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Outline

© Regression
» predicting Y from X

@ Structure and Sparsity
» finding and using hidden structure

@ Nonparametric Methods
» using statistical models with weak assumptions

@ Latent Variable Models
» making use of hidden variables



Introduction

Machine learning is statistics with a focus on prediction,
scalability and high dimensional problems.

Regression: predict Y € R from X.

Classification: predict Y € {0, 1} from X.

Example: Predict if an email X isreal Y =1 or spam Y = 0.
Finding structure. Examples:

Clustering: find groups.

Graphical Models: find conditional independence structure.



Three Main Themes

Convexity

Convex problems can be solved quickly. If necessary,
approximate the problem with a convex problem.

Sparsity

Many interesting problems are high dimensional. But often, the
relevant information is effectively low dimensional.

Nonparametricity

Make the weakest possible assumptions.



Preview: Graphs on Equities Data

Preview: Finding relations between stocks in the S&P 500
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By the end of the lectures, you’ll know what this is!



Lecture 1
Regression

How to predict Y from X



Regression

High dimensional regression

Sparsity

The lasso

Some extensions



Regression
We observe pairs (Xi, Y1),...,(Xn, Yn).
D ={(X1,Y1),...,(Xn, Yn)} is called the training data.
Y; € R is the response. X; € RP is the covariate (or feature).
For example, suppose we have n subjects. Y] is the blood pressure of
subject i. X; = (Xj1,..., Xjp) is a vector of p = 5,000 gene expression

levels for subject i.

Remember: Y; € R and X; € RP.

Given a new pair (X, Y), we want to predict Y from X.




Regression

Let Y be a prediction of Y. The prediction error or risk is
R=E(Y - Y)?

where E is the expected value (mean).

The best predictor is the regression function

m(x) = B(Y1X =x) = [ y f(yx)ab.

However, the true regression function m(x) is not known. We need to
estimate m(x).



Regression

Given the training data D = {(X1, Y1), ..., (Xn, Yn)} we want to
construct m to make

~

prediction risk = R(m) = E(Y — m(X))?

small. Here, (X, Y) are a new pair.

Key fact: Bias-variance decomposition:

R(m) = / bias?(x)p(x)dx + / var(x)p(x) + o2
where

bias(x) = E(M(x)) — m(x)
var(x) Variance(m(x))
2 = E(Y—-m(X))y?

Q



Bias-Variance Tradeoff

Prediction Risk = Bias? + Variance
Prediction methods with low bias tend to have high variance.
Prediction methods with low variance tend to have high bias.

For example, the predictor m(x) = 0 has 0 variance but will be terribly
biased.

To predict well, we need to balance the bias and the variance. We
begin with linear methods.



Bias-Variance Tradeoff

More generally, we need to tradeoff approximation error against
estimation error:

~ ~ ~

R(f,g) = R(f, ")+ R(f*, 9)

Approximation error is generalization of squared bias
Estimation error is generalization like variance.

Decomposition holds more generally, even for classification



Linear Regression

Try to find the best linear predictor, that is, a predictor of the form:

m(x) = Bo + B1 X1 +"‘+ﬁpo.

Important: We do not assume that the true regression function is
linear.

We can always define x; = 1. Then the intercept is 5; and we can

write
m(x) = B1x1 + -+ BpXp = BT x

where 3 = (B1,...,0p) and x = (X1,..., Xp).



Low Dimensional Linear Regression

Assume for now that p (= length of each X;) is small. To find a good
linear predictor we choose 3 to minimize the training error:

. 1¢
training error = ;(Yi — BT X)?
=

~

The minimizer 3 = (B4, ..., 3p) is called the least squares estimator.



Low Dimensional Linear Regression

The least squares estimator is:

B=xX"x)""xTY

where
X1 Xz - Xig
Xoy Xoo -+ Xog
Xnxd = : : : :
Xn1 Xn2 T Xnd
and

Y= (Yq,...,Yn)".

In R: Im(y ~ x)



Low Dimensional Linear Regression

Summary: the least squares estimator is m(x) = BTx = > Bjxj
where

B=xX"x)""x"Y.

When we observe a new X, we predict Y to be

~

Y =m(X)=p8TX.
Our goals are to improve this by:

(i) dealing with high dimensions
(if) using something more flexible than linear predictors.



Example

Y = HIV resistance

Xj = amino acid in position j of the virus.

Y = o+ B1 X1+ -+ Bro0 X100 + €
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High Dimensional Linear Regression

Now suppose p is large. We even might have p > n (more covariates
than data points).

The least squares estimator is not defined since XX is not invertible.

The variance of the least squares prediction is huge.
Recall the bias-variance tradeoff:
Prediction Error = Bias® + Variance

We need to increase the bias so that we can decrease the variance.

21



Ridge Regression

Recall that the least squares estimator minimizes the training error

IS (Y= BTX;)2.

Instead, we can minimize the penalized training error.

—Z — BTX)? + \||BII3

where 8]z = />, B7.

The solution is: R
B=X"X+ )XY

22



Ridge Regression

The tuning parameter X\ controls the bias-variance tradeoff:

A=0 = leastsquares.
A= = B =0.

We choose )\ to minimize I?f()\) where I??()\) is an estimate of the
prediction risk.

23



Ridge Regression

To estimate the prediction risk, do not use training error:

1 S S ~
Rtraining = E Z(Yl - Yi)za Yi= X/Tﬂ
i=1

-~

because it is biased: E(Riraining) < R(5)

Instead, we use leave-one-out cross-validation:

1. leave out (X, Y))
2. find 3
3. predict Y;: Y(_j = 37X

4. repeat for each i

24



Leave-one-out cross-validation

~ 1o S w 1= (Yi—-Y)?
R(\) = EZ(Y’ - Y = EZ (11_ H-f)2
i=1 i=1 !
~ Rtraining
~ 71 o\ 2
(1-%
2 ~2
~  Rtaining — i

n

where

H = X(X™X+A)"'xT
p = trace(H)

25



Example

Y=3Xi+--+3Xs+0Xs +---+0Xjp00 + €
n= 100, p = 1,000.
So there are 1000 covariates but only 5 are relevant.

What does ridge regression do in this case?

26



Ridge Regularization Paths
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Sparse Linear Regression
Ridge regression does not take advantage of sparsity.

Maybe only a small number of covariates are important predictors.
How do we find them?

We could fit many submodels (with a small number of covariates) and
choose the best one. This is called model selection.

Now the inaccuracy is
prediction error = bias? + variance

The bias is the errors due to omitting important variables. The
variance is the error due to having to estimate many parameters.

28



The Bias-Variance Tradeoff
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The Bias-Variance Tradeoff

This is a Goldilocks problem. Can’t use too few or too many variables.
Have to choose just the right variables.

Have to try all models with one variable, two variables,...

If there are p variables then there are 2P models.

Suppose we have 50,000 genes. We have to search through 259.000
models. But 2°0:900 > number of atoms in the universe.

This problem is NP-hard. This was a major bottleneck in statistics for
many years.

30



You are Here

Variable Selection

' ?
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Two Things that Save Us

Two key ideas to make this feasible are sparsity and convex
relaxation.

Sparsity: probably only a few genes are needed to predict some
disease Y. In other words, of 34, ..., 850,000 most 3; ~ 0.

But which ones?? (Needle in a haystack.)

Convex Relaxation: Replace model search with something easier.

It is the marriage of these two concepts that makes it all work.

32
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Sparsity

Look at this:
8 =(5,5,5,0,0,0,...,0).

This vector is high-dimensional but it is sparse.
Here is a less obvious example:
8 =(50,12,6,3,2,1.4,1,0.8.,0.6,0.5,...)

It turns out that, if the ;’s die off fairly quickly, then 3 behaves a like a
sparse vector.

34



Sparsity

We measure the (lack of) sparsity of 3 = (81, ..., p) with the g-norm
1/q
1Bllg = (18117 + -+ 18197 = (3 1817)
j

Which values of g measure (lack of) sparsity?

sparse: a= 1 0 0 0 0
not sparse: b= .001 .001 .001 .001 -.-- .001
v v x
allq 1 1 1
1bllg || d VP 1

Lesson: Need to use g < 1 to measure sparsity. (Actually, g < 2 ok.)

35



Sparsity

So we estimate 8 = (51, . . ., 3p) by minimizing

Z(YI_ [50+ﬁ1)(,-1 —|-..._|_ﬂpxip])2

i=1

subject to the constraint that 3 is sparse i.e. ||3]q < small.
Can we do this minimization?

If we use q = 0 this turns out to be the same as searching through all
2° models. Ouch!

What about other values of g?

What does the set {3 : ||5]lq < small} look like?

36
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Sparsity Meets Convexity

We need these sets to have a nice shape (convex). If so, the
minimization is no longer NP-hard. In fact, it is easy.

Sensitivity to sparsity: g < 1 (actually, g < 2 suffices)
Convexity (niceness): q > 1

This means we should use g = 1.
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Where Sparsity and Convexity Meet

Convexity

Sparsity

39
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Sparsity Meets Convexity

So we estimate 3 = (1, . . ., Bp) by minimizing

n

Z(Yl— [Bo + 31 Xi1 +"'+ﬂpxip])2

i=1

subject to the constraint that 5 is sparse i.e. [|3]1 = >_; |5 < small.

This is called the lasso. Invented by Rob Tibshirani in 1996. (Related
work by Donoho and others around the same time).
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Lasso

The result is an estimated vector

Most are 0!

Magically, we have done model selection without searching (thanks to
sparsity plus convexity).

The next picture explains why some Bj =0.
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Sparsity: How Corners Create Sparse Estimators

\
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The Lasso: HIV Example Again

Y is resistance to HIV drug.
e X; =amino acid in position j of the virus.

99, n~ 100.

op_
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The Lasso: An Example
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We choose the sparsity level by estimating prediction error.
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The Lasso:

>

An Example
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Sparsity and Convexity

To summarize: we penalize the sums of squares with
1/q
18llq = (Z qu) -
J

To get a sparse answer: g < 2.
To get a convex problem: g > 1.
So g = 1 works.

The marriage of sparsity and convexity is one of the biggest
developments in statistics and machine learning.
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The Lasso

3()\) is called the lasso estimator. Then define
S() = {l Bi() # o}.

R: lars (y,x) or glmnet (y,x)

After you find §(A), you should re-fit the model by doing least
squares on the sub-model S(\).

49



The Lasso

Choose X by risk estimation.

Re-fit the model with the non-zero coefficients. Then apply
leave-one-out cross-validation:

~ 1 o 1< (Y,—Y)2 1 RSS
A = 5> VP =1 S S

= = (1-Hi)? " n (1-35)°

where H is the hat matrix and s = #{j : j3; # 0}.

Choose A to minimize AF%(/\).

50



The Lasso

The complete steps are:

© Find B()\) and g‘(A) for each .

© Choose A to minimize estimated risk.

© Let S be the selected variables.

O Let 3 be the least squares estimator using only S.
© Prediction: Y = X73.
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Some Convexity Theory for the Lasso
Consider a simpler model than regression: Suppose Y ~ N(u,1). Let
it minimize
1
Ap) = (Y = 1) + Alpl.

How do we minimize A(u)?

Since A is convex, we set the subderivative = 0. Recall that cis a

subderivative of f(x) at xo if

f(x) — f(x0) > ¢(x — Xo).

The subdifferential 9f(xp) is the set of subderivatives. Also, xo
minimizes f if and only if 0 € Of.
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¢y and Soft Thresholding

If f(u) = |u| then

{-1} <0
6f{ [-1,1] u=0
{+1} p > 0.

Hence,

{p—=Y+Az: -1<z<1} pu=0

{p—=Y =X} p<0
OA =
{u—Y+A 1> 0.

53



¢y and Soft Thresholding

p minimizes A(w) if and only if 0 € 9A.

So
Y+XA Y< =)
n=< 0 “A<Y <\
Y-\ Y>A

This can be written as

7i = soft(Y, \) = sign(Y) (|Y] — A)+.

54



¢y and Soft Thresholding

55



The Lasso: Computing 3

Minimize S°,(Y; — 87 X)2 + A1 6]1-

- use lars (least angle regression) or
- coordinate descent: set 5 = (0, ...,0) then iterate the
following:

o forj=1,....0: R

o setRi=Y;—> . BsXsi

. B, = least squares fit of R/’s in X;.
= B soft(Bjs, A LX)

Then use least squares B on selected subset S.

R: glmnet
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Variations on the Lasso

Elastic Net: minimize

n

D (Y= BTX)? 4+ MBIl + Azl Bll2

i=1
Group Lasso:
ﬁ:(ﬂ‘la"'75/(7""5?7"'75,0)
— ——
Vi Vm
minimize:
n

S =BTXE 2D vl

i=1 j=1
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Some Theory: Persistence

Population risk
R(8) = E(Y — BT X)?

Let Bn be the empirical risk minimizer. Then

R(Gn) — R(B.) 20

if minimization is over all 3 with

1/4
n
181 = o <Iogn>
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Multivariate Regression
Y € R9 and X € RP. Regression function M(X) = E(Y| X).
Linear model M(X) = BX where B € R9*P.
Reduced rank regression: r = rank(B) < C.
Recent work has studied properties and high dimensional scaling of

reduced rank regression where nuclear norm

min(p.q)

1Bl == oi(B)

j=1

as convex surrogate for rank constraint (Yuan et al., 2007; Negahban
and Wainwright, 2011)
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Multivariate Regression

Example: “Mind reading,” predicting brain response patterns from
semantic features, or vice-versa.

10 subjects

Each shown 60 words while brain activity is imaged
Word features from semantic hierarchy, p = 200 features
Subsampled images, g = 400 voxels.

Can be thought of as a type of “multi-task learning”

More on this when we talk about dictionary learning, or sparse
coding.
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Nuclear Norm Regularization

Nuclear norm || X||« of p x g matrix X

min(p,q)
Xl = > o(X)

=1

Sum of singular values. (a.k.a. trace norm or Ky-Fan norm)

Generalization to matrices of 1 norm for vectors.
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Recall: Sparse Vectors and /; Relaxation

sparse vectors convex hull
[Xllo <t Xl <t

62



Low-Rank Matrices

2 x 2 symmetric matrices:

()

By scaling, can assume |x + z| = 1.
X has rank one iff x2 + 2y? + 22 = 1

Union of two ellipses in R3.

Convex hull is a cylinder.
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Low-Rank Matrices and Convex Relaxation

low rank matrices convex hull
rank(X) < t [1X]« <t

@
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Nuclear Norm Regularization

Algorithms for nuclear norm minimization are a lot like iterative soft
thresholding for lasso problems.

To project a matrix B onto the nuclear norm ball || X||. < t:

Compute the SVD:
B = Udiag(c) VT

Soft threshold the singular values:

B — Udiag(Softy(c)) VT
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Reduced Rank Regression

Recent theory has established consistency for reduced rank
regression in high dimensions.

We have results on “persistency” or risk consistency

These results describe the rate of decay of “excess risk” relative
to the oracle

Do not assume model is correct
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Excess Risk for Reduced Rank Regression

Oracle inequality of Xu and Lafferty (ICML, 2012)

Uses concentration of measure for covariance matrices in the
spectral norm (e.g., Vershynin, 2010)

A(B) - A(B.) = Op (Lz ww)lg)

n

Minimized over class of matrices with ||B||. < L
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Summary

For low dimensional (linear) prediction, we can use least squares.

For high dimensional linear regression, we face a bias-variance
tradeoff: omitting too many variables causes bias while including
too many variables causes high variance.

The key is to select a good subset of variables.

The lasso (¢1-regularized least squares) is a fast way to select
variables.

If there are good, sparse, linear predictors, the lasso will work
well.

Low-rank assumption is different type of structure for high
dimensional problems.
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