VIASM Lectures on

Statistical Machine Learning for High Dimensional Data

John Lafferty and Larry Wasserman

University of Chicago \&
Carnegie Mellon University

References

- Statistical Machine Learning. Lafferty, Liu and Wasserman (2012).
- The Elements of Statistical Learning. Hastie, Tibshirani and Friedman (2009).
(www-stat.stanford.edu/~tibs/ElemStatLearn/)
- Pattern Recognition and Machine Learning Bishop (2009).

Outline

(1) Regression

- predicting Y from X
(2) Structure and Sparsity
- finding and using hidden structure
(3) Nonparametric Methods
- using statistical models with weak assumptions
(4) Latent Variable Models
- making use of hidden variables

Introduction

- Machine learning is statistics with a focus on prediction, scalability and high dimensional problems.
- Regression: predict $Y \in \mathbb{R}$ from X.
- Classification: predict $Y \in\{0,1\}$ from X.
- Example: Predict if an email X is real $Y=1$ or spam $Y=0$.
- Finding structure. Examples:
- Clustering: find groups.
- Graphical Models: find conditional independence structure.

Three Main Themes

Convexity

Convex problems can be solved quickly. If necessary, approximate the problem with a convex problem.

Sparsity

Many interesting problems are high dimensional. But often, the relevant information is effectively low dimensional.

Nonparametricity

Make the weakest possible assumptions.

Preview: Graphs on Equities Data

Preview: Finding relations between stocks in the S\&P 500:

By the end of the lectures, you'll know what this is!

Lecture 1

Regression

How to predict Y from X

Topics

- Regression
- High dimensional regression
- Sparsity
- The lasso
- Some extensions

Regression

We observe pairs $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$.
$\mathcal{D}=\left\{\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)\right\}$ is called the training data.
$Y_{i} \in \mathbb{R}$ is the response. $X_{i} \in \mathbb{R}^{p}$ is the covariate (or feature).

For example, suppose we have n subjects. Y_{i} is the blood pressure of subject $i . X_{i}=\left(X_{i 1}, \ldots, X_{i p}\right)$ is a vector of $p=5,000$ gene expression levels for subject i.

Remember: $Y_{i} \in \mathbb{R}$ and $X_{i} \in \mathbb{R}^{p}$.

Given a new pair (X, Y), we want to predict Y from X.

Regression

Let \widehat{Y} be a prediction of Y. The prediction error or risk is

$$
R=\mathbb{E}(Y-\widehat{Y})^{2}
$$

where \mathbb{E} is the expected value (mean).

The best predictor is the regression function

$$
m(x)=\mathbb{E}(Y \mid X=x)=\int y f(y \mid x) d y
$$

However, the true regression function $m(x)$ is not known. We need to estimate $m(x)$.

Regression

Given the training data $\mathcal{D}=\left\{\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)\right\}$ we want to construct \widehat{m} to make

$$
\text { prediction risk }=R(\widehat{m})=\mathbb{E}(Y-\widehat{m}(X))^{2}
$$

small. Here, (X, Y) are a new pair.

Key fact: Bias-variance decomposition:

$$
R(\widehat{m})=\int \operatorname{bias}^{2}(x) p(x) d x+\int \operatorname{var}(x) p(x)+\sigma^{2}
$$

where

$$
\begin{aligned}
\operatorname{bias}(x) & =\mathbb{E}(\widehat{m}(x))-m(x) \\
\operatorname{var}(x) & =\operatorname{Variance}(\widehat{m}(x)) \\
\sigma^{2} & =\mathbb{E}(Y-m(X))^{2}
\end{aligned}
$$

Bias-Variance Tradeoff

Prediction Risk $=$ Bias $^{2}+$ Variance

Prediction methods with low bias tend to have high variance.

Prediction methods with low variance tend to have high bias.

For example, the predictor $\widehat{m}(x) \equiv 0$ has 0 variance but will be terribly biased.

To predict well, we need to balance the bias and the variance. We begin with linear methods.

Bias-Variance Tradeoff

More generally, we need to tradeoff approximation error against estimation error:

$$
R(\widehat{f}, g)=R\left(\widehat{f}, f^{*}\right)+R\left(\widehat{f}^{*}, g\right)
$$

- Approximation error is generalization of squared bias
- Estimation error is generalization like variance.
- Decomposition holds more generally, even for classification

Linear Regression

Try to find the best linear predictor, that is, a predictor of the form:

$$
m(x)=\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{p} x_{p}
$$

Important: We do not assume that the true regression function is linear.

We can always define $x_{1}=1$. Then the intercept is β_{1} and we can write

$$
m(x)=\beta_{1} x_{1}+\cdots+\beta_{p} x_{p}=\beta^{T} x
$$

where $\beta=\left(\beta_{1}, \ldots, \beta_{p}\right)$ and $x=\left(x_{1}, \ldots, x_{p}\right)$.

Low Dimensional Linear Regression

Assume for now that p (= length of each X_{i}) is small. To find a good linear predictor we choose β to minimize the training error.

$$
\text { training error }=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\beta^{T} X_{i}\right)^{2}
$$

The minimizer $\widehat{\beta}=\left(\widehat{\beta}_{1}, \ldots, \widehat{\beta}_{p}\right)$ is called the least squares estimator.

Low Dimensional Linear Regression

The least squares estimator is:

$$
\widehat{\beta}=\left(\mathbb{X}^{T} \mathbb{X}\right)^{-1} \mathbb{X}^{T} \mathbb{Y}
$$

where

$$
\mathbb{X}_{n \times d}=\left(\begin{array}{cccc}
X_{11} & X_{12} & \cdots & X_{1 d} \\
X_{21} & X_{22} & \cdots & X_{2 d} \\
\vdots & \vdots & \vdots & \vdots \\
X_{n 1} & X_{n 2} & \cdots & X_{n d}
\end{array}\right)
$$

and

$$
\mathbb{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{T}
$$

In R: $\operatorname{Im}(y \sim x)$

Low Dimensional Linear Regression

Summary: the least squares estimator is $m(x)=\widehat{\beta}^{\top} x=\sum_{j} \widehat{\beta}_{j} x_{j}$ where

$$
\widehat{\beta}=\left(\mathbb{X}^{T} \mathbb{X}\right)^{-1} \mathbb{X}^{T} \mathbb{Y}
$$

When we observe a new X, we predict Y to be

$$
\widehat{Y}=\widehat{m}(X)=\widehat{\beta}^{\top} X .
$$

Our goals are to improve this by:
(i) dealing with high dimensions
(ii) using something more flexible than linear predictors.

Example

$Y=$ HIV resistance
$X_{j}=$ amino acid in position j of the virus.
$Y=\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{100} X_{100}+\epsilon$

Top left: $\widehat{\beta}$ Bottom left: $\widehat{Y}_{i}-Y_{i}$ versus \widehat{Y}_{i}

Topics

- Regression
- High dimensional regression
- Sparsity
- The lasso
- Some extensions

High Dimensional Linear Regression

Now suppose p is large. We even might have $p>n$ (more covariates than data points).

The least squares estimator is not defined since $\mathbb{X}^{T} \mathbb{X}$ is not invertible. The variance of the least squares prediction is huge.

Recall the bias-variance tradeoff:

Prediction Error $=$ Bias $^{2}+$ Variance

We need to increase the bias so that we can decrease the variance.

Ridge Regression

Recall that the least squares estimator minimizes the training error $\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\beta^{T} X_{i}\right)^{2}$.

Instead, we can minimize the penalized training error:

$$
\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\beta^{T} X_{i}\right)^{2}+\lambda\|\beta\|_{2}^{2}
$$

where $\|\beta\|_{2}=\sqrt{\sum_{j} \beta_{j}^{2}}$.
The solution is:

$$
\widehat{\beta}=\left(\mathbb{X}^{T} \mathbb{X}+\lambda I\right)^{-1} \mathbb{X}^{T} \mathbb{Y}
$$

Ridge Regression

The tuning parameter λ controls the bias-variance tradeoff:

$$
\begin{array}{ccc}
\lambda=0 & \Longrightarrow & \text { least squares. } \\
\lambda=\infty & \Longrightarrow & \widehat{\beta}=0
\end{array}
$$

We choose λ to minimize $\widehat{R}(\lambda)$ where $\widehat{R}(\lambda)$ is an estimate of the prediction risk.

Ridge Regression

To estimate the prediction risk, do not use training error:

$$
R_{\text {training }}=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}, \quad \widehat{Y}_{i}=X_{i}^{T} \widehat{\beta}
$$

because it is biased: $\mathbb{E}\left(R_{\text {training }}\right)<R(\widehat{\beta})$

Instead, we use leave-one-out cross-validation:

1. leave out $\left(X_{i}, Y_{i}\right)$
2. find $\widehat{\beta}$
3. predict $Y_{i}: \widehat{Y}_{(-i)}=\widehat{\beta}^{T} X_{i}$
4. repeat for each i

Leave-one-out cross-validation

$$
\begin{aligned}
\widehat{R}(\lambda) & =\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{(i)}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n} \frac{\left(Y_{i}-\widehat{Y}_{i}\right)^{2}}{\left(1-H_{i i}\right)^{2}} \\
& \approx \frac{R_{\text {training }}}{\left(1-\frac{p}{n}\right)^{2}} \\
& \approx R_{\text {training }}-\frac{2 p \widehat{\sigma}^{2}}{n}
\end{aligned}
$$

where

$$
\begin{aligned}
H & =\mathbb{X}\left(\mathbb{X}^{T} \mathbb{X}+\lambda I\right)^{-1} \mathbb{X}^{T} \\
p & =\operatorname{trace}(H)
\end{aligned}
$$

Example

$$
Y=3 X_{1}+\cdots+3 X_{5}+0 X_{6}+\cdots+0 X_{1000}+\epsilon
$$

$$
n=100, p=1,000
$$

So there are 1000 covariates but only 5 are relevant.

What does ridge regression do in this case?

Ridge Regularization Paths

Sparse Linear Regression

Ridge regression does not take advantage of sparsity.
Maybe only a small number of covariates are important predictors. How do we find them?

We could fit many submodels (with a small number of covariates) and choose the best one. This is called model selection.

Now the inaccuracy is
prediction error $=$ bias $^{2}+$ variance
The bias is the errors due to omitting important variables. The variance is the error due to having to estimate many parameters.

The Bias-Variance Tradeoff

The Bias-Variance Tradeoff

This is a Goldilocks problem. Can't use too few or too many variables.

Have to choose just the right variables.

Have to try all models with one variable, two variables,...

If there are p variables then there are 2^{p} models.

Suppose we have 50,000 genes. We have to search through $2^{50,000}$ models. But $2^{50,000}>$ number of atoms in the universe.

This problem is NP-hard. This was a major bottleneck in statistics for many years.

You are Here

Two Things that Save Us

Two key ideas to make this feasible are sparsity and convex relaxation.

Sparsity: probably only a few genes are needed to predict some disease Y. In other words, of $\beta_{1}, \ldots, \beta_{50,000}$ most $\beta_{j} \approx 0$.

But which ones?? (Needle in a haystack.)

Convex Relaxation: Replace model search with something easier.

It is the marriage of these two concepts that makes it all work.

Topics

- Regression
- High dimensional regression
- Sparsity
- The lasso
- Some extensions

Sparsity

Look at this:

$$
\beta=(5,5,5,0,0,0, \ldots, 0)
$$

This vector is high-dimensional but it is sparse.

Here is a less obvious example:

$$
\beta=(50,12,6,3,2,1.4,1,0.8 ., 0.6,0.5, \ldots)
$$

It turns out that, if the β_{j} 's die off fairly quickly, then β behaves a like a sparse vector.

Sparsity

We measure the (lack of) sparsity of $\beta=\left(\beta_{1}, \ldots, \beta_{p}\right)$ with the q-norm

$$
\|\beta\|_{q}=\left(\left|\beta_{1}\right|^{q}+\cdots+\left|\beta_{p}\right|^{q}\right)^{1 / q}=\left(\sum_{j}\left|\beta_{j}\right|^{q}\right)^{1 / q} .
$$

Which values of q measure (lack of) sparsity?

sparse:	$a=$	1	0	0	0	\cdots	0		
not sparse:	$b=$.001	.001	.001	.001	\cdots	.001		
			$\sqrt{ }$	$\sqrt{ }$	\times				
		$q=0$	$q=1$	$q=2$					
	$\\|a\\|_{q}$	1	1	1					
	$\\|b\\|_{q}$	d	\sqrt{p}	1					

Lesson: Need to use $q \leq 1$ to measure sparsity. (Actually, $q<2$ ok.)

Sparsity

So we estimate $\beta=\left(\beta_{1}, \ldots, \beta_{p}\right)$ by minimizing

$$
\sum_{i=1}^{n}\left(Y_{i}-\left[\beta_{0}+\beta_{1} X_{i 1}+\cdots+\beta_{p} X_{i p}\right]\right)^{2}
$$

subject to the constraint that β is sparse i.e. $\|\beta\|_{q} \leq$ small.

Can we do this minimization?

If we use $q=0$ this turns out to be the same as searching through all 2^{p} models. Ouch!

What about other values of q ?

What does the set $\left\{\beta:\|\beta\|_{q} \leq\right.$ small $\}$ look like?

The set $\|\beta\|_{q} \leq 1$ when $p=2$

$$
q=\frac{1}{4}
$$

$$
q=\frac{1}{2}
$$

Sparsity Meets Convexity

We need these sets to have a nice shape (convex). If so, the minimization is no longer NP-hard. In fact, it is easy.

Sensitivity to sparsity: $\quad q \leq 1$ (actually, $q<2$ suffices) Convexity (niceness): $\quad q \geq 1$

This means we should use $q=1$.

Where Sparsity and Convexity Meet

Topics

- Regression
- High dimensional regression
- Sparsity
- The lasso
- Some extensions

Sparsity Meets Convexity

So we estimate $\beta=\left(\beta_{1}, \ldots, \beta_{p}\right)$ by minimizing

$$
\sum_{i=1}^{n}\left(Y_{i}-\left[\beta_{0}+\beta_{1} X_{i 1}+\cdots+\beta_{p} X_{i p}\right]\right)^{2}
$$

subject to the constraint that β is sparse i.e. $\|\beta\|_{1}=\sum_{j}\left|\beta_{j}\right| \leq$ small.
This is called the lasso. Invented by Rob Tibshirani in 1996. (Related work by Donoho and others around the same time).

Lasso

The result is an estimated vector

$$
\widehat{\beta}_{1}, \ldots, \widehat{\beta}_{p}
$$

Most are 0!

Magically, we have done model selection without searching (thanks to sparsity plus convexity).

The next picture explains why some $\widehat{\beta}_{j}=0$.

Sparsity: How Corners Create Sparse Estimators

The Lasso: HIV Example Again

- Y is resistance to HIV drug.
- $X_{j}=$ amino acid in position j of the virus.
- $p=99, n \approx 100$.

The Lasso: An Example

LASSO

Selecting λ

We choose the sparsity level by estimating prediction error.

The Lasso: An Example

Sparsity and Convexity

To summarize: we penalize the sums of squares with

$$
\|\beta\|_{q}=\left(\sum_{j}\left|\beta_{j}\right|^{q}\right)^{1 / q}
$$

To get a sparse answer: $q<2$.

To get a convex problem: $q \geq 1$.

So $q=1$ works.

The marriage of sparsity and convexity is one of the biggest developments in statistics and machine learning.

The Lasso

- $\widehat{\beta}(\lambda)$ is called the lasso estimator. Then define

$$
\widehat{S}(\lambda)=\left\{j: \widehat{\beta}_{j}(\lambda) \neq 0\right\} .
$$

R: lars (y, x) or glmnet (y, x)

- After you find $\hat{S}(\lambda)$, you should re-fit the model by doing least squares on the sub-model $\widehat{S}(\lambda)$.

The Lasso

Choose λ by risk estimation.

Re-fit the model with the non-zero coefficients. Then apply leave-one-out cross-validation:

$$
\widehat{R}(\lambda)=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{(i)}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n} \frac{\left(Y_{i}-\widehat{Y}_{i}\right)^{2}}{\left(1-H_{i i}\right)^{2}} \approx \frac{1}{n} \frac{R S S}{\left(1-\frac{s}{n}\right)^{2}}
$$

where H is the hat matrix and $s=\#\left\{j: \widehat{\beta}_{j} \neq 0\right\}$.

Choose $\widehat{\lambda}$ to minimize $\widehat{R}(\lambda)$.

The Lasso

The complete steps are:
(1) Find $\widehat{\beta}(\lambda)$ and $\widehat{S}(\lambda)$ for each λ.
(2) Choose $\hat{\lambda}$ to minimize estimated risk.
(3) Let \hat{S} be the selected variables.
(4) Let $\widehat{\beta}$ be the least squares estimator using only \widehat{S}.
(5) Prediction: $\widehat{Y}=X^{\top} \widehat{\beta}$.

Some Convexity Theory for the Lasso

Consider a simpler model than regression: Suppose $Y \sim N(\mu, 1)$. Let $\widehat{\mu}$ minimize

$$
A(\mu)=\frac{1}{2}(Y-\mu)^{2}+\lambda|\mu| .
$$

How do we minimize $A(\mu)$?

- Since A is convex, we set the subderivative $=0$. Recall that c is a subderivative of $f(x)$ at x_{0} if

$$
f(x)-f\left(x_{0}\right) \geq c\left(x-x_{0}\right)
$$

- The subdifferential $\partial f\left(x_{0}\right)$ is the set of subderivatives. Also, x_{0} minimizes f if and only if $0 \in \partial f$.

ℓ_{1} and Soft Thresholding

- If $f(\mu)=|\mu|$ then

$$
\partial f= \begin{cases}\{-1\} & \mu<0 \\ {[-1,1]} & \mu=0 \\ \{+1\} & \mu>0\end{cases}
$$

- Hence,

$$
\partial \boldsymbol{A}= \begin{cases}\{\mu-Y-\lambda\} & \mu<0 \\ \{\mu-Y+\lambda z:-1 \leq z \leq 1\} & \mu=0 \\ \{\mu-Y+\lambda\} & \mu>0\end{cases}
$$

ℓ_{1} and Soft Thresholding

- $\widehat{\mu}$ minimizes $A(\mu)$ if and only if $0 \in \partial A$.
- So

$$
\widehat{\mu}= \begin{cases}Y+\lambda & Y<-\lambda \\ 0 & -\lambda \leq Y \leq \lambda \\ Y-\lambda & Y>\lambda\end{cases}
$$

- This can be written as

$$
\widehat{\mu}=\operatorname{soft}(Y, \lambda) \equiv \operatorname{sign}(Y)(|Y|-\lambda)_{+} .
$$

ℓ_{1} and Soft Thresholding

The Lasso: Computing $\widehat{\beta}$

- Minimize $\sum_{i}\left(Y_{i}-\beta^{T} X_{i}\right)^{2}+\lambda\|\beta\|_{1}$.
- use lars (least angle regression) or
- coordinate descent: set $\widehat{\beta}=(0, \ldots, 0)$ then iterate the following:
- for $j=1, \ldots, d$:
- set $R_{i}=Y_{i}-\sum_{s \neq j} \widehat{\beta}_{s} X_{s i}$
- $\widehat{\beta}_{j}=$ least squares fit of R_{i} 's in X_{j}.
- $\widehat{\beta}_{j} \leftarrow \operatorname{soft}\left(\widehat{\beta}_{j, L S}, \lambda / \sum_{i} X_{i j}^{2}\right)$
- Then use least squares $\widehat{\beta}$ on selected subset S.

R: glmnet

Variations on the Lasso

- Elastic Net: minimize

$$
\sum_{i=1}^{n}\left(Y_{i}-\beta^{T} X_{i}\right)^{2}+\lambda_{1}\|\beta\|_{1}+\lambda_{2}\|\beta\|_{2}
$$

- Group Lasso:

$$
\beta=(\underbrace{\beta_{1}, \ldots, \beta_{k}}_{v_{1}}, \ldots, \underbrace{\beta_{t}, \ldots, \beta_{p}}_{v_{m}})
$$

minimize:

$$
\sum_{i=1}^{n}\left(Y_{i}-\beta^{T} X_{i}\right)^{2}+\lambda \sum_{j=1}^{m}\left\|v_{j}\right\|
$$

Some Theory: Persistence

Population risk

$$
R(\beta)=\mathbb{E}\left(Y-\beta^{T} X\right)^{2}
$$

Let $\widehat{\beta}_{n}$ be the empirical risk minimizer. Then

$$
R\left(\widehat{\beta}_{n}\right)-R\left(\beta_{*}\right) \xrightarrow{P} 0
$$

if minimization is over all β with

$$
\|\beta\|_{1}=o\left(\frac{n}{\log n}\right)^{1 / 4}
$$

Multivariate Regression

$Y \in \mathbb{R}^{q}$ and $X \in \mathbb{R}^{p}$. Regression function $M(X)=\mathbb{E}(Y \mid X)$.

Linear model $M(X)=B X$ where $B \in \mathbb{R}^{q \times p}$.

Reduced rank regression: $r=\operatorname{rank}(B) \leq C$.

Recent work has studied properties and high dimensional scaling of reduced rank regression where nuclear norm

$$
\|B\|_{*}:=\sum_{j=1}^{\min (p, q)} \sigma_{j}(B)
$$

as convex surrogate for rank constraint (Yuan et al., 2007; Negahban and Wainwright, 2011)

Multivariate Regression

Example: "Mind reading," predicting brain response patterns from semantic features, or vice-versa.

- 10 subjects
- Each shown 60 words while brain activity is imaged
- Word features from semantic hierarchy, $p=200$ features
- Subsampled images, $q=400$ voxels.
- Can be thought of as a type of "multi-task learning"

More on this when we talk about dictionary learning, or sparse coding.

Nuclear Norm Regularization

Nuclear norm $\|X\|_{*}$ of $p \times q$ matrix X

$$
\|X\|_{*}=\sum_{j=1}^{\min (p, q)} \sigma_{j}(X)
$$

Sum of singular values. (a.k.a. trace norm or Ky-Fan norm)

Generalization to matrices of ℓ_{1} norm for vectors.

Recall: Sparse Vectors and ℓ_{1} Relaxation

sparse vectors
$\|X\|_{0} \leq t$
convex hull
$\|X\|_{1} \leq t$

Low-Rank Matrices

- 2×2 symmetric matrices:

$$
X=\left(\begin{array}{ll}
x & y \\
y & z
\end{array}\right)
$$

- By scaling, can assume $|x+z|=1$.

$$
X \text { has rank one iff } x^{2}+2 y^{2}+z^{2}=1
$$

- Union of two ellipses in \mathbb{R}^{3}.
- Convex hull is a cylinder.

Low-Rank Matrices and Convex Relaxation

low rank matrices

$$
\operatorname{rank}(X) \leq t
$$

convex hull
$\|X\|_{*} \leq t$

Nuclear Norm Regularization

Algorithms for nuclear norm minimization are a lot like iterative soft thresholding for lasso problems.

To project a matrix B onto the nuclear norm ball $\|X\|_{*} \leq t$:

- Compute the SVD:

$$
B=U \operatorname{diag}(\sigma) V^{T}
$$

- Soft threshold the singular values:

$$
B \leftarrow U \operatorname{diag}\left(\operatorname{Soft}_{\lambda}(\sigma)\right) V^{T}
$$

Reduced Rank Regression

- Recent theory has established consistency for reduced rank regression in high dimensions.
- We have results on "persistency" or risk consistency
- These results describe the rate of decay of "excess risk" relative to the oracle
- Do not assume model is correct

Excess Risk for Reduced Rank Regression

- Oracle inequality of Xu and Lafferty (ICML, 2012)
- Uses concentration of measure for covariance matrices in the spectral norm (e.g., Vershynin, 2010)

$$
R(\widehat{B})-R\left(B_{*}\right)=O_{P}\left(L^{2} \sqrt{\frac{(p+q) \log n}{n}}\right)
$$

- Minimized over class of matrices with $\|B\|_{*} \leq L$

Summary

- For low dimensional (linear) prediction, we can use least squares.
- For high dimensional linear regression, we face a bias-variance tradeoff: omitting too many variables causes bias while including too many variables causes high variance.
- The key is to select a good subset of variables.
- The lasso (ℓ_{1}-regularized least squares) is a fast way to select variables.
- If there are good, sparse, linear predictors, the lasso will work well.
- Low-rank assumption is different type of structure for high dimensional problems.

