (1 + δ)‖z‖2, ∀z ∈ Cs. (IP)

A satisfies the “isometry property”:

Set δ = 1
2

and m such that m
logm

≥ K(Λ)(1+r)
c1/2

: (IP) holds with prob. ≥ 1− 2m−r.

Set m ≥ K(Λ)
cδ

(
log(2s) + log( 1

γ
)
)

: (IP) holds with prob. ≥ 1− γ.
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Discrete least square
Stability

Theorem

Assume |h(y)| ≤ L, ∀y ∈ U . For any r > 0, if m satisfies

m

logm
≥ K(Λ)(1 + r)

c1/2
,

then

E(‖h− hLS‖2) . ‖h− hΛ‖2︸ ︷︷ ︸
best approximation error on Λ

+L2m−r.

Estimate K(Λ)?
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Estimate K(Λ)
1d setting: Λ = {0, 1, . . . , s− 1}

Recall from above

K(Λ) = sup
y∈U

∑
ν∈Λ

|Ψν(y)|2 =
∑
ν∈Λ

‖Ψν‖2L∞ .

Trigonometric polynomials: Ψj(y) = eijy

‖Ψj‖L∞ = 1 ⇒ K(Λ) = s. Stability condition:
m

log(m)
& s.

Legendre polynomials: Lj(y)

‖Lj‖L∞ = Lj(1) =
√

2j + 1

⇒ K(Λ) =
s−1∑
j=0

(2j + 1) = s2. Stability condition:
m

log(m)
& s2.

Chebyshev polynomials: T0(y) = 1, Tj(y) =
√

2 cos(j arccos(y))

‖Tj‖L∞ =
√

2 if j ≥ 1

⇒ K(Λ) = 2s− 1. Stability condition:
m

log(m)
& s.
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Estimate K(Λ)
Multidimensional setting

Lower set: An index set Λ ⊂ Nd0 is lower, a.k.a., downward closed, if

(ν ∈ Λ and ν′ ≤ ν) =⇒ ν′ ∈ Λ,

where ν′ ≤ ν means that ν′i ≤ νi for all 1 ≤ i ≤ d.

Generalization of the set Λ = {0, . . . , s} in 1d.

For smooth functions, good index set is often lower set.

Theorem [Chkifa, Cohen, Migliorati, Nobile, Tempone ’14]

Assume Λ is a lower set.

Legendre: KL(Λ) =
∑
ν∈Λ

∏d
i=1(2νi + 1) ≤ (#Λ)2.

Chebyshev: KT (Λ) =
∑
ν∈Λ 2#(supp(ν)) ≤ (#Λ)

log 3
log 2 .

Stability conditions:
m

log(m)
& s2 for Legendre systems and

m

log(m)
& s

log 3
log 2 for Chebyshev systems.
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Discrete least square
Application to parameterized PDEs

1 Generate m random samples y1, . . . ,ym according to measure %

2 For each yi, solve the parameterized PDEs L(u,yi) = f for solution u(yi) ∈ Vh.

3 uLS =
∑
ν∈Λ

cν(x)Ψν(y), where

(cν)ν∈Λ = arg min
z=(zν )∈(Vh)s

m∑
i=1

∥∥u(yi)−
∑
ν∈Λ

zνΨν(yi)
∥∥2

V

4 c = (cν)ν∈Λ is the solution of

Gc = u,

where G is an s× s matrix and u is an s× 1 vector in (Vh)s given by

Gν,ν′ =
1

m

m∑
i=1

Ψν(yi)Ψν′(yi), uν =
1

m

m∑
i=1

u(yi)Ψν(yi)
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Discrete least square
Summary

uLS =
∑
ν∈Λ

cν(x)Ψν(y), where

(cν)ν∈Λ = arg min
z=(zν )∈(Vh)s

m∑
i=1

∥∥u(yi)−
∑
ν∈Λ

zνΨν(yi)
∥∥2

V

Pros:

Non-intrusive method.

Mitigate Runge phenomena

Cons:

Number of samples is bigger than the degree of freedom.

Accuracy is sensitive to the a priori choice of polynomial space.
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Compressed sensing

Initially developed for signal recovery [Candès, Romberg, Tao ’06; Donoho ’06]:

Recover signals/functions from an underdetermined system

Sparsity assumption: only a few coordinates are non-zero.

Sparse signals are recovered via sparsity-induced norm, i.e.,

c = arg min ‖z‖0 subject to u = Fz
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Sparsity-induced norms

c = arg min ‖z‖? subject to u = Fz
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Figure : Illustrations of some types of regularization
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Example: signal and image processing

Reconstruct image (c) from the measurement (u), obtained via a transform (F)

u = Fc.

Images often possess sparse structures.

Less measurements are generally preferred.
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Examples: Genetics

Source: Coursera
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Compressed sensing
Application to parameterized PDEs

Recall from above: approximate u(x,y) by

u(x,y) ' u#(x,y) =
∑
ν∈Λ

cν(x)Ψν(y).

Non-intrusive approach: compute u( · ,yi) for a set of samples {y1, . . . ,ym} on U .

c = (cν)ν∈Λ satisfies

u(x,yi) =
∑
ν∈Λ

cν(x)Ψν(yi), ∀i = 1, . . . ,m

⇐⇒ u = Ψc.

where

Ψ = (Ψi,ν) = (Ψν(yi))i∈[m]
ν∈Λ

, u = (u( · ,yi))i∈[m] ∈ Vm.
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Compressed sensing
Application to parameterized PDEs

Solve u = Ψc where

Ψ = (Ψi,ν) = (Ψν(yi))i∈[m]
ν∈Λ

, u = (u( · ,yi))i∈[m] ∈ Vm.

Observation:

1 each measurement u(yi) ⇐⇒ 1 PDE solve.

2 c = (cν)ν∈Λ decays fast (“approximately sparse”).

j
0 500 1000 1500 2000

jc
888
j
j

10-70

10-60

10-50

10-40

10-30

10-20

10-10

100

j (after sorting)
0 500 1000 1500 2000

jc
888
j
j

10-70

10-60

10-50

10-40

10-30

10-20

10-10

100

3 important coefficients often has low indices.

4 however, we don’t know the shape of the correct index set.
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Compressed sensing
Application to parameterized PDEs

Main idea:

approximate u on a big polynomial subspace PΛ0(U) with Λ0 possibly far from
optimal.

Denote N := #(Λ0).

undersampling: generate m� N samples y1, . . . ,ym and solve for
u(y1), . . . , u(ym).

reconstruct c = (cν)ν∈Λ0 from the underdetermined system u = Ψc using
compressed sensing algorithm:

c = arg min
z∈VN

‖z‖1 s.t. u = Ψz.

‖z‖1 :=
∑
ν∈Λ0

‖zν‖V .
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Uniform vs. non-uniform recovery

Def. s-sparse vector: a vector with at most s nonzero entries.

y1, . . . ,ym are randomly sampled according to measure %.

The reconstruction is guaranteed with high probability.

Non-uniform recovery:

the recovery is success with high probability for each fixed s-sparse vector.

Uniform recovery:

the recovery is success with high probability for all s-sparse vector.
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Restricted isometry property (RIP)

Uniform recovery is guaranteed by the restricted isometry property (RIP) of the
normalized matrix A = 1√

m
Ψ:

A satisfies the RIP if there exists small δs, s.t. for all z ∈ CN s-sparse vectors,

(1− δs)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δs)‖z‖22.

Intuition: ker(A) does not contain any non-zero s-sparse vectors.

Comparison to stability condition of DLS:

(1− δs)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δs)‖z‖22, ∀z ∈ CN .

RIP implies the recovery of best s-term.

Theorem: Assume A satisfies RIP. Then

‖uCS − u‖1 . σs(u)1.

Estimate the number of measurements such that the RIP is guaranteed?
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RIP estimate
How many samples do we need?

Define the uniform bound of orthonormal system

Θ = sup
ν∈Λ0

‖Ψν‖∞.

Theorem

Let Ψ ∈ Cm×N be the random sampling matrix associated with a BOS. Provided that

m ≥ CΘ2s log2(s) log(N),

then A is satisfied the RIP with high probability.

Developed through a series of papers [Candes, Tao ’06; Rudelson, Vershynin ’08; Rauhut

’10; Cheraghchi, Guruswami, Velingker ’13; Bourgain ’14; Haviv, Regev ’15; Chkifa, Dexter,

T., Webster ’15].
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RIP estimate
How many samples do we need?

RIP estimate

m ≥ CΘ2s log2(s) log(N),

Very mild dependence on N .

Signal processing: Θ = 1 for Fourier, Hadamard, circulant, etc. matrices

to reconstruct best s-term, need ' s samples.

Polynomial approximations: Θ can be prohibitively high

Chebyshev basis: Θ = 2d/2.

Legendre basis: Θ & N .

preconditioned Legendre basis: Θ = 2d/2.
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Reconstruction of best lower s-term approximations
Lower RIP

Plan: Reconstruct an approximation of u which is comparable to the best lower s-term
approximation, i.e., best approximation by s-terms in a lower set.

ubl := arg min
#(Λ)=s
Λ lower

‖u− uΛ‖, σ`s(u) := ‖u− ubl‖.

Main advantages:

Less demanding approximations, thus, the sample complexity is reduced.

We can show that the best lower s-term is as good as best s-term approximation.

Reduce the effect of Runge’s phenomenon.

We can choose the multi-index set Λ0 as a hyperbolic cross Hs, which is the union
of all lower sets of cardinality s, i.e.,

Hs =

{
ν = (ν1, . . . , νd) ∈ Nd0 :

d∏
i=1

(νi + 1) ≤ s

}
.

Note: N = #(Hs) ≤ 2s34d, [Chernov, Dũng ’15].
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Reconstruction of best lower s-term approximations
Lower RIP

For index sets Λ ⊂ Nd0 and s ∈ N, recall

K(Λ) :=
∑
ν∈Λ

‖Ψν‖2∞ and K(s) = sup
Λ lower, |Λ|=s

K(Λ).

lower RIP:

There exists small δl,s such that

(1− δl,s)‖c‖22 ≤ ‖Ψ̃c‖22 ≤ (1 + δl,s)‖c‖22, ∀c s-sparse, supp(c) lower.

Theorem [Chkifa, Dexter, T., Webster ’15]

Let Ψ ∈ Cm×N be the orthonormal random sampling matrix. If, for δ ∈ (0, 1),

m ≥ CδK(s) log2(K(s)) log(N),

then with high probability, A satisfies the lower RIP with δl,s ≤ δ.

Legendre: KL(Λ) = (#Λ)2, ∀Λ lower set =⇒ K(s) ≤ s2.

Chebyshev: KT (Λ) = (#Λ)
log 3
log 2 , ∀Λ lower set =⇒ K(s) ≤ s

log 3
log 2 .
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Recovery of best lower s-term approximations
Implementation: Weighted `1 minimization

Weighted `1 minimization:

Choose the specific weight ων = ‖Ψν‖∞,

Ψ = (Ψν(yi)) is an m×N sampling matrix,

u = (u(yi))i=1,...,m,

Find uCS(y) =
∑
ν∈Λ0

cνΨν(y), where c = (cν)ν∈Λ0 is the solution of

min
∑
ν∈Λ0

ων‖zν‖V subject to u = Ψz.

Remark:

The weight favors low index.

The weight penalizes high index.
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Recovery of best lower s-term approximations
Weighted `1 minimization

Let ω = (‖Ψν‖∞)ν∈Λ0 be a vector of weights. We define

for u(x,y) =
∑
ν∈Λ0

ûν(x)Ψν(y), ‖f‖ω,1 :=
∑
ν∈Λ0

ων‖ûν‖V ,

σ
(`)
s (u)ω,1 = inf

supp(u#) lower

|supp(u#)|=s

‖u− u#‖ω,1.

Theorem [Chkifa, Dexter, T., Webster ’15]

Assume that the number of samples satisfies

m ≥ CK(s) log2(K(s)) log(N)

then, with high probability, there holds

‖u− uCS‖ω,1 ≤ Cσ(`)
s (u)ω,1

We improve a weighted `1 minimization with a specific choice of weights which

has a reduced sample complexity compared to unweighted `1 minimization,

lead to approx. comparable to best s-term approx. in case of smooth solutions.
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Example 1: u(y) =
∏d/2
i=1 cos(8yi/2

i)∏d
i=d/2+1(1−yi/4i)

/ = m=N
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wj = (j + 1)2

Figure : Left: d = 8, N = 1843. Right: d = 16, N = 4129.
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Example 2: u(y) = exp

(
−

∑d
i=1 cos(yi)

8d

)
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Figure : Left: d = 8, N = 1843. Right: d = 16, N = 4129.
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Example 3: u(y) = exp
(
−

∑d
i=1 yi
2d

)

/ = m=N
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Figure : Left: d = 8, N = 1843. Right: d = 16, N = 4129.
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Optimize sample complexity estimates
Sparse Legendre expansions

Consider 1d Legendre expansion on Λ0 = {0, 1, . . . , N − 1}.

Current theoretical condition gives: m ≥ Θ2s× log factor, where Θ =
√

2N − 1.

Numerical experiment shows:
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There is some successful recovery with underdetermined Legendre systems.

The number of measurements for recovery guarantee should not be depend on N , or
maximum polynomial degree.
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Optimize sample complexity estimates
Sparse Legendre expansions

Theorem [T., Webster ’16]

The sufficient condition for recovery of sparse standard Legendre expansions is

m ≥ s2 × log factor,

independent of polynomial degree.

a new, improved estimate of the number of measurements using the envelope
bound, independently of mutual coherence, for univariate sparse Legendre expansion.

a simple criteria for selecting random sample sets, that helps to improve probability
of reconstruction of sparse solutions.
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Restricted eigenvalue condition

Uniform recovery is usually guaranteed by the restricted isometry property (RIP) of the

normalized matrix A = 1√
m
Ψ:

A satisfies the RIP if there exists small δ, s.t. for all z s-sparse vectors,

(1− δ)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δ)‖z‖22.

For reconstruction using `1 minimization, the upper bound of ‖Az‖22 is not necessary.

Restricted eigenvalue condition [Bickel, Ritov, Tsybakov ’09; van de Geer, Bühlmann ’09]

For α > 1, define

C(S;α) :=
{
z ∈ Cd : ‖zSc‖1 ≤ α

√
s‖zS‖2

}
.

A satisfies the restricted eigenvalue condition (REC) of order s if there exist α > 1 and
0 < δ < 1 such that

‖Az‖22 ≥ (1− δ)‖z‖22,

for all z ∈ C(s;α) :=
⋃

(#S)=s C(S;α).

C(s;α) contains all s-sparse vector.

REC holds but RIP fails to hold for many random Gaussian and sub-Gaussian design
matrices, e.g., [Raskutti, Wainwright, Yu ’10; Rudelson, Zhou ’13].
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Indicator function and preferable sample sets

Indicator function: Z(y) := Θ(y) exp(− 1

4Θ2(y)

√
m).

Preferable sample sets: {y1, . . . , ym} such that
∑m
i=1 Z(yi) is small.
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Numerical illustration
Sample sets corresponding to small

∑m
i=1 Z(yi) is better

Generate 1000 random Legendre sampling matrices Ψ of size 180× 360.
Allocate these matrices to five percentiles according to ascending order of∑m
i=1 Z(yi).

Generate 20 manufactured solutions c with sparsity 30 and 40. The supports and
values of components of c are chosen randomly.
Reconstruct c by solving u = Ψc with `1 minimization.
Plot the averaged error and probability of success (TOL: error < 10−3) for each
percentile.
Software: SPGL1 [van den Berg and M. P. Friedlander ’07 ’08].
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Numerical illustration
Sample sets corresponding to small

∑m
i=1 Z(yi) is better

For each m = 10, 20, . . . , 180, generate 1500 random Legendre sampling matrices Ψ
of size m× 360.
For each m, allocate the matrices to five percentiles according to ascending order of∑m
i=1 Z(yi).

For each Ψ, generate manufactured solutions c randomly with sparsity 14 and then
reconstruct c by `1 minimization.
For each m, compute the averaged error and probability of success (TOL: error
< 10−3) over the first and last percentile and all sampling matrices.
Plot those quantities against m.

20 40 60 80 100 120 140 160 180
−5

−4

−3

−2

−1

0

1

m

a
v
er
a
g
ed

l2
er
ro
r

N = 360, sparsity = 14, # of sample sets = 1500

 

 

general sets (U)
below 20th percentile (U)
above 80th percentile (U)
general sets (precond + C)

20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

1.2

m

su
cc
es
sf
u
l
ra
te

N = 360, sparsity = 14, # of sample sets = 1500

 

 

general sets (U)
below 20th percentile (U)
above 80th percentile (U)
general sets (precond + C)

Hoang A. Tran (ORNL) UQ and Approx. Theory for Parameterized PDEs IV VIASM - 15 Nov, 2016 36 / 38



DLS CS: Introduction RIP Reconstruction Optimize

Numerical illustration
Sample sets corresponding to small

∑m
i=1 Z(yi) is better

For each sparsity s = 5, 10, . . . , 60, generate 1500 random Legendre sampling
matrices Ψ of size 180× 360.
For each s, allocate the matrices to five percentiles according to ascending order of∑m
i=1 Z(yi).

For each s and Ψ, generate manufactured solutions c randomly with sparsity s and
then reconstruct c by `1 minimization.
For fixed s, compute the averaged error and probability of success (TOL: error
< 10−3) over the first and last percentile and all sampling matrices.
Plot those quantities against s.

10 20 30 40 50 60
−5

−4

−3

−2

−1

0

1

sparsity

a
v
er
a
g
ed

L
2
er
ro
r
in

lo
g
sc
a
le

m = 180, N = 360, # of sample sets = 1500

 

 

general sets (U)
below 20th percentile (U)
above 80th percentile (U)
general sets (C + precond)

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

sparsity

s
u
c
c
e
s
s
fu

l 
ra

te

m = 180, N = 360, # of sample sets = 1500

 

 

general sets (U)
below 20th percentile (U)
above 80th percentile (U)
general sets (C + precond)

Hoang A. Tran (ORNL) UQ and Approx. Theory for Parameterized PDEs IV VIASM - 15 Nov, 2016 37 / 38



DLS CS: Introduction RIP Reconstruction Optimize

References

J. Bourgain, An improved estimate in the restricted isometry problem. In: Geometric Aspects of
Functional Analysis, Lecture Notes in Mathematics, pp. 65–70 (2014)

A. Chkifa, A. Cohen, G. Migliorati, F. Nobile, R. Tempone, Discrete least squares polynomial
approximation with random evaluations - application to parametric and stochastic elliptic PDEs. ESAIM:
M2AN 49 (2015), no. 3, 815–837.

A. Chkifa, N. Dexter, H. Tran, C. G. Webster, Polynomial approximation via compressed sensing
of high-dimensional functions on lower sets. Mathematics of Computation, to appear (2016).

A. Cohen, M. A. Davenport, D. Leviatan, On the Stability and Accuracy of Least Squares
Approximations, Found Comput Math (2013) 13:819–834
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