VIASM Lectures on

Statistical Machine Learning for High Dimensional Data

John Lafferty and Larry Wasserman

University of Chicago \&
Carnegie Mellon University

Outline

(1) Regression

- predicting Y from X
(2) Structure and Sparsity
- finding and using hidden structure
(3) Nonparametric Methods
- using statistical models with weak assumptions
(4) Latent Variable Models
- making use of hidden variables

Lecture 2 Structure and Sparsity

Finding hidden structure in data

Topics

- Undirected graphical models
- High dimensional covariance matrices
- Sparse coding

Undirected Graphs

Let $X=\left(X_{1}, \ldots, X_{p}\right)$. A graph $G=(V, E)$ has vertices V, edges E. Independence graph has one vertex for each X_{j}.

means that

$$
X \amalg Z \mid Y
$$

$$
V=\{X, Y, Z\} \text { and } E=\{(X, Y),(Y, Z)\}
$$

Markov Property

A probability distribution P satisfies the global Markov property with respect to a graph G if:
for any disjoint vertex subsets A, B, and C such that C separates A and B,

$$
X_{A} \amalg X_{B} \mid X_{C} .
$$

Example

$C=\{3,7\}$ separates $A=\{1,2\}$ and $B=\{4,8\}$. Hence,

$$
\left\{X_{1}, X_{2}\right\} \amalg\left\{X_{4}, X_{8}\right\} \mid\left\{X_{3}, X_{7}\right\}
$$

Example

A 2-dimensional grid graph.
The blue node is independent of the red nodes given the white nodes.

Example: Protein networks (Maslov 2002)

Distributions Encoded by a Graph

- $\mathcal{I}(G)=$ all independence statements implied by the graph G.
- $\mathcal{I}(P)=$ all independence statements implied by P.
- $\mathcal{P}(G)=\{P: \mathcal{I}(G) \subseteq \mathcal{I}(P)\}$.
- If $P \in \mathcal{P}(G)$ we say that P is Markov to G.
- The graph G represents the class of distributions $\mathcal{P}(G)$.
- Goal: Given $X^{1}, \ldots, X^{n} \sim P$ estimate G.

Gaussian Case

- If $X \sim N(\mu, \Sigma)$ then there is no edge between X_{i} and X_{j} if and only if

$$
\Omega_{i j}=0
$$

where $\Omega=\Sigma^{-1}$.

- Given

$$
X^{1}, \ldots, X^{n} \sim N(\mu, \Sigma)
$$

- For $n>p$, let

$$
\widehat{\Omega}=\widehat{\Sigma}^{-1}
$$

and test

$$
H_{0}: \Omega_{i j}=0 \quad \text { versus } H_{1}: \Omega_{i j} \neq 0
$$

Gaussian Case: $p>n$

Two approaches:

- parallel lasso (Meinshausen and Bühlmann)
- graphical lasso (glasso; Banerjee et al, Hastie et al.)

Parallel Lasso:

(1) For each $j=1, \ldots, p$ (in parallel): Regress X_{j} on all other variables using the lasso.
(2) Put an edge between X_{i} and X_{j} if each appears in the regression of the other.

Glasso (Graphical Lasso)

The glasso minimizes:

$$
-\ell(\Omega)+\lambda \sum_{j \neq k}\left|\Omega_{j k}\right|
$$

where

$$
\ell(\Omega)=\frac{1}{2}(\log |\Omega|-\operatorname{tr}(\Omega S))
$$

is the Gaussian loglikelihood (maximized over μ).

There is a simple blockwise gradient descent algorithm for minimizing this function. It is very similar to the previous algorithm.

R packages: glasso and huge

Graphs on the S\&P 500

- Data from Yahoo! Finance (finance. yahoo. com).
- Daily closing prices for 452 stocks in the S\&P 500 between 2003 and 2008 (before onset of the "financial crisis").
- Log returns $X_{t j}=\log \left(S_{t, j} / S_{t-1, j}\right)$.
- Winsorized to trim outliers.
- In following graphs, each node is a stock, and color indicates GICS industry.

```
Consumer Discretionary Consumer Staples
Energy Financials
Health Care Industrials
Information Technology Materials
Telecommunications Services Utilities
```


S\&P 500: Graphical Lasso

S\&P 500: Parallel Lasso

Example Neighborhood

Yahoo Inc. (Information Technology):

- Amazon.com Inc. (Consumer Discretionary)
- eBay Inc. (Information Technology)
- NetApp (Information Technology)

Example Neighborhood

Target Corp. (Consumer Discretionary):

- Big Lots, Inc. (Consumer Discretionary)
- Costco Co. (Consumer Staples)
- Family Dollar Stores (Consumer Discretionary)
- Kohl's Corp. (Consumer Discretionary)
- Lowe's Cos. (Consumer Discretionary)
- Macy's Inc. (Consumer Discretionary)
- Wal-Mart Stores (Consumer Staples)

Parallel vs. Graphical

Choosing λ

Can use:

(1) Cross-validation
(2) $\mathrm{BIC}=\log$-likelihood $-(p / 2) \log n$
(3) AIC $=\log$-likelihood $-p$
where $p=$ number of parameters.

Discrete Graphical Models

Let $G=(V, E)$ be an undirected graph on $m=|V|$ vertices

- (Hammersley, Clifford) A positive distribution pover random variables Z_{1}, \ldots, Z_{n} that satisfies the Markov properties of graph G can be represented as

$$
p(Z) \propto \prod_{c \in \mathcal{C}} \psi_{c}\left(Z_{c}\right)
$$

where \mathcal{C} is the set of cliques in the graph G.

Discrete Graphical Models

- Positive distributions can be represented by an exponential family,

$$
p\left(Z ; \beta^{*}\right) \propto \exp \left(\sum_{c \in \mathcal{C}} \beta_{c}^{*} \phi_{c}\left(Z_{c}\right)\right)
$$

- Special case: Ising Model (binary Gaussian)

$$
p\left(Z ; \beta^{*}\right) \propto \exp \left(\sum_{i \in V} \beta_{i}^{*} Z_{i}+\sum_{(i, j) \in E} \beta_{i j}^{*} Z_{i} Z_{j}\right)
$$

Here, the set of cliques $\mathcal{C}=\{V \cup E\}$, and the potential functions are $\left\{Z_{i}, i \in V\right\} \cup\left\{Z_{i} Z_{j},(i, j) \in E\right\}$.

Graph Estimation

- Given n i.i.d. samples from an Ising distribution, $\left\{Z^{s}, s=1, \ldots, n\right\}$, identify underlying graph structure.

- Multiple examples are observed:

Local Distributions

- Consider Ising model $p\left(Z_{;} \beta^{*}\right) \propto \exp \left\{\sum_{(i, j) \in E} \beta_{i j}^{*} Z_{i} Z_{j}\right\}$.
- Conditioned on $\left(z_{2}, \ldots, z_{p}\right)$, variable $Z_{1} \in\{-1,+1\}$ has probability mass function given by a logistic function,

$$
\mathbb{P}\left(Z_{1}=1 \mid z_{2}, \ldots, z_{p}\right)=\frac{1}{1+\exp \left(\sum_{j \in \mathcal{N}(1)} \beta_{1 j}^{*} z_{j}\right)} .
$$

Parallel Logistic Regressions

Approach of Ravikumar, Wainwright and Lafferty (Ann. Stat., 2010):

- Inspired by Meinshausen \& Bühlmann (2006) for Gaussian case
- Recovering graph structure equivalent to recovering neighborhood structure $\mathcal{N}(i)$ for every $i \in V$
- Strategy: perform ℓ_{1} regularized logistic regression of each node Z_{i} on $Z_{i}=\left\{Z_{j}, j \neq i\right\}$ to estimate $\hat{\mathcal{N}}(i)$.
- Error probability $\mathbb{P}(\widehat{\mathcal{N}}(i) \neq \mathcal{N}(i))$ must decay exponentially fast.

S\&P 500: Ising Model (Price up or down?)

S\&P 500: Parallel Lasso

Ising vs. Parallel Lasso

Voting Data

Example of Banerjee, El Gahoui, and d'Asepremont (JMLR, 2008). Voting records of US Senate, 2006-2008

Statistical Scaling Behavior

Maximum degree d of the p variables. Sample size n must satisfy
Ising model: $n \geq d^{3} \log p$
Graphical lasso: $n \geq d^{2} \log p$
Parallel lasso: $n \geq d \log p$
Lower bound: $n \geq d \log p$

- Each method makes different incoherence assumptions.
- Intuitively, correlations between unrelated variables not too large.

Topics

- Undirected graphical models
- High dimensional covariance matrices
- Sparse coding

High Dimensional Covariance Matrices

Let $X=\left(X_{1}, \ldots, X_{p}\right)$ (for example, p stocks). Suppose we want to estimate Σ, the covariance matrix of X. Here $\Sigma=\left[\sigma_{j k}\right]$ where $\sigma_{j k}=\operatorname{Cov}\left(X_{j}, X_{k}\right)$.

The data are n random vectors $X^{1}, \ldots, X^{n} \in \mathbb{R}^{p}$. Let

$$
S=\frac{1}{n} \sum_{i=1}^{n}\left(X^{i}-\bar{X}\right)\left(X^{i}-\bar{X}\right)^{T}
$$

be the sample covariance matrix, where $\bar{X}=\left(\bar{X}_{1}, \ldots, \bar{X}_{p}\right)^{T}$ and

$$
\bar{X}_{j}=\frac{1}{n} \sum_{i=1}^{n} X_{j}^{i}
$$

is the mean of the $j^{\text {th }}$ variable. Let $s_{j k}$ denote the (j, k) element of S. If $p<n$, then S is a good estimator of Σ.

Bounds on Sample Covariance

Results of Vershynin show that for sub-Gaussian families F

$$
\sup _{F}\|\widehat{\Sigma}-\Sigma\|_{2}=O_{P}\left(\sqrt{\frac{p}{n}}\right)
$$

where $S=\widehat{\Sigma}=\frac{1}{n} \sum_{i=1} X_{i} X_{i}^{T}$ is the sample covariance.

What if $p>n$?

If $p>n$ then S is a poor estimator of Σ. But suppose that Σ is sparse: most $\sigma_{j k}$ are small.

Define the threshold estimator $\hat{\Sigma}_{t}$. The (j, k) element of $\hat{\Sigma}_{t}$ is

$$
\widehat{\sigma}_{j k}= \begin{cases}s_{j k} & \text { if }\left|s_{j k}\right| \geq t \\ 0 & \text { if }\left|s_{j k}\right|<t\end{cases}
$$

Bickel and Levina (2008) show that, if Σ is sparse, then $\widehat{\Sigma}_{t}$ is a good estimator of Σ. (It is not positive-semi-definite (PSD) but can be made PSD by doing a SVD and getting rid of negative singular values.)

Bounds on Thresholded Covariance

Bickel and Levina show that

$$
\left\|\widehat{\Sigma}_{t}-\Sigma\right\|_{2}=O_{P}\left(c_{0}(p) t^{1-q}+c_{0}(p) t^{-q} \sqrt{\frac{\log p}{n}}\right)
$$

for the class of covariance matrices

$$
U_{q}=\left\{\Sigma: \max _{i} \sigma_{i i} \leq M, \max _{i} \sum_{j=1}^{p}\left|\sigma_{i j}\right|^{q} \leq c_{0}(p)\right\}
$$

How To Choose the Threshold

(1) Split the data into two halves giving sample covariance matrices S_{1}, S_{2}.
(2) Threshold S_{1} to get $\widehat{\Sigma}_{t, 1}$.
(3) Repeat N times:

$$
\left(\widehat{\Sigma}_{t, 1,1}, S_{2,1}\right), \ldots,\left(\widehat{\Sigma}_{t, 1, s}, S_{2, s}\right), \ldots,\left(\widehat{\Sigma}_{t, 1, N}, S_{2, N}\right)
$$

(4) Let

$$
\widehat{R}(t)=\frac{1}{N} \sum_{s=1}^{N}\left\|\widehat{\Sigma}_{t, 1, s}-S_{2, s}\right\|_{F}^{2}
$$

where $\|A\|_{F}^{2}=\sum_{j, k} A_{j k}^{2}=\operatorname{trace}\left(A A^{T}\right)$ is the Frobenius norm.
(5) Choose t to minimize $\widehat{R}(t)$.

Example

We take $n=100, p=200$ and

$$
X^{1}, \ldots, X^{n} \sim N(0, \Sigma)
$$

where $\sigma_{j k}=\rho^{|i-j|}$ and $\rho=0.2$.

Example

We find that

$$
\begin{aligned}
\|\Sigma-S\|_{F}^{2} & =420 & & \left\|\Sigma-\widehat{\Sigma}_{t}\right\|_{F}^{2}=20 \\
\|\Sigma-S\|_{2} & =4.7 & & \left\|\Sigma-\widehat{\Sigma}_{t}\right\|_{2}=0.6
\end{aligned}
$$

$$
\Sigma-S
$$

$$
\Sigma-\hat{\Sigma}
$$

Factor Models

Covariance under a factor model:

$$
Y=B f+\epsilon
$$

$Y \in \mathbb{R}^{p}, B \in \mathbb{R}^{p \times k}$, for k known factors f_{j}. So

$$
\Sigma=B \operatorname{cov}(f) B^{T}+I
$$

Natural estimate is the plugin estimator

$$
\widehat{\Sigma}_{n}=\widehat{B}_{n} \widehat{\operatorname{cov}}(f) \widehat{B}_{n}^{T}+I .
$$

where \widehat{B}_{n} are estimated regression coefficients. Fan, Fan and Lv (2008) study this in the high dimensional setting.

Topics

- Undirected graphical models
- High dimensional covariance matrices
- Sparse coding

Sparse Coding

Motivation: understand neural coding (Olshausen and Field, 1996).
original image

sparse representation

Codewords/patch 8.14, RSS 0.1894

Sparse Coding

Mathematical formulation of dictionary learning:

$$
\min _{\alpha, X} \sum_{g=1}^{G}\left\{\frac{1}{2 n}\left\|y^{(i)}-X \alpha^{(i)}\right\|_{2}^{2}+\lambda\left\|\alpha^{(i)}\right\|_{1}\right\}
$$

such that $\quad\left\|X_{j}\right\|_{2} \leq 1$

Sparse Coding for Natural Images

Reconstruction
RSS $=0.0906$

Properties

- Provides high dimensional, nonlinear representation
- Sparsity enables codewords to specialize, isolate "features"
- Overcomplete basis, adapted to data automatically
- Frequentist form of topic modeling, soft VQ

Sparse Coding for Computer Vision

source: Kai Yu

Error: 4.54\%

Error: 3.75\%

Error: 2.64\%

- Best accuracy when learned codewords are like digits
- Advanced versions are state-of-art for object classification

Sparse Coding for Multivariate Regression

- Intuition of sparse coding extends to multivariate regression with grouped data (e.g., time series over different blocks of time).
- Estimate a regression matrix for each group.
- Each estimate is a sparse combination of a common dictionary of low-rank matrices.
- Low-rank dictionary elements are estimated by pooling across groups.

Problem Formulation

- Data fall into G groups, indexed by $g=1, \ldots, G$
- Covariate $X_{i}^{(g)} \in \mathbb{R}^{p}$ and response $Y_{i}^{(g)} \in \mathbb{R}^{q}$, model

$$
Y_{i}^{(g)}=B^{*(g)} X_{i}^{(g)}+\epsilon_{i}^{(g)}
$$

- Goal: estimate $B^{*(g)} \in \mathbb{R}^{q \times p}$ with

$$
\widehat{B}^{(g)}=\sum_{k=1}^{K} \widehat{\alpha}_{k}^{(g)} D_{k}
$$

where each D_{k} is low rank, $\widehat{\alpha}^{(g)}=\left(\widehat{\alpha}_{1}^{(g)}, \ldots, \widehat{\alpha}_{K}^{(g)}\right)$ is sparse

Interlude: Low-Rank Matrices

- 2×2 symmetric matrices:

$$
X=\left(\begin{array}{ll}
x & y \\
y & z
\end{array}\right)
$$

- By scaling, can assume $|x+z|=1$.

$$
X \text { has rank one iff } x^{2}+2 y^{2}+z^{2}=1
$$

- Union of two ellipses in \mathbb{R}^{3}.
- Convex hull is a cylinder.

Recall: Sparse Vectors and ℓ_{1} Relaxation

sparse vectors
$\|X\|_{0} \leq t$
convex hull
$\|X\|_{1} \leq t$

Low-Rank Matrices and Convex Relaxation

low rank matrices

$$
\operatorname{rank}(X) \leq t
$$

convex hull
$\|X\|_{*} \leq t$

Nuclear Norm Regularization

Nuclear norm $\|X\|_{*}$ of $p \times q$ matrix X

$$
\|X\|_{*}=\sum_{j=1}^{\min (p, q)} \sigma_{j}(X)
$$

Sum of singular values. (a.k.a. trace norm or Ky-Fan norm)

Generalization to matrices of ℓ_{1} norm for vectors.

Nuclear Norm Regularization

Algorithms for nuclear norm minimization are a lot like iterative soft thresholding for lasso problems.

To project a matrix B onto the nuclear norm ball $\|X\|_{*} \leq t$:

- Compute the SVD:

$$
B=U \operatorname{diag}(\sigma) V^{T}
$$

- Soft threshold the singular values:

$$
B \leftarrow U \operatorname{diag}\left(\operatorname{Soft}_{\lambda}(\sigma)\right) V^{T}
$$

Conditional Sparse Coding

- Objective function:

$$
f(\alpha, D)=\frac{1}{G} \sum_{g=1}^{G}\left\{\frac{1}{n}\left\|Y^{(g)}-\left(\sum_{k=1}^{K} \alpha_{k}^{(g)} D_{k}\right) X^{(g)}\right\|_{F}^{2}+\lambda\left\|\alpha^{(g)}\right\|_{1}\right\}
$$

minimized over $D_{k} \in \mathcal{C}(\tau)$,

$$
\mathcal{C}(\tau)=\left\{D \in \mathbb{R}^{q \times p}:\|D\|_{*} \leq \tau \text { and }\|D\|_{2} \leq 1\right\}
$$

- Dictionary entries D_{k} are shared across groups; nuclear norm constraint forces them to be low rank

Conditional Sparse Coding

Input: Data $\left\{\left(Y^{(g)}, X^{(g)}\right\}_{g=1, \ldots, G}\right.$, parameters λ and τ

1. Initialize dictionary $\left\{D_{1}, \ldots, D_{K}\right\}$ as random rank one matrices
2. Alternate following steps until convergence of $f(\alpha, D)$:
a. Encoding step: $\left\{\alpha^{(g)}\right\} \leftarrow \arg \min _{\alpha^{(g)}} f(\alpha, D)$
b. Learning step: $\left\{D_{k}\right\} \leftarrow \arg \min _{D_{k} \in \mathcal{C}(\tau)} f(\alpha, D)$

$$
f(\alpha, D)=\frac{1}{G} \sum_{g=1}^{G}\left\{\frac{1}{n}\left\|Y^{(g)}-\left(\sum_{k=1}^{K} \alpha_{k}^{(g)} D_{k}\right) X^{(g)}\right\|_{F}^{2}+\lambda\left\|\alpha^{(g)}\right\|_{1}\right\}
$$

Related Methods

- Low-rank regression: Yuan et al. (2007), Negahban and Wainwright (2011)
- Multi-task learning: Evgeniou and Pontil (2004), Maurer and Pontil (2010)

Example with Equities Data

- 29 companies in single industry sector, from 2002 to 2007
- One day \log returns, $Y_{t}=\log S_{t} / S_{t-1}, X_{t}$ lagged values
- Grouped in 35 day periods

	30 days back	50 days back	90 days back	Sparse Coding
Correlation	-0.000433	0.0527	0.0513	$\mathbf{0 . 0 7 9 5}$
Predictive R^{2}	-0.0231	-0.0011	0.00218	$\mathbf{0 . 0 0 4 2}$

Sparse Coding for Covariance Estimation

- Sparse code the group sample covariance matrices

$$
\widehat{S}_{n}^{(g)}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}^{(g)} Y_{i}^{(g) T}
$$

- Objective function:

$$
f(\alpha, \beta, D)=\frac{1}{G} \sum_{g=1}^{G}\left\{\frac{1}{n}\left\|\widehat{S}_{n}^{(g)}-\operatorname{diag}(\beta)-\sum_{k=1}^{K} \alpha_{k}^{(g)} D_{k}\right\|_{F}^{2}+\lambda\left\|\alpha^{(g)}\right\|_{1}\right\}
$$

minimized over $D_{k} \in \mathcal{C}(\tau)$,

$$
\mathcal{C}(\tau)=\left\{D \succeq 0,\|D\|_{*} \leq \tau \text { and }\|D\|_{2} \leq 1\right\}
$$

- Optimization over $\alpha^{(g)}$ by solving semidefinite program or nonnegative lasso

"Read the Mind" with fMRI

- Subject sees one of 60 words, each associated with a semantic vector; fMRI measures neural activity.
- Can we predict the semantic vector based on the neural activity?

"Read the Mind" with fMRI

- Subject sees one of 60 words, each associated with a semantic vector; fMRI measures neural activity.
- Can we predict the semantic vector based on the neural activity?

Multivariate Regression

$$
\underbrace{Y}_{q \times n}=\underbrace{B}_{q \times p} \underbrace{X}_{p \times n}+\epsilon
$$

p : dimension of neural activity (~ 400)
q : dimension of semantic vector (~ 200)
n : sample size (~ 60)

Mind Reading

Many different subjects; we have a data set for each subject. Everyone's brain works differently—but not completely differently.

Data is grouped

For groups $g=1, \ldots, G$

$$
\begin{aligned}
Y^{(1)} & =B^{(1)} X^{(1)}+\epsilon^{(1)} \\
Y^{(2)} & =B^{(2)} X^{(2)}+\epsilon^{(2)} \\
& \vdots \\
Y^{(G)} & =B^{(G)} X^{(G)}+\epsilon^{(G)}
\end{aligned}
$$

- Slight generalization of multi-task learning
- Many other applications

Experiments

- Alternating optimization relatively well-behaved.
- Improved mind-reading accuracy statistically significantly on 4 subjects. Degraded on 1 subject.
- Learned coefficients indeed sparse.

	Subj A	B	C	D	E	F	G	H	I
Dictionary	0.8833	0.8667	0.9000	0.9333	0.8333	0.7500	0.9000	0.7833	0.6667
Separate	0.9500	0.7000	0.9167	0.8167	0.8167	0.7667	0.8000	0.6667	0.6333
Confidence	$0.6-$	$0.92+$	$0.05-$	$0.86+$	$0.03+$	$0.02-$	$0.70+$	$0.65+$	$0.07+$

Theory

We analyze risk consistency, in worst case under weak assumptions.
We analyze output of non-convex procedure with initial randomization.

Theory

We analyze risk consistency, in worst case under weak assumptions.
We analyze output of non-convex procedure with initial randomization.

- With random initial dictionary, need to learn sets of dense coefficients
- Achieve good performance if learned coefficients of learned dictionary are sparse

Summary

- Undirected graphs represent conditional independence assumptions.
- Two methods for Gaussian graphical models: Parallel lasso and graphical lasso.
- Discrete graphical models are more difficult; parallel sparse logistic regression can be effective.
- Thresholding sample covariance can estimate sparse covariance matrices in high dimensions.
- Sparse coding efficiently represents high dimensional signals or regression models.

