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@ Discrete least square

© Compressed sensing: Introduction and motivation
© Restricted isometry property

© Best lower s-term reconstruction

e Optimize sample complexity estimate using envelope bound
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DLS

Discrete least square

Objective: Approximate h € L*(U, do)
hy) = h®.(y), with h, = (b, ¥,).
veNg
Parametric discretization: global polynomial space
Pa(U) = span {Hle ¥, with v € A} C L*(U,do).
The best approximation of h on Pa(U) is ha(y) == 3, cx he o (y):

h —halle = i h —qllo-
Ih=halle = min b=l

@ In general, we can only access h from the observations at the points (y;)i%;.
Discrete least square (DLS) problem:

m

1= arg min |h(y:) — (I(yi)|2~
QEPA(U);

hLS
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DLS

Discrete least square

o Recall: s = #A = dim[Pa(U)]. Assume b= = > ven cvPu(y), then

> wTu(y)

vEA

(cv)ven := argmin Z

z=(z1)€C® ;3

o Taking derivative with respect to z, yields

(h(yz‘) - Zu"I’u'(yi)> v, (yi)

v/eA

hy)Cu(yi) = > 2 o (y) Wu (3:)

1 v'EA i=1

0=

-

k3

o

k3

@ ¢ = (cv)vea is the solution of
Ge=h

where G is an s X s matrix and h is an s X 1 vector given by

Gu,u’ = %Z‘pv(yl)qlu/(yl)y %g
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DLS

Discrete least square

Consider the least square problem
Gec=h

where G is an s X s matrix and h is an s X 1 vector given by
1 1
Gow = — DT (yi) T (yi), ho = — > h(y)¥u(y:)
i=1 i=1

@ For the stability, G needs to be well-conditioned.

Observation: assume y; is randomly sampled according to the measure g,

for m — oo, Gy, — / U, (y)¥. (y)o(y)dy = 0,/
u

E(G)=1I.

@ how to quantify the proximity of the matrices G and I ?
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DLS

Discrete least square

Introduce the quantity: K(A) =sup 3 |¥.(y)|?
YyeU vEA
Gz, 2z)|

Spectral norm: G||| = max
p NG = max S

Theorem [Cohen, Davenport, Leviatan '13]

For0 < ¢ < 1:

MMG—Im§5)>1_%am<_;%g>

where ¢5 := d + (1 — 0) log(1 — §) > 0.

(G z,2) — =’
(B3l

—= (1-9)lz|* < (Gzz2) < (1+0)|z]°, vzeC
= (1-9)|z|* < |lAz|* < (1 +9)|z]?, VzeC,
where A is an m x s sampling matrix with A, , = \ﬁlll,,(yl)

IlG - I]|| < 6 <= max <5
z#0
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DLS

Discrete least square

“Isometry property”

Theorem [CDL13] restated

Let A is a sampling matrix with size m X s

1
Ai,l/ = ﬁqlu(yz)

ForO0<d<1landcs =0+ (1—0)log(l—3d) >0, with probability exceeding
1 — 2sexp ( ( ) then

1= 9)llz]* < [ Az|* < (1 +3)|=]*, VzeC" (IP) |

A satisfies the “isometry property”:
® Set 6 = 5 and m such that - > FRCE: (IP) holds with prob. > 1—2m ™"
e Setm > K(A) (10g(25) + log(% )) (IP) holds with prob. > 1 —~
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DLS

Discrete least square
Stability

Theorem

Assume |h(y)| < L, Vy € U. For any r > 0, if m satisfies
m_ KA)(1+7)

logm — c1/2
then
E(|lh = h"%|*) < |h — hal? +L*m™".
———

best approximation error on A

o Estimate K(A)?

Hoang A. Tran (ORNL) UQ and Approx. Theory for Parameterized PDEs IV VIASM - 15 Nov, 2016 8 /38



DLS

Estimate K (A

1d setting: A = {0,1,...,s — 1}

Recall from above

K@) =sup Y [T(y)* =D [Tu]lic.

yeu vEA vEA

Trigonometric polynomials: ¥;(y) = ¢¥¥

o ||¥j|lre =1 = K(A)=s. Stability condition: 2 s.
og(m)
Legendre polynomials: L;(y)
o [[Ljlleee = Lj(1) = v2j +1
s—1
= K(A) = Eo@j +1) =s?  Stability condition: Tog(m) > s%

Chebyshev polynomials: To(y) = 1, T;(y) = v/2 cos(j arccos(y))
o |Tillze =v2 if j>1
= K(A)=2s—1. Stability condition:

m
s
~
log(m)
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DLS

Estimate K (A)

Multidimensional setting

Lower set: An index set A C Ng is lower, a.k.a., downward closed, if
(veA and vV <v) = V' €A,

where v’ < v means that v] <wv; forall 1 <i <d.

o Generalization of the set A = {0,...,s} in 1d.

@ For smooth functions, good index set is often lower set.

Theorem [Chkifa, Cohen, Migliorati, Nobile, Tempone '14]

Assume A is a lower set.
o Legendre: Kp(A) =3 .4 [T, Qui + 1) < (#A)2.
o Chebyshev: Kr(A) =3, 2#0uert) < (#A)%,

Stability conditions:

m m

log 3
> 52 for Legendre systems and e sloz2 for Chebyshev systems.
log(m) log(m)
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DLS

Discrete least square
Application to parameterized PDEs

@ Generate m random samples yi1,...,y,, according to measure g
@ For each y;, solve the parameterized PDEs £ (u,y;) = f for solution u(y;) € V"
Q ul’ = 3 ¢ (2)¥,(y), where
veA
. - 2
(cv)vean = argmin Z [|w(y:) — Z 2%y (yi)]],
z=(z)€(VM)® 55 vEA

@ c = (cv)ven is the solution of

Gc = u,

where G is an s x s matrix and u is an s x 1 vector in (V") given by

m

1 & 1
GV,V/ = E Z‘I’V(yl)‘lll’/ (y1)7 Uy = a Zu(yz)‘llu(yz)
i=1

i=1
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DLS

Discrete least square

Summary

ulS = 3 ¢, ()W, (y), where
veA

(cv)vean = argmin ZHu(yi)—Zzu‘I/u(yi)Hi

z=(20)E(VM)* 15 veA
Pros:
@ Non-intrusive method.
o Mitigate Runge phenomena
Cons:
@ Number of samples is bigger than the degree of freedom.

@ Accuracy is sensitive to the a priori choice of polynomial space.
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CS: Introduction

Compressed sensing

@ Initially developed for signal recovery [Candés, Romberg, Tao '06; Donoho '06]:

@ Recover signals/functions from an underdetermined system

@ Sparse signals are recovered via sparsity-induced norm, i.e.,
c = argmin ||z||o subject to u = Fz
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CS: Introduction

Sparsity-induced norms

c = arg min ||z||; subject to u = Fz

4 lio ls
3 3 3
2 2 2
1 1 1
G | /NN
-1 -1 \/ -1 K—/
2 -1 0 1 2 = -1 0 1 2 2 —1 0 1 2

Figure : Illustrations of some types of regularization
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CS: Introduction

Example: signal and image processing

@ Reconstruct image (¢) from the measurement (u), obtained via a transform (F)
u = Fec.

@ Images often possess sparse structures.

@ Less measurements are generally preferred.
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CS: Introduction

Examples: Genetics

. . . . . o

ith person

Source: Coursera

Hoang A. Tran (ORN UQ and Approx. Theory for Parameterized PDEs IV VIASM - 15 Nov, 2016 16 / 38



CS: Introduction

Compressed sensing
Application to parameterized PDEs

@ Recall from above: approximate u(x,y) by

u(z,y) ~ v (z,9) = Y c(2)Tu(y).

veA

@ Non-intrusive approach: compute u(-,y;) for a set of samples {y1,...,ym} on U.

@ ¢ = (Cv)ven satisfies

u(x,y:) = Z ()P, (y:), Yi=1,...,m

veEA
= u = Pe.
where
U= (P,,)= (‘I'u(yi))ie[v;r\b]v w=(u(-,¥i))icim €V"
ve
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CS: Introduction

Compressed sensing
Application to parameterized PDEs

Solve u = We where

U= (P;,) = (‘I’v(yi))z’e[?\h u = (u(-,Yi))icm) € V™.
ve

Observation:
@ each measurement u(y;) <= 1 PDE solve.

@ c = (cv)ven decays fast (“approximately sparse”).

7 50 1000 1500 2000 0 50 1000 1500 2000
i J (after sorting)

© important coefficients often has low indices.

@ however, we don't know the shape of the correct index set.
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CS: Introduction

Compressed sensing
Application to parameterized PDEs

Main idea:

@ approximate w on a big polynomial subspace Py, (/) with Ag possibly far from
optimal.

o Denote N := #(Ap).

@ undersampling: generate m < N samples yi, ..., Ym and solve for
u(y1), -, u(Ym).

@ reconstruct ¢ = (¢y)wvea, from the underdetermined system u = Wc using
compressed sensing algorithm:

c=argmin||z|1 st u=P¥z.
zeVN

o [zl =2 en, llzvllv:
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Uniform vs. non-uniform recovery

Def. s-sparse vector: a vector with at most s nonzero entries.
Yi,...,Ym are randomly sampled according to measure p.
The reconstruction is guaranteed with high probability.
@ Non-uniform recovery:
the recovery is success with high probability for each fixed s-sparse vector.
@ Uniform recovery:

the recovery is success with high probability for all s-sparse vector.
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_OWS  Gimodwiey QP Reswwdtn  @wes 00
Restricted isometry property (RIP)

Uniform recovery is guaranteed by the restricted isometry property (RIP) of the
normalized matrix A = ﬁlll:

A satisfies the RIP if there exists small d;, s.t. for all z € CV s-sparse vectors,

(1= d)lzl5 < [lAz]5 < (1+80)l=]5.

@ Intuition: ker(A) does not contain any non-zero s-sparse vectors.

o Comparison to stability condition of DLS:

(1=8.)lzl3 < lAz3 < (1 +6)l|=[13, V= eC”.
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_OWS  Gimodwiey QP Reswwdtn  @wes 00
Restricted isometry property (RIP)

Uniform recovery is guaranteed by the restricted isometry property (RIP) of the
normalized matrix A = ﬁlll:

A satisfies the RIP if there exists small d;, s.t. for all z € CV s-sparse vectors,

(1= d)lzl5 < [lAz]5 < (1+80)l=]5.

@ Intuition: ker(A) does not contain any non-zero s-sparse vectors.

o Comparison to stability condition of DLS:

(1=8.)lzl3 < lAz3 < (1 +6)l|=[13, V= eC”.

RIP implies the recovery of best s-term.

Theorem: Assume A satisfies RIP. Then

cs

[u™" = ulli S o5 (u)s.

o Estimate the number of measurements such that the RIP is guaranteed?
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_ DLS__ CS:lntroduction RIP__ Reconstruction  Optimize
RIP estimate

How many samples do we need?

Define the uniform bound of orthonormal system

O = sup || Wy o

[

Let ¥ € C™*Y be the random sampling matrix associated with a BOS. Provided that

m > C0°slog”(s)log(N),

then A is satisfied the RIP with high probability.

@ Developed through a series of papers [Candes, Tao '06; Rudelson, Vershynin '08; Rauhut
'10; Cheraghchi, Guruswami, Velingker '13; Bourgain '14; Haviv, Regev '15; Chkifa, Dexter,
T., Webster '15].
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RIP estimate

How many samples do we need?

RIP estimate
m > COslog®(s) log(N),

@ Very mild dependence on N.

@ Signal processing: © = 1 for Fourier, Hadamard, circulant, etc. matrices
o to reconstruct best s-term, need ~ s samples.

@ Polynomial approximations: © can be prohibitively high
o Chebyshev basis: © = 24/2,
o Legendre basis: © > N.

o preconditioned Legendre basis: © = 24/2,
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Reconstruction

Reconstruction of best lower s-term approximations
Lower RIP

Plan: Reconstruct an approximation of u which is comparable to the best lower s-term
approximation, i.e., best approximation by s-terms in a lower set.

. ‘
ubl 1= argmin |Ju — ua |, os(u) == |lu— upl|-
#(A)=s
A lower
Main advantages:
@ Less demanding approximations, thus, the sample complexity is reduced.
@ We can show that the best lower s-term is as good as best s-term approximation.

@ Reduce the effect of Runge's phenomenon.

@ We can choose the multi-index set Ay as a hyperbolic cross Hs, which is the union
of all lower sets of cardinality s, i.e.,

d
Hs = u:(yl,...,ud)GNg:H(Vi—i—l)gs

i=1
Note: N = #(Hs) < 25°4%, [Chernov, Diing '15].
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Reconstruction

Reconstruction of best lower s-term approximations
Lower RIP

For index sets A C N& and s € N, recall

K(A):=) [[W,[% and K(s)= sup K(A).

veA Alower, |[A|=s

lower RIP:

There exists small d;,s such that

(1—du5)llells < 1Pell3 < (1+,6)[cll3, Ve s-sparse, supp(c) lower.

Theorem [Chkifa, Dexter, T., Webster "15]

Let ¥ € C™*Y be the orthonormal random sampling matrix. If, for 6 € (0,1),
m > CsK (s) log” (K(s)) log(N),

then with high probability, A satisfies the lower RIP with ;s < 6.

o Legendre: K (A) = (#A)%, VA lower set = K(s) < s°.

log 3

log 3
@ Chebyshev: K7 (A) = (#A)%™e2, VA lower set => K (s) < slos2.
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Reconstruction

Recovery of best lower s-term approximations

Implementation: Weighted ¢; minimization

Weighted ¢; minimization:
@ Choose the specific weight w, = ||V, | co,
o ¥ = (¥,(y;)) is an m x N sampling matrix,
o U= (U(yi))izl,.“,m,

Find u“*(y) = >, cx, v ¥u(y), where ¢ = (cu)uen, is the solution of

min Z wy||zv]lv  subject to u = Pz.
veAg

Remark:
@ The weight favors low index.
@ The weight penalizes high index.
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Reconstruction

Recovery of best lower s-term approximations
Weighted ¢; minimization

Let w = (||®u]|oo)ven, be a vector of weights. We define

o for u(z,y) = Zuer Uy ()W (y),

o 0()pr= inf  flu—uFur.
5’(1,7)7)(1&#) lower

[fllon = 2uen, welluv]lv,

|supp(u#)|=s

Theorem [Chkifa, Dexter, T., Webster '15]

Assume that the number of samples satisfies

m > CK(s)log®(K(s))log(N)
then, with high probability, there holds

lu = ulug < CofP (w)un

We improve a weighted ¢1 minimization with a specific choice of weights which
@ has a reduced sample complexity compared to unweighted ¢; minimization,

@ lead to approx. comparable to best s-term approx. in case of smooth solutions.
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Reconstruction

[1572 cos(8yi/2})
T /21 (1—yi/4%)

Example 1: u(y)

error
error

- o =9 P
006 008 01 012 014 016 018 02 022 024 006 0.08 01 012 014 0.16 018 02 022 024
§=m/N 5 =m/N

Figure :  Left: d =8, N =1843. Right: d =16, N = 4129.
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Reconstruction

wi = +1)?

10°
§
) 4 =
g g
5 g
10°

, . 4

0.15 0.2 0.25 03 0.35 0.06 008 01 012 014 016 018 02 022 0.24
§=m/N 5=m/N

Figure : Left: d =8, N = 1843. Right: d = 16, N = 4129.
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d .
Example 3: u(y) = exp (—%)

©w, =1 Sw, =1
W, = Hilzl(vr + 1)"'1 e, = [ (v + 1)”‘
Bw, = H, 1 V2 + =w, = [[0, V2 +
%u., =1 v+ 1) “-w, = [[im (v + 1)
l_L (i + 1)2’2 10 Sw, = H, i+ 172
ww, = I, (v + 1) “w, = [, (v + 1)?
=
| 4
=2
M 10 P
]
10°
; 10° )
015 0.2 025 03 035 04 045 05 015 0.2 025 03 035 04 045 05
§=m/N d=m/N

Figure : Left: d =8, N = 1843. Right: d = 16, N = 4129.
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Optimize

Optimize sample complexity estimates

Sparse Legendre expansions

Consider 1d Legendre expansion on Ag = {0,1,..., N —1}.

Current theoretical condition gives: m > ©%s x log factor, where © = /2N — 1.

Numerical experiment shows:

m = 100, N = 200, number of trials = 100

m =

100, N

= 200, number of trials = 100

averaged 1° error

14 —6-span {¥;: 1 <j <200}

—A-span {0 :301 < j < 500

1.2 _a_spau(w,:lsmgjgzor)\[
E
éo.s
go.e
“0.4
0.2

5 10 15 20 25 30 35 40 % 10 15 20 25 30 3 4

sparsity

aF

sparsity

@ There is some successful recovery with underdetermined Legendre systems.

@ The number of measurements for recovery guarantee should not be depend on N, or

maximum polynomial degree.
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Optimize sample complexity estimates
Sparse Legendre expansions

Theorem [T., Webster '16]

The sufficient condition for recovery of sparse standard Legendre expansions is
m > s x log factor,

independent of polynomial degree.

@ a new, improved estimate of the number of measurements using the envelope
bound, independently of mutual coherence, for univariate sparse Legendre expansion.

@ a simple criteria for selecting random sample sets, that helps to improve probability
of reconstruction of sparse solutions.

normalized Legendre polynomials L;(x) normalized Legendre polynomials L;(xr)

5
o)

-1 -05 0 05 1

x
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Restricted eigenvalue condition

Uniform recovery is usually guaranteed by the restricted isometry property (RIP) of the

. . _ 1 .
normalized matrix A = —ﬁ\ll.

A satisfies the RIP if there exists small 4, s.t. for all z s-sparse vectors,

1= d)l=l3 < lAz]3 < (1 +6)||=[13.
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Restricted eigenvalue condition

Uniform recovery is usually guaranteed by the restricted isometry property (RIP) of the

. . _ 1 .
normalized matrix A = —ﬁ\ll.

A satisfies the RIP if there exists small 4, s.t. for all z s-sparse vectors,
(1—-9)llz3 < lAz[3 < (1+6)]=[3.

For reconstruction using ¢1 minimization, the upper bound of ||Az||3 is not necessary.

Restricted eigenvalue condition [Bickel, Ritov, Tsybakov '09; van de Geer, Biihimann '09]

For a > 1, define
C(S;a) == {z € C: |lzsc | < avslzsla -

A satisfies the restricted eigenvalue condition (REC) of order s if there exist a > 1 and
0 < 0 < 1 such that

lAz[I3 > (1 - 4)|1=l3,
for all z € C(s; @) := U(#S):S C(S; ).

@ ('(s; ) contains all s-sparse vector.

@ REC holds but RIP fails to hold for many random Gaussian and sub-Gaussian design
matrices, e.g., [Raskutti, Wainwright, Yu '10; Rudelson, Zhou '13].

Hoang A. Tran (ORNL) UQ and Approx. Theory for Parameterized PDEs IV VIASM - 15 Nov, 2016 33 /38



Optimize

Indicator function and preferable sample sets

@ Indicator function: Z(y) := O(y) eXP(—ﬁ()\/ﬁ)_
Y

o Preferable sample sets: {y1,...,¥ym} such that 37" Z(y;) is small.

m=120 Histogram over 1000 sample sets, m= 12
35 140
.5
3 120
2.5] 100
2 o]
>
N 1.5 -
! 40
0.5
20
0
-1 05 0 05 1 % 5 GE] 015 G
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Numerical illustration
Sample sets corresponding to small > | Z(y;) is better

i=

@ Generate 1000 random Legendre sampling matrices ¥ of size 180 x 360.

@ Allocate these matrices to five percentiles according to ascending order of
i1 Z(yi)-

@ Generate 20 manufactured solutions ¢ with sparsity 30 and 40. The supports and
values of components of ¢ are chosen randomly.

@ Reconstruct ¢ by solving u = We with ¢1 minimization.

@ Plot the averaged error and probability of success (TOL: error < 10™?) for each

percentile.
o Software: SPGL1 [van den Berg and M. P. Friedlander '07 '08].

m =180, N = 360, 1000 sample sets m =180, N = 360, 1000 sample sets
0.5
-B-sparsity = 30 -B-sparsity = 30
0 -©-sparsity = 40 -©-sparsity = 40
1
3-05 8
g o‘e———e—/‘e/o 8
Lo =08
e} %
g =0.6
1
-25 0.4
- 2 3 4 5 1 2 3 4 5
Percentiles Percentiles
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Numerical illustration

Sample sets corresponding to small >3 | Z(y;) is better

@ For each m = 10, 20, ..., 180, generate 1500 random Legendre sampling matrices ¥
of size m x 360.

o For each m, allocate the matrices to five percentiles according to ascending order of
>ty Z(yi)-

o For each ¥, generate manufactured solutions ¢ randomly with sparsity 14 and then
reconstruct ¢ by ¢1 minimization.

@ For each m, compute the averaged error and probability of success (TOL: error
< 10_3) over the first and last percentile and all sampling matrices.

o Plot those quantities against m.

N = 360, sparsity = 14, # of sample sets = 1500 N = 360, sparsity = 14, # of sample sets = 1500
1.
1
Zog
< 06
0.4
—general sets (U)
0.2] o below 20th percentile (U)
---above 80th percentile (U)
# —general sets (precond + C)|
20 40 60 80 100 120 140 160 180 20 40 60 80 111100 120 140 160 180

m
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Numerical illustration

Sample sets corresponding to small >3 | Z(y;) is better

@ For each sparsity s = 5,10,...,60, generate 1500 random Legendre sampling
matrices ¥ of size 180 x 360.

@ For each s, allocate the matrices to five percentiles according to ascending order of
>oic1 Z(yi)-

@ For each s and ¥, generate manufactured solutions ¢ randomly with sparsity s and
then reconstruct ¢ by ¢; minimization.

o For fixed s, compute the averaged error and probability of success (TOL: error
< 1073) over the first and last percentile and all sampling matrices.

o Plot those quantities against s.

m =180, N = 360, # of sample sets = 1500 m =180, N = 360, # of sample sets = 1500

S
@

0
=

H
S
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