VIASM Lectures on Statistical Machine Learning for High Dimensional Data

John Lafferty and Larry Wasserman

University of Chicago & Carnegie Mellon University

Outline

Regression

- predicting Y from X
- Structure and Sparsity
 - finding and using hidden structure
- Onparametric Methods
 - using statistical models with weak assumptions
- 4 Latent Variable Models
 - making use of hidden variables

Lecture 2 Structure and Sparsity

Finding hidden structure in data

- Undirected graphical models
- High dimensional covariance matrices
- Sparse coding

Undirected Graphs

Let $X = (X_1, ..., X_p)$. A graph G = (V, E) has vertices V, edges E. Independence graph has one vertex for each X_i .

means that

 $V = \{X, Y, Z\}$ and $E = \{(X, Y), (Y, Z)\}.$

A probability distribution *P* satisfies the *global Markov property* with respect to a graph *G* if:

for any disjoint vertex subsets A, B, and C such that C separates A and B,

 $X_A \amalg X_B \mid X_C.$

Example

$$C = \{3,7\}$$
 separates $A = \{1,2\}$ and $B = \{4,8\}$. Hence, $\{X_1, X_2\}$ II $\{X_4, X_8\} \mid \{X_3, X_7\}$

Example

A 2-dimensional grid graph.

The blue node is independent of the red nodes given the white nodes.

Example: Protein networks (Maslov 2002)

Distributions Encoded by a Graph

- $\mathcal{I}(G)$ = all independence statements implied by the graph *G*.
- $\mathcal{I}(P)$ = all independence statements implied by *P*.
- $\mathcal{P}(G) = \{ P : \mathcal{I}(G) \subseteq \mathcal{I}(P) \}.$
- If $P \in \mathcal{P}(G)$ we say that *P* is Markov to *G*.
- The graph *G* represents the class of distributions $\mathcal{P}(G)$.
- Goal: Given X¹,..., Xⁿ ∼ P estimate G.

Gaussian Case

If X ~ N(μ, Σ) then there is no edge between X_i and X_j if and only if

$$\Omega_{ij} = 0$$

where $\Omega = \Sigma^{-1}$.

Given

$$X^1,\ldots,X^n\sim N(\mu,\Sigma).$$

• For *n* > *p*, let

$$\widehat{\Omega}=\widehat{\Sigma}^{-1}$$

and test

$$H_0: \Omega_{ij} = 0$$
 versus $H_1: \Omega_{ij} \neq 0$.

Two approaches:

- parallel lasso (Meinshausen and Bühlmann)
- graphical lasso (glasso; Banerjee et al, Hastie et al.)

Parallel Lasso:

- For each j = 1, ..., p (in parallel): Regress X_j on all other variables using the lasso.
- Put an edge between X_i and X_j if each appears in the regression of the other.

Glasso (Graphical Lasso)

The glasso minimizes:

$$-\ell(\Omega) + \lambda \sum_{j
eq k} |\Omega_{jk}|$$

where

$$\ell(\Omega) = \frac{1}{2} \left(\log |\Omega| - \operatorname{tr}(\Omega S) \right)$$

is the Gaussian loglikelihood (maximized over μ).

There is a simple blockwise gradient descent algorithm for minimizing this function. It is very similar to the previous algorithm.

```
R packages: glasso and huge
```

Graphs on the S&P 500

- Data from Yahoo! Finance (finance.yahoo.com).
- Daily closing prices for 452 stocks in the S&P 500 between 2003 and 2008 (before onset of the "financial crisis").
- Log returns $X_{tj} = \log \left(S_{t,j} / S_{t-1,j} \right)$.
- Winsorized to trim outliers.
- In following graphs, each node is a stock, and color indicates GICS industry.

Consumer Discretionary	Consumer Staples
Energy	Financials
Health Care	Industrials
Information Technology	Materials
Telecommunications Services	Utilities

S&P 500: Graphical Lasso

S&P 500: Parallel Lasso

Yahoo Inc. (Information Technology):

- Amazon.com Inc. (Consumer Discretionary)
- eBay Inc. (Information Technology)
- NetApp (Information Technology)

Example Neighborhood

Target Corp. (Consumer Discretionary):

- Big Lots, Inc. (Consumer Discretionary)
- Costco Co. (Consumer Staples)
- Family Dollar Stores (Consumer Discretionary)
- Kohl's Corp. (Consumer Discretionary)
- Lowe's Cos. (Consumer Discretionary)
- Macy's Inc. (Consumer Discretionary)
- Wal-Mart Stores (Consumer Staples)

Parallel vs. Graphical

Choosing λ

Can use:

- Cross-validation
- **2** BIC = log-likelihood $(p/2) \log n$
- \bigcirc AIC = log-likelihood p

where p = number of parameters.

Discrete Graphical Models

Let G = (V, E) be an undirected graph on m = |V| vertices

• (Hammersley, Clifford) A positive distribution *p* over random variables *Z*₁,..., *Z*_n that satisfies the Markov properties of graph *G* can be represented as

$$p(Z) \propto \prod_{c \in \mathcal{C}} \psi_c(Z_c)$$

where C is the set of cliques in the graph G.

Discrete Graphical Models

Positive distributions can be represented by an exponential family,

$$p(Z; \beta^*) \propto \exp\left(\sum_{c \in \mathcal{C}} \beta^*_c \phi_c(Z_c)\right)$$

Special case: Ising Model (binary Gaussian)

$$p(Z; \beta^*) \propto \exp\left(\sum_{i \in V} \beta_i^* Z_i + \sum_{(i,j) \in E} \beta_{ij}^* Z_i Z_j\right)$$

Here, the set of cliques $C = \{V \cup E\}$, and the potential functions are $\{Z_i, i \in V\} \cup \{Z_iZ_j, (i,j) \in E\}$.

Graph Estimation

• Given *n* i.i.d. samples from an Ising distribution, $\{Z^s, s = 1, ..., n\}$, identify underlying graph structure.

Multiple examples are observed:

Local Distributions

- Consider Ising model $p(Z; \beta^*) \propto \exp\left\{\sum_{(i,j)\in E} \beta_{ij}^* Z_i Z_j\right\}$.
- Conditioned on (*z*₂,..., *z*_p), variable *Z*₁ ∈ {−1, +1} has probability mass function given by a logistic function,

$$\mathbb{P}(Z_1 = 1 \mid z_2, \dots, z_p) = \frac{1}{1 + \exp\left(\sum_{j \in \mathcal{N}(1)} \beta_{1j}^* z_j\right)}$$

Parallel Logistic Regressions

Approach of Ravikumar, Wainwright and Lafferty (Ann. Stat., 2010):

- Inspired by Meinshausen & Bühlmann (2006) for Gaussian case
- Recovering graph structure equivalent to recovering neighborhood structure N(i) for every i ∈ V
- *Strategy:* perform ℓ_1 regularized logistic regression of each node Z_i on $Z_{i} = \{Z_j, j \neq i\}$ to estimate $\widehat{\mathcal{N}}(i)$.
- Error probability $\mathbb{P}\left(\widehat{\mathcal{N}}(i) \neq \mathcal{N}(i)\right)$ must decay exponentially fast.

S&P 500: Ising Model (Price up or down?)

S&P 500: Parallel Lasso

Ising vs. Parallel Lasso

Voting Data

Example of Banerjee, El Gahoui, and d'Asepremont (JMLR, 2008). Voting records of US Senate, 2006-2008

Statistical Scaling Behavior

Maximum degree d of the p variables. Sample size n must satisfy

Ising model: $n \ge d^3 \log p$

Graphical lasso: $n \ge d^2 \log p$

Parallel lasso: $n \ge d \log p$

Lower bound: $n \ge d \log p$

- Each method makes different *incoherence assumptions*.
- Intuitively, correlations between unrelated variables not too large.

- Undirected graphical models
- High dimensional covariance matrices
- Sparse coding

High Dimensional Covariance Matrices

Let $X = (X_1, ..., X_p)$ (for example, *p* stocks). Suppose we want to estimate Σ , the covariance matrix of *X*. Here $\Sigma = [\sigma_{jk}]$ where $\sigma_{jk} = \text{Cov}(X_j, X_k)$.

The data are *n* random vectors $X^1, \ldots, X^n \in \mathbb{R}^p$. Let

$$S = \frac{1}{n} \sum_{i=1}^{n} (X^{i} - \overline{X})(X^{i} - \overline{X})^{T}$$

be the sample covariance matrix, where $\overline{X} = (\overline{X}_1, \dots, \overline{X}_p)^T$ and

$$\overline{X}_j = \frac{1}{n} \sum_{i=1}^n X_j^i$$

is the mean of the *j*th variable. Let s_{jk} denote the (j, k) element of *S*. If p < n, then *S* is a good estimator of Σ . Results of Vershynin show that for sub-Gaussian families F

$$\sup_{F} \|\widehat{\Sigma} - \Sigma\|_2 = O_P\left(\sqrt{\frac{p}{n}}\right)$$

where $S = \widehat{\Sigma} = \frac{1}{n} \sum_{i=1} X_i X_i^T$ is the sample covariance.

If p > n then *S* is a poor estimator of Σ . But suppose that Σ is *sparse*: most σ_{jk} are small.

Define the *threshold estimator* $\widehat{\Sigma}_t$. The (j, k) element of $\widehat{\Sigma}_t$ is

$$\widehat{\sigma}_{jk} = \begin{cases} s_{jk} & \text{if } |s_{jk}| \ge t \\ 0 & \text{if } |s_{jk}| < t. \end{cases}$$

Bickel and Levina (2008) show that, if Σ is sparse, then $\widehat{\Sigma}_t$ is a good estimator of Σ . (It is not positive-semi-definite (PSD) but can be made PSD by doing a SVD and getting rid of negative singular values.)

Bounds on Thresholded Covariance

Bickel and Levina show that

$$\|\widehat{\Sigma}_t - \Sigma\|_2 = O_P\left(c_0(p)t^{1-q} + c_0(p)t^{-q}\sqrt{\frac{\log p}{n}}\right)$$

for the class of covariance matrices

$$U_q = \left\{ \Sigma : \max_i \sigma_{ii} \leq M, \max_i \sum_{j=1}^p |\sigma_{ij}|^q \leq c_0(p) \right\}$$

How To Choose the Threshold

- Split the data into two halves giving sample covariance matrices S_1, S_2 .
- **2** Threshold S_1 to get $\widehat{\Sigma}_{t,1}$.
- Repeat N times:

$$(\widehat{\Sigma}_{t,1,1}, S_{2,1}), \ldots, (\widehat{\Sigma}_{t,1,s}, S_{2,s}), \ldots, (\widehat{\Sigma}_{t,1,N}, S_{2,N}).$$

4 Let

$$\widehat{R}(t) = \frac{1}{N} \sum_{s=1}^{N} \left\| \widehat{\Sigma}_{t,1,s} - S_{2,s} \right\|_{F}^{2}$$

where $||A||_F^2 = \sum_{j,k} A_{jk}^2 = \text{trace}(AA^T)$ is the Frobenius norm. **5** Choose *t* to minimize $\widehat{R}(t)$.

Example

We take n = 100, p = 200 and $X^1, \dots, X^n \sim N(0, \Sigma)$ where $\sigma_{jk} = \rho^{|i-j|}$ and $\rho = 0.2$.

Threshold

Example

We find that

$$\begin{split} \|\Sigma - S\|_F^2 &= 420 \qquad \|\Sigma - \widehat{\Sigma}_t\|_F^2 &= 20 \\ \|\Sigma - S\|_2 &= 4.7 \qquad \|\Sigma - \widehat{\Sigma}_t\|_2 &= 0.6 \end{split}$$

 $\Sigma - \overset{{} \wedge}{\Sigma}$

Factor Models

Covariance under a factor model:

 $Y = Bf + \epsilon$

 $Y \in \mathbb{R}^p, B \in \mathbb{R}^{p imes k}$, for *k* known factors f_j . So $\Sigma = B \operatorname{cov}(f) B^T + I$.

Natural estimate is the plugin estimator

$$\widehat{\Sigma}_n = \widehat{B}_n \widehat{\operatorname{cov}}(f) \, \widehat{B}_n^T + I.$$

where \hat{B}_n are estimated regression coefficients. Fan, Fan and Lv (2008) study this in the high dimensional setting.

- Undirected graphical models
- High dimensional covariance matrices
- Sparse coding

Sparse Coding

Motivation: understand neural coding (Olshausen and Field, 1996).

original image

sparse representation

Codewords/patch 8.14, RSS 0.1894

Sparse Coding

Mathematical formulation of dictionary learning:

$$\min_{\alpha, X} \qquad \sum_{g=1}^{G} \left\{ \frac{1}{2n} \left\| y^{(i)} - X \alpha^{(i)} \right\|_{2}^{2} + \lambda \left\| \alpha^{(i)} \right\|_{1} \right\}$$
such that
$$\|X_{j}\|_{2} \leq 1$$

Sparse Coding for Natural Images

- Provides high dimensional, nonlinear representation
- Sparsity enables codewords to specialize, isolate "features"
- Overcomplete basis, adapted to data automatically
- Frequentist form of topic modeling, soft VQ

Sparse Coding for Computer Vision

source: Kai Yu

- · Best accuracy when learned codewords are like digits
- Advanced versions are state-of-art for object classification

Sparse Coding for Multivariate Regression

- Intuition of sparse coding extends to multivariate regression with grouped data (e.g., time series over different blocks of time).
- Estimate a regression matrix for each group.
- Each estimate is a sparse combination of a common dictionary of low-rank matrices.
- Low-rank dictionary elements are estimated by pooling across groups.

Problem Formulation

- Data fall into G groups, indexed by g = 1,..., G
- Covariate $X_i^{(g)} \in \mathbb{R}^p$ and response $Y_i^{(g)} \in \mathbb{R}^q$, model

$$Y_i^{(g)} = B^{*(g)}X_i^{(g)} + \epsilon_i^{(g)}$$

• Goal: estimate $B^{*(g)} \in \mathbb{R}^{q \times p}$ with

$$\widehat{B}^{(g)} = \sum_{k=1}^{K} \widehat{\alpha}_k^{(g)} D_k$$

where each D_k is low rank, $\widehat{\alpha}^{(g)} = (\widehat{\alpha}_1^{(g)}, \dots, \widehat{\alpha}_K^{(g)})$ is sparse

Interlude: Low-Rank Matrices

• 2 × 2 symmetric matrices:

$$X = \begin{pmatrix} x & y \\ y & z \end{pmatrix}$$

• By scaling, can assume |x + z| = 1.

X has rank one iff $x^2 + 2y^2 + z^2 = 1$

- Union of two ellipses in ℝ³.
- Convex hull is a cylinder.

Recall: Sparse Vectors and ℓ_1 Relaxation

Low-Rank Matrices and Convex Relaxation

Nuclear Norm Regularization

Nuclear norm $||X||_*$ of $p \times q$ matrix X

$$\|\boldsymbol{X}\|_* = \sum_{j=1}^{\min(p,q)} \sigma_j(\boldsymbol{X})$$

Sum of singular values. (a.k.a. trace norm or Ky-Fan norm)

Generalization to matrices of ℓ_1 norm for vectors.

Algorithms for nuclear norm minimization are a lot like iterative soft thresholding for lasso problems.

To project a matrix *B* onto the nuclear norm ball $||X||_* \le t$:

• Compute the SVD:

 $B = U \operatorname{diag}(\sigma) V^T$

• Soft threshold the singular values:

 $B \leftarrow U \operatorname{diag}(\operatorname{Soft}_{\lambda}(\sigma)) V^{T}$

Conditional Sparse Coding

Objective function:

$$f(\alpha, D) = \frac{1}{G} \sum_{g=1}^{G} \left\{ \frac{1}{n} \| Y^{(g)} - \left(\sum_{k=1}^{K} \alpha_{k}^{(g)} D_{k} \right) X^{(g)} \|_{F}^{2} + \lambda \| \alpha^{(g)} \|_{1} \right\}$$

minimized over $D_k \in C(\tau)$,

 $\mathcal{C}(\tau) = \left\{ D \in \mathbb{R}^{q \times p} : \|D\|_* \le \tau \text{ and } \|D\|_2 \le 1 \right\}$

 Dictionary entries D_k are shared across groups; nuclear norm constraint forces them to be low rank Input: Data $\{(Y^{(g)}, X^{(g)})\}_{g=1,...,G}$, parameters λ and τ

- 1. Initialize dictionary $\{D_1, ..., D_K\}$ as random rank one matrices
- **2.** Alternate following steps until convergence of $f(\alpha, D)$:
 - **a.** Encoding step: $\{\alpha^{(g)}\} \leftarrow \arg \min_{\alpha^{(g)}} f(\alpha, D)$ **b.** Learning step: $\{D_k\} \leftarrow \arg \min_{D_k \in \mathcal{C}(\tau)} f(\alpha, D)$

$$f(\alpha, D) = \frac{1}{G} \sum_{g=1}^{G} \left\{ \frac{1}{n} \| Y^{(g)} - \left(\sum_{k=1}^{K} \alpha_{k}^{(g)} D_{k} \right) X^{(g)} \|_{F}^{2} + \lambda \| \alpha^{(g)} \|_{1} \right\}$$

- Low-rank regression: Yuan et al. (2007), Negahban and Wainwright (2011)
- Multi-task learning: Evgeniou and Pontil (2004), Maurer and Pontil (2010)

Example with Equities Data

- 29 companies in single industry sector, from 2002 to 2007
- One day log returns, $Y_t = \log S_t / S_{t-1}$, X_t lagged values
- Grouped in 35 day periods

	30 days back	50 days back	90 days back	Sparse Coding	
Correlation	-0.000433	0.0527	0.0513	0.0795	
Predictive R ²	-0.0231	-0.0011	0.00218	0.0042	

Sparse Coding for Covariance Estimation

Sparse code the group sample covariance matrices

$$\widehat{S}_{n}^{(g)} = \frac{1}{n} \sum_{i=1}^{n} Y_{i}^{(g)} Y_{i}^{(g)T}$$

Objective function:

$$f(\alpha, \beta, D) = \frac{1}{G} \sum_{g=1}^{G} \left\{ \frac{1}{n} \| \widehat{S}_{n}^{(g)} - \operatorname{diag}(\beta) - \sum_{k=1}^{K} \alpha_{k}^{(g)} D_{k} \|_{F}^{2} + \lambda \| \alpha^{(g)} \|_{1} \right\}$$

minimized over $D_k \in C(\tau)$,

 $\mathcal{C}(\tau) = \{ D \succeq \mathbf{0}, \|D\|_* \le \tau \text{ and } \|D\|_2 \le 1 \}$

 Optimization over \(\alpha^{(g)}\) by solving semidefinite program or nonnegative lasso

"Read the Mind" with fMRI

- Subject sees one of 60 words, each associated with a semantic vector; fMRI measures neural activity.
- Can we predict the semantic vector based on the neural activity?

"Read the Mind" with fMRI

- Subject sees one of 60 words, each associated with a semantic vector; fMRI measures neural activity.
- Can we predict the semantic vector based on the neural activity?

Multivariate Regression

$$\underbrace{Y}_{q \times n} = \underbrace{B}_{q \times p} \underbrace{X}_{p \times n} + \epsilon$$

p: dimension of neural activity (\sim 400) *q*: dimension of semantic vector (\sim 200) *n*: sample size (\sim 60)

Mind Reading

Many different subjects; we have a data set for each subject. Everyone's brain works differently—but not completely differently.

Data is grouped For groups g = 1, ..., G $Y^{(1)} = B^{(1)}X^{(1)} + \epsilon^{(1)}$ $Y^{(2)} = B^{(2)}X^{(2)} + \epsilon^{(2)}$ \vdots $Y^{(G)} = B^{(G)}X^{(G)} + \epsilon^{(G)}$

- Slight generalization of multi-task learning
- Many other applications

Experiments

- Alternating optimization relatively well-behaved.
- Improved mind-reading accuracy statistically significantly on 4 subjects. Degraded on 1 subject.
- Learned coefficients indeed sparse.

	Subj A	B	С	D	E	F	G	Н	
Dictionary	0.8833	0.8667	0.9000	0.9333	0.8333	0.7500	0.9000	0.7833	0.6667
Separate	0.9500	0.7000	0.9167	0.8167	0.8167	0.7667	0.8000	0.6667	0.6333
Confidence	0.6-	0.92+	0.05-	0.86+	0.03+	0.02-	0.70+	0.65+	0.07+

Theory

We analyze risk consistency, in worst case under weak assumptions. We analyze output of non-convex procedure with initial randomization.

Theory

We analyze risk consistency, in worst case under weak assumptions. We analyze output of non-convex procedure with initial randomization.

- With random initial dictionary, need to learn sets of dense coefficients
- Achieve good performance if learned coefficients of learned dictionary are sparse

Summary

- Undirected graphs represent conditional independence assumptions.
- Two methods for Gaussian graphical models: Parallel lasso and graphical lasso.
- Discrete graphical models are more difficult; parallel sparse logistic regression can be effective.
- Thresholding sample covariance can estimate sparse covariance matrices in high dimensions.
- Sparse coding efficiently represents high dimensional signals or regression models.