Uncertainty quantification \& approximation theory for parameterized (stochastic) PDEs

Part II: Well-posed SPDEs, regularity, and numerical approximations

Clayton G. Webster**

Hoang Tran*, Guannan Zhang*
\dagger Department of Mathematics, University of Tennessee
*Department of Computational \& Applied Mathematics (CAM)
Oak Ridge National Laboratory
Supporting agencies: DOE (ASCR, BES), DOD (AFOSR, DARPA), NSF (CM)

```
equinox.ornl.gov formulate.ornl.gov tasmanian.ornl.gov
```


Part II Outline

（1）Motivation－parameterized／stochastic equations
（2）Brief taxonomy of deterministic and stochastic numerical strategies
（3）Monte Carlo FEM（MCFEM）
（4）Stochastic Galerkin FEM（SGFEM）
（5）Comparisons to SCFEM
（6）Computational complexity of solving the SGFEM
（7）Numerical illustrations of complexity results
parameters
$\boldsymbol{y} \in \mathcal{U} \subset \mathbb{R}^{d}$

PDE model:

$$
\begin{gathered}
\mathcal{F}(a(y))[u(\boldsymbol{y})]=0 \\
\text { in } D \subset \mathbb{R}^{n}, n=1,2,3
\end{gathered}
$$

quantity of
interest $Q[u(\boldsymbol{y})]$

- The operator \mathcal{F}, linear or nonlinear, depends on a vector of d parameters $\boldsymbol{y}=\left(y_{1}, y_{2}, \ldots, y_{d}\right) \in \mathcal{U}=\prod_{i=1}^{d} \mathcal{U}_{i}$, which can be deterministic or stochastic.
- Deterministic setting: \boldsymbol{y} are known or controlled by the user.
- Goal: a query $\boldsymbol{y} \in \mathcal{U}$, quickly approximation the solution map $\boldsymbol{y} \mapsto u(\boldsymbol{y}) \in \mathcal{V}$.
- Stochastic setting: \boldsymbol{y} may be affected by uncertainty and are modeled as a random vector $\boldsymbol{y}: \Omega \rightarrow \mathcal{U}$ with joint PDF $\varrho: \mathcal{U} \rightarrow \mathbb{R}_{+}$s.t. $\varrho(\boldsymbol{y})=\prod_{i=1}^{d} \varrho_{i}\left(y_{i}\right)$.

$$
\mathbb{P}[Z \in I \subset \mathcal{U}]=\int_{I} \rho(\boldsymbol{y}) d \boldsymbol{y}, \text { i.e., transform the measure } \mathbb{P} \text { to } \mathbb{R}^{d}
$$

- Remark: replace (Ω, \mathcal{F}, P) with $(\mathcal{U}, \mathcal{B}(\mathcal{U}), \varrho(\boldsymbol{y}) d \boldsymbol{y})$, where $\mathcal{B}(\mathcal{U})$ denotes the Borel σ-algebra on \mathcal{U} and $\rho(\boldsymbol{y}) d \boldsymbol{y}$ is the distribution measure of \boldsymbol{y}.

Goal: Approximate u or some statistical Qol depending on u, i.e.

$$
\mathbb{E}[u], \operatorname{Var}[u], \mathbb{P}\left[u>u_{0}\right]=\mathbb{E}\left[\mathbb{1}_{\left\{u>u_{0}\right\}}\right]
$$

with as minimal computational cost as possible.

Quantity of interest (Qol) $Q[u]$, e.g., multi-dimensional expectation

$$
\mathbb{E}[u](x)=\int_{\mathcal{U}} u(\boldsymbol{y}, x) \rho(\boldsymbol{y}) d \boldsymbol{y}, \quad \text { where } \boldsymbol{y} \in \mathcal{U} \text { and } x \in \bar{D}
$$

(1) directly approximate $Q[u]$
(2) find a surrogate of the solution u (approximating the map $\boldsymbol{y} \mapsto u(\cdot, \boldsymbol{y})$) \rightarrow use the surrogate to cheaply compute any desired quantity of interest

Piecewise constant random fields: Let $\left\{D_{k}\right\}_{k=1}^{d}$ be a non-overlapping partition of D. We consider

$$
a(x, \boldsymbol{y})=a_{0}(x)+\sum_{k=1}^{d} \sigma_{k} y_{k} \chi_{D_{k}}(x)
$$

where $\sigma_{k}>0$ for all $k, a_{0}(x)$ is large enough to satisfy (CC), and $\chi_{D_{k}}$ is the indicator function of the set D_{k}.

Parameterized PDEs - coefficients $a(x, y)$ satisifies CC and AN

Karhunen-Loève expansion: a $2^{\text {nd }}$ order random field with continuous covariance function can be represented as an infinite sum of r.v.s via a KL expansion. When the expansion decays quickly, we may truncate

$$
a(x, \boldsymbol{y}) \approx \varphi_{0}(x)+\sum_{k=1}^{d} \varphi_{k}(x) y_{k}
$$

Here φ_{0} is the mean, $\left\{\lambda_{k}=\operatorname{Var}\left[y_{k}\right], \varphi_{k}\right\}_{k=1}^{d}$ are the largest eigenpairs of $\operatorname{Cov}[a]\left(x_{1}, x_{2}\right)$.
(a) Mode 1

(b) Mode 2

(c) Mode 3

(d) Mode 4

Sargsyan, Safta, Chowdhary, Castorena, de Bord, Debusschere, "UQTk v3.0.1 Manual," SAND2016-9215

Parameterized PDEs - coefficients $a(x, y)$ satisifies CC and AN

Karhunen-Loève expansion: a $2^{\text {nd }}$ order random field with continuous covariance function can be represented as an infinite sum of r.v.s via a KL expansion. When the expansion decays quickly, we may truncate

$$
a(x, \boldsymbol{y}) \approx \varphi_{0}(x)+\sum_{k=1}^{d} \varphi_{k}(x) y_{k}
$$

Here φ_{0} is the mean, $\left\{\lambda_{k}=\operatorname{Var}\left[y_{k}\right], \varphi_{k}\right\}_{k=1}^{d}$ are the largest eigenpairs of $\operatorname{Cov}[a]\left(x_{1}, x_{2}\right)$.
(a) Mode 1
(b) Mode 2
(c) Mode 3
(d) Mode 6

Sargsyan, Safta, Chowdhary, Castorena, de Bord, Debusschere, "UQTk v3.0.1 Manual," SAND2016-9215

In certain models, it is more appropriate to perform a Karhunen-Loève expansion on the logarithmic scale: for a constant $a_{0}>0, \log \left(a-a_{0}\right)(x, \boldsymbol{y}) \approx \varphi_{0}+\sum_{k=1}^{d} \varphi_{k} y_{k}$.

Hunt, Saad, Chapel, "Numerical Simulation of Ground-Water Flow in La Crosse County, Wisconsin" Report 03-4154 (2003) Heath, "Basic Ground-Water Hydrology," USGS: Water-Supply Paper 2220 (1983)

UQ for parameterized PDE models

Continuity and coercivity (CC)

For all $x \in \bar{D}$ and $\boldsymbol{y} \in \mathcal{U}, 0<a_{\min } \leq a(x, \boldsymbol{y}) \leq a_{\max }$.

Analyticity (AN)

The complex continuation of a, represented as the map $a: \mathbb{C}^{d} \rightarrow L^{\infty}(D)$, is an $L^{\infty}(D)$-valued analytic function on \mathbb{C}^{d}.

Existence and uniqueness of solutions (EU)

For all $\boldsymbol{y} \in \mathcal{U}$ the $P D E$ problem admits an unique solution $u \in \mathcal{V}$, where \mathcal{V} is a suitable finite or infinite dimensional Hilbert or Banach space. In addition

$$
\forall \boldsymbol{y} \in \mathcal{U}, \quad \exists C(\boldsymbol{y})>0 \text { such that }\|u(\boldsymbol{y})\| \mathcal{V} \leq C(\boldsymbol{y})
$$

Some simple consequences:

- The PDE induces a map $u=u(y): \mathcal{U} \rightarrow \mathcal{V}$.
- If $\int_{\mathcal{U}} C(\boldsymbol{y})^{p} \varrho(\boldsymbol{y}) d \boldsymbol{y}<\infty$ then $u \in L_{\varrho}^{p}(\mathcal{U}, \mathcal{V})$.

$$
\left\{\begin{aligned}
-\nabla \cdot(a(x, y) \nabla u(x, \boldsymbol{y})) & =f(x) & & x \in D, y \in \mathcal{U} \\
u(x, \boldsymbol{y}) & =0 & & x \in \partial D, y \in \mathcal{U}
\end{aligned}\right.
$$

Assume $a(x, \boldsymbol{y})$ satisfies ($\mathbf{C C}$) and ($\mathbf{A N}$), and that $f \in L^{2}(D)$, then:

$$
\forall y \in \mathcal{U}, \quad u(\boldsymbol{y}) \in H_{0}^{1}(D) \equiv \mathcal{V} \quad \text { and } \quad\|u(\boldsymbol{y})\| \mathcal{V} \leq \frac{C_{P}}{a_{\min }}\|f\|_{L^{2}(D)}
$$

- Lax-Milgram ensures the existence and uniqueness of solution $u \in L_{\varrho}^{2}(\mathcal{U}, \mathcal{V})$.

Affine and non-affine coefficients:

(1) $a(x, \boldsymbol{y})=a_{0}(x)+\sum_{i=1}^{d} y_{i} \psi_{i}(x)$.
(2) $a(x, \boldsymbol{y})=a_{0}(x)+\left(\sum_{i=1}^{d} y_{i} \psi_{i}(x)\right)^{q}, q \in$.
(3) $a(x, \boldsymbol{y})=a_{0}(x)+\exp \left(\sum_{i=1}^{d} y_{i} \psi_{i}(x)\right)$ (e.g., truncated KL expansion in the log scale).

Remark. In what follows - can be extended to nonlinear elliptic (u^{k}), parabolic, and some hyperbolic PDEs, all defined on unbounded high-dimensional domains.

The parameterized (stochastic) weak form of problem is given by:
Find $u \in L_{\varrho}^{2}\left(\mathcal{U} ; H_{0}^{1}(D)\right)$ such that $\forall v \in L_{\varrho}^{2}\left(\mathcal{U} ; H_{0}^{1}(D)\right)$

$$
\int_{\mathcal{U}} \mathcal{B}[u, v](\boldsymbol{y}) \varrho(\boldsymbol{y}) d \boldsymbol{y}=\int_{\mathcal{U}} F(v) \varrho(\boldsymbol{y}) d \boldsymbol{y}
$$

where

$$
\mathcal{B}[u, v](\boldsymbol{y})=\int_{D} a(x, \boldsymbol{y}) \nabla u(x, \boldsymbol{y}) \cdot \nabla v(x, \boldsymbol{y}) d x
$$

and

$$
F(v)=\int_{D} f(x) v(x, \boldsymbol{y}) d x
$$

- It follows from (CC) that $\mathcal{B}(\boldsymbol{y})$ is a symmetric, uniformly coercive, and continuous bilinear operator on $H_{0}^{1}(D)$ for every $\boldsymbol{y} \in \mathcal{U}$.
- Lax-Milgram ensures the existence and uniqueness of solution $u \in L_{\varrho}^{2}\left(\mathcal{U}, H_{0}^{1}(D)\right)$.

Analyticity of the solution

 COMPITATMONA © ABPIED MATMEMAEICS- Polydisc: $\mathcal{O}_{\rho}=\bigotimes_{i}\left\{z_{i} \in \mathbb{C} ;\left|z_{i}\right| \leq \rho_{i}\right\}$.
- Polyellipse: $\mathcal{E}_{\boldsymbol{\rho}}=\bigotimes_{i}\left\{\frac{z_{i}+z_{i}^{-1}}{2} ; z_{i} \in \mathbb{C},\left|z_{i}\right|=\rho_{i}\right\}$.

Theorem. [Tran, W., Zhang '16]

Assume $a(x, \boldsymbol{y})$ satisfies CC and AN. Then the function $\boldsymbol{z} \mapsto u(\boldsymbol{z})$ is well-defined and analytic in an open neighborhood of some polyellipse \mathcal{E}_{ρ} (or polydisc \mathcal{O}_{ρ}).

Domain of complex uniform ellipticity for some random fields.
Remark. The high-dimensional discontinuous case is analyzed in: [Gunzburger, W., Zhang '14], [Burkardt, Gunzburger, W., Zhang '15 (SINUM), '16 (SIREV)]

There have been many formulations and approaches to solve parameterized deterministic and stochastic PDEs:
(1) Statistical sampling methods:

- Brute-force Monte Carlo (MC): convergence rate independent of the number of random variables, robust, embarrassingly parallel - very slow convergence
- Quasi MC (QMC), Latin Hypercube Sampling (LHS), Lattice Rules, etc.
- Variance reduction techniques: important, conditional and correlated sampling limitations when confronted with large number of RVs
(2) Indirect methods (require closure approx.):
- Moment methods: derive equations for the moments of the quantities of interest not applicable to nonlinear problems or non-Gaussian RVs
- PDEs for PDFs (e.g., Fokker-Planck equations): derive a system of PDEs whose solution approximates the probability distributions / densities - boundary conditions and higher dimensions are challenging
(3) Direct methods: compute an approximate surrogate to $u(x, \boldsymbol{y})$ in a suitable subspace and use this solution to compute the desired statistics, e.g., stochastic Galerkin (projections), stochastic collocation, etc.
- Interval analysis : maximum bounds of output uncertainty - can dramatically overestimated to uncertainties
- Perturbation-based methods : Taylor expansion around a mean solution - can only be used for linear Qols and when the variance in solution is small
- Operator-based methods: compute the inverse of a given operator, if it exists, by using a Neumann series expansion or the weighted integral method - restricted to small magnitude uncertainties and often limited to static problems
- Stochastic polynomial approximations: Taylor, Galerkin projections, interpolation and collocation, discrete least squares, and compressed sensing - challenges include: optimal polynomial subspaces, curse of dimensionality, adaptive and anisotropic refinement, low stochastic regularity and discontinuities, etc.
- Monte Carlo methods: Let $\left\{\boldsymbol{y}_{k} \in \mathcal{U}\right\}_{k=1}^{m}$ denote a set of random sample points

$$
\mathbb{E}[u]=\frac{1}{m} \sum_{k=1}^{m} u\left(\boldsymbol{y}_{k}\right)
$$

- Simple to implement, parallelize, and convergence rate is independent of d.
- Asymptotic rate is $\mathcal{O}(1 / \sqrt{m})$.
- Unable to simultaneously approximate $\boldsymbol{y} \mapsto u(\boldsymbol{y})$.
- Polynomial approximations: Let $\nu=\left(\nu_{1}, \ldots, \nu_{d}\right) \in \Lambda \subset^{d}$ a multi-index set, and Approximate the solution u by:

- Takes advantage of the smoothness and/or the sparsity structure of u.
- Can feature faster convergence than MC
- The evaluation of u_{Λ} requires the computation of c_{ν} (in possibly) high-dimensions.
- Monte Carlo methods: Let $\left\{\boldsymbol{y}_{k} \in \mathcal{U}\right\}_{k=1}^{m}$ denote a set of random sample points

$$
\mathbb{E}[u]=\frac{1}{m} \sum_{k=1}^{m} u\left(\boldsymbol{y}_{k}\right)
$$

- Simple to implement, parallelize, and convergence rate is independent of d.
- Asymptotic rate is $\mathcal{O}(1 / \sqrt{m})$.
- Unable to simultaneously approximate $\boldsymbol{y} \mapsto u(\boldsymbol{y})$.
- Polynomial approximations: Let $\boldsymbol{\nu}=\left(\nu_{1}, \ldots, \nu_{d}\right) \in \Lambda \subset{ }^{d}$ a multi-index set, and Ψ_{ν} be multivariate polynomials in $\mathbb{P}_{\Lambda}(\mathcal{U})=\operatorname{span}\left\{\prod_{i=1}^{d} y_{i}{ }^{\mu_{i}}, \mu_{i} \leq \nu_{i} \forall i\right\}$.
Approximate the solution u by:

$$
u_{\Lambda}(x, \boldsymbol{y})=\sum_{\boldsymbol{\nu} \in \Lambda} c_{\boldsymbol{\nu}}(x) \boldsymbol{\Psi}_{\boldsymbol{\nu}}(\boldsymbol{y}) \in \mathcal{V} \otimes \mathbb{P}_{\Lambda}(\mathcal{U})
$$

- Takes advantage of the smoothness and/or the sparsity structure of u.
- Can feature faster convergence than MC.
- The evaluation of u_{Λ} requires the computation of c_{ν} (in possibly) high-dimensions.

All methods require a further discretization over the physical domain D. Here we rely on the finite element method, though finite differences and finite volume may be used when appropriate. Let

- \mathcal{T}_{h}, triangulation of D
- $u_{h}(\boldsymbol{y}) \in V_{h}(D) \subset H_{0}^{1}(D)$, finite element space
- $\left\{\phi_{i}(x)\right\}_{i=1}^{J_{h}}$, piecewise linear polynomial basis for $V_{h}(D)$ having cardinality J_{h}

Discretization results in the linear system: $\quad \mathbf{A}(\boldsymbol{y}) \boldsymbol{c}(\boldsymbol{y})=\mathbf{F} \quad \forall \boldsymbol{y} \in \mathcal{U}$.

Schröder, Crane, "Caltech:CS177 Discrete Differential Geometry Course Notes" http://brickisland.net/cs177/?p=309 (2011)
(1) Classical approach: Choose a number of realizations, $m \in+$, and let $\left\{\boldsymbol{y}_{k}\right\}_{k=1}^{m}$ be a given sample set of random abscissas
(2) For each $k=1, \ldots, m$ sample iid realizations of the diffusion $a\left(\boldsymbol{y}_{k}, x\right)$, the load $f\left(\boldsymbol{y}_{k}, x\right)$ and find a FEM approximation $u_{h}\left(\boldsymbol{y}_{k}, \cdot\right) \in W_{h}(D)$ s.t.

If desired evaluate the Qol $Q\left(u_{h}\left(\boldsymbol{y}_{k}, \cdot\right)\right)$

- Approximate statistics, e.g. expectations $\mathbb{T}\left[u_{h}\right](x)$, by sample averages:

Goal: Compute, with high probability, sample statistics, e.g.

$$
\left\|\mathbb{P}\left[u_{h}\right]-\mathscr{C}\left(u_{h} ; m\right)\right\| \leq \mathbf{T O L}
$$

(1) Classical approach: Choose a number of realizations, $m \in+$, and let $\left\{\boldsymbol{y}_{k}\right\}_{k=1}^{m}$ be a given sample set of random abscissas
(2) For each $k=1, \ldots, m$ sample iid realizations of the diffusion $a\left(\boldsymbol{y}_{k}, x\right)$, the load $f\left(\boldsymbol{y}_{k}, x\right)$ and find a FEM approximation $u_{h}\left(\boldsymbol{y}_{k}, \cdot\right) \in W_{h}(D)$ s.t.

$$
\left\{\begin{aligned}
-\nabla \cdot\left(a\left(\boldsymbol{y}_{k}, \cdot\right) \nabla u_{h}\left(\boldsymbol{y}_{k}, \cdot\right)\right) & =f\left(\boldsymbol{y}_{k}, \cdot\right), & & \text { in } D \\
u_{h}\left(\boldsymbol{y}_{k}, \cdot\right)= & 0, & & \text { on } \partial D
\end{aligned}\right.
$$

If desired evaluate the Qol $Q\left(u_{h}\left(\boldsymbol{y}_{k}, \cdot\right)\right)$
(3) Approximate statistics, e.g. expectations $\mathbb{E}\left[u_{h}\right](x)$, by sample averages:

Goal: Compute, with high probability, sample statistics, e.g.

$$
\left\|\mathbb{E}\left[u_{h}\right]-\mathscr{B}\left(u_{h} ; m\right)\right\| \leq \operatorname{TOL}
$$

(1) Classical approach: Choose a number of realizations, $m \in+$, and let $\left\{\boldsymbol{y}_{k}\right\}_{k=1}^{m}$ be a given sample set of random abscissas
(2) For each $k=1, \ldots, m$ sample iid realizations of the diffusion $a\left(\boldsymbol{y}_{k}, x\right)$, the load $f\left(\boldsymbol{y}_{k}, x\right)$ and find a FEM approximation $u_{h}\left(\boldsymbol{y}_{k}, \cdot\right) \in W_{h}(D)$ s.t.

$$
\left\{\begin{aligned}
-\nabla \cdot\left(a\left(\boldsymbol{y}_{k}, \cdot\right) \nabla u_{h}\left(\boldsymbol{y}_{k}, \cdot\right)\right) & =f\left(\boldsymbol{y}_{k}, \cdot\right), & & \text { in } D \\
u_{h}\left(\boldsymbol{y}_{k}, \cdot\right)= & 0, & & \text { on } \partial D
\end{aligned}\right.
$$

If desired evaluate the Qol $Q\left(u_{h}\left(\boldsymbol{y}_{k}, \cdot\right)\right)$
(3) Approximate statistics, e.g. expectations $\mathbb{E}\left[u_{h}\right](x)$, by sample averages:

$$
\mathbb{E}\left[u_{h}(\boldsymbol{y})\right](x) \approx \frac{1}{m} \sum_{k=1}^{m} u_{h}\left(\boldsymbol{y}_{k}\right) \rho\left(\boldsymbol{y}_{k}\right):=\mathscr{E}\left(u_{h} ; m\right), \quad \boldsymbol{y}_{k} \in \mathcal{U}
$$

Goal: Compute, with high probability, sample statistics, e.g.

$$
\left\|\mathbb{E}\left[u_{h}\right]-\mathscr{E}\left(u_{h} ; m\right)\right\| \leq \mathrm{TOL}
$$

(1) Classical approach: Choose a number of realizations, $m \in+$, and let $\left\{\boldsymbol{y}_{k}\right\}_{k=1}^{m}$ be a given sample set of random abscissas
(2) For each $k=1, \ldots, m$ sample iid realizations of the diffusion $a\left(\boldsymbol{y}_{k}, x\right)$, the load $f\left(\boldsymbol{y}_{k}, x\right)$ and find a FEM approximation $u_{h}\left(\boldsymbol{y}_{k}, \cdot\right) \in W_{h}(D)$ s.t.

$$
\left\{\begin{array}{rlrl}
-\nabla \cdot\left(a\left(\boldsymbol{y}_{k}, \cdot\right) \nabla u_{h}\left(\boldsymbol{y}_{k}, \cdot\right)\right) & = & f\left(\boldsymbol{y}_{k}, \cdot\right), & \\
\text { in } D \\
u_{h}\left(\boldsymbol{y}_{k}, \cdot\right)= & 0, & & \text { on } \partial D
\end{array}\right.
$$

If desired evaluate the Qol $Q\left(u_{h}\left(\boldsymbol{y}_{k}, \cdot\right)\right)$
(3) Approximate statistics, e.g. expectations $\mathbb{E}\left[u_{h}\right](x)$, by sample averages:

$$
\mathbb{E}\left[u_{h}(\boldsymbol{y})\right](x) \approx \frac{1}{m} \sum_{k=1}^{m} u_{h}\left(\boldsymbol{y}_{k}\right) \rho\left(\boldsymbol{y}_{k}\right):=\mathscr{E}\left(u_{h} ; m\right), \quad \boldsymbol{y}_{k} \in \mathcal{U}
$$

Goal: Compute, with high probability, sample statistics, e.g.

$$
\left\|\mathbb{E}\left[u_{h}\right]-\mathscr{E}\left(u_{h} ; m\right)\right\| \leq \mathrm{TOL}
$$

$$
\mathbb{E}[u]-\mathscr{E}\left(u_{h} ; m\right)=\underbrace{\left(\mathbb{E}\left[u-u_{h}\right]\right)}_{\text {Spatial Discret. }}+\underbrace{\left(\mathbb{E}\left[u_{h}\right]-\frac{1}{m} \sum_{k=1} u_{h}\left(y_{k}\right) \rho\left(y_{k}\right)\right)}_{\text {Statistical Error }}
$$

- Spatial discretization error:

$$
\left\|\mathbb{E}\left[u-u_{h}\right]\right\|_{L^{2}(D)}+h\left\|\mathbb{E}\left[u-u_{h}\right]\right\|_{H_{0}^{1}(D)} \leq C h^{2} \sqrt{\mathbb{E}\left[\|f\|_{L^{2}(D)}^{2}\right]}
$$

- Statistical Error: Within confidence level $\alpha \in(0,1), \exists \delta(\alpha)>0$ s.t.

for all $\beta \in(0,1 / 2)$ with $M_{n}=2^{d}$

$$
\mathbb{E}[u]-\mathscr{E}\left(u_{h} ; m\right)=\underbrace{\left(\mathbb{E}\left[u-u_{h}\right]\right)}_{\text {Spatial Discret. }}+\underbrace{\left(\mathbb{E}\left[u_{h}\right]-\frac{1}{m} \sum_{k=1}^{m} u_{h}\left(\boldsymbol{y}_{k}\right) \rho\left(\boldsymbol{y}_{k}\right)\right)}_{\text {Statistical Error }}
$$

- Spatial discretization error:

$$
\left\|\mathbb{E}\left[u-u_{h}\right]\right\|_{L^{2}(D)}+h\left\|\mathbb{E}\left[u-u_{h}\right]\right\|_{H_{0}^{1}(D)} \leq C h^{2} \sqrt{\mathbb{E}\left[\|f\|_{L^{2}(D)}^{2}\right]}
$$

- Statistical Error: Within confidence level $\alpha \in(0,1), \exists \delta(\alpha)>0$ s.t.

$$
\begin{gathered}
\mathbb{P}\left[\left\|\mathbb{E}\left[u_{h}\right]-\frac{1}{m} \sum_{k=1}^{m} u_{h}\left(\boldsymbol{y}_{k}\right) \rho\left(\boldsymbol{y}_{k}\right)\right\|_{H_{0}^{1}(D)} \leq \delta \frac{C_{u}}{\sqrt{m}}\right] \geq \alpha \\
\left(M_{n}\right)^{\beta}\left\|\mathbb{E}\left[u_{h}\right]-\mathscr{E}\left(u_{h} ; m\right)\right\|_{H_{0}^{1}(D)} \rightarrow 0, n \rightarrow \infty \text { a.s. }
\end{gathered}
$$

for all $\beta \in(0,1 / 2)$ with $M_{n}=2^{d}$

Other sampling-based methods

Let $\left\{\boldsymbol{y}_{k}\right\}_{k=1}^{m}$ be iid samples. Approximate expectations of Qols by sample averages:

$$
\mathbb{E}[Q(u(\boldsymbol{y}))] \approx \frac{1}{m} \sum_{k=1}^{m} Q\left(u\left(\boldsymbol{y}_{k}\right)\right) \varrho\left(\boldsymbol{y}_{k}\right), \quad \boldsymbol{y}_{k} \in \mathcal{U}
$$

(1) Monte Carlo methods: $\varepsilon(m) \approx \mathcal{O}\left(m^{-1 / 2}\right)$ abscissas are (pseudo) random numbers
abscissas are low discrepancy sequences
abscissas are chosen to ensure "good" spacing in each 1-D component
abscissas are "good" lattice points

Let $\left\{\boldsymbol{y}_{k}\right\}_{k=1}^{m}$ be iid samples. Approximate expectations of Qols by sample averages:

$$
\mathbb{E}[Q(u(\boldsymbol{y}))] \approx \frac{1}{m} \sum_{k=1}^{m} Q\left(u\left(\boldsymbol{y}_{k}\right)\right) \varrho\left(\boldsymbol{y}_{k}\right), \quad \boldsymbol{y}_{k} \in \mathcal{U}
$$

(1) Monte Carlo methods: $\varepsilon(m) \approx \mathcal{O}\left(m^{-1 / 2}\right)$ abscissas are (pseudo) random numbers
(2) Quasi-Monte Carlo methods: $\varepsilon(m) \approx \mathcal{O}\left(m^{-1}(\log (m))^{d}\right)$ abscissas are low discrepancy sequences
(3) Latin Hypercube Sampling: $\varepsilon(m) \approx \mathcal{O}\left(m^{-1}(\log (m))^{d}\right)$
abscissas are chosen to ensure "good" spacing in each 1-D component

($)$ Lattice rules: $\varepsilon(m) \approx O\left(m^{-1}(\log \right.$ abscissas are "good" lattice points

Let $\left\{\boldsymbol{y}_{k}\right\}_{k=1}^{m}$ be iid samples. Approximate expectations of Qols by sample averages:

$$
\mathbb{E}[Q(u(\boldsymbol{y}))] \approx \frac{1}{m} \sum_{k=1}^{m} Q\left(u\left(\boldsymbol{y}_{k}\right)\right) \varrho\left(\boldsymbol{y}_{k}\right), \quad \boldsymbol{y}_{k} \in \mathcal{U}
$$

(1) Monte Carlo methods: $\varepsilon(m) \approx \mathcal{O}\left(m^{-1 / 2}\right)$ abscissas are (pseudo) random numbers
(2) Quasi-Monte Carlo methods: $\varepsilon(m) \approx \mathcal{O}\left(m^{-1}(\log (m))^{d}\right)$ abscissas are low discrepancy sequences
(3) Latin Hypercube Sampling: $\varepsilon(m) \approx \mathcal{O}\left(m^{-1}(\log (m))^{d}\right)$ abscissas are chosen to ensure "good" spacing in each 1-D component
abscissas are "good" lattice points

Let $\left\{\boldsymbol{y}_{k}\right\}_{k=1}^{m}$ be iid samples. Approximate expectations of Qols by sample averages:

$$
\mathbb{E}[Q(u(\boldsymbol{y}))] \approx \frac{1}{m} \sum_{k=1}^{m} Q\left(u\left(\boldsymbol{y}_{k}\right)\right) \varrho\left(\boldsymbol{y}_{k}\right), \quad \boldsymbol{y}_{k} \in \mathcal{U}
$$

(1) Monte Carlo methods: $\varepsilon(m) \approx \mathcal{O}\left(m^{-1 / 2}\right)$ abscissas are (pseudo) random numbers
(2) Quasi-Monte Carlo methods: $\varepsilon(m) \approx \mathcal{O}\left(m^{-1}(\log (m))^{d}\right)$ abscissas are low discrepancy sequences
(3) Latin Hypercube Sampling: $\varepsilon(m) \approx \mathcal{O}\left(m^{-1}(\log (m))^{d}\right)$ abscissas are chosen to ensure "good" spacing in each 1-D component
(4) Lattice rules: $\varepsilon(m) \approx \mathcal{O}\left(m^{-1}(\log (m))^{(d+1) / 2}\right)$ abscissas are "good" lattice points

Let $\left\{\boldsymbol{y}_{k}\right\}_{k=1}^{m}$ be iid samples. Approximate expectations of Qols by sample averages:

$$
\mathbb{E}[Q(u(\boldsymbol{y}))] \approx \frac{1}{m} \sum_{k=1}^{m} Q\left(u\left(\boldsymbol{y}_{k}\right)\right) \varrho\left(\boldsymbol{y}_{k}\right), \quad \boldsymbol{y}_{k} \in \mathcal{U}
$$

(1) Monte Carlo methods: $\varepsilon(m) \approx \mathcal{O}\left(m^{-1 / 2}\right)$ abscissas are (pseudo) random numbers
(2) Quasi-Monte Carlo methods: $\varepsilon(m) \approx \mathcal{O}\left(m^{-1}(\log (m))^{d}\right)$ abscissas are low discrepancy sequences
(3) Latin Hypercube Sampling: $\varepsilon(m) \approx \mathcal{O}\left(m^{-1}(\log (m))^{d}\right)$ abscissas are chosen to ensure "good" spacing in each 1-D component
(4) Lattice rules: $\varepsilon(m) \approx \mathcal{O}\left(m^{-1}(\log (m))^{(d+1) / 2}\right)$ abscissas are "good" lattice points

Pros: Allow for reusability of deterministic codes and the convergence rate is independent of the regularity of $u(\boldsymbol{y})$ (and dimension with MC methods)

Let $\left\{\boldsymbol{y}_{k}\right\}_{k=1}^{m}$ be iid samples．Approximate expectations of Qols by sample averages：

$$
\mathbb{E}[Q(u(\boldsymbol{y}))] \approx \frac{1}{m} \sum_{k=1}^{m} Q\left(u\left(\boldsymbol{y}_{k}\right)\right) \varrho\left(\boldsymbol{y}_{k}\right), \quad \boldsymbol{y}_{k} \in \mathcal{U}
$$

（1）Monte Carlo methods：$\varepsilon(m) \approx \mathcal{O}\left(m^{-1 / 2}\right)$ abscissas are（pseudo）random numbers
（2）Quasi－Monte Carlo methods：$\varepsilon(m) \approx \mathcal{O}\left(m^{-1}(\log (m))^{d}\right)$ abscissas are low discrepancy sequences
（3 Latin Hypercube Sampling：$\varepsilon(m) \approx \mathcal{O}\left(m^{-1}(\log (m))^{d}\right)$ abscissas are chosen to ensure＂good＂spacing in each 1－D component
（－Lattice rules：$\varepsilon(m) \approx \mathcal{O}\left(m^{-1}(\log (m))^{(d+1) / 2}\right)$ abscissas are＂good＂lattice points

Cons：The sampling methods do not yield fully discrete approximations and slow convergence rates do not exploit the possible regularity of the functional

- Assume a is an exponential Karhunen-Loève expansion and f deterministic:

$$
a(x, \boldsymbol{y})=a_{\min }+\exp \left[b_{0}(x)+\sum_{n=1}^{d} b_{n}(x) y_{n}\right]
$$

- \mathcal{U}_{n} bounded: $\mathcal{U}_{n}=\left[y_{n}^{\min }, y_{n}^{\max }\right]$

The analyticity region is given by:

$$
\begin{aligned}
\mathcal{E}\left(\mathcal{U}_{n} ; \rho_{n}\right) & =\left\{z \in \mathbb{C}:|\operatorname{Im}(z)| \leq \rho_{n}\right\}, \\
\rho_{n} & =\frac{1}{4 \sqrt{\lambda_{n}}\left\|b_{n}\right\|_{L^{\infty}(D)}}
\end{aligned}
$$

- Approximate by Chebyshev/Legendre polynomials in y_{n} yields exponential convergence: error $\leq C e^{-g_{n} p}$

$$
0<g_{n}=\log \left[\frac{2 \rho_{n}}{\left|\mathcal{U}_{n}\right|}+\sqrt{1+\frac{4 \rho_{n}^{2}}{\left|\mathcal{U}_{n}\right|^{2}}}\right]
$$

- Anisotropic behavior with respect to the "direction" n
- Similar results for unbounded RVs and various random expansions
- The analyticity of the solution $u(\boldsymbol{y})$ w.r.t. each random direction y_{n} suggests the use of multivariate polynomial approximation.
what is the correct polynomial approximation subspace?
- The solution must be approximated w.r.t. all RV's $y_{1}, \ldots, y_{d} \Rightarrow$ possibly high-dimensional problem!
how do we compute numerical approximations within those subspaces?
- The numerical method must convergence using as few d.o.f.'s as possible what is the resulting complexity of my polynomial approximation?

Curse of dimensionality: (Isotropic) TP's of degree p in d dimensions

- The analyticity of the solution $u(\boldsymbol{y})$ w.r.t. each random direction y_{n} suggests the use of multivariate polynomial approximation.
what is the correct polynomial approximation subspace?
- The solution must be approximated w.r.t. all RV's $y_{1}, \ldots, y_{d} \Rightarrow$ possibly high-dimensional problem!
how do we compute numerical approximations within those subspaces?
- The numerical method must convergence using as few d.o.f.'s as possible what is the resulting complexity of my polynomial approximation?

Curse of dimensionality: (Isotropic) TP's of degree p in d dimensions

$$
\begin{array}{ccc}
\text { error } \leq C e^{-g p}, & & \text { \#d.o.f. } M=(p+1)^{d} \\
\text { error } \leq C e^{-g m^{\frac{1}{d}}} & \mathbb{\Downarrow} & \text { Impractical in higher dimensions }
\end{array}
$$

(1) Taylor approximations: [Cohen et. al. '10, '11; Tran, W., Zhang '14, '15]

- $\Psi_{\nu}(\boldsymbol{y})=\boldsymbol{y}^{\boldsymbol{\nu}} \quad$ and $\quad c_{\nu}=\frac{1}{\nu!} \partial^{\boldsymbol{\nu}} u(\mathbf{0})$ can be computed recursively.
- useful when ψ_{i} have non-overlapping supports (affine "inclusion problems")
(2) Galerkin projection methods: [Wiener '38, Ghanem, Spanos '99; Xiu, Karniadakis '02; Babuška et. al. '02; Todor, Schwab '03; Tran, W., Zhang '14; Dexter, W. '15]
- $\left\{\boldsymbol{\Psi}_{\nu}\right\}$ is a multivariate orthonormal polynomial basis in \boldsymbol{y}, e.g., Legendre polynomials, Hermite polynomials, etc.
- u_{Λ} is the L_{ϱ}^{2} projection of u on $\mathbb{P}_{\Lambda}(\mathcal{U})$, with $\operatorname{dim}\left(\mathbb{P}_{\Lambda}\right)=\#(\Lambda) \equiv N$.
- Couples the parametric and physical degrees of freedom.
(3) Interpolation methods: [Smolyak, '63; Griebel et. al '99,'04; Nobile, Tempone, W. '08a, b; Jantsch, W., Zhang '13, '15; Gunzburger, Jantsch, Teckentrup, W., '15]
- Given $m \geq \#(\Lambda)$ evaluations $\left\{u\left(\boldsymbol{y}_{k}\right)\right\}_{k=1}^{m}$, and $\left\{\boldsymbol{\Psi}_{\nu}\right\}$ a Lagrange basis.
- u_{Λ} is the interpolant of u over an associated grid (structured vs. unstructured).
- Non-intrusive, sample-based approaches. Allow the use of legacy code.
- May be unstable if the interpolation nodes are poorly chosen (i.e., $m \gg \#(\Lambda)$).

Multivariate polynomial approximations continued.

 COMPITATONAE \& APFIEO MATMEMAEICS(4) Discrete least squares: [Cohen et. al. '13; Migliorati et. al. '13, Narayan et. al. '13; Zhou et. al. '14; Chkifa et. al. '15]

- Given m evaluations $\left\{u\left(\boldsymbol{y}_{k}\right)\right\}_{k=1}^{m}$, find $\left(c_{\boldsymbol{\nu}}\right)_{\boldsymbol{\nu} \in \Lambda}$ by minimizing

$$
\sum_{k=1}^{m}\left\|u\left(\boldsymbol{y}_{k}\right)-u_{\Lambda}\left(\boldsymbol{y}_{k}\right)\right\|_{\mathcal{V}, \ell^{2}}^{2} .
$$

- Mitigate Runge's phenomenon.
- Reconstruct statistics of u, and stability of the design matrix requires $m \gg \#(\Lambda)$.
(5) Compressed sensing: [Doostan, Owhadi '11; Mathelin, Gallivan '12; Yang, Karniadakis '13; Rauhut, Schwab '14; Adcock '15, '16; Chkifa, Dexter, Tran, W. '15]
- Given an enriched set Λ_{0}, and $m \ll \#\left(\Lambda_{0}\right)$ evaluations $\left\{u\left(\boldsymbol{y}_{k}\right)\right\}_{k=1}^{m}$, find $\left(c_{\boldsymbol{\nu}}\right)_{\boldsymbol{\nu} \in \Lambda_{0}}$ by solving the following minimization problem:

$$
\operatorname{argmin}\left\|\hat{c}_{\boldsymbol{\nu}}\right\|_{\mathcal{V}, \ell^{1}\left(\Lambda_{0}\right)}, \text { subject to } u\left(\boldsymbol{y}_{k}\right)=\sum_{\boldsymbol{\nu} \in \Lambda_{0}} \hat{c}_{\boldsymbol{\nu}}(x) \boldsymbol{\Psi}_{\boldsymbol{\nu}}\left(\boldsymbol{y}_{k}\right) .
$$

- Number of samples to recover the best s-term scales linearly in s (up to log factors).
- ℓ^{1} minimization may be impractical in high dimensional problems.
- The efficiency of polynomial approximations depends on the selection of Λ.
- Standard approaches: impose index sets Λ a priori. The cardinality of the polynomial space $\mathbb{P}_{\Lambda}(\mathcal{U})$ can grow quickly with respect to the dimension d.
- Some most common choices of index sets Λ

Tensor Product
$\Lambda(w)=\left\{\nu \in \mathbf{N}^{N}: \max _{1<i<N} \nu_{i} \leq w\right\}$

Total Degree
$\Lambda(w)=\left\{\nu \in \mathbf{N}^{N}: \sum \nu_{i} \leq w\right\}$

Hyperbolic Cross
$\Lambda(w)=\left\{\nu \in \mathbf{N}^{N}: \prod\left(\nu_{i}+1\right) \leq w+1\right\}$

Smolyak $\Lambda(w)=\left\{\nu \in \mathbf{N}^{N}: \sum_{\text {with }} f\left(\nu_{i}\right) \leq f(w)\right\}, ~$ with $f(\nu)=\left\lceil\log _{2}(\nu)\right\rceil, \nu \geq 2$.

- Ideally, the "optimal" $\Lambda \subset \mathbb{N}^{d}$ has minimal cardinality and enables the approximation of $\boldsymbol{y} \mapsto u(\boldsymbol{y})$ (in high dimensions) with maximum accuracy for a given given computational cost.
- The efficiency of polynomial approximations depends on the selection of Λ.
- Standard approaches: impose index sets Λ a priori. The cardinality of the polynomial space $\mathbb{P}_{\Lambda}(\mathcal{U})$ can grow quickly with respect to the dimension d.
- Some most common choices of index sets Λ

Tensor Product
$\Lambda(w)=\left\{\nu \in \mathbf{N}^{N}: \max _{1<i<N} \nu_{i} \leq w\right\}$

Total Degree
$\Lambda(w)=\left\{\nu \in \mathbf{N}^{N}: \sum \nu_{i} \leq w\right\}$

Hyperbolic Cross
$\Lambda(w)=\left\{\nu \in \mathbf{N}^{N}: \prod\left(\nu_{i}+1\right) \leq w+1\right\}$

Smolyak $\Lambda(w)=\left\{\nu \in \mathbf{N}^{N}: \sum_{\text {with }} f\left(\nu_{i}\right) \leq f(w)\right\}, ~$ with $f(\nu)=\left\lceil\log _{2}(\nu)\right\rceil, \nu \geq 2$.

- Ideally, the "optimal" $\Lambda \subset \mathbb{N}^{d}$ has minimal cardinality and enables the approximation of $\boldsymbol{y} \mapsto u(\boldsymbol{y})$ (in high dimensions) with maximum accuracy for a given given computational cost.

A priori selection of polynomial spaces

Several choices for polynomial multi-index $\boldsymbol{\nu} \in \Lambda_{p}$:

- Tensor products (TP): $\max _{n} \quad p_{n} \leq p$ (Intractable for large d),
- Total degree (TD): $\sum_{n=1}^{d} \quad p_{n} \leq p$,
- Hyperbolic cross (HC): $\prod_{n=1}^{d}\left(p_{n}+1\right) \leq p+1$,
- Smolyak method (SM): $\sum_{n=1}^{d} \quad f\left(p_{n}\right) \leq f(p)$ with $\quad f(p)=\left\{\begin{array}{l}0, p=0 \\ 1, p=1 \\ \Gamma \log _{2}(p) 7, p \geq 2\end{array}\right.$

Anisotropic: introduce weight vector $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{R}_{+}^{d}$, with $\alpha_{\text {min }}=1$

TD: $\sum_{n} p_{n} \leq p$

$\mathrm{HC}: \prod_{n}\left(p_{n}+1\right) \leq(p+1)$

TD, HC \& SM all reduce the curse of dimensionality w.r.t. TP methods.

A priori selection of polynomial spaces

Several choices for polynomial multi-index $\boldsymbol{\nu} \in \Lambda_{p}$:

- Tensor products (TP): $\max _{n} \alpha_{n} p_{n} \leq p$ (Intractable for large d),
- Total degree (TD): $\sum_{n=1}^{d} \alpha_{n} p_{n} \leq p$,
- Hyperbolic cross (HC): $\prod_{n=1}^{d}\left(p_{n}+1\right)^{\alpha_{n}} \leq p+1$,
- Smolyak method (SM): $\sum_{n=1}^{d} \alpha_{n} f\left(p_{n}\right) \leq f(p)$ with $\quad f(p)=\left\{\begin{array}{l}0, p=0 \\ 1, p=1 \\ \left.\Gamma \log _{2}(p)\right\rceil, p \geq 2\end{array}\right.$

Anisotropic: introduce weight vector $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{R}_{+}^{d}$, with $\alpha_{\text {min }}=1$

$$
\text { ATD: } \sum_{n} \alpha_{n} p_{n} \leq p
$$

AHC: $\prod_{n}\left(p_{n}+1\right)^{\alpha n} \leq p+1$

TD, HC \& SM all reduce the curse of dimensionality w.r.t. TP methods.

Example: $d=2$ with monomial basis
 TD space vs. TP space

 COMPUTATMONA \& APFIED MATMEMAHICS4th order accurate TD space compared with the TP space:

Monomials up to 4th degree. Those below the line are the useless monomials we capture (using tensor products) and are not needed (and not possible) in higher dimensions - they don't add the asymptotic accuracy and the cost increases exponential as the dimensions increase.

```
Example: \(d=2\) with monomial basis
TD space vs. TP space
``` COMPITATMONA \& APFIED MATMEMAHICS

4th order accurate TD space compared with the TP space:

Monomials up to 4th degree. Those below the line are the useless monomials we capture (using tensor products) and are not needed (and not possible) in higher dimensions - they don't add the asymptotic accuracy and the cost increases exponential as the dimensions increase.
\[
m=\operatorname{dim}\left[\mathbb{P}_{\Lambda_{p}}(\mathcal{U})\right] \Longrightarrow m_{\mathrm{TD}}=\frac{(d+p)!}{d!p!} \ll m_{\mathrm{TP}}=(p+1)^{d}
\]
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\begin{tabular}{l}
\[
p=
\] \\
maximal degree of polynomials
\end{tabular}} & \multicolumn{2}{|l|}{\(m=\) total \# of probabilistic degrees of freedom} \\
\hline & & using total degree basis & using tensor product basis \\
\hline \multirow[t]{2}{*}{3} & 3 & 20 & 64 \\
\hline & 5 & 56 & 216 \\
\hline \multirow[t]{2}{*}{5} & 3 & 56 & 1, 024 \\
\hline & 5 & 252 & 7, 776 \\
\hline \multirow[t]{2}{*}{10} & 3 & 286 & 1,048,576 \\
\hline & 5 & 3, 003 & 60, 046,176 \\
\hline \multirow[t]{2}{*}{20} & 3 & 1,771 & \(>1 \times 10^{12}\) \\
\hline & 5 & 53,130 & \(>3 \times 10^{15}\) \\
\hline \multirow[t]{2}{*}{100} & 3 & 176,851 & \(>1 \times 10^{60}\) \\
\hline & 5 & 96, 560, 646 & \(>6 \times 10^{77}\) \\
\hline
\end{tabular}
- tensor products become computational infeasible in higher dimensions CDMNTATMNM, A AEAER MATMEMATICS

\section*{Stochastic finite element methods (SFEMs)}

Direct (spectral) methods

Sampling-based methods
- methods for which spatial discretization is effected using finite element methods (FEMs) \({ }^{\dagger}\)
- Stochastic sampling methods (SSMs): random samples in \(\mathcal{U}\) of PDE inputs are used to compute ensemble averages of statistical Qols, e.g. MCFEM - non-intrusive

\section*{Stochastic polynomial approximation}
(1) Stochastic Galerkin methods (SGMs):
probabilistic discretization is also effected by a spectral Galerkin projection onto, e.g., an \(L_{\rho}^{2}\)-orthogonal basis (Wiener or polynomial chaos) - fully intrusive
(2) Stochastic Collocation methods (SCMs):
probabilistic discretization is effected by collocating the FE solution on a particular set of of points and then connect the realizations with suitable interpolatory basis (Lagrangian) - non-intrusive

\title{
Stochastic Galerkin FEM (SGFEM)
}

Motivation: The \(L_{\varrho}^{2}\)-orthogonal basis was originally proposed to approximate white noise processes with Gaussian measure [Wiener, 1938].
- the univariate Hermite polynomials \(H(y)\) serve as the foundation for the construction of the multi-dimensional Hermite polynomials - orthogonal with respect to the Gaussian measure

The PDF of a Gaussian RV is \(\varrho(y)=\frac{1}{\sqrt{2 \pi}} e^{\frac{-y^{2}}{2}}\)
(\(d=2, p=5\)) Hermite polynomials

\(H_{(0,1)}, H_{(1,0)}\)

\(H_{(1,2)}, H_{(2,1)}\)

\(H_{(0,5)}, H_{(5,0)}\)

\(H_{(0,4)}, H_{(4,0)}\)

\(H_{(1,4)}, H_{(4,1)}\)

\(H_{(1,3)}, H_{(3,1)}\)

\(H_{(2,3)}, H_{(3,2)}\)

\section*{The Askey scheme} COMNTATMNA A APFLEO MATMEMATICS
Classification of hypergeometric orthogonal polynomials

\section*{The Askey scheme} COMPUTATMMA \& APMEO MATMEMAEICS
\begin{tabular}{|cclc|}
\hline Distribution & Density function & Polynomial & Support \\
\hline \hline Normal & \(\frac{1}{\sqrt{2 \pi} e^{-y^{2}}}\) & Hermite \(H_{n}(y)\) & {\([-\infty, \infty]\)} \\
\hline Uniform & \(\frac{1}{2}\) & Legendre \(P_{n}(y)\) & {\([-1,1]\)} \\
\hline Beta & \(\frac{1-y)}{2^{\alpha+\beta+1}(1+y)^{\beta}}\) & \(e^{(\alpha+1, \beta+1)}\) & Jacobi \(P_{n}^{(\alpha, \beta)}(y)\) \\
\hline Exponential & \(e^{-y}\) & Laguerre \(L_{n}(y)\) & {\([-1,1]\)} \\
\hline Gamma & \(\frac{y^{\alpha} e^{-y}}{\Gamma(\alpha+1)}\) & Generalized Laguerre \(L_{n}^{(\alpha)}(y)\) & {\([0, \infty]\)} \\
\hline \hline
\end{tabular}

Let \(\left\{\Psi_{\boldsymbol{p}}\right\}_{\boldsymbol{p} \in \Lambda_{p}}\) be a global orthonormal basis w.r.t. \(\varrho\), then the Galerkin projection onto \(\operatorname{span}\left\{\Psi_{\boldsymbol{p}}\right\}_{\boldsymbol{p} \in \Lambda_{p}}\) yields the coupled system of equations:
\[
\sum_{\boldsymbol{q} \in \Lambda_{p}} \underbrace{\left\langle\Psi_{\boldsymbol{p}}(\boldsymbol{y}) \mathbf{A}(\boldsymbol{y}) \Psi_{\boldsymbol{q}}(\boldsymbol{y})\right\rangle_{\varrho}}_{=: \mathbf{K}_{\boldsymbol{p}, \boldsymbol{q}} \in \mathbb{R}^{J_{h} \times J_{h}}} \boldsymbol{c}_{\boldsymbol{q}}=\underbrace{\left\langle\mathbf{F}, \Psi_{\boldsymbol{p}}(\boldsymbol{y})\right\rangle_{\varrho}}_{=: \mathbf{F} \delta_{\mathbf{0}, \boldsymbol{p}} \in \mathbb{R}^{J_{h}}} \quad \forall \boldsymbol{p} \in \Lambda_{p}
\]
- Too large to store and solve directly, \(\mathbf{K} \in \mathbb{R}^{N_{p} J_{h} \times N_{p} J_{h}}\) for \(N_{p}=\#\left(\Lambda_{p}\right)\)
- Number of nonzero blocks \(\mathbf{K}_{\boldsymbol{p}, \boldsymbol{q}}\) depends on \(a(x, \boldsymbol{y})\), can be fully block-dense
- Computing the entries of \(\mathbf{K}\) may require computing a \(d \times n\) dimensional integral

Convergence is sub-exponential w.r.t. to the stochastic discretization.
Proposition (spectral convergence). [Todor, Schwab '07] When the map \(\boldsymbol{z} \mapsto u(\boldsymbol{z})\) is analytic, and \(\Lambda_{p}\) total degree then:
\[
\left\|u-u_{\Lambda_{p}}\right\|_{L_{\varrho}^{\infty}\left(\mathcal{U} ; H_{0}^{1}(D)\right)} \leq C_{1} \exp \left(-C_{2} p\right) \quad \forall p \in \mathbb{N}
\]
for some constants \(C_{1}, C_{2}>0\) depending only on \(a, f, d\).

When \(a(x, \boldsymbol{y})\) is not affine it is advantageous to approximate, i.e.,
\[
a^{r}(x, \boldsymbol{y}):=\sum_{k \in \Lambda_{r}} a_{k}(x) \Psi_{k}(\boldsymbol{y}) \rightarrow a(x, \boldsymbol{y}) \quad \text { sub-exponentially as } r \rightarrow \infty
\]

Substituting \(a^{r}(x, \boldsymbol{y})\) into the Galerkin equations for \(a(x, \boldsymbol{y})\) we obtain
\[
\sum_{\boldsymbol{q} \in \Lambda_{p}}\left[\mathbf{K}_{r}\right]_{\boldsymbol{p}, \boldsymbol{q}} \boldsymbol{c}_{\boldsymbol{q}}^{r}=\mathbf{F} \delta_{\mathbf{0}, \boldsymbol{p}} \quad \forall \boldsymbol{p} \in \Lambda_{p}
\]
where \(\quad \mathbf{K}_{r}=\sum_{\boldsymbol{k} \in \Lambda_{r}} \mathbf{G}_{\boldsymbol{k}} \otimes \mathbf{A}_{\boldsymbol{k}}\) has Kronecker product structure, and
\[
\left[\mathbf{G}_{\boldsymbol{k}}\right]_{\boldsymbol{p}, \boldsymbol{q}}=\left\langle\Psi_{\boldsymbol{k}} \Psi_{\boldsymbol{p}} \Psi_{\boldsymbol{q}}\right\rangle_{\varrho} \quad \text { and } \quad\left[\mathbf{A}_{\boldsymbol{k}}\right]_{i, j}=\int_{D} a_{\boldsymbol{k}}(x) \nabla \phi_{j}(x) \cdot \nabla \phi_{i}(x) d x
\]
- \(\mathbf{K}_{r}\) approximates the full Galerkin system \(\mathbf{K}\) when \(a(x, \boldsymbol{y}) \notin \mathcal{P}_{\Lambda_{r}}(\mathcal{U})\)
- Letting \(r=2 p\) yields \(\mathbf{K}_{r}=\mathbf{K}\) due to orthogonality of \(\left\{\Psi_{\boldsymbol{p}}\right\}\) [Matthies, Keese '05]
- Only need to store \(\left\{\mathbf{G}_{\boldsymbol{k}}\right\} \in \mathbb{R}^{N_{p} \times N_{p}}\) and \(\left\{\mathbf{A}_{\boldsymbol{k}}\right\} \in \mathbb{R}^{J_{h} \times J_{h}}\)
- Allows control over the cost of solving by varying \(r\), since
\[
\left\|u-u^{r}\right\|_{L_{\varrho}^{2}\left(\mathcal{U} ; H_{0}^{1}(D)\right)} \leq \frac{\|f\|_{H^{-1}(D)}}{a_{\min }^{2}}\left\|a-a^{r}\right\|_{L_{\varrho}^{2}\left(\mathcal{U} ; L^{\infty}(D)\right)}
\]

\section*{Stochastic Galerkin method} COMPITATMNM: A ABPLEO MATMEMEATICS

(Vu. y) for \(r=2\)

Must be careful when choosing projection order to assure that the problem is well-posed. One way to guarantee this is to choose \(\tilde{r} \leq r \leq 2 p\), where
\[
\tilde{r}:=\min \left\{r \in \mathbb{N}_{0}:\left\|a-a^{\nu}\right\|_{L_{\varrho}^{\infty}\left(\mathcal{U}_{;} L^{\infty}(D)\right)} \leq a_{\min }, \forall \nu \in \mathbb{N}_{0}, \nu \geq r\right\} .
\]
(1) Choose a set of points \(\left\{\boldsymbol{y}_{k} \in \Gamma\right\}_{k=1}^{m_{p}}\) according to the measure \(\varrho(\boldsymbol{y}) d(\boldsymbol{y})=\prod_{n=1}^{d} \varrho_{n}\left(y_{n}\right) d\left(y_{n}\right)\).
(2) For each \(k\) solve the FE solution \(u_{k}(x)=u\left(\boldsymbol{y}_{k}, x\right)\), given \(a_{k}(x)=a\left(\boldsymbol{y}_{k}, x\right)\) and \(f_{k}(x)=f\left(\boldsymbol{y}_{k}, x\right)\).
(3) Interpolate the sampled values:
\[
\mathcal{I}_{\Lambda_{p}}[u]=\sum_{k=1}^{m_{p}} u_{k}(x) \ell_{k}(\boldsymbol{y}) \in \mathbb{P}_{\Lambda_{p}}(\mathcal{U}) \otimes \mathcal{V}_{h}
\]
yielding the fully discrete SC approximation in, where \(\ell_{k} \in \mathbb{P}_{\Lambda_{p}}(\mathcal{U})\) are suitable combinations of global (Lagrange) interpolants.

Compute a quantity of interest, e.g., \(\mathbb{E}[u](x)\)
\[
\mathbb{E}[u](x) \approx \int_{\Gamma} \mathcal{I}_{\Lambda_{p}}[u](\cdot, \boldsymbol{y}) \varrho(\boldsymbol{y}) d \boldsymbol{y}=\sum_{k=1}^{m_{p}} u_{k}(x) \underbrace{\int_{\Gamma} \ell_{k}(\boldsymbol{y}) \varrho(\boldsymbol{y}) d y}_{\text {precomputed weights }}=\sum_{k=1}^{m_{p}} u_{k}(x) w_{k}
\]

\section*{Comparison to (interpolatory) SCFEM}

Given a fixed multi-index set \(\Lambda_{p}\), let \(u_{\Lambda_{p}}\) be the SGFEM on \(\mathbb{P}_{\Lambda_{p}}(\mathcal{U})\), then:
\[
\left\|u-u_{\Lambda_{p}}\right\|_{L_{\varrho}^{2}\left(\mathcal{U} ; H_{0}^{1}(D)\right)} \lesssim C_{a} \min _{v \in H_{0}^{1}(D) \otimes \mathbb{P}_{\Lambda_{p}}(\mathcal{U})}\|u-v\|_{L_{\varrho}^{2}\left(\mathcal{U}_{;} H_{0}^{1}(D)\right)}
\]

We can construct an interpolation operator \(\mathcal{I}_{\Lambda_{p}}: C^{0}(\mathcal{U}) \rightarrow \mathbb{P}_{\Lambda_{p}}(\mathcal{U})\) for which
\[
\begin{aligned}
\left\|u-\mathcal{I}_{\Lambda_{p}}[u]\right\|_{L_{\varrho}^{\infty}\left(\mathcal{U} ; H_{0}^{1}(D)\right)} & \leq\left(\mathbb{L}_{\Lambda_{p}}+1\right) \min _{v \in H_{0}^{1}(D) \otimes \mathbb{P}_{\Lambda_{p}}(\mathcal{U})}\|u-v\|_{L_{\varrho}^{\infty}\left(\mathcal{U}_{; H_{0}^{1}(D)}\right)} \\
& \lesssim\left(\mathbb{L}_{\Lambda_{p}}+1\right)\left\|u-u_{\Lambda_{p}}\right\|_{L_{\varrho}^{\infty}\left(\mathcal{U} ; H_{0}^{1}(D)\right)},
\end{aligned}
\]
where \(\mathbb{L}_{\Lambda_{p}}=\left\|\mathcal{I}_{\Lambda_{p}}\right\|_{L_{\varrho}^{\infty}(\mathcal{U}) \rightarrow L_{\varrho}^{\infty}(\mathcal{U})}\) is the Lebesgue constant of \(\mathcal{I}_{\Lambda_{p}}\).
Recall:
- \(m \geq \#\left(\Lambda_{p}\right)\) in the construction of \(\mathcal{I}_{\Lambda_{p}}\)
- Implies the ontimality of the Galerkin nroiection in terms of the stochastic degrees of freedom \(\#\left(\Lambda_{p}\right)\)
- How do they relate in terms of computational complexity or stability?

Given a fixed multi-index set \(\Lambda_{p}\), let \(u_{\Lambda_{p}}\) be the SGFEM on \(\mathbb{P}_{\Lambda_{p}}(\mathcal{U})\), then:
\[
\left\|u-u_{\Lambda_{p}}\right\|_{L_{\varrho}^{2}\left(\mathcal{U} ; H_{0}^{1}(D)\right)} \lesssim C_{a} \min _{v \in H_{0}^{1}(D) \otimes \mathbb{P}_{\Lambda_{p}}(\mathcal{U})}\|u-v\|_{L_{\varrho}^{2}\left(\mathcal{U}_{;} H_{0}^{1}(D)\right)}
\]

We can construct an interpolation operator \(\mathcal{I}_{\Lambda_{p}}: C^{0}(\mathcal{U}) \rightarrow \mathbb{P}_{\Lambda_{p}}(\mathcal{U})\) for which
\[
\begin{aligned}
\left\|u-\mathcal{I}_{\Lambda_{p}}[u]\right\|_{L_{\varrho}^{\infty}\left(\mathcal{U} ; H_{0}^{1}(D)\right)} & \leq\left(\mathbb{L}_{\Lambda_{p}}+1\right) \min _{v \in H_{0}^{1}(D) \otimes \mathbb{P}_{\Lambda_{p}}(\mathcal{U})}\|u-v\|_{L_{\varrho}^{\infty}\left(\mathcal{U}_{; H_{0}^{1}(D)}\right)} \\
& \lesssim\left(\mathbb{L}_{\Lambda_{p}}+1\right)\left\|u-u_{\Lambda_{p}}\right\|_{L_{\varrho}^{\infty}\left(\mathcal{U} ; H_{0}^{1}(D)\right)},
\end{aligned}
\]
where \(\mathbb{L}_{\Lambda_{p}}=\left\|\mathcal{I}_{\Lambda_{p}}\right\|_{L_{\varrho}^{\infty}(\mathcal{U}) \rightarrow L_{\varrho}^{\infty}(\mathcal{U})}\) is the Lebesgue constant of \(\mathcal{I}_{\Lambda_{p}}\).

\section*{Recall:}
- \(m \geq \#\left(\Lambda_{p}\right)\) in the construction of \(\mathcal{I}_{\Lambda_{p}}\)
- Implies the optimality of the Galerkin projection in terms of the stochastic degrees of freedom \(\#\left(\Lambda_{p}\right)\)
- How do they relate in terms of computational complexity or stability?

\section*{Computational complexity of solving the SGFEM}
\(\mathbf{K}_{r}\) is symmetric positive-definite, hence preconditioned conjugate gradients can be used to solve and we have the error at the \(k\)-th step:
\[
\begin{equation*}
\left\|\boldsymbol{c}^{r}-\boldsymbol{c}^{r,(k)}\right\|_{\mathbf{K}_{r}} \leq 2\left(\frac{\sqrt{\boldsymbol{\kappa}_{r}}-1}{\sqrt{\boldsymbol{\kappa}_{r}}+1}\right)^{k}\left\|\boldsymbol{c}^{r}-\boldsymbol{c}^{r,(0)}\right\|_{\mathbf{K}_{r}} \tag{1}
\end{equation*}
\]
- \(\boldsymbol{c}^{r,(0)}\) and \(\boldsymbol{c}^{r,(k)}\) are the initial guess and the output at the \(k\)-th iteration, resp.
- \(\boldsymbol{\kappa}_{r}\) is the condition number of \(\mathbf{K}_{r}\), depends on \(h, p\), and \(r\)

We use a simple preconditioner: \(\mathbf{P}:=\mathbf{G}_{\mathbf{0}} \otimes \mathbf{A}_{\mathbf{0}}\), (mean-based block-diagonal)

- \(\mathbf{G}_{\mathbf{0}}=\mathbf{I} \in \mathbb{R}^{N_{p} \times N_{p}}\) for orthonormal \(\left\{\Psi_{\boldsymbol{p}}\right\}\)
- Easy to invert since \(\mathbf{P}^{-1}=\mathbf{G}_{\mathbf{0}}^{-1} \otimes \mathbf{A}_{\mathbf{0}}^{-1}\)
- Complexity of applying is \(\mathcal{O}\left(J_{h}\right) * N_{p}\) when incomplete Cholesky is used
- Removes dependence of \(h\) in \(\boldsymbol{\kappa}_{r}\), condition number of preconditioned system still depends on \(r\) and \(p\)
- Better preconditioners are available, but are more challenging to implement and analyze cost

\section*{Computational complexity of solving the SGFEM}

Given \(\mathbf{K}_{r}=\sum_{k \in \Lambda_{r}} \mathbf{G}_{\boldsymbol{k}} \otimes \mathbf{A}_{\boldsymbol{k}}\), we define
\[
\mathcal{M}(p, r)=\sum_{\boldsymbol{k} \in \Lambda_{r}} \mathrm{nnz}\left(\mathbf{G}_{\boldsymbol{k}}\right)=\#\left\{(\boldsymbol{k}, \boldsymbol{p}, \boldsymbol{q}):\left\langle\Psi_{\boldsymbol{k}} \Psi_{\boldsymbol{p}} \Psi_{\boldsymbol{q}}\right\rangle_{\varrho} \neq 0, \boldsymbol{k} \in \Lambda_{r}, \boldsymbol{p}, \boldsymbol{q} \in \Lambda_{p}\right\}
\]

Pictorially, \(\mathcal{M}(p, r)=\#\) of black pixels in the matrices:

Figure Block sparsity of \(\mathbf{K}_{r}\) for fixed \(p=3\), increasing \(r=0,1,2,3,4,5\).
Each CG iteration requires \(\mathcal{M}(p, r)\) matrix-vector products of complexity \(\mathcal{O}\left(J_{h}\right)\), where \(\mathcal{O}\left(J_{h}\right)\) depends on the connectivity of \(\mathcal{T}_{h}\), hence
- cost without preconditioning:
\[
W^{\mathrm{SG}} \approx \mathcal{O}\left(J_{h}\right) * \mathcal{M}(p, r) * N_{\mathrm{iter}}^{\mathrm{SG}}
\]
- cost with preconditioner P:
\[
W^{\mathrm{pSG}} \approx \mathcal{O}\left(J_{h}\right) *\left(N_{p}+\mathcal{M}(p, r)\right) * N_{\mathrm{iter}}^{\mathrm{pSG}}
\]
\(N_{\text {iter }}^{\mathrm{pSG}}, N_{\text {iter }}^{\mathrm{SG}}\) are number of CG iterations required to converge to a given tolerance with and without preconditioning, respectively.

> Basic unit of cost is in terms FLOPS.

\section*{SGFEM－How to count \(\mathcal{M}(p, r)\) ？}

Theorem（（sparsity of \(\mathrm{G}_{k}\) ）［Dexter，W．Zhang＇16］．
Let \(d, p, r \in \mathbb{N}, d \geq 1, \quad 0 \leq r<2 p, \quad k \in \Lambda_{r}, \quad\) and \(\varrho_{i}\) be even \(\forall i\) ．Then
where
\[
\begin{aligned}
\mathrm{nnz}\left(\mathbf{G}_{\boldsymbol{k}}\right) & =\sum_{\ell=\overline{\mid[|\boldsymbol{k}| 2\rceil}}^{\mid \boldsymbol{k}} c(\boldsymbol{k}, \ell)\binom{d+p-\ell}{p-\ell}, \\
c(\boldsymbol{k}, \ell) & = \begin{cases}\#\left(\boldsymbol{S}_{\boldsymbol{k}}, \ell\right) & \text { for } \ell=\lceil|\boldsymbol{k}| / 2\rceil \text { and }|\boldsymbol{k}| \text { even }, \\
2 \#\left(\boldsymbol{S}_{\boldsymbol{k}, \ell}\right) & \text { otherwise },\end{cases}
\end{aligned}
\]
and \(\boldsymbol{S}_{\boldsymbol{k}, \ell}=\left\{\boldsymbol{s} \in \mathbb{N}_{0}^{d}:|\boldsymbol{s}|=\ell, s_{i} \leq k_{i} \forall i\right\}\) ，with \(\#\left(\boldsymbol{S}_{\boldsymbol{k}, \ell}\right)\) equal to the coefficient of \(t^{\ell}\) in the generating function \(P_{\boldsymbol{k}}(t)=\prod_{i=1}^{d} \sum_{j=1}^{k_{i}} t^{j}\) ．
Moreover，
\[
\begin{aligned}
& \mathcal{M}(p, r)=\sum_{\boldsymbol{k} \in \Lambda_{r}} \operatorname{nnz}\left(\mathbf{G}_{\boldsymbol{k}}\right)=\sum_{\boldsymbol{k} \in \Lambda_{r}} \sum_{\ell=\lceil|\boldsymbol{k}| / 2\rceil}^{|\boldsymbol{k}|} c(\boldsymbol{k}, \ell)\binom{d+p-\ell}{p-\ell} \\
& \quad \leq \sum_{j=0}^{r} 2 \min \left\{2^{j},\binom{d+\lceil j / 2\rceil}{ d}\right\}\binom{d-1+j}{d-1}\binom{d+p-\lceil j / 2\rceil}{ d} \\
& \quad \leq 2 \min \left\{2^{r},\binom{d+\lceil r / 2\rceil}{ d}\right\}\binom{d+p}{d}\binom{d+r}{d} .
\end{aligned}
\]

\section*{SGFEM - bounds for \(\mathcal{M}(p, r)\)}

Q: How good are the bounds? A: Not sharp. In these figures \(N=d\), dimension.

Actual count of \(\mathcal{M}(p, r)\)
Sum bound (used when \(r\) is fixed): \(\quad \sum_{j=0}^{r} 2 \min \left\{2^{j},\binom{d+\lceil j / 2\rceil}{ d}\right\}\binom{d-1+j}{d-1}\binom{d+p-\lceil j / 2\rceil}{ d}\)
Bound by largest (used when error depends on \(r\)): \(2 \min \left\{2^{r},\binom{d+\lceil r / 2\rceil}{ d}\right\}\binom{d+p}{d}\binom{d+r}{d}\)

Q: How good are the bounds? A: Not sharp. In these figures \(N=d\), dimension.

\section*{Actual count of \(\mathcal{M}(p, r)\)}

Sum bound (used when \(r\) is fixed): \(\quad \sum_{j=0}^{r} 2 \min \left\{2^{j},\binom{d+\lceil j / 2\rceil}{ d}\right\}\binom{d-1+j}{d-1}\binom{d+p-\lceil j / 2\rceil}{ d}\)
Bound by largest (used when error depends on \(r\)): \(2 \min \left\{2^{r},\binom{d+\lceil r / 2\rceil}{ d}\right\}\binom{d+p}{d}\binom{d+r}{d}\)

The error in SGFEM found using CG can be bounded by:
\[
\begin{aligned}
\left\|u-\tilde{u}_{h, p}^{r}\right\|_{L_{\varrho}^{2}\left(\mathcal{U} ; H_{0}^{1}(D)\right)} \leq & \underbrace{\left\|u-u^{r}\right\|_{L_{\varrho}^{2}\left(\mathcal{U} ; H_{0}^{1}(D)\right)}}_{\mathrm{SG}(\mathrm{I})}+\underbrace{\left\|u^{r}-u_{h}^{r}\right\|_{L_{\varrho}^{2}\left(\mathcal{U} ; H_{0}^{1}(D)\right)}}_{\mathrm{SG}(\mathrm{II})} \\
& +\underbrace{\left\|u_{h}^{r}-u_{h, p}^{r}\right\|_{L_{\varrho}^{2}\left(\mathcal{U} ; H_{0}^{1}(D)\right)}}_{\mathrm{SG}(\mathrm{III})}+\underbrace{\left\|u_{h, p}^{r}-\tilde{u}_{h, p}^{r}\right\|_{L_{\varrho}^{2}\left(\mathcal{U} ; H_{0}^{1}(D)\right)}}_{\mathrm{SG}(\mathrm{IV})} .
\end{aligned}
\]

We can estimate the complexity by finding the minimum and maximum values of the following parameters to ensure the total error of each component is smaller than \(\frac{\varepsilon}{4}\).
- SG(I) error from approximating \(a(x, \boldsymbol{y})\) : estimate the min. projection order \(r_{\text {min }}\)
- SG(II) FE error: estimate the maximum mesh size \(h_{\max }\)
- SG(III) SG error: estimate the minimum polynomial order \(p_{\text {min }}\)
- SG(IV) CG error: estimate the minimum number of iterations needed by PCG Substitute into the cost metric: \(W^{\mathrm{pSG}} \approx \mathcal{O}\left(J_{h}\right) *\left(N_{p}+\mathcal{M}(p, r)\right) * N_{\mathrm{iter}}^{\mathrm{pSG}}\)

Asymptotically, as \(\varepsilon \rightarrow 0\), the complexity can be estimated as
\[
\begin{equation*}
\underbrace{\mathcal{O}\left(\frac{1}{\varepsilon}\right)^{\frac{\tilde{d}}{q}}}_{\text {(SG.1) }} \underbrace{\left[\log \left(\frac{1}{\varepsilon}\right)\right]^{g(d)}}_{\text {(SG.2) }} \underbrace{\left(\frac{\log \left(\frac{1}{\varepsilon}\right)}{\log \left(\frac{\sqrt{\kappa_{r}}+1}{\sqrt{\kappa_{r}}-1}\right)}\right)}_{\text {(SG.3) }}, \tag{2}
\end{equation*}
\]
where \(g(d)\) depends on the coefficient \(a(x, \boldsymbol{y})\) in the elliptic operator:
- \(g(d)=d \quad\) if \(a(x, \boldsymbol{y})\) is a polynomial function of \(\boldsymbol{y}\) of fixed order \(\bar{r}<\infty\)
- \(g(d)=3 d\) if \(a(x, \boldsymbol{y})\) is a transcendental function of \(\boldsymbol{y}\), requiring an orthogonal expansion of order \(r \geq r_{\text {min }}\) depending on \(\varepsilon\)

Here, we assume \(u^{r}(\boldsymbol{y}) \in H_{0}^{1}(D) \cap H^{q+1}(D) \forall \boldsymbol{y} \in \mathcal{U}\), and
- (SG.1) corresponds to the work required by the finite element method
- (SG.2) corresponds to the work required by the SG method, coming from the estimates on the number of coupled finite element systems to solve
- (SG.3) corresponds to the work required by the PCG method

\section*{SGFEM Complexity (Polynomial):}
\[
\mathcal{O} \underbrace{\left(\frac{1}{\varepsilon}\right)^{\frac{\tilde{d}}{q}}}_{(\mathrm{SG} .1)} \underbrace{\left[\log \left(\frac{1}{\varepsilon}\right)\right]^{d}}_{\text {(SG.2) }} \underbrace{\left(\frac{\log \left(\frac{1}{\varepsilon}\right)}{\log \left(\frac{\sqrt{\kappa_{r}}+1}{\sqrt{\kappa_{r}}-1}\right)}\right)}_{\text {(SG.3) }}
\]

SCFEM Complexity [Galindo, Jantsch, W., Zhang '16] :
\[
\underbrace{\mathcal{O}\left(\frac{1}{\varepsilon}\right)^{\frac{\tilde{d}}{q}}}_{(\mathrm{SC} .1)} \underbrace{\left[\log \left(\frac{1}{\varepsilon}\right)\right]^{d}\left[\log \log \left(\frac{1}{\varepsilon}\right)\right]^{d-1}}_{\text {(SC.2) }} \underbrace{\left(\frac{\log \left(\frac{1}{\varepsilon}\right)}{\log \left(\frac{\sqrt{\bar{\kappa}}+1}{\sqrt{\bar{K}}-1}\right)}\right)}_{\text {(SC.3) }}
\]

Here, \(\bar{\kappa}\) is the supremum of the condition numbers of the SC systems, and
- (SC.1) corresponds to the work required by the finite element method
- (SC.2) corresponds to the work required by the SC method, coming from the estimates on the number of decoupled finite element systems to solve
- (SC.3) corresponds to the work required by the PCG method

\section*{Complexity comparisons between SGFEM and SCFEM}

National Laboratory COMPUTATMNME \& APMUEO MATMEMAEICS

\section*{SGFEM Complexity (Transcendental):}
\[
\mathcal{O}\left(\frac{1}{\varepsilon}\right)^{\frac{\tilde{d}}{q}} \underbrace{\left[\log \left(\frac{1}{\varepsilon}\right)\right]^{3 d}}_{(\mathrm{SG} .1)} \underbrace{\left(\frac{\log \left(\frac{1}{\varepsilon}\right)}{\log \left(\frac{\sqrt{\kappa_{r}}+1}{\sqrt{\kappa_{r}}-1}\right)}\right)}_{(\mathrm{SG} .2)}
\]

SCFEM Complexity [Galindo, Jantsch, W., Zhang '16] :
\[
\underbrace{\mathcal{O}\left(\frac{1}{\varepsilon}\right)^{\frac{\tilde{d}}{q}}}_{\text {(SC.1) }} \underbrace{\left[\log \left(\frac{1}{\varepsilon}\right)\right]^{d}\left[\log \log \left(\frac{1}{\varepsilon}\right)\right]^{d-1}}_{\text {(SC.2) }} \underbrace{\left(\frac{\log \left(\frac{1}{\varepsilon}\right)}{\log \left(\frac{\sqrt{\kappa}+1}{\sqrt{\bar{\kappa}}-1}\right)}\right)}_{\text {(SC.3) }}
\]

Here, \(\bar{\kappa}\) is the supremum of the condition numbers of the SC systems, and
- (SC.1) corresponds to the work required by the finite element method
- (SC.2) corresponds to the work required by the SC method, coming from the estimates on the number of decoupled finite element systems to solve
- (SC.3) corresponds to the work required by the PCG method

We solve both systems with the iterative Preconditioned Conjugate Gradient (PCG):
- For the SGFEM, we use block-diagonal mean-based preconditioner [Powell, Elman '08]
- For the SCFEM, we use the incomplete Cholesky factorization of \(\mathbf{A}\left(\boldsymbol{y}_{0}\right)\) as preconditioner for each \(\mathbf{A}\left(\boldsymbol{y}_{k}\right)\) for \(\left\{\boldsymbol{y}_{k}\right\}_{k=1}^{m}\)

We test convergence against a "highly enriched" approximation, obtained with stochastic collocation based on Clenshaw-Curtis abscissas, and then approximate
- \(\left\|\mathbb{E}\left[\varepsilon_{\mathrm{SG}}\right]\right\|_{\ell \infty} \approx\left\|\mathbb{E}\left[u_{\mathrm{ex}}-u_{\mathrm{SG}}\right]\right\|_{\ell \infty}\) the error of the stochastic Galerkin approximation
- \(\left\|\mathbb{E}\left[\varepsilon_{\mathrm{sC}}\right]\right\|_{\ell \infty} \approx\left\|\mathbb{E}\left[u_{\mathrm{ex}}-u_{\mathrm{SC}}\right]\right\|_{\ell \infty}\) the error of the stochastic collocation approximation

To ensure that we do not "over-resolve" either approximation with PCG, we use a tolerance of \(\left\|\mathbb{E}\left[\varepsilon_{\mathrm{SG}}\right]\right\|_{\ell \infty} / 10\) and \(\left\|\mathbb{E}\left[\varepsilon_{\mathrm{SC}}\right]\right\|_{\ell \infty} / 10\) for the stochastic Galerkin and stochastic collocation methods, respectively, after solving with an initial tolerance of 1E-12.

\section*{Numerical illustrations of the complexity results}
- \(a(x, \boldsymbol{y})=1+\sum_{n=1}^{8} y_{n} \chi_{n}(x) \quad\) and \(\quad y_{n} \sim \mathcal{U}(-0.99,-0.2)\)
- \(\chi_{n}, \chi_{F}\) are indicators of the circles and the square

FigureTriangulation of \(D=[0,1]^{2}\) and \(\mathbb{E}[u]\).

\section*{Numerical illustrations of the complexity results}

Stochastic elliptic problem:
\[
\left\{\begin{aligned}
-\nabla \cdot(a(x, \boldsymbol{y}) \nabla u(x, \boldsymbol{y})) & =100 \chi_{F}(x) \\
u(x, \boldsymbol{y}) & =0
\end{aligned}\right.
\]
\[
\text { in } \mathcal{U} \times D
\]
\[
\text { on } \mathcal{U} \times \partial D
\]
- \(a(x, \boldsymbol{y})=1+\sum_{n=1}^{8} y_{n} \chi_{n}(x) \quad\) and \(\quad y_{n} \sim \mathcal{U}(-0.99,-0.2)\)
- \(\chi_{n}, \chi_{F}\) are indicators of the circles and the square

\section*{Numerical illustrations of the complexity results}

Stochastic elliptic problem: \(\left\{\begin{array}{rll}-\nabla \cdot(a(x, \boldsymbol{y}) \nabla u(x, \boldsymbol{y})) & =1 & \text { in } \mathcal{U} \times D, \\ u(x, \boldsymbol{y}) & =0 & \text { on } \mathcal{U} \times \partial D,\end{array}\right.\) \(a(x, \boldsymbol{y})=5+\sum_{|\boldsymbol{r}| \leq \bar{r}} e^{-1.5|\boldsymbol{r}|} \varsigma_{r}(x) \boldsymbol{y}^{r} \quad \varsigma_{\boldsymbol{r}}(x)= \begin{cases}\sin \left(|\boldsymbol{r}| \pi x_{1}\right) \cos \left(|\boldsymbol{r}| \pi x_{2}\right) & |\boldsymbol{r}| \text { even, } \\ \cos \left(|\boldsymbol{r}| \pi x_{1}\right) \sin \left(|\boldsymbol{r}| \pi x_{2}\right) & |\boldsymbol{r}| \text { odd },\end{cases}\)

\section*{Numerical illustrations of the complexity results}

Stochastic elliptic problem: \(\left\{\begin{array}{rll}-\nabla \cdot(a(x, \boldsymbol{y}) \nabla u(x, \boldsymbol{y})) & =1 & \text { in } \mathcal{U} \times D, \\ u(x, \boldsymbol{y}) & =0 & \text { on } \mathcal{U} \times \partial D,\end{array}\right.\) \(a(x, \boldsymbol{y})=5+\sum_{|\boldsymbol{r}| \leq \bar{r}} e^{-1.5|\boldsymbol{r}|} \varsigma_{r}(x) \boldsymbol{y}^{r} \quad \varsigma_{\boldsymbol{r}}(x)= \begin{cases}\sin \left(|\boldsymbol{r}| \pi x_{1}\right) \cos \left(|\boldsymbol{r}| \pi x_{2}\right) & |\boldsymbol{r}| \text { even, } \\ \cos \left(|\boldsymbol{r}| \pi x_{1}\right) \sin \left(|\boldsymbol{r}| \pi x_{2}\right) & |\boldsymbol{r}| \text { odd },\end{cases}\)
\(\bar{r}=3\)

\section*{Numerical illustrations of the complexity results}

Stochastic elliptic problem: \(\left\{\begin{array}{rll}-\nabla \cdot(a(x, \boldsymbol{y}) \nabla u(x, \boldsymbol{y})) & =1 & \text { in } \mathcal{U} \times D, \\ u(x, \boldsymbol{y}) & =0 & \text { on } \mathcal{U} \times \partial D,\end{array}\right.\) \(a(x, \boldsymbol{y})=5+\sum_{|\boldsymbol{r}| \leq \bar{r}} e^{-1.5|\boldsymbol{r}|} \varsigma_{r}(x) \boldsymbol{y}^{r} \quad \varsigma_{\boldsymbol{r}}(x)= \begin{cases}\sin \left(|\boldsymbol{r}| \pi x_{1}\right) \cos \left(|\boldsymbol{r}| \pi x_{2}\right) & |\boldsymbol{r}| \text { even, } \\ \cos \left(|\boldsymbol{r}| \pi x_{1}\right) \sin \left(|\boldsymbol{r}| \pi x_{2}\right) & |\boldsymbol{r}| \text { odd },\end{cases}\)
\(\bar{r}=7\)

\section*{Numerical illustrations of the complexity results}

Stochastic elliptic problem: \(\left\{\begin{aligned}-\nabla \cdot(a(x, \boldsymbol{y}) \nabla u(x, \boldsymbol{y})) & =f(x) & & \text { in } \mathcal{U} \times D, \\ u(x, \boldsymbol{y}) & =0 & & \text { on } \mathcal{U} \times \partial D,\end{aligned}\right.\)
\(a(x, \boldsymbol{y}) \approx 0.5+\exp \left(\varphi_{0}+\sum_{k=1}^{d} \sqrt{\lambda_{k}} \varphi_{k} y_{k}\right),\left\{\lambda_{k}, \varphi_{k}\right\}_{k=1}^{d}\) the largest eigenpairs of the squared exponential covariance kernel \(\mathbb{C o v}[a]\) with correlation length \(L_{c}=1 / 64\), \(f\left(x_{1}, x_{2}\right)=2 \cos \left(x_{1}\right) \sin \left(x_{2}\right)\), and \(d=9\).

\section*{Numerical illustrations of the complexity results}

Stochastic elliptic problem: \(\left\{\begin{aligned}-\nabla \cdot(a(x, \boldsymbol{y}) \nabla u(x, \boldsymbol{y})) & =f(x) & & \text { in } \mathcal{U} \times D, \\ u(x, \boldsymbol{y}) & =0 & & \text { on } \mathcal{U} \times \partial D,\end{aligned}\right.\)
\(a(x, \boldsymbol{y}) \approx 0.5+\exp \left(\varphi_{0}+\sum_{k=1}^{d} \sqrt{\lambda_{k}} \varphi_{k} y_{k}\right),\left\{\lambda_{k}, \varphi_{k}\right\}_{k=1}^{d}\) the largest eigenpairs of the squared exponential covariance kernel \(\mathbb{C o v}[a]\) with correlation length \(L_{c}=1 / 64\), \(f\left(x_{1}, x_{2}\right)=2 \cos \left(x_{1}\right) \sin \left(x_{2}\right)\), and \(d=9\).
\begin{tabular}{|c|l|r||c|l|r|r|}
\hline \begin{tabular}{c}
SC-CC \\
Level
\end{tabular} & \begin{tabular}{l}
SC-CC \\
Error
\end{tabular} & \begin{tabular}{r}
Mat-vec cost \\
of SC-CC
\end{tabular} & \begin{tabular}{c}
SG-TD \\
Order
\end{tabular} & \begin{tabular}{l}
SG-TD \\
Error
\end{tabular} & \begin{tabular}{r}
Mat-vec cost \\
of SG-TD
\end{tabular} & \begin{tabular}{r}
Ratio \\
SG/SC
\end{tabular} \\
\hline 0 & \(1.3626 \times 10^{-4}\) & 2 & 0 & \(1.3626 \times 10^{-4}\) & 4 & 2 \\
1 & \(2.8884 \times 10^{-6}\) & 218 & 1 & \(3.9444 \times 10^{-5}\) & 152 & 0.69 \\
2 & \(6.3652 \times 10^{-8}\) & 3,398 & 2 & \(6.1427 \times 10^{-7}\) & 10,710 & 3.15 \\
3 & \(3.6021 \times 10^{-9}\) & 28,638 & 3 & \(2.8851 \times 10^{-8}\) & 213,010 & 7.43 \\
4 & \(1.4794 \times 10^{-10}\) & 178,894 & 4 & \(4.9210 \times 10^{-10}\) & \(4,579,575\) & 25.59 \\
5 & \(2.2869 \times 10^{-12}\) & 944,220 & 5 & \(8.9123 \times 10^{-12}\) & \(49,089,051\) & 51.98 \\
\hline
\end{tabular}
- Stochastic Galerkin method features optimal error w.r.t. degrees of freedom
- Cost of the method is not optimal in every case
- Ignored issues associated with forming/solving the stochastic Galerkin system
- High-dimensional integration problem in computing \(\mathbf{K}_{r}\)
- Poorly conditioned with respect to \(p\) and \(r\)```

