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Outline

1 Regression
I predicting Y from X

2 Structure and Sparsity
I finding and using hidden structure

3 Nonparametric Methods
I using statistical models with weak assumptions

4 Latent Variable Models
I making use of hidden variables
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Introduction

• Machine learning is statistics with a focus on prediction,
scalability and high dimensional problems.

• Regression: predict Y ∈ R from X .

• Classification: predict Y ∈ {0,1} from X .

I Example: Predict if an email X is real Y = 1 or spam Y = 0.

• Finding structure. Examples:

I Clustering: find groups.

I Graphical Models: find conditional independence structure.

4



Three Main Themes

Convexity

Convex problems can be solved quickly. If necessary,
approximate the problem with a convex problem.

Sparsity

Many interesting problems are high dimensional. But often, the
relevant information is effectively low dimensional.

Nonparametricity

Make the weakest possible assumptions.
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Preview: Graphs on Equities Data

Preview: Finding relations between stocks in the S&P 500:
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By the end of the lectures, you’ll know what this is!
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Lecture 1

Regression
How to predict Y from X
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Topics

• Regression

• High dimensional regression

• Sparsity

• The lasso

• Some extensions
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Regression

We observe pairs (X1,Y1), . . . , (Xn,Yn).

D = {(X1,Y1), . . . , (Xn,Yn)} is called the training data.

Yi ∈ R is the response. Xi ∈ Rp is the covariate (or feature).

For example, suppose we have n subjects. Yi is the blood pressure of
subject i . Xi = (Xi1, . . . ,Xip) is a vector of p = 5,000 gene expression
levels for subject i .

Remember: Yi ∈ R and Xi ∈ Rp.

Given a new pair (X ,Y ), we want to predict Y from X .
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Regression

Let Ŷ be a prediction of Y . The prediction error or risk is

R = E(Y − Ŷ )2

where E is the expected value (mean).

The best predictor is the regression function

m(x) = E(Y |X = x) =

∫
y f (y |x)dy .

However, the true regression function m(x) is not known. We need to
estimate m(x).
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Regression

Given the training data D = {(X1,Y1), . . . , (Xn,Yn)} we want to
construct m̂ to make

prediction risk = R(m̂) = E(Y − m̂(X ))2

small. Here, (X ,Y ) are a new pair.

Key fact: Bias-variance decomposition:

R(m̂) =

∫
bias2(x)p(x)dx +

∫
var(x)p(x) + σ2

where

bias(x) = E(m̂(x))−m(x)

var(x) = Variance(m̂(x))

σ2 = E(Y −m(X ))2
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Bias-Variance Tradeoff

Prediction Risk = Bias2 + Variance

Prediction methods with low bias tend to have high variance.

Prediction methods with low variance tend to have high bias.

For example, the predictor m̂(x) ≡ 0 has 0 variance but will be terribly
biased.

To predict well, we need to balance the bias and the variance. We
begin with linear methods.
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Bias-Variance Tradeoff

More generally, we need to tradeoff approximation error against
estimation error:

R(̂f ,g) = R(̂f , f ∗) + R(̂f ∗,g)

• Approximation error is generalization of squared bias

• Estimation error is generalization like variance.

• Decomposition holds more generally, even for classification
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Linear Regression

Try to find the best linear predictor, that is, a predictor of the form:

m(x) = β0 + β1x1 + · · ·+ βpxp.

Important: We do not assume that the true regression function is
linear.

We can always define x1 = 1. Then the intercept is β1 and we can
write

m(x) = β1x1 + · · ·+ βpxp = βT x

where β = (β1, . . . , βp) and x = (x1, . . . , xp).
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Low Dimensional Linear Regression

Assume for now that p (= length of each Xi ) is small. To find a good
linear predictor we choose β to minimize the training error:

training error =
1
n

n∑
i=1

(Yi − βT Xi)
2

The minimizer β̂ = (β̂1, . . . , β̂p) is called the least squares estimator.
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Low Dimensional Linear Regression

The least squares estimator is:

β̂ = (XT X)−1XT Y

where

Xn×d =


X11 X12 · · · X1d
X21 X22 · · · X2d

...
...

...
...

Xn1 Xn2 · · · Xnd


and

Y = (Y1, . . . ,Yn)
T .

In R: lm(y ∼ x)
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Low Dimensional Linear Regression

Summary: the least squares estimator is m(x) = β̂T x =
∑

j β̂jxj
where

β̂ = (XT X)−1XT Y.

When we observe a new X , we predict Y to be

Ŷ = m̂(X ) = β̂T X .

Our goals are to improve this by:

(i) dealing with high dimensions
(ii) using something more flexible than linear predictors.

17



Example

Y = HIV resistance

Xj = amino acid in position j of the virus.

Y = β0 + β1X1 + · · ·+ β100X100 + ε

18
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Topics

• Regression

• High dimensional regression

• Sparsity

• The lasso

• Some extensions
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High Dimensional Linear Regression

Now suppose p is large. We even might have p > n (more covariates
than data points).

The least squares estimator is not defined since XT X is not invertible.
The variance of the least squares prediction is huge.

Recall the bias-variance tradeoff:

Prediction Error = Bias2 + Variance

We need to increase the bias so that we can decrease the variance.
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Ridge Regression

Recall that the least squares estimator minimizes the training error
1
n
∑n

i=1(Yi − βT Xi)
2.

Instead, we can minimize the penalized training error:

1
n

n∑
i=1

(Yi − βT Xi)
2 + λ‖β‖22

where ‖β‖2 =
√∑

j β
2
j .

The solution is:
β̂ = (XT X + λI)−1XT Y

22



Ridge Regression

The tuning parameter λ controls the bias-variance tradeoff:

λ = 0 =⇒ least squares.
λ =∞ =⇒ β̂ = 0.

We choose λ to minimize R̂(λ) where R̂(λ) is an estimate of the
prediction risk.
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Ridge Regression

To estimate the prediction risk, do not use training error:

Rtraining =
1
n

n∑
i=1

(Yi − Ŷi)
2, Ŷi = X T

i β̂

because it is biased: E(Rtraining) < R(β̂)

Instead, we use leave-one-out cross-validation:

1. leave out (Xi ,Yi)

2. find β̂

3. predict Yi : Ŷ(−i) = β̂T Xi

4. repeat for each i

24



Leave-one-out cross-validation

R̂(λ) =
1
n

n∑
i=1

(Yi − Ŷ(i))
2 =

1
n

n∑
i=1

(Yi − Ŷi)
2

(1− Hii)2

≈
Rtraining(
1− p

n

)2

≈ Rtraining −
2 p σ̂2

n

where

H = X(XT X + λI)−1XT

p = trace(H)

25



Example

Y = 3X1 + · · ·+ 3X5 + 0X6 + · · ·+ 0X1000 + ε

n = 100, p = 1,000.

So there are 1000 covariates but only 5 are relevant.

What does ridge regression do in this case?
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Ridge Regularization Paths
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Sparse Linear Regression

Ridge regression does not take advantage of sparsity.

Maybe only a small number of covariates are important predictors.
How do we find them?

We could fit many submodels (with a small number of covariates) and
choose the best one. This is called model selection.

Now the inaccuracy is

prediction error = bias2 + variance

The bias is the errors due to omitting important variables. The
variance is the error due to having to estimate many parameters.
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The Bias-Variance Tradeoff
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The Bias-Variance Tradeoff

This is a Goldilocks problem. Can’t use too few or too many variables.

Have to choose just the right variables.

Have to try all models with one variable, two variables,...

If there are p variables then there are 2p models.

Suppose we have 50,000 genes. We have to search through 250,000

models. But 250,000 > number of atoms in the universe.

This problem is NP-hard. This was a major bottleneck in statistics for
many years.
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You are Here
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Two Things that Save Us

Two key ideas to make this feasible are sparsity and convex
relaxation.

Sparsity: probably only a few genes are needed to predict some
disease Y . In other words, of β1, . . . , β50,000 most βj ≈ 0.

But which ones?? (Needle in a haystack.)

Convex Relaxation: Replace model search with something easier.

It is the marriage of these two concepts that makes it all work.

32



Topics

• Regression

• High dimensional regression

• Sparsity

• The lasso

• Some extensions
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Sparsity

Look at this:
β = (5,5,5,0,0,0, . . . ,0).

This vector is high-dimensional but it is sparse.

Here is a less obvious example:

β = (50,12,6,3,2,1.4,1,0.8.,0.6,0.5, . . .)

It turns out that, if the βj ’s die off fairly quickly, then β behaves a like a
sparse vector.
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Sparsity

We measure the (lack of) sparsity of β = (β1, . . . , βp) with the q-norm

‖β‖q =
(
|β1|q + · · ·+ |βp|q)1/q =

(∑
j

|βj |q
)1/q

.

Which values of q measure (lack of) sparsity?

sparse: a = 1 0 0 0 · · · 0
not sparse: b = .001 .001 .001 .001 · · · .001

√ √
×

q = 0 q = 1 q = 2
‖a‖q 1 1 1
‖b‖q d

√
p 1

Lesson: Need to use q ≤ 1 to measure sparsity. (Actually, q < 2 ok.)
35



Sparsity

So we estimate β = (β1, . . . , βp) by minimizing

n∑
i=1

(Yi − [β0 + β1Xi1 + · · ·+ βpXip])2

subject to the constraint that β is sparse i.e. ‖β‖q ≤ small.

Can we do this minimization?

If we use q = 0 this turns out to be the same as searching through all
2p models. Ouch!

What about other values of q?

What does the set {β : ‖β‖q ≤ small} look like?
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The set ‖β‖q ≤ 1 when p = 2
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Sparsity Meets Convexity

We need these sets to have a nice shape (convex). If so, the
minimization is no longer NP-hard. In fact, it is easy.

Sensitivity to sparsity: q ≤ 1 (actually, q < 2 suffices)
Convexity (niceness): q ≥ 1

This means we should use q = 1.
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Where Sparsity and Convexity Meet

Sparsity

Convexity

0 1 2 3 4 5 6 7 8 9
p
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Topics

• Regression

• High dimensional regression

• Sparsity

• The lasso

• Some extensions
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Sparsity Meets Convexity

So we estimate β = (β1, . . . , βp) by minimizing

n∑
i=1

(Yi − [β0 + β1Xi1 + · · ·+ βpXip])2

subject to the constraint that β is sparse i.e. ‖β‖1 =
∑

j |βj | ≤ small.

This is called the lasso. Invented by Rob Tibshirani in 1996. (Related
work by Donoho and others around the same time).
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Lasso

The result is an estimated vector

β̂1, . . . , β̂p

Most are 0!

Magically, we have done model selection without searching (thanks to
sparsity plus convexity).

The next picture explains why some β̂j = 0.
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Sparsity: How Corners Create Sparse Estimators
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The Lasso: HIV Example Again

• Y is resistance to HIV drug.
• Xj = amino acid in position j of the virus.
• p = 99, n ≈ 100.
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The Lasso: An Example
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Selecting λ

We choose the sparsity level by estimating prediction error.
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The Lasso: An Example
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Sparsity and Convexity

To summarize: we penalize the sums of squares with

‖β‖q =

∑
j

|βj |q
1/q

.

To get a sparse answer: q < 2.

To get a convex problem: q ≥ 1.

So q = 1 works.

The marriage of sparsity and convexity is one of the biggest
developments in statistics and machine learning.
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The Lasso

• β̂(λ) is called the lasso estimator. Then define

Ŝ(λ) =

{
j : β̂j(λ) 6= 0

}
.

R: lars (y,x) or glmnet (y,x)

• After you find Ŝ(λ), you should re-fit the model by doing least
squares on the sub-model Ŝ(λ).
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The Lasso

Choose λ by risk estimation.

Re-fit the model with the non-zero coefficients. Then apply
leave-one-out cross-validation:

R̂(λ) =
1
n

n∑
i=1

(Yi − Ŷ(i))
2 =

1
n

n∑
i=1

(Yi − Ŷi)
2

(1− Hii)2 ≈
1
n

RSS(
1− s

n

)2

where H is the hat matrix and s = #{j : β̂j 6= 0}.

Choose λ̂ to minimize R̂(λ).
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The Lasso

The complete steps are:

1 Find β̂(λ) and Ŝ(λ) for each λ.
2 Choose λ̂ to minimize estimated risk.
3 Let Ŝ be the selected variables.
4 Let β̂ be the least squares estimator using only Ŝ.
5 Prediction: Ŷ = X T β̂.
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Some Convexity Theory for the Lasso

Consider a simpler model than regression: Suppose Y ∼ N(µ,1). Let
µ̂ minimize

A(µ) =
1
2
(Y − µ)2 + λ|µ|.

How do we minimize A(µ)?

• Since A is convex, we set the subderivative = 0. Recall that c is a
subderivative of f (x) at x0 if

f (x)− f (x0) ≥ c(x − x0).

• The subdifferential ∂f (x0) is the set of subderivatives. Also, x0
minimizes f if and only if 0 ∈ ∂f .
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`1 and Soft Thresholding

• If f (µ) = |µ| then

∂f =


{−1} µ < 0
[ -1 , 1 ] µ = 0
{+1} µ > 0.

• Hence,

∂A =


{µ− Y − λ} µ < 0
{µ− Y + λz : −1 ≤ z ≤ 1} µ = 0
{µ− Y + λ} µ > 0.
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`1 and Soft Thresholding

• µ̂ minimizes A(µ) if and only if 0 ∈ ∂A.

• So

µ̂ =


Y + λ Y < −λ
0 −λ ≤ Y ≤ λ
Y − λ Y > λ.

• This can be written as

µ̂ = soft(Y , λ) ≡ sign(Y ) (|Y | − λ)+.
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`1 and Soft Thresholding
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The Lasso: Computing β̂

• Minimize
∑

i(Yi − βT Xi)
2 + λ‖β‖1.

- use lars (least angle regression) or
- coordinate descent: set β̂ = (0, . . . ,0) then iterate the

following:
• for j = 1, . . . ,d :
• set Ri = Yi −

∑
s 6=j β̂sXsi

• β̂j = least squares fit of Ri ’s in Xj .
• β̂j ← soft(β̂j,LS, λ/

∑
i X 2

ij )

• Then use least squares β̂ on selected subset S.

R: glmnet
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Variations on the Lasso

• Elastic Net: minimize

n∑
i=1

(Yi − βT Xi)
2 + λ1‖β‖1 + λ2‖β‖2

• Group Lasso:

β = (β1, . . . , βk︸ ︷︷ ︸
v1

, . . . , βt , . . . , βp︸ ︷︷ ︸
vm

)

minimize:
n∑

i=1

(Yi − βT Xi)
2 + λ

m∑
j=1

‖vj‖
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Some Theory: Persistence

Population risk
R(β) = E(Y − βT X )2

Let β̂n be the empirical risk minimizer. Then

R(β̂n)− R(β∗)
P→ 0

if minimization is over all β with

‖β‖1 = o
(

n
log n

)1/4
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Multivariate Regression

Y ∈ Rq and X ∈ Rp. Regression function M(X ) = E(Y |X ).

Linear model M(X ) = BX where B ∈ Rq×p.

Reduced rank regression: r = rank(B) ≤ C.

Recent work has studied properties and high dimensional scaling of
reduced rank regression where nuclear norm

‖B‖∗ :=

min(p,q)∑
j=1

σj(B)

as convex surrogate for rank constraint (Yuan et al., 2007; Negahban
and Wainwright, 2011)

59



Multivariate Regression

Example: “Mind reading,” predicting brain response patterns from
semantic features, or vice-versa.

• 10 subjects

• Each shown 60 words while brain activity is imaged

• Word features from semantic hierarchy, p = 200 features

• Subsampled images, q = 400 voxels.

• Can be thought of as a type of “multi-task learning”

More on this when we talk about dictionary learning, or sparse
coding.
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Nuclear Norm Regularization

Nuclear norm ‖X‖∗ of p × q matrix X

‖X‖∗ =

min(p,q)∑
j=1

σj(X )

Sum of singular values. (a.k.a. trace norm or Ky-Fan norm)

Generalization to matrices of `1 norm for vectors.
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Recall: Sparse Vectors and `1 Relaxation

sparse vectors convex hull
‖X‖0 ≤ t ‖X‖1 ≤ t

�

�

�

�

�

�

�

�
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Low-Rank Matrices

• 2× 2 symmetric matrices:

X =

(
x y
y z

)
• By scaling, can assume |x + z| = 1.

X has rank one iff x2 + 2y2 + z2 = 1

• Union of two ellipses in R3.

• Convex hull is a cylinder.

63



Low-Rank Matrices and Convex Relaxation

low rank matrices convex hull
rank(X ) ≤ t ‖X‖∗ ≤ t
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Nuclear Norm Regularization

Algorithms for nuclear norm minimization are a lot like iterative soft
thresholding for lasso problems.

To project a matrix B onto the nuclear norm ball ‖X‖∗ ≤ t :

• Compute the SVD:
B = U diag(σ) V T

• Soft threshold the singular values:

B ← U diag(Softλ(σ)) V T
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Reduced Rank Regression

• Recent theory has established consistency for reduced rank
regression in high dimensions.

• We have results on “persistency” or risk consistency

• These results describe the rate of decay of “excess risk” relative
to the oracle

• Do not assume model is correct
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Excess Risk for Reduced Rank Regression

• Oracle inequality of Xu and Lafferty (ICML, 2012)

• Uses concentration of measure for covariance matrices in the
spectral norm (e.g., Vershynin, 2010)

R(B̂)− R(B∗) = OP

(
L2

√
(p + q) log n

n

)

• Minimized over class of matrices with ‖B‖∗ ≤ L
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Summary

• For low dimensional (linear) prediction, we can use least squares.

• For high dimensional linear regression, we face a bias-variance
tradeoff: omitting too many variables causes bias while including
too many variables causes high variance.

• The key is to select a good subset of variables.

• The lasso (`1-regularized least squares) is a fast way to select
variables.

• If there are good, sparse, linear predictors, the lasso will work
well.

• Low-rank assumption is different type of structure for high
dimensional problems.
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