

Uncertainty quantification & approximation theory for parameterized (stochastic) PDEs

Part V: High-dimensional sparse grids via global Lagrange polynomials

Clayton G. Webster^{†*}

Hoang Tran*, Guannan Zhang*

[†]Department of Mathematics, University of Tennessee ^{*}Department of Computational & Applied Mathematics (CAM) Oak Ridge National Laboratory

Supporting agencies: DOE (ASCR, BES), DOD (AFOSR, DARPA), NSF (CM)

equinox.ornl.gov formulate.ornl.gov tasmanian.ornl.gov

Multi-dimensional interpolation

2 Generalized global sparse grid interpolation

3 Example: sparse grid SCFEM for a parameterized stochastic PDE

4 Reducing the computational cost of multivariate interpolation

Generalized multivariate interpolation Stochastic collocation FEM: general setting

- COMPUTATIONAL & APPLIED MATHEMATICS
- Choose a set of points $\{\boldsymbol{y}_k \in \Gamma\}_{k=1}^{m_p}$ according to the measure $\varrho(\boldsymbol{y})d(\boldsymbol{y}) = \prod_{n=1}^d \varrho_n(y_n)d(y_n).$
- **2** For each k solve the FE solution $u_k(x) = u(y_k, x)$, given $a_k(x) = a(y_k, x)$ and $f_k(x) = f(y_k, x)$.
- Interpolate the sampled values:

$$\mathcal{I}_{\Lambda_p}[u] = \sum_{k=1}^{m_p} u_k(x) \ell_k(oldsymbol{y}) \in \mathbb{P}_{\Lambda_p}(\mathcal{U}) \otimes \mathcal{V}_h,$$

yielding the fully discrete SC approximation in, where $\ell_k \in \mathbb{P}_{\Lambda_p}(\mathcal{U})$ are suitable combinations of global (Lagrange) interpolants.

Compute a quantity of interest, e.g., $\mathbb{E}[u](x)$ $\mathbb{E}[u](x) \approx \int_{\Gamma} \mathcal{I}_{\Lambda_p}[u](\cdot, \boldsymbol{y})\varrho(\boldsymbol{y})d\boldsymbol{y} = \sum_{k=1}^{m_p} u_k(x) \underbrace{\int_{\Gamma} \ell_k(\boldsymbol{y})\varrho(\boldsymbol{y})d\boldsymbol{y}}_{\text{precomputed weights}} = \sum_{k=1}^{m_p} u_k(x)w_k$

A simple function to integrate

Evaluate u(y) at M values $\{u(y_1), u(y_2), \ldots, u(y_M)\}$

Determine the approximate polynomial u_p

The QoI = Integrating the approximating polynomial EXACTLY

$\begin{array}{l} Multivariate \ tensor \ product \ interpolation \\ {}^{The \ simplest \ SCFEM} \end{array}$

Basic idea is to construct the point set for each variable y_n : $H^{m(l_n)}$

- choose the level l_n of interpolation in the nth direction
- set the number of points used by the l_n th interpolant, denoted $m(l_n)$
- define the set $\left\{y_n^1, y_n^2, \dots, y_n^{m(l_n)}\right\}$ of 1d interpolating points:

according to the measure $\rho(y_n)dy_n$, e.g. Gauss-Hermite (Normal), Gauss-Legendre, Clenshaw-Curtis (Uniform), etc.

• The total number of tensor interpolation nodes is: $m_{\text{TP}} = m(l_1)m(l_2)\dots m(l_d)$

•
$$\boldsymbol{y}_{\boldsymbol{k}} = \left(y_1^{k_1}, y_2^{k_2}, \dots, y_N^{k_N}\right)$$
, where $\boldsymbol{k} \in \mathsf{TP} \equiv \left\{\boldsymbol{k} \in \mathbb{N}^d_+ \ : \ k_n < m(l_n)\right\}$

The tensor product (TP) Lagrange-interpolant is defined by:

$$u_{\mathrm{TP}} = \sum_{\mathbf{k} \in \mathrm{TP}}^{m_{\mathrm{TP}}} u_{\mathbf{k}}(x) \ell_{\mathbf{k}}(y), \quad \text{with } \ell_{\mathbf{k}}(y) = \prod_{n=1}^{d} \prod_{s=1, s \neq k_{n}}^{m(l_{n})} \frac{y_{n} - y_{n}^{s}}{y_{n}^{k_{n}} - y_{n}^{s}}$$

$\begin{array}{l} Multivariate \ tensor \ product \ interpolation \\ {}^{The \ simplest \ SCFEM} \end{array}$

Basic idea is to construct the point set for each variable y_n : $H^{m(l_n)}$

- choose the level l_n of interpolation in the nth direction
- set the number of points used by the l_n th interpolant, denoted $m(l_n)$
- define the set $\left\{y_n^1, y_n^2, \dots, y_n^{m(l_n)}\right\}$ of 1d interpolating points:

according to the measure $\rho(y_n)dy_n$, e.g. Gauss-Hermite (Normal), Gauss-Legendre, Clenshaw-Curtis (Uniform), etc.

• The total number of tensor interpolation nodes is: $m_{\text{TP}} = m(l_1)m(l_2)\dots m(l_d)$

•
$$\boldsymbol{y}_{\boldsymbol{k}} = \left(y_1^{k_1}, y_2^{k_2}, \dots, y_N^{k_N}\right)$$
, where $\boldsymbol{k} \in \mathsf{TP} \equiv \left\{\boldsymbol{k} \in \mathbb{N}^d_+ \ : \ k_n < m(l_n)\right\}$

The tensor product (TP) Lagrange-interpolant is defined by:

$$u_{\mathrm{TP}} = \sum_{\boldsymbol{k} \in \mathrm{TP}}^{m_{\mathrm{TP}}} u_{\boldsymbol{k}}(x) \ell_{\boldsymbol{k}}(\boldsymbol{y}), \quad \text{with } \ell_{\boldsymbol{k}}(\boldsymbol{y}) = \prod_{n=1}^{d} \prod_{s=1, s \neq k_{n}}^{m(l_{n})} \frac{y_{n} - y_{n}^{s}}{y_{n}^{k_{n}} - y_{n}^{s}}$$

Generalized tensor product interpolation

Let $\mathcal{I}_n^{m(l_n)}$ be the l_n th level interpolant in the direction y_n using $m(l_n)$ points:

$$\mathcal{I}_{n}^{m(l_{n})}[u](y_{n}) = \sum_{k=1}^{m(l_{n})} u(y_{n}^{k})\ell_{n}^{k}(y_{n}), \quad \{y_{n}^{1}, \dots, y_{n}^{m(l_{n})}\} \in \mathcal{U}_{n}$$

•
$$\mathcal{I}_n^{m(l_n)}: C^0(\mathcal{U}_n) \to \mathcal{P}_{m(l_n)-1}(\mathcal{U}_n), \quad \mathcal{I}_n^0[u] = 0 \ \forall u \in C^0(\mathcal{U}_n)$$

• The degree in the y_n direction is $p_n = m(l_n) - 1$

The generalized tensor product approximation is given by

$$\mathcal{I}_{\Lambda_L^{\mathsf{TP}}}[u] = u_L^{\mathsf{TP}}(y) = \bigotimes_{n=1}^d \mathcal{I}_n^{m(l_n)}[u](y), \quad \Lambda_L^{\mathsf{TP}} = \{l \in \mathbb{N}^d_+ : \max_n lpha_n l_n \leq L\}$$

• the interpolation requires $m_{\text{TP}} = \prod_{n=1}^{d} m(l_n)$ function evaluations (In this case, solutions of the PDE)

Generalized tensor product interpolation

Let $\mathcal{I}_n^{m(l_n)}$ be the l_n th level interpolant in the direction y_n using $m(l_n)$ points:

$$\mathcal{I}_{n}^{m(l_{n})}[u](y_{n}) = \sum_{k=1}^{m(l_{n})} u(y_{n}^{k})\ell_{n}^{k}(y_{n}), \quad \{y_{n}^{1}, \dots, y_{n}^{m(l_{n})}\} \in \mathcal{U}_{n}$$

•
$$\mathcal{I}_n^{m(l_n)}: C^0(\mathcal{U}_n) \to \mathcal{P}_{m(l_n)-1}(\mathcal{U}_n), \quad \mathcal{I}_n^0[u] = 0 \ \forall u \in C^0(\mathcal{U}_n)$$

• The degree in the y_n direction is $p_n = m(l_n) - 1$

The generalized tensor product approximation is given by

$$\mathcal{I}_{\Lambda_L^{\mathsf{TP}}}[u] = u_L^{\mathsf{TP}}(\boldsymbol{y}) = \bigotimes_{n=1}^d \mathcal{I}_n^{m(l_n)}[u](\boldsymbol{y}), \quad \Lambda_L^{\mathsf{TP}} = \{\boldsymbol{l} \in \mathbb{N}_+^d : \max_n \alpha_n l_n \leq L\}$$

• the interpolation requires $m_{\text{TP}} = \prod_{n=1}^{d} m(l_n)$ function evaluations (In this case, solutions of the PDE)

Tensor product grid for p=32 $_{\rm Isotropic \ grid} \max(p_1,p_2) \leq 32$

Isotropic TP SC grid constructed from C-C points for $(y_1, y_2) \in U(-1, 1)$

Choices for interpolation Based on 1-d interpolation formulas

Clenshaw-Curtis abscissas (U_n bounded):

- $\{y_n^k\}_{k=1}^{m(l_n)}$: extrema of Chebyshev polynomials
- optimal for uniform convergence in \mathcal{U}_n
- if $m(l_n)=2^{i_n-1}+1$ lead to nested sets, i.e. $H_n^{m(l_n)}\subset H_n^{m(l_n+1)}$

Gaussian abscissas (U_n bounded or unbounded): Assume, either

- y_n independent, i.e. $\varrho({m y}) = \prod_{n=1}^d \varrho_n(y_n)$, or
- construct an auxiliary joint PDF $\hat{\varrho}(y) = \prod_{n=1}^{d} \hat{\varrho}_n(y_n)$ such that $\|\varrho/\hat{\varrho}\|_{L^{\infty}(\Gamma)} < \infty$ and small enough.
- $\{y_n^k\}_{k=1}^{m(l_n)}$: zeros of orthogonal polynomials with respect to $\hat{\varrho}$ e.g. abscissas become roots of Gauss-Legendre, -Hermite, -Jacobi, -Laguerre polynomials corresponding to uniform, normal, beta, exponential distributions, respectively
- optimal for L^2_{ϱ} convergence

Leja sequences (\mathcal{U}_n bounded or unbounded): constructed from the extrema of a residual function

Lebesgue constants for various rules

Generalized sparse grid interpolation [Nobile, Tempone, W., SINUM (2008); Gunzburger, W., Zhang, Acta Num. (2014)]

• Recall that $\mathcal{I}_n^{m(l_n)}$ be the l_n th level interpolant in direction y_n using $m(l_n)$ points

$$\mathcal{I}_n^{m(l_n)}: C^0(\mathcal{U}_n) \to \mathcal{P}_{m(l_n)-1}(\mathcal{U}_n), \quad \mathcal{I}_n^0[u] = 0 \ \forall u \in C^0(\mathcal{U}_n)$$

- The nth difference operator: $\Delta_n^{m(l_n)}[u]=\mathcal{I}_n^{m(l_n)}[u]-\mathcal{I}_n^{m(l_n-1)}[u]$
- The hierarchical surplus: $\Delta^m[u](\boldsymbol{y}) = \bigotimes_{n=1}^d \Delta_n^{m(l_n)}[u](\boldsymbol{y})$
- Let $l = (l_1, \ldots, l_n) \in \mathbb{N}^d_+$ be a multi-index and $g : \mathbb{N}^d_+ \to \mathbb{N} \to a$ mapping between a multi-index l and the level p used to construct the sparse grid.

The *L*-th level generalized sparse- grid approximation of $v \in C^0(\mathcal{U})$ is given by

$$\begin{split} u_L^{\mathsf{SG}} &= \mathcal{I}_L^{m,g}[v] = \sum_{g(l) \leq L} \bigotimes_{n=1}^d \Delta_n^{m(l_n)}[v] \\ &= \mathcal{I}_{L-1}^{m,g}[v] + \sum_{g(l) = L} \bigotimes_{n=1}^d \Delta_n^{m(l_n)}[v] \end{split}$$

Generalized sparse grid interpolation How to choose the index set $g(l) \leq L$?

- Can build sparse grids corresponding to any polynomial space $\mathbb{P}_{\Lambda_L}(\mathcal{U})$
 - Tensor product (TP): m(l) = l, $g(l) = \max_n \alpha_n (l_n 1) \leq L$
 - Total Degree (TD): $m(l) = l, g(l) = \sum_{n} \alpha_n (l_n 1) \leq L$
 - Hyperbolic Cross (HC): m(l) = l, $g(l) = \prod_{n=1}^{\infty} (l_n)^{\alpha_n} \leq L+1$
 - Smolyak (SM): $m(l) = 2^{l-1} + 1$, l > 1, $g(l) = \sum_{n} \alpha_n (l_n 1) \le L$
- The corresponding anisotropic versions are straightforward
- SM is the most widely used approach and corresponds to the original Smolyak construction [Smolyak '63]

$$\begin{split} \left\| u - u_L^{\mathsf{TP}} \right\|_{L^{\infty}} &\lesssim C e^{-f(\boldsymbol{\alpha})m^{1/d}} & \text{[Babuška, Nobile, Tempone '06]} \\ \\ \left\| u - u_L^{\mathsf{SG}} \right\|_{L^{\infty}} &\lesssim C e^{-f(\boldsymbol{\alpha})m^{1/\log(d)}} & \text{[Nobile, Tempone, W. '08]} \end{split}$$

Generalized sparse grid interpolation How to choose the index set $g(l) \leq L$?

- Can build sparse grids corresponding to any polynomial space $\mathbb{P}_{\Lambda_L}(\mathcal{U})$
 - Tensor product (TP): m(l) = l, $g(l) = \max_n \alpha_n (l_n 1) \leq L$
 - Total Degree (TD): $m(l) = l, g(l) = \sum_{n} \alpha_n (l_n 1) \leq L$
 - Hyperbolic Cross (HC): m(l) = l, $g(l) = \prod_{n} (l_n)^{\alpha_n} \le L + 1$

• Smolyak (SM):
$$m(l) = 2^{l-1} + 1$$
, $l > 1$, $g(l) = \sum_{n} \alpha_n (l_n - 1) \le L$

- The corresponding anisotropic versions are straightforward
- SM is the most widely used approach and corresponds to the original Smolyak construction [Smolyak '63]

$$\begin{split} \left\| u - u_L^{\mathsf{TP}} \right\|_{L^{\infty}} & \lesssim C e^{-f(\alpha)m^{1/d}} & \text{[Babuška, Nobile, Tempone '06]} \\ & \left\| u - u_L^{\mathsf{SG}} \right\|_{L^{\infty}} & \lesssim C e^{-f(\alpha)m^{1/\log(d)}} & \text{[Nobile, Tempone, W. '08]} \end{split}$$

COMPUTATIONAL & APPLIED MATHEMATICS

Generalized sparse grid interpolation How to choose the index set $g(l) \leq L$?

- Can build sparse grids corresponding to any polynomial space $\mathbb{P}_{\Lambda_L}(\mathcal{U})$
 - Tensor product (TP): $m(l) = l, \ g(l) = \max_n \alpha_n (l_n 1) \leq L$
 - Total Degree (TD): $m(l) = l, g(l) = \sum_{n} \alpha_n (l_n 1) \leq L$
 - Hyperbolic Cross (HC): m(l) = l, $g(l) = \prod_{n} (l_n)^{\alpha_n} \leq L + 1$
 - Smolyak (SM): $m(l) = 2^{l-1} + 1$, l > 1, $g(l) = \sum_{n} \alpha_n (l_n 1) \le L$
- The corresponding anisotropic versions are straightforward
- SM is the most widely used approach and corresponds to the original Smolyak construction [Smolyak '63]

$$\begin{split} \left\| u - u_L^{\mathsf{TP}} \right\|_{L^{\infty}} &\lesssim C e^{-f(\boldsymbol{\alpha})m^{1/d}} \quad \text{[Babuška, Nobile, Tempone '06]} \\ \left\| u - u_L^{\mathsf{SG}} \right\|_{L^{\infty}} &\lesssim C e^{-f(\boldsymbol{\alpha})m^{1/\log(d)}} \quad \text{[Nobile, Tempone, W. '08]} \end{split}$$

COMPUTATIONAL & APPLIED MATHEMATICS

Example: d = 2 isotropic sparse grid Nested rules minimize the amount of work

Nested equidistant grids with m(l) = 1, 3 and 7:

Let
$$g(l) = \sum_{n=1}^{d} \alpha_n (l_n - 1)$$
, and $m(l) = \begin{cases} 1, & l = 1 \\ 2^{l+1} - 1, & l > 1 \end{cases}$

Let
$$g(l) = \sum_{n=1}^{d} \alpha_n (l_n - 1)$$
, and $m(l) = \begin{cases} 1, & l = 1 \\ 2^{l+1} - 1, & l > 1 \end{cases}$

Let
$$g(l) = \sum_{n=1}^{d} \alpha_n (l_n - 1)$$
, and $m(l) = \begin{cases} 1, & l = 1 \\ 2^{l+1} - 1, & l > 1 \end{cases}$

Let
$$g(l) = \sum_{n=1}^{d} \alpha_n (l_n - 1)$$
, and $m(l) = \begin{cases} 1, & l = 1 \\ 2^{l+1} - 1, & l > 1 \end{cases}$

Let
$$g(l) = \sum_{n=1}^{d} \alpha_n (l_n - 1)$$
, and $m(l) = \begin{cases} 1, & l = 1 \\ 2^{l+1} - 1, & l > 1 \end{cases}$

Let
$$g(l) = \sum_{n=1}^{d} \alpha_n (l_n - 1)$$
, and $m(l) = \begin{cases} 1, & l = 1 \\ 2^{l+1} - 1, & l > 1 \end{cases}$

Let
$$g(l) = \sum_{n=1}^{d} \alpha_n (l_n - 1)$$
, and $m(l) = \begin{cases} 1, & l = 1 \\ 2^{l+1} - 1, & l > 1 \end{cases}$

Let
$$g(l) = \sum_{n=1}^{d} \alpha_n (l_n - 1)$$
, and $m(l) = \begin{cases} 1, & l = 1 \\ 2^{l+1} - 1, & l > 1 \end{cases}$

Anisotropic Clenshaw-Curtis sparse grids Corresponding indices (l_1, l_2) s.t. $\alpha_1 l_1 + \alpha_2 l_2 \leq 7$

Level L=5 sparse grids

CAK RIDGE

COMPUTATIONAL & APPLIED MATHEMATICS

Figure d = 2 and level L = 5: (top): the isotropic sparse grid with: Clenshaw-Curtis abscissas with exponential growth, Gauss-Legendre abscissas with linear growth, and the Leja abscissas with linear growth. (bottom): the corresponding anisotropic versions with $\alpha_2/\alpha_1 = 2$.

Numerical example Sparse grid stochastic collocation FEM

We let $\mathbf{x} = (x_1, x_2)$ and consider the following parameterized stochastic elliptic PDE: $\begin{cases}
-\nabla \cdot (\mathbf{a}(\mathbf{x}_1, \omega) \nabla u(\mathbf{x}, \omega)) &= \cos(x_1) \sin(x_2) & \mathbf{x} \in [0, 1]^2 \\
u(\mathbf{x}, \omega) &= 0 & \text{on } \partial D
\end{cases}$

The diffusion coefficient is a 1d random field (varies only in x_1) and is $a(\omega, x_1) = 0.5 + \exp{\{\gamma(x_1, \omega)\}}$, where γ is a truncated 1d random field with correlation length R and covariance

$$Cov[\gamma](x_1, \tilde{x}_1) = \exp\left(-\frac{(x_1 - \tilde{x}_1)^2}{R^2}\right), \quad \forall (x_1, \tilde{x}_1) \in [0, 1]$$
$$\gamma(x_1, \omega) = 1 + y_1(\omega) \left(\frac{\sqrt{\pi}R}{2}\right)^{1/2} + \sum_{n=2}^d \beta_n \varphi_n(x_1) y_n(\omega)$$
$$:= \left(\sqrt{\pi}R\right)^{1/2} e^{\frac{-\left(\lfloor\frac{n}{2}\rfloor\pi R\right)^2}{8}}, \quad \varphi_n(x_1) := \left\{\begin{array}{c} \sin\left(\lfloor\frac{n}{2}\rfloor\pi x_1\right), & \text{if } n \text{ even} \\ \cos\left(\lfloor\frac{n}{2}\rfloor\pi x_1\right), & \text{if } n \text{ odd} \end{array}\right\}$$

• $\mathbb{E}[y_n] = 0$ and $\mathbb{E}[y_n y_m] = \delta_{nm}$ for $n, m \in \mathbb{N}_+$ and iid in $U(-\sqrt{3}, \sqrt{3})$

Numerical example Sparse grid stochastic collocation FEM

We let $\mathbf{x} = (x_1, x_2)$ and consider the following parameterized stochastic elliptic PDE: $\begin{cases} -\nabla \cdot (\mathbf{a}(\mathbf{x}_1, \omega) \nabla u(\mathbf{x}, \omega)) &= \cos(x_1) \sin(x_2) & \mathbf{x} \in [0, 1]^2 \\ u(\mathbf{x}, \omega) &= 0 & \text{on } \partial D \end{cases}$

The diffusion coefficient is a 1d random field (varies only in x_1) and is $a(\omega, x_1) = 0.5 + \exp{\{\gamma(x_1, \omega)\}}$, where γ is a truncated 1d random field with correlation length R and covariance

$$Cov[\gamma](x_1, \tilde{x}_1) = \exp\left(-\frac{(x_1 - \tilde{x}_1)^2}{R^2}\right), \quad \forall (x_1, \tilde{x}_1) \in [0, 1]$$
$$\gamma(x_1, \omega) = 1 + y_1(\omega) \left(\frac{\sqrt{\pi}R}{2}\right)^{1/2} + \sum_{n=2}^d \beta_n \varphi_n(x_1) y_n(\omega)$$
$$\beta_n := \left(\sqrt{\pi}R\right)^{1/2} e^{\frac{-\left(\lfloor\frac{n}{2}\rfloor\pi R\right)^2}{8}}, \quad \varphi_n(x_1) := \begin{cases} \sin\left(\lfloor\frac{n}{2}\rfloor\pi x_1\right), & \text{if } n \text{ even}, \\ \cos\left(\lfloor\frac{n}{2}\rfloor\pi x_1\right), & \text{if } n \text{ odd} \end{cases}$$
$$\mathbb{E}[y_n] = 0 \text{ and } \mathbb{E}[y_n y_m] = \delta_{nm} \text{ for } n, m \in \mathbb{N}_+ \text{ and iid in } U(-\sqrt{3}, \sqrt{3})$$

•
$$\mathbb{E}[y_n] = 0$$
 and $\mathbb{E}[y_n y_m] = \delta_{nm}$ for $n, m \in \mathbb{N}_+$ and iid in $U(-\sqrt{3}, \sqrt{3})$

Calculating the weighting parameters A priori selection: d = 11

A priori selection of the dimension weights α_n :

$$\alpha_n = \log\left(\frac{2\varrho_n}{|\mathcal{U}_n|} + \sqrt{1 + \frac{4\varrho_n^2}{|\mathcal{U}_n|^2}}\right) \quad \text{ and } \varrho_n = \frac{1}{12\sqrt{\lambda_n}\|b_n\|_{L^\infty(D)}}$$

For this problem we have

$$\alpha_n = \begin{cases} \log\left(1+c/\sqrt{R}\right), & \text{ for } n << R^{-2} \\ n^2 R^2, & \text{ for } n > R^{-2} \end{cases}$$

	α_1	α_2 , α_3	α_4 , α_5	α_6, α_7	α_8 , α_9	$lpha_{10}$, $lpha_{11}$
R = 1/2	0.20	0.19	0.42	1.24	3.1	5.8
R = 1/64	0.79	0.62	0.62	0.62	0.62	0.62

$$\textbf{Goal:} \quad \|\mathbb{E}[\epsilon]\|_{L^2(D)} \approx \|\mathbb{E}\left[u_L^{\text{SG}}(x, \boldsymbol{y}) - u_{L_{\max}+1}^{\text{SG}}(x, \boldsymbol{y})\right]\|_{L^2(D)}$$

• $L = 0, 1, \dots, L_{\max}$ and $u_{L_{\max}+1}$ is an "overkilled solution."

Calculating the weighting parameters A priori selection: d = 11

A priori selection of the dimension weights α_n :

$$\alpha_n = \log\left(\frac{2\varrho_n}{|\mathcal{U}_n|} + \sqrt{1 + \frac{4\varrho_n^2}{|\mathcal{U}_n|^2}}\right) \quad \text{ and } \varrho_n = \frac{1}{12\sqrt{\lambda_n}\|b_n\|_{L^\infty(D)}}$$

For this problem we have

$$\alpha_n = \begin{cases} \log \left(1 + c/\sqrt{R}\right), & \text{ for } n << R^{-2} \\ n^2 R^2, & \text{ for } n > R^{-2} \end{cases}$$

	α_1	α_2 , α_3	α_4 , α_5	α_6, α_7	α_8 , α_9	$lpha_{10}$, $lpha_{11}$
R = 1/2	0.20	0.19	0.42	1.24	3.1	5.8
R = 1/64	0.79	0.62	0.62	0.62	0.62	0.62

• $L = 0, 1, \ldots, L_{\max}$ and $u_{L_{\max}+1}$ is an "overkilled solution."

Calculating the weighting parameters A posteriori selection: N = 11

A linear least square approximation to fit $\log_{10}(\|E[\varepsilon_n]\|_{L^2(D)})$ versus l_n . For $n = 1, 2, \ldots, d = 11$ we plot: on the left, the highly anisotropic case R = 1/2 and on the right, the isotropic case R = 1/64

R	AS	AF	IS	MC
1/2	50	252	2512	5.0e + 09
1/4	158	1259	3981	2.0e + 09
1/16	199	1958	501	1.6e + 09
1/64	316	199530	360	1.3e + 09

TableFor Γ^d , with N = 11, we compare the number of deterministic solutions required by the Anisotropic Smolyak (AS) using Clenshaw-Curtis abscissas, Anisotropic Full Tensor product method (AF) using Gaussian abscissas, Isotropic Smolyak (IS) using Clenshaw-Curtis abscissas and the Monte Carlo (MC) method using random abscissas, to reduce the original error by a factor of 10^4 .

Convergence Comparisons IV: $N = 21, ..., 121, ... \infty$ random variables (A posteriori approach)

Reducing the computational cost of multivariate interpolation 💃

COMPUTATIONAL & APPLIED MATHEMATIC!

- Exploit the hierarchy in deterministic approximation: For a given accuracy, multilevel methods seek to reduce complexity by spreading computational cost across several resolutions of the spatial discretization
- Exploit the hierarchy in stochastic approximation: Sparse grids with nested grid points provide a natural multilevel hierarchy which we can use to accelerate each PDE solve

Solve $A_j c_j = f_j$ at all blue points \rightarrow Interpolate to accelerate solution (j = 1, ..., m)

Reducing the computational cost of multivariate interpolation

- Exploit the hierarchy in deterministic approximation: For a given accuracy, multilevel methods seek to reduce complexity by spreading computational cost across several resolutions of the spatial discretization
- Exploit the hierarchy in stochastic approximation: Sparse grids with nested grid points provide a natural multilevel hierarchy which we can use to accelerate each PDE solve

Reducing the computational cost of multivariate interpolation

If we assume that the 1D point sets are nested, the approximation $\mathcal{A}_{L}^{p,g}[v]$ is a Lagrange interpolating polynomial, and can be rewritten [Wasilkowski, Wozniakowski, '95]:

$$\mathcal{A}_{L}^{m,g}[v](\boldsymbol{y}) = \sum_{j=1}^{m_{L}} v(\boldsymbol{y}_{j}) \underbrace{\sum_{\substack{\boldsymbol{j} \in \{0,1\}^{d} \\ g(\boldsymbol{l}+\boldsymbol{j}) \leq L}} (-1)^{|\boldsymbol{j}|_{1}} \prod_{n=1}^{N} \ell_{k_{n}}^{l_{n}-i_{n}}(y_{n})}_{\Psi_{L,j}(\boldsymbol{y})}.$$

- $\{y_j\}_{j=1}^{m_L}$ is the reordered set of the m_L interpolation points involved in $\mathcal{A}_L^{p,g}$.
- $\{\Psi_{L,j}\}_{j=1}^{m_L}$ is the simplified basis—a linear combination of tensorized Lagrange polynomials.

This provides motivation for our acceleration scheme: $\{y_j\}_{j=1}^{m_L} \subset \{y_j\}_{j=1}^{M_L+1}$, and we can reuse point evaluations from level L-1 to level L.

Reducing the computational cost of multivariate interpolation

If we assume that the 1D point sets are nested, the approximation $\mathcal{A}_{L}^{p,g}[v]$ is a Lagrange interpolating polynomial, and can be rewritten [Wasilkowski, Wozniakowski, '95]:

$$\mathcal{A}_{L}^{m,g}[v](\boldsymbol{y}) = \sum_{j=1}^{m_{L}} v(\boldsymbol{y}_{j}) \underbrace{\sum_{\substack{\boldsymbol{j} \in \{0,1\}^{d} \\ g(\boldsymbol{l}+\boldsymbol{j}) \leq L}} (-1)^{|\boldsymbol{j}|_{1}} \prod_{n=1}^{N} \ell_{k_{n}}^{l_{n}-i_{n}}(y_{n})}_{\Psi_{L,j}(\boldsymbol{y})}.$$

- $\{y_j\}_{j=1}^{m_L}$ is the reordered set of the m_L interpolation points involved in $\mathcal{A}_L^{p,g}$.
- $\{\Psi_{L,j}\}_{j=1}^{m_L}$ is the simplified basis—a linear combination of tensorized Lagrange polynomials.

This provides motivation for our acceleration scheme: $\{y_j\}_{j=1}^{m_L} \subset \{y_j\}_{j=1}^{M_{L+1}}$, and we can reuse point evaluations from level L - 1 to level L.

Construction of the fully discrete solution

• For a prescribed accuracy $\tau > 0$, the semi-discrete solution $u_h(x, y_j)$ is approximated by

$$u_h(x, \boldsymbol{y}_j) = \sum_{i=1}^{N_h} c_{j,i} \varphi_i(x) \approx \widetilde{u}_h(x, \boldsymbol{y}_j) = \sum_{i=1}^{N_h} \widetilde{c}_{j,i} \varphi_i(x),$$

where

$$\widetilde{\boldsymbol{c}}_{j} = (\widetilde{c}_{j,1}, \dots, \widetilde{c}_{j,N_{h}})^{T}$$

is the output of the solver s.t. $\|\boldsymbol{c}_j - \widetilde{\boldsymbol{c}}_j\|_{A_j} < \tau$.

• We can rewrite (after a re-ordering) the fully discrete generalized sparse grid SC approximation (at level *L*) as:

$$\widetilde{u}_{m_L,h}(x, \boldsymbol{y}) := \sum_{j=1}^{m_L} \left(\sum_{i=1}^{N_h} \widetilde{c}_{j,i} \varphi_i(x) \right) \psi_{L,j}(\boldsymbol{y}).$$

COMPUTATIONAL & APPLIED MATHEMATICS

Construction of the fully discrete solution

• For a prescribed accuracy $\tau > 0$, the semi-discrete solution $u_h(x, y_j)$ is approximated by

$$u_h(x, \boldsymbol{y}_j) = \sum_{i=1}^{N_h} c_{j,i} \varphi_i(x) \approx \widetilde{u}_h(x, \boldsymbol{y}_j) = \sum_{i=1}^{N_h} \widetilde{c}_{j,i} \varphi_i(x),$$

where

$$\widetilde{\boldsymbol{c}}_j = (\widetilde{c}_{j,1}, \dots, \widetilde{c}_{j,N_h})^T$$

is the output of the solver s.t. $\|\boldsymbol{c}_j - \widetilde{\boldsymbol{c}}_j\|_{A_j} < \tau$.

• We can rewrite (after a re-ordering) the fully discrete generalized sparse grid SC approximation (at level *L*) as:

$$\widetilde{u}_{m_L,h}(x, \boldsymbol{y}) := \sum_{j=1}^{m_L} \left(\sum_{i=1}^{N_h} \widetilde{c}_{j,i} \varphi_i(x) \right) \psi_{L,j}(\boldsymbol{y}).$$

COMPUTATIONAL & APPLIED MATHEMATICS

Improved initial vectors and pre-conditioners Example: Application to conjugate gradient (CG) methods

Convergence of CG for $A_j c_j = f_j$:

$$\|\boldsymbol{c}_{j} - \boldsymbol{c}_{j}^{(k)}\|_{A_{j}} \leq 2\left(\frac{\sqrt{\kappa_{j}}-1}{\sqrt{\kappa_{j}}+1}\right)^{k} \|\boldsymbol{c}_{j} - \boldsymbol{c}_{j}^{(0)}\|_{A_{j}}$$

Accelerate the performance of the CG solver by reducing the condition number κ_j or improving the initial guess $c_j^{(0)}$.

Improved initial vectors and pre-conditioners Example: Application to conjugate gradient (CG) methods

Convergence of CG for $A_j c_j = f_j$:

$$\|m{c}_j - m{c}_j^{(k)}\|_{A_j} \le 2\left(rac{\sqrt{\kappa_j} - 1}{\sqrt{\kappa_j} + 1}
ight)^k \|m{c}_j - m{c}_j^{(0)}\|_{A_j}$$

Accelerate the performance of the CG solver by reducing the condition number κ_j or improving the initial guess $c_j^{(0)}$.

Specifically, assume we have solved for each the vectors $\widetilde{c}_m, m = 1, \dots, m_{L-1}$

• for any new point $oldsymbol{y}_j \in \Delta \mathcal{H}_L$, a good approximation to $oldsymbol{c}_j$ is given by

$$oldsymbol{c}_j^{(0)} = \sum_{m=1}^{m_{L-1}} \widetilde{oldsymbol{c}}_m \psi_{L-1,m}(oldsymbol{y}_j).$$

COMPUTATIONAL & APPLIED MATHEMATICS

Improved initial vectors and pre-conditioners Example: Application to conjugate gradient (CG) methods

Convergence of CG for $A_j c_j = f_j$:

$$\|m{c}_j - m{c}_j^{(k)}\|_{A_j} \le 2\left(rac{\sqrt{\kappa_j} - 1}{\sqrt{\kappa_j} + 1}
ight)^k \|m{c}_j - m{c}_j^{(0)}\|_{A_j}$$

Accelerate the performance of the CG solver by reducing the condition number κ_j or improving the initial guess $c_j^{(0)}$.

Alternatively, suppose we have constructed pre-conditioners $P_m, m = 1, \ldots, m_{L-1}$

• for any new point $oldsymbol{y}_j \in \Delta \mathcal{H}_L$, improved pre-conditioners are give by

$$oldsymbol{P}_j = \sum_{m=1}^{m_{L-1}} oldsymbol{P}_m \psi_{L-1,m}(oldsymbol{y}_j).$$

COMPUTATIONAL & APPLIED MATHEMATICS

Computational cost analysis for ε -complexity

The goal is to estimate the computational cost within a prescribed accuracy ε , i.e., split the total error $e = u(x, y) - \tilde{u}_{h,m_L}(x, y)$ into:

$$\|e\| \leq \underbrace{\|u - u_h\|}_{e_1(\mathsf{FEM error})} + \underbrace{\|u_h - u_{h,m_L}\|}_{e_2(\mathsf{SCSG error})} + \underbrace{\|u_{h,m_L} - \tilde{u}_{h,m_L}\|}_{e_3(\mathsf{solver error})} \leq \varepsilon$$

Sufficient conditions to achieve overall error $\leq \varepsilon$:

$$\begin{aligned} \|e_1\| &\leq C_1 \, h^s \leq \frac{\varepsilon}{3} \\ \|e_2\| &\leq C_2(d) \, e^{-r(d)L} \leq \frac{\varepsilon}{3} \\ \|e_3\| &\leq C_3 \, \Lambda_L \, e_{\mathsf{cg}} \leq \frac{\varepsilon}{3} \end{aligned}$$

 $\bullet\,$ Here $s,\,r(d)$ are the convergence rates of the FEM and collocation scheme, Λ_L is the Lebesgue constant, and

$$e_{\mathsf{cg}} = \max_{\boldsymbol{y}_j \in \mathcal{H}_L} \| \boldsymbol{c}_j - \tilde{\boldsymbol{c}}_j \|_{A_j}$$

Computational cost analysis for ε -complexity

The goal is to estimate the computational cost within a prescribed accuracy ε , i.e., split the total error $e = u(x, y) - \tilde{u}_{h,m_L}(x, y)$ into:

$$\|e\| \leq \underbrace{\|u - u_h\|}_{e_1(\mathsf{FEM error})} + \underbrace{\|u_h - u_{h,m_L}\|}_{e_2(\mathsf{SCSG error})} + \underbrace{\|u_{h,m_L} - \tilde{u}_{h,m_L}\|}_{e_3(\mathsf{solver error})} \leq \varepsilon$$

Sufficient conditions to achieve overall error $\leq \varepsilon$:

$$\begin{aligned} \|e_1\| &\leq C_1 \, h^s \leq \frac{\varepsilon}{3} \\ \|e_2\| &\leq C_2(d) \, e^{-r(d)L} \leq \frac{\varepsilon}{3} \\ \|e_3\| &\leq C_3 \, \Lambda_L \, e_{\mathsf{cg}} \leq \frac{\varepsilon}{3} \end{aligned}$$

• Here $s,\,r(d)$ are the convergence rates of the FEM and collocation scheme, Λ_L is the Lebesgue constant, and

$$e_{\mathsf{cg}} = \max_{\boldsymbol{y}_j \in \mathcal{H}_L} \| \boldsymbol{c}_j - \tilde{\boldsymbol{c}}_j \|_{A_j}$$

CG iteration estimate: minimum computational cost Restart with "zero" vector vs. acceleration

Theorem: [Galindo, Jantsch, W., Zhang, 2015]

Given $\varepsilon > 0$, the total number of CG iterations K needed to achieve an error $||u - \tilde{u}_{m_L,h}|| < \varepsilon$ using zero or accelerated initial vectors is bounded by:

$$K_{\text{zero}} \leq \alpha_1(d) \varepsilon^{\frac{-\log(2)}{r}} \left\{ \alpha_2(d) + \alpha_3 \log\left(\frac{1}{\varepsilon}\right) \right\}^{d-1} \\ \times \sqrt{\kappa} \left\{ \log\left(\frac{1}{\varepsilon}\right) + \log(\Lambda_L) + \alpha_4(d) \right\},$$

where $\bar{\kappa} = \max_{\boldsymbol{y} \in \mathcal{H}_L} \bar{\kappa}(\boldsymbol{y}).$

The first line comes from the number of collocation nodes which remains the same:

$$m_L \le e^{d-1} 2^{L+1} \left(1 + \frac{L}{d-1} \right)^{d-1}.$$

The second part comes from the convergence of the CG algorithm, which for fine grid points we can reduce by a log factor (in red).

CG iteration estimate: minimum computational cost Restart with "zero" vector vs. acceleration

Theorem: [Galindo, Jantsch, W., Zhang, 2015]

Given $\varepsilon > 0$, the total number of CG iterations K needed to achieve an error $||u - \tilde{u}_{m_L,h}|| < \varepsilon$ using zero or accelerated initial vectors is bounded by:

$$\begin{aligned} K_{\mathsf{accel}} &\leq \alpha_1(d) \, \varepsilon^{\frac{-\log(2)}{r}} \left\{ \alpha_2(d) + \alpha_3 \log\left(\frac{1}{\varepsilon}\right) \right\}^{d-1} \\ & \times \sqrt{\bar{\kappa}} \left\{ \alpha_5(d) + \log(\Lambda_L) \right\}, \end{aligned}$$

where $\bar{\kappa} = \max_{\boldsymbol{y} \in \mathcal{H}_L} \bar{\kappa}(\boldsymbol{y}).$

The first line comes from the number of collocation nodes which remains the same:

$$m_L \le e^{d-1} 2^{L+1} \left(1 + \frac{L}{d-1} \right)^{d-1}.$$

The second part comes from the convergence of the CG algorithm, which for fine grid points we can reduce by a log factor (in red).

• To perform this method, we incur an addition cost of interpolation (and preconditioning, if necessary).

- The condition number of the systems has a big effect on the complexity, but is hard to specify in general.
- We actually observe increased % savings in iterations vs error as dimension increases. (Example 2)
 - An alternative estimate shows an iterations savings of $(2^{1/d} 1) \log \varepsilon^{-1}$
- This method is most effective when sampling is relatively expensive, e.g. when the underlying deterministic PDE is more difficult to solve than the interpolation problem. (Examples 2,3)
- The acceleration scheme should always be used in adaptive interpolation settings, or with sparse grids based on hierarchical Lagrange interpolants.

- The condition number of the systems has a big effect on the complexity, but is hard to specify in general.
- We actually observe increased % savings in iterations vs error as dimension increases. (Example 2)
 - An alternative estimate shows an iterations savings of $(2^{1/d}-1)\log \varepsilon^{-1}$
- This method is most effective when sampling is relatively expensive, e.g. when the underlying deterministic PDE is more difficult to solve than the interpolation problem. (Examples 2,3)
- The acceleration scheme should always be used in adaptive interpolation settings, or with sparse grids based on hierarchical Lagrange interpolants.

- The condition number of the systems has a big effect on the complexity, but is hard to specify in general.
- We actually observe increased % savings in iterations vs error as dimension increases. (Example 2)
 - An alternative estimate shows an iterations savings of $(2^{1/d}-1)\log \varepsilon^{-1}$
- This method is most effective when sampling is relatively expensive, e.g. when the underlying deterministic PDE is more difficult to solve than the interpolation problem. (Examples 2,3)
- The acceleration scheme should always be used in adaptive interpolation settings, or with sparse grids based on hierarchical Lagrange interpolants.

Example 1: Global Basis w/ Error Balancing

We consider a 1D Poisson equation with random diffusivity term:

$$\begin{split} -\nabla \cdot (a(x, \boldsymbol{y}) \nabla u(x, \boldsymbol{y})) &= 10 \text{ in } [0, 1] \times \Gamma \\ u(x, \boldsymbol{y}) &= 0 \text{ on } \partial D \times \Gamma \end{split}$$

with

1

$$a(x, y) = 1 + \exp\left\{\exp^{-1/8}(y_1 \cos \pi x + y_2 \sin \pi x + y_3 \cos 2\pi x + y_4 \sin 2\pi x)\right\}$$

Error	#SG Pts	CG iters	CG + acc	% Savings
1×10^{-2}	137	29,355	22,219	24.3
5×10^{-3}	401	180,087		49.9
1×10^{-3}	1105	2,072,625	696,935	66.4
5×10^{-4}	2929	11,253,264	2,217,615	
1×10^{-4}	7537	118,429,119	16,204,912	

Table Iterations and savings between the hierarchically acclerated SG method and the zero vector method

Example 1: Global Basis w/ Error Balancing

We consider a 1D Poisson equation with random diffusivity term:

$$\begin{split} -\nabla \cdot (a(x, \boldsymbol{y}) \nabla u(x, \boldsymbol{y})) &= 10 \text{ in } [0, 1] \times \Gamma \\ u(x, \boldsymbol{y}) &= 0 \text{ on } \partial D \times \Gamma \end{split}$$

with

$$a(x, y) = 1 + \exp\left\{\exp^{-1/8}(y_1 \cos \pi x + y_2 \sin \pi x + y_3 \cos 2\pi x + y_4 \sin 2\pi x)\right\}$$

Error	#SG Pts	CG iters	CG+acc	% Savings
1×10^{-2}	137	29,355	22,219	24.3
5×10^{-3}	401	180,087	90,300	49.9
1×10^{-3}	1105	2,072,625	696,935	66.4
5×10^{-4}	2929	11,253,264	2,217,615	80.3
1×10^{-4}	7537	118,429,119	16,204,912	86.3

Table Iterations and savings between the hierarchically acclerated SG method and the zero vector method

Example 2: Global Basis w/ Interpolated Preconditioners

Let
$$\mathbf{x} = (x_1, x_2)$$
 and consider the following linear elliptic SPDE:

$$\begin{cases}
-\nabla \cdot (a(x_1, \boldsymbol{y}) \nabla u(\mathbf{x}, \boldsymbol{y})) &= \cos(x_1) \sin(x_2) & [0, 1]^2 \times \Gamma \\
u(\mathbf{x}, \boldsymbol{y}) &= 0 & \text{on } \partial D \times \Gamma
\end{cases}$$

The diffusion coefficient is a 1d random field (varies only in x_1) and is $a(x_1, y) = 0.5 + \exp{\{\gamma(x_1, y)\}}$, where γ is a truncated random field with correlation length R and covariance

$$Cov[\gamma](x_1, \tilde{x}_1) = \exp\left(-\frac{(x_1 - \tilde{x}_1)^2}{R^2}\right), \quad \forall (x_1, \tilde{x}_1) \in [0, 1]$$
$$\gamma(x_1, \boldsymbol{y}) = 1 + y_1 \left(\frac{\sqrt{\pi}R}{2}\right)^{1/2} + \sum_{n=2}^N \beta_n \,\varphi_n(x_1) \,y_n$$
$$\beta_n := \left(\sqrt{\pi}R\right)^{1/2} \, e^{\frac{-\left(\lfloor\frac{n}{2}\rfloor\pi R\right)^2}{8}}, \quad \varphi_n(x_1) := \left\{\begin{array}{c} \sin\left(\lfloor\frac{n}{2}\rfloor\pi x_1\right), & \text{if } n \text{ even}, \\ \cos\left(\lfloor\frac{n}{2}\rfloor\pi x_1\right), & \text{if } n \text{ odd} \end{array}\right.$$

• $\mathbb{E}[y_n] = 0$ and $\mathbb{E}[y_n y_m] = \delta_{nm}$ for $n, m \in \mathbb{N}_+$ and iid in $U(-\sqrt{3}, \sqrt{3})$

2D example: Savings vs Level/Error

Figure Percentage reduction in CG iterations per level (left) and vs error (right) with d=3,5,7,9,11 and 13 and for correlation length R=1/64

Example 3: Nonlinear problem

We consider a 1D nonlinear Poisson equation with random diffusivity term:

$$\begin{split} \nabla \cdot (a(x, \boldsymbol{y}) \nabla u(x, \boldsymbol{y})) + F[u](x, \boldsymbol{y}) &= 10 \text{ in } [0, 1] \times \Gamma \\ u(x, \boldsymbol{y}) &= 0 \text{ on } \partial D \times \Gamma \end{split}$$

with a as in Example 2:

$$a(x, \mathbf{y}) = 1 + \exp\left\{\exp^{-1/8}(y_1 \cos \pi x + y_2 \sin \pi x + y_3 \cos 2\pi x + y_4 \sin 2\pi x)\right\}.$$

We'll test our method using

$$F[u] = u^2 \text{ and } F[u] = u \ast u'$$

- For nonlinear iterative methods, a better initial guess can lead to better convergence rates
- In this case, each iteration corresponds to a full system solve

Example 3: Nonlinear problem

We consider a 1D nonlinear Poisson equation with random diffusivity term:

$$abla \cdot (a(x, \boldsymbol{y}) \nabla u(x, \boldsymbol{y})) + F[u](x, \boldsymbol{y}) = 10 \text{ in } [0, 1] \times \Gamma$$

 $u(x, \boldsymbol{y}) = 0 \text{ on } \partial D \times \Gamma$

with a as in Example 2:

$$a(x, \mathbf{y}) = 1 + \exp\left\{\exp^{-1/8}(y_1 \cos \pi x + y_2 \sin \pi x + y_3 \cos 2\pi x + y_4 \sin 2\pi x)\right\}.$$

We'll test our method using

$$F[u] = u^2 \text{ and } F[u] = u \ast u'$$

- For nonlinear iterative methods, a better initial guess can lead to better convergence rates
- In this case, each iteration corresponds to a full system solve

Example 3: $-\nabla(a \cdot \nabla u) + F(u) = f$

Figure Cumulative total (top) and average per-level (bottom) number of Newton iterations with F(u) = u * u' (left) and $F(u) = u^5$ (right)