Mini-Course on
Advanced Stationary Processes Analysis,
VIASM.
Part 2: Geostatistics
Chapter 1: Probability Models

Jean-Yves Dauxois

INSA - Toulouse Mathematical Institute, Toulouse, FRANCE
jean-yves.dauxois@insa-toulouse.fr

18th to 22th July 2016
Let

- $S \subset \mathbb{R}^d$ be a spatial set
- (Ω, \mathcal{F}, P) be a probability space
- (E, \mathcal{E}) be a measurable set.

Definition

A random field X, also called a spatial process, is a family $X = \{X_s, s \in S\}$ of random variables (r.v.), indexed by $s \in S$, from (Ω, \mathcal{F}, P) to (E, \mathcal{E}).

- $S =$ spatial set of sites
- $E =$ state space of the process.

The distribution P of X is unknown in the family \mathcal{P} of probabilities on the measurable space (E, \mathcal{E}).
Figure: Observations of a Spatial Process on the square $[0, 100]^2$
Some problems to solve:

- Forecast X_{s_0} when the random field X is not observed at s_0
- Estimate the distribution of X_s or $\varphi(X_s)$
- Estimate the dependency between the X_{s_i}.
Definition

A spatial process $X = \{X_s, s \in S\}$ is said of **second order** if, for all s in S, we have:

$$\mathbb{E}X_s^2 < +\infty.$$

In this case, one can consider the **mean function**:

$$m : S \rightarrow \mathbb{R} \quad s \mapsto m(s) = \mathbb{E}X_s$$

and the **covariance function**:

$$c : S \times S \rightarrow \mathbb{R} \quad (s, t) \mapsto c(s, t) = \text{Cov}(X_s, X_t).$$
A covariance function is **positive semidefinite (p.s.d.)**, i.e.

\[
\forall n \geq 1, \forall (s_1, \ldots, s_n) \in S^n \text{ and } \forall a = (a_1, \ldots, a_n) \in \mathbb{R}^n,
\]

we have:

\[
\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j c(s_i, s_j) \geq 0.
\]
Proposition

The covariance function is said **positive definite (p.d.)** if

\[\forall n \geq 1 \text{ and } \forall (s_1, \ldots, s_n) \in S^n, \]

we have:

\[\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j c(s_i, s_j) = 0 \iff (a_i = 0, \forall i = 1, \ldots, n). \]

Definition

A **gaussian random field** \(X \) on \(S \) is a process such that, for all finite subset \(\Lambda \) of \(S \) and all sequence of reals \(a = (a_s, s \in \Lambda) \), the r.v. \(\sum_{s \in \Lambda} a_s X_s \) has a gaussian distribution.
Definition

A second-order random field X on S is said to be \textbf{stationary} if it has a constant mean function and its covariance function is invariant by translation, i.e.:

$$\forall s \in S : m(s) = m$$
$$\forall (s, t) \in S^2, \forall h \in S : c(s + h, t + h) = c(s, t).$$

If X is stationary, we have: $c(s, t) = c(0, t - s)$, for all $(s, t) \in S^2$.

Definition

If X is stationary, the function

$$C : S \rightarrow \mathbb{R}$$
$$h \mapsto C(h) = c(0, h)$$

is called the \textbf{stationary covariance} function.
Definition

The **stationary correlation function** of a stationary random field \(X \) is:

\[
\rho : \ S \rightarrow \mathbb{R} \\
h \mapsto \rho(h) = \frac{C(h)}{C(0)}.
\]

Proposition

Let \(C \) be the stationary function of second-order spatial process. Then:

1. \(C(h) = C(-h) \) (even function)
2. \(\forall h \in S : |C(h)| \leq C(0) \) (bounded function)
3. If \(C \) is continuous at the origin, then it is uniformly continuous on \(S \).
Proposition

Let \(C \) be the stationary function of second-order spatial process. Then:

\[\forall n \geq 1, \forall a \in \mathbb{R}^n, \forall (s_1, \ldots, s_n) \in S^n : \]

\[\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j C(s_i - s_j) \geq 0 \text{ (s.d.p.)}. \]

Reciprocally, all s.d.p. function \(C \) is the covariance function of a stationary spatial process.
Proposition

Let C be the stationary function of a second-order spatial process. Then:

1. If A is a linear function from \mathbb{R}^d to \mathbb{R}^d, the random field $X^A = \{X_{As}, s \in S\}$ is stationary with covariance function $C^A(s) = C(As)$. Moreover, if C is d.p. and A with full rank, then C^A is also d.p.

2. If C_1, \ldots, C_n, \ldots are stationary functions, then
 - $\forall (\alpha_1, \alpha_2) \in \mathbb{R}^+ \times \mathbb{R}^+$ the function $C(h) = \alpha_1 C_1(h) + \alpha_2 C_2(h)$ is a stationary covariance function
 - $C(h) = C_1(h)C_2(h)$ is a stationary covariance function
 - $\lim_{n \to +\infty} C_n(h)$ is also a stationary covariance function.
Definition

A spatial process X is said to be **strictly stationary** if:

$\forall k \in \mathbb{N}, \forall (t_1, \ldots, t_k) \in S^k$ and $\forall h \in S$, the distribution of the random vector $(X_{t_1+h}, \ldots, X_{t_k+h})$ is independent of h.

Let $||x|| = \sqrt{\sum_{i=1}^{d} x_i^2}$ denotes the euclidean norm on \mathbb{R}^d.

Definition

A second-order spatial process X has an **isotropic covariance function** if $\text{Cov}(X_s, X_t)$ depends only on $||t - s||$, i.e. if there exists a function C_0 from \mathbb{R}^+ to \mathbb{R} such that

$$c(s, t) = C_0(||s - t||),$$

for all $(s, t) \in S^2$.
A spatial process \(X \) is said to be \textbf{intrinsically stationary} or \textbf{intrinsic} if the processes

\[
\Delta X^h = \{ \Delta X^h_s = X_{s+h} - X_s ; s \in S \}
\]

are stationary, for all \(h \in S \).

One can show that if \(X \) is an intrinsic spatial process, then:

- there exists \(m \in S \), called the drift, such that
 \[
 \mathbb{E}(\Delta X^h_s) = \mathbb{E}(X_{s+h} - X_s) = \langle m, h \rangle;
 \]
- there exists a function on \(S \) such that
 \[
 \text{Var}(\Delta X^h_s) = \text{Var}(X_{s+h} - X_s) = 2\gamma(h)
 \]
Without loss of generality, one can suppose the drift \(m \) to be equal to 0. This is why, one can find the simplified definition of an intrinsic process.

Definition

A spatial process \(X \) is said to be intrinsic if we have

\[
\forall (s, h) \in S^2 : \mathbb{E}(X_{s+h} - X_s) = 0
\]

\[
\forall s \in S : \text{Var}(X_{s+h} - X_s) = 2\gamma(h).
\]

The function \(\gamma \) is called the **semi-variogram** function of \(X \).
Definition

The semi-variogram γ of a spatial process X is said to be **isotropic** if there exists a function γ_0 such that:

$$\gamma(h) = \gamma_0(||h||),$$

for all $h \in S$.

Proposition

If X is a second order stationary process with covariance function C, then X is intrinsic with semi-variogram

$$\gamma(h) = C(0) - C(h).$$
Proposition

The semi-variogram function γ of an intrinsic process X is such that:

1. $\gamma(h) = \gamma(-h)$ (even function) and $\gamma(0) = 0$;
2. If A is a linear map on \mathbb{R}^d, then the function $h \mapsto \gamma(Ah)$ is also a semi-variogram function;
3. If γ is continuous at 0, then γ is continuous at every s where γ is locally bounded.
4. If γ is bounded in the neighborhood of 0, then there exists positive reals a and b such that, for all $x \in S$:
 $$\gamma(x) \leq a\|x\|^2 + b.$$
Definition

An **Allowable Linear Combination (A.L.C.)** of a process X is a linear combination $\sum_{i=1}^{n} \lambda_i X_{s_i}$ of its coordinates with finite variance, i.e. such that

$$\text{Var} \left(\sum_{i=1}^{n} \lambda_i X_{s_i} \right) < +\infty.$$

Proposition

If X is an intrinsic process, the linear combination $\sum_{i=1}^{n} \lambda_i X_{s_i}$ is an A.L.C. if, and only if, $\sum_{i=1}^{n} \lambda_i = 0$.
Proposition

The semi-variogram γ of an intrinsic process X is conditionally negative definite, i.e. for all $n \in \mathbb{N}^*$, for all $a \in \mathbb{R}^n$ such that $\sum_{i=1}^n a_i = 0$ and for all $(s_1, \ldots, s_n) \in S^n$, we have:

$$\sum_{i=1}^n \sum_{j=1}^n a_ia_j\gamma(s_i - s_j) \leq 0.$$
Proposition

If X is an intrinsic process with bounded semi-variogram, i.e. such that

$$\lim_{||h|| \to +\infty} \gamma(h) = \gamma(+\infty) < +\infty,$$

then X is second order stationary and

$$\gamma(+\infty) = C(0) = \text{Var}(X_S).$$

Theorem

A continuous function γ defined on \mathbb{R}^d such that $\gamma(0) = 0$ is a semi-variogram if, and only if, for all $a > 0$, the function $h \mapsto e^{-a\gamma(h)}$ is a covariance function, i.e. is s.d.p.
Terminology

- When the limit
 \[\lim_{||h|| \to +\infty} \gamma(h) = \gamma(+\infty) < +\infty, \]
 exists, its value \(\gamma(+\infty) \) is called the **sill**.

- The **range** (resp. **practical range**) is the distance where (resp. 95\% of) the value of the sill is reached.

- A semi-variogram has a **nugget effect** component when
 \[\lim_{||h|| \to 0} \gamma(h) = \tau > 0. \]
Figure: Nugget, Range and Sill of a Variogram
Examples of Isotropic variograms

C and a are always positive reals.

- **Pure nugget effect**

 $$\gamma(h) = \begin{cases}
 0 & \text{if } h = 0 \\
 C & \text{if } h \neq 0
 \end{cases}$$

 - Sill = Nugget effect = C

- **Exponential**

 $$\gamma(h) = C \left(1 - \exp \left(-\frac{||h||}{a}\right) \right)$$

 - Sill = C
 - Practical Range = $3a$
- **Spherical** (when $d \leq 3$)

 \[\gamma(h) = \begin{cases}
 C \left(\frac{3}{2} \frac{\|h\|}{a} - \frac{1}{2} \frac{\|h\|^3}{a^3} \right) & \text{if } \|h\| \leq a \\
 C & \text{if } \|h\| > a
 \end{cases} \]

 - Sill = C
 - Range = a

- **Gaussian**

 \[\gamma(h) = C \left(1 - \exp \left(-\frac{\|h\|^2}{a^2} \right) \right) \]

 - Sill = C
 - Practical Range = 1.73a

- **Generalized Exponential**

 \[\gamma(h) = C \left(1 - \exp \left(-\frac{\|h\|\alpha}{a^\alpha} \right) \right), \text{ for } \alpha \in]0, 2] \]
- **Matern**

\[\gamma(h) = C \left(1 - \frac{1}{2^{\nu-1}\Gamma(\nu)} \left(\frac{||h||}{a}\right)^{\nu} K_{\nu}\left(\frac{||h||}{a}\right)\right), \text{ for } \nu > 1, \]

where \(K_{\nu} \) is the modified Bessel function of the second kind.

- **Power**

\[\gamma(h) = C||h||^{\alpha}, \text{ for } \alpha \in]0, 2[. \]

- **Mixed**, e.g.

\[\gamma(h) = \gamma_1(h) + \gamma_2(h) + \gamma_3(h), \]

where \(\gamma_1 \) is a pure nugget effect, \(\gamma_2 \) is spherical with low range and \(\gamma_3 \) is spherical with high range.
Anisotropy

Let \vec{e} be a unit vector of \mathbb{R}^d: $||\vec{e}|| = 1$.

Definition

The **directional semi-variogram** $\gamma_{\vec{e}}(h)$ of a spatial process X in direction \vec{e} is defined by:

$$2\gamma_{\vec{e}}(h) = \text{Var} \left(X_{s+h\vec{e}} - X_s \right), \text{ for all } h \in \mathbb{R}. $$

Definition

A random field X is said **anisotropic** if at least two of its directional semi-variogram differ.
Definition

The semi-viariogram γ of a random field X has a **geometric anisotropy** if it results from a linear transformation A of an isotropic semi-viariogram:

$$\gamma(h) = \gamma_0(||Ah||) = \gamma(\sqrt{h^t Q h}), \text{ where } Q = A^t A.$$

Definition

The semi-viariogram $h \mapsto \gamma(h)$ of a random field X has a **support anisotropy** if it depends only on certain coordinates of h, possibly after a change of coordinates.
Definition

The semi-variogram $h \mapsto \gamma(h)$ of a random field X has a \textbf{stratified (or zonal) anisotropy} if it can be written as the sum of semi-variograms with different support anisotropies.