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1 Lecture 1 - Differential Operators

1.1 Overview

The goal of these lectures is to give an elementary introduction into the theory
of stratified bundles in positive characteristic, with a special emphasis on regular
singularity as defined in [Gie75], and, more generally, the authors thesis [Kin12].
One of the main theorems of loc. cit. is

1.1 Theorem. Let k be an algebraically closed field of characteristic p > 0, X
a smooth, connected, separated, finite type k-scheme and E a stratified bundle
on X, i.e. an OX-coherent DX/k-module. Then the following are equivalent:

(a) E is regular singular with finite monodromy group.

(b) E is trivialized on a finite, tame covering of X. 2

The notion of tameness used here will be defined in the lectures, and it is studied
in [KS10]. The proof of Theorem 1.1 splits into two parts: An argument using
more or less standard facts from the theory of Tannakian categories, and the
following Main Lemma:

1.2 Theorem (Main Lemma). Let f : Y → X be a finite galois étale mor-
phism. Then f∗OY is a stratified bundle on X, i.e. an OX-coherent DX/k-module,
and f is tame if and only if f∗OY is regular singular. 2

In the course of the lectures, we will define the terms used in the statement
of the Main Lemma, and develop the theory far enough to give a proof. We try
to avoid Tannakian and log-geometric language.

1.2 Differential operators

We give a brief summary of the relevant facts from [EGA4, §.16] and [BO78,
Ch. 2], without proofs.

1.2.1 Definitions

Let f : X → S be a separated (for simplicity) morphism of schemes and
diagX/S : X → X ×S X the diagnoal. This is a closed immersion by assumption.
Let IX/S ⊆ OX×SX be the associated sheaf of ideals and ∆n

X/S the closed

subscheme defined by In+1
X/S , which is called the n-th infinitesimal neighborhood

of X. Note that the closed immersion in : X ↪→ ∆n
X/S is a homeomorphism on

topological spaces.

1.3 Definition. We define

PnX/S := i−1
n O∆n

X/S
= diag−1

X/S OX×SX/I
n+1
X/S

and call it the sheaf of n-th principal parts. 2

Note that the two projections X×SX → X induce maps pn0 , p
n
1 : ∆n

X/S → X,
and accordingly, the sheaf of rings PnX/S carries a left- and a right-OX -structure
via the corresponding ring morphisms dn0 , d

n
1 : OX → PnX/S . In fact, for n > 0,
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one always has (PnX/S ∼= OX ⊗f−1OS
OX)/Jn+1, where J is the kernel of the

multiplication map OX ⊗f−1OS
OX → OX , and with this identification we have

dn0 (a) = a⊗ 1, dn1 (a) = 1⊗ a.

1.4 Definition. Let E,F be two OX -modules. A differential operator E
h−→ F

of order ≤ n is a f−1OS-linear morphism which factors as

E
h //

d0

��

F

PnX/S ⊗OX
E

h̄

99

with h̄ being OX -linear. Here the tensor product PnX/S ⊗OX
E is constructed

with respect to the right-OX -structure of PnX/S and considered as an OX -module
via the left-OX -structure of PnX/S . 2

In some sense a differential operator is hence a f−1OS-linear map, which is
almost OX -linear. Such a factorization is unique: If a⊗ b⊗ e ∈ PnX/S ⊗E, then

h̄(a⊗ b⊗ e) = ah̄(1⊗ b⊗ e) = ah̄(1⊗ 1⊗ be) = ah(be).

Thus we see that the set of differential operators E → F of order ≤ n is in fact

Diff≤nX/S(E,F ) := HomOX
(PnX/S ⊗OX

E,F ),

which is an OX(X)-bimodule, and the sheaf of differential operators E → F of
order ≤ n is

Diff≤nX/S(E,F ) = HomOX
(PnX/S ⊗OX

E,F ),

which is an OX -bimodule.

1.5 Example. A differential operator of degree 0 is just multiplication with an
element of OX(X). 2

Note that there are canonical surjections

. . .� PnX/S � Pn−1
X/S � . . . ,

and that they induce morphisms Diff≤nX/S(E,F )→ Diff≤n+1
X/S (E,F ), so it makes

sense to define

1.6 Definition. If E,F are OX modules, then

DiffX/S(E,F ) := lim−→
n

Diff≤nX/S(E,F ).

If E = F = OX , we also write DX/S := DiffX/S(OX ,OX). 2

3



1.2.2 Composition

Now we define composition of differential operators. Consider the following
diagram:

∆n+m
X/S � t

''
X
+ �

88

� s

&&

X ×S X

∆n
X/S ×X ∆n+m

X/S

* 


77∃!

OO

One checks that the dotted arrow exists. This gives morphisms δn,m : Pn+m
X/S →

PnX/S ⊗OX
PmX/S . It is induced by a⊗ b 7→ a⊗ 1 ⊗ 1⊗ b. Finally, if E

φ−→ F ,

F
ψ−→ G are two differential operators, then we construct:

F
φ //

dn0
��

dn+m
0

!!

G
ψ //

d0

��

H

PnX/S ⊗OX
F

φ̄

55

PmX/S ⊗OX
G

ψ̄

66

Pn+m
X/S ⊗OX

F
δm,n

// PmX/S ⊗OX
PnX/S ⊗OX

F

id⊗φ̄

OO

We see that ψ ◦ φ ∈ Diff≤n+m
X/S (F,H). Accoringly, DiffX/S(F, F ) becomes a

sheaf of bi-OX -algebras. Note that this sheaf is noncommutative in general: If
a ∈ OX(X) and ψ : F → F a differential operator, then aψ 6= ψa.

1.2.3 Functoriality

Now let g : Y → X be an S-morphism of S-schemes.

1.7 Proposition. The following statements are true:

• g∗DX/S := OY ⊗g−1OX
g−1DX/S is a (DY/S , g

−1DX/S)-bialgebra.

• There exists a canonical left-DY/S, right-g−1DX/S map

DY/S → g∗DY/S .

• If E is a left-DX/S-module, then g∗E is isomorphic to DX/S⊗g−1DX/S
g−1E

and carries a canonical left-DX/S-structure. 2
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1.2.4 The smooth case

Assume there are global functions x1, . . . , xn ∈ OX(X) such that dx1, . . . , dxn
are a basis for Ω1

X/S , i.e. such that the define a factorisation

X
étale //

f   

AnS

��
S.

1.8 Proposition. In this situation D≤mX/S is free (as left- and as right-OX-

module) on generators of the form

∂(a1)
x1
· . . . · ∂(am)

xn
,
∑

ai ≤ m.

Here ∂
(a)
xi acts on OX via ∂

(a)
xi (xrj) =

(
r
a

)
xr−ai if i = j and = 0 otherwise. The

following composition rules hold true:

• ∂(a)
xi and ∂

(b)
xj commute for all i, j, a, b.

• ∂(a)
xi ∂

(b)
xi =

(
a+b
a

)
∂

(a+b)
xi .

• ∂(a)
xi · f =

∑
r+s=a
r,s≥0

∂
(r)
xi (f) · ∂(s)

xi for f ∈ OX(X). 2

1.9 Corollary. • If f : Y → X is an étale morphism of smooth S-schemes,
then the morphism DY/S → f∗DX/S from Proposition 1.7 is an isomor-
phism.

• If S is defined over Q, then ∂
(a)
xi = 1

a!∂
a/∂xai .

• If S is defined over Fp, then ∂
(a)
xi cannot be written as product of lower

order operators, but it nontheless behaves like 1
a!∂

a/∂xai , so we will use
this notation, without it making literal sense. (“Evaluate in characteristic
0, notice that the coefficient is divisible by a sufficiently high power of p,
cancel the p-power, and take the result mod p.”)

• If S is defined over Fp, we compute

(∂(a)
xi

)p =

p∏
r=1

(
ra

a

)
∂(ap)
xi

= 0

because
(
pa
a

)
= 0. 2

To prove the last statement, and for later reference, we state the following:

1.10 Lemma. Let p be a prime number.

(a) This is called Lucas’ Theorem: For a0, . . . , an, b0, . . . , bn integers in [0, p−
1], a := a0 + a1p+ . . .+ anp

n, b := b0 + b1p+ . . .+ bnp
n we have(

a

b

)
≡
∏
k

(
ak
bk

)
mod p.
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(b) If N,n,m, k ≥ 0 are integers such that pk > n, then(
N +mpk

n

)
≡
(
N

n

)
mod p.

Hence the term
(
b
a

)
∈ Z/pZ is well-defined for a, b ∈ Z/pkZ, and it

can be computed by identifying the set Z/pkZ with the set of integers{
0, 1, . . . , pk − 1

}
. Similarly,

(
b
a

)
is well-defined for b ∈ Zp and a ∈ Z/pkZ.

(c) If α ∈ Zp, then

α =

∞∑
n=0

(
α

pn

)
pn,

where a means the unique integer in [0, . . . , p− 1] congruent to a.

(d) If α, β ∈ Zp,d ≥ 0, then(
αβ

pd

)
≡
∑
a+b=d
a,b≥0

(
α

pa

)(
β

pb

)
mod p.

2

Proof. Everything follows from (a), which is easily proven by computing the
coefficient of xb of

a∑
k=0

(
a

k

)
xk = (1 + x)a ≡

n∏
k=0

(1 + xp
k

)ak mod p.

�

Just like in characteristic 0 one proves:

1.11 Proposition. Let S = Spec k for k a field. If X is smooth, separated,
finite type over k, then a DX/k-module which is coherent as OX-module, is a
locally free OX-module. 2

Proof. The characteristic 0 proof goes through mutatis mutandis: Without
loss of generality we may assume that k is algebraically closed. Then it suffices

to check that Ê := E ⊗OX,x
ÔX,x is free for all closed points x ∈ X, because

X is of finite type over k. After choosing local coordinates, we can write

ÔX,x ∼= kJx1, . . . , xnK. Let e1, . . . , er be a minimal system of generators of Ê
and assume that there is a relation

∑r
i=1 aiei = 0 with ai ∈ kJx1, . . . , xnK. Then

all the ai lie in the maximal ideal m := (x1, . . . , xn), by the minimality of the
system of generators. Thus there exists some N > 0, such that all the ai lie in
mN , but (after renumbering) a1 6∈ mN+1. Then a1 = λx`11 · . . . x`nn +mN+1, with
λ ∈ k×, and at least one `i 6= 0. We apply the operator

D` := ∂(`1)
x1
· . . . ∂(`n)

xn

to the given relation and obtain

0 = D`(a1)e1 +D`(a2)e2 + . . .+D`(an)en + mÊ.

But by construction D`(a1) ∈ kJx1, . . . , xnK×, which is a contradiction due to
Nakayama’s lemma. �

1.12 Remark. In fact Ê is even trivial as a D̂kJx1,...,xnK/k-module, but we do
not need this fact. 2
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1.3 Logarithmic differential operators

1.3.1 Definitions

From now on we set S := Spec k with k an algebraically closed field of charac-
teristic p > 0. Let X be a smooth, connected, finite type, separated k-scheme
and X ⊆ X an open dense subscheme, such that D := X \X is a strict normal
crossings divisor. Recall what this means:

1.13 Definition. D is a strict normal crossings divisor if X can be covered by
open sets U , such that there exist x1, . . . , xn ∈ Γ(U,OU ) such that Ω1

U/k is free

with basis dx1, . . . , dxn, and such that D ∩ U = (x1 · . . . · xr), with 1 ≤ r ≤ n.2

In this situation, we define:

1.14 Definition ([Gie75]). DX/k(logD) is defined to be the subsheaf of alge-
bras of DX/k, generated by all differential operators which locally fix all powers
of the ideal of D. 2

If X admits coordinates x1, . . . , xn, such that D = (x1 · . . . · xr), then
DX/k(logD) is generated by

δ(a)
xi

:= xai ∂
(a)
xi

for 1 ≤ i ≤ r, a ≥ 0 and ∂(a)
xi
, for i > r, a ≥ 0.

1.15 Remark.

• This sheaf of rings can be constructed more generally in a suitable category
of schemes with logarithmic structures. As in the classical case, one
constructs it from (an appropriate notion of) thickenings of the diagonal
in this category, see [Kin12, Ch. 2].

• In Proposition 1.11 we saw that an OX -coherent DX/k-module is locally

free. For OX -coherent DX/k(logD)-modules E, the situation is more
complicated: E is not necessarily torsion free, and even if it is torsion free,
then it is not necessarily locally free. We will see a partial remedy later
on, once we have the notion of exponents at our disposal. 2

1.3.2 Exponents

1.16 Proposition ([Gie75, Lemma 3.8]). Assume that X \ X is a smooth
divisor and that E is an OX-locally free module of finite rank carrying a
DX/k(logD)-structure. Then there exists a unique decomposition

E|D =
⊕
α∈Zp

Eα

such that locally, after a choice of coordinates x1, . . . , xn with D = (x1), if

e+ x1E ∈ Eα, then δ
(m)
x1

:= xm1 ∂
(m)
xi (e) =

(
α
m

)
e+ x1E for all m ≥ 0. 2

Proof. Gieseker gives a tricky coordinate free description of this decomposition,
but we only do the local construction, without proving that it glues.

First some preliminaries: For d ≥ 1, write Cd := Maps(Z/pdZ,Fp) for the
set of maps of sets Z/pd → Fp. This is an Fp-algebra of dimension pd+1. For
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a ∈ Z/pdZ define ha ∈ Cd by ha(b) =
(
b
a

)
. Recall that this is well-defined by

Lemma 1.10. Also define χa as the characteristic function of a. Then it is easy
to see that

{
ha|a ∈ Z/pdZ

}
and {χa|a ∈ Z/pdZ} are two Fp-bases for Cd, and

that the χa are commuting, orthogonal idempotents.
Now back to geometry: We may assume that X = SpecA with global

coordinates x1, . . . , xn and that D = (x1). Then X = SpecA[x−1
1 ]. We may also

assume that E is free on A, because E is torsion free by assumption. Then the

operators δ
(a)
x1 act linearly on E/x1E = E|D by definition. Thus we get a map

φd : Cd → EndA/(x1)(E/x1E)

by defining φd(ha) = δ
(a)
x1 . This is in fact a map of rings, since the δ

(a)
x1 (xr1) =(

r
a

)
xr1.
But then the elements φd(χa) (or a subset of the set of these elements) are

orthogonal, commuting idempotents in EndA/x1
(E/x1E), which means that we

get a decomposition

E/x1E =
⊕

a∈Z/pd
Ea

such that χa acts trivially on Eb with b 6= a and identically on Ea. Since
ha =

∑
b∈Z/pd

(
b
a

)
χb ∈ Cd, we see that ha acts as

(
b
a

)
on Ea.

Finally we have to let d vary. Let ρ : Cd → Cd+1 be the map coming from
the projection Z/pd+1Z � Z/pdZ. For a ∈ Z/pdZ we have

ρ(χa) =
∑

b∈Z/pd+1

b≡a mod pd

χb.

So the decomposition for Cd+1 refines the decomposition for Cd, and this process

has to stop since E/x1E is finitely generated. The δ
(n)
x1 -action can be computed

for any d with pd > n, and then by Lemma 1.10
(
α
n

)
=
(
α mod pd

n

)
. �

1.17 Definition. In the situation of Proposition 1.16, write

ExpD(E) = {α ∈ Zp| rankEα > 0} ,

and call it the set of exponents of E along D.
Now let X \X be an arbitrary strict normal crossings divisor with D =

∑
Di,

and Di smooth. If E is a torsion free OX -coherent DX/k(logD)-module, then

we define ExpDi
(E) to as ExpDi

(E|Ui) where Ui ⊆ X is an open set on which
E is locally free, and which intersects Dj if and only if i = j. One easily checks
that this definition does not depend on the choice of Ui. 2

We can now remedy the problem with the local freeness of DX/k(logD)-
modules:

1.18 Theorem (reformulation of [Gie75, Thm. 3.5]). If E is an OX-coherent
and OX-torsion free DX/k(logD)-module such that ExpDi

(E) maps injectively

to Zp/Z for all i, i.e. such that the exponents along Di do not differ by integers,
then E is locally free if and only if E is reflexive. 2
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The proof of the theorem is a rather complicated application of local cohomology,
which we will skip, since we will not use the result. In fact, for the our purposes,
we may always remove closed subsets of codimension ≥ 2 from X, so we can
always assume that E is actually locally free.

1.19 Corollary. Assume we have open immersions X ⊆ U and j : U ⊆ X,
such that U ∩ Di 6= ∅ for every i. If E is a locally free OU -module with
DU/k(logU ∩D)-action such that ExpDi∩U (E) ↪→ Zp/Z, then j∗E is a locally

free DX/k(logD)-module. 2

Proof. It suffices to note that j∗E is reflexive. �

1.3.3 Functoriality

We continue to denote by k an algebraically closed field of positive characteristic
p.

In this section we consider the following situation: Let X ⊆ X and Y ⊆ Y
be open immersions of smooth, finite type, separated, connected k-schemes,
such that DY := Y \ Y and DX := X \X are strict normal crossings divisors.
Furthermore let f̄ and f be morphisms, fitting in the diagram

Y
f̄ // X

Y
f //?�

OO

X,
?�

OO

i.e. such that f = f̄ |X .

1.20 Remark. The readers familiar with logarithmic structures ([Kat89]) notice
that in this situation f̄ induces a morphism of the log-schemes associated with
X ⊆ X and Y ⊆ Y . 2

We have the similar functoriality results as in Proposition 1.7:

1.21 Proposition.

(a)

f̄∗DX/k(logDX) := OY ⊗f̄−1OX
f̄−1DX/k(logDX)

is a (DY /k(logDY ), f̄−1DX/k(logDX))-bialgebra.

(b) There exists a canonical morphism

DY /k(logDY )
f̄]

−→ f̄∗DX/k(logDX)

fitting in the commutative diagram

DY /k(logDY )
� _

��

// f̄∗DX/k(logDX)
� _

��
DY /k

// f̄∗DX/k

where the lower horizontal morphism is the one from Proposition 1.7.
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Now assume that f̄ is finite, and f étale. Then f̄ is faithfully flat. Moreover,

(c) f̄ ] is an isomorphism if f̄ is tamely ramified with respect to the strict
normal crossings divisor DX .

(d) Let DY,i be a component of DY mapping to the component DX,i of DX .
If E is an OX-coherent, OX-torsion free DX/k(logDX)-module, then the

exponents of f̄∗E along DY,i are the exponents of E along DXi , multi-
plied by the ramification index of the extension of discrete valuation rings
associated with DY,i and DX,i. 2

Proof. We only give an explicit proof for the case that f̄ is finite and f étale.
Then all of this is essentially a question about finite extensions of discrete
valuation rings. Let A ↪→ B be such an extension, x ∈ A and y ∈ B uniformizers.

Then x = uye for some e ≥ 1 and u ∈ B×. We know that K(B)⊗DB/k(log y)
∼=−→

K(B)⊗A DA/k(log x) is an isomorphism, and we claim that

δ(pm)
y =

∑
d+c=m
c,d≥0

(
e

pc

)
δ(pd)
x + y(B ⊗A DA/k(log x)) (1)

Lets assume the truth of (1) for a minute. Then (a) follows directly, and
(d) is also easy to derive: Let E be an A-module with DA/k(log x)-action. If

a ∈ E ⊗A B is such that δ
(pm)
x (a) =

(
α
pm

)
a+ x(E ⊗B) for some α ∈ Zp, then

δ(pm)
y (a) =

∑
c+d=m
c,d≥0

(
e

pc

)(
α

pd

)
a+ y(E ⊗B) =

(
eα

pm

)
a+ y(E ⊗B)

which proves (d).
Lets now prove that (1) holds. We compute:

δ(pm)
y (xr) = δ(pm)

y (uryer)

=
∑

a+b=pm

a,b≥0

δ(a)
y (ur)δ(b)

y (yer)

=

(
er

pm

)
xr +

∑
a+b=pm

a>0,b≥0

δ(a)
y (ur)

(
er

b

)
yer

=

(
er

pm

)
xr + xr

∑
a+b=pm

a>0,b≥0

(
er

b

)
δ

(a)
y (ur)

ur

︸ ︷︷ ︸
∈(y)

(2)

This shows that δ
(pm)
y −

∑
c+d=m

(
e
pc

)
δ

(pd)
x ∈ y(B ⊗DA/k(log x) as claimed, and

to finish, we note that
(
er
pm

)
xr =

∑
c+d=m

(
e
pc

)
δ

(pd)
x (xr).

For (d) assume that A ↪→ B is tamely ramified. It suffices to show that

δ
(pm)
x is in the image of f̄ ] for every m ≥ 0. Consider the completions of A and
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B: Â ↪→ B̂. Replacing B̂ by an étale extension does not change differential
operators, so we may assume that u = ve in B̂. Indeed, by Hensel’s Lemma,
u has an e-th root in B̂, if and only if it has an e-th root modulo y, and since
e is prime to p by assumption, the extension of the residue fields obtained by
adjoining an e-th root is separable. Replacing y by vy, we may assume that
x = ye. Then (2) shows

δ(pm)
y =

∑
c+d=m
c,d≥0

(
e

pc

)
δ(pd)
x

In particular, δ
(1)
y = eδ

(1)
x , so δ

(1)
x is in the image of f̄ ]. We proceed inductively:

δ(pm)
y = eδ(pm)

x +
∑

c+d=m
c>1,d≥0

(
e

pc

)
δ(pd)
x

︸ ︷︷ ︸
im f̄]

which completes the proof. �

1.22 Corollary. Let f be étale and f̄ finite and tamely ramified with respect to
DX , and let E be an OY -coherent, OY -torsion free DY /k(logDY )-module. Then

f̄∗E is an OX-coherent, OX-torsion free DX/k(logDX)-module. 2

2 Lecture 2 - Stratified Bundles

2.1 Stratified bundles

2.1.1 Definitions and first properties

We continue to denote by k an algebraically closed field of positive characteristic
p. Again let X be smooth, finite type, connected and separated over k.

2.1 Definition. A stratified bundle is an OX -coherent DX/k-module. A mor-
phism of stratified bundles is a DX/k-linear morphism of OX -modules. We write
Strat(X) for the category of stratified bundles. A stratified bundle is called
trivial, if it is isomorphic to OnX in Strat(X). 2

2.2 Remark. We make two remarks about the name “stratified bundle”:

• Recall that by Proposition 1.11 a stratified bundle is in particular a locally
free OX -module, so the word “bundle” is justified.

• Grothendieck defines in [Gro68] the term “stratification” as an “infinites-
imal descent datum”. In our situation with X a smooth k-scheme, the
datum of a stratification on an OX -module is equivalent to the datum of a
DX/k-action on an OX -module. For details see [BO78, Ch. 2]. 2

2.3 Example. Let f : Y → X be a finite étale morphism, then the coherent

OX -module f∗OY carries a canonical DX/k-structure, because DY/k

∼=−→ f∗DX/k.
Even more, the covering is trivial if and only if the stratified bundle f∗OY is
trivial.

11



Indeed, if the covering is trivial, then clearly the associated DX/k-structure
is trivial. Conversely, assume that f∗OY ∼= OnX as DX/k-modules. We have to
show that this is actually an isomorphism of OX -algebras. Let e1, . . . , er be a
horizontal basis, i.e. a basis, such that ψ(ei) = 0 for all differential operators
ψ ∈ DX/k(U) with ψ(1) = 0 for U ⊆ X open. Let U ⊆ X be an open with
global coordinates x1, . . . , xn. By the construction of the DX/k-action on f∗OY ,
we have the equation

∂(m)
x`

(ei · ej) =
∑

a+b=m
a,b≥0

∂(a)
x`

(ei)∂
(b)
x`

(ej) = 0

over U , for any m, `, i, j. If eiej =
∑r
t=1 λtet, with λt ∈ OX(U), then

0 =

r∑
t=1

∂(m)
x`

(λt)et

for any m > 0. This shows that λt ∈ k for all t, so the étale OX -algebra f∗OY
comes via base-change from an étale k-algebra. But since k is algebraically
closed, any such algebra is trivial. This completes the proof. 2

We give some functorial properties of the category Strat(X):

2.4 Proposition. If f : Y → X is a morphism of smooth, separated, finite type
k-schemes, then:

(a) Pull-back of OX-modules along f induces a functor

f∗ : Strat(X)→ Strat(Y ).

(b) If f is finite and étale, then push-forward of OY -modules along f induces
a functor

f∗ : Strat(Y )→ Strat(X)

which is right adjoint to f∗.

(c) If E,F are stratified bundles, then E ⊗OX
F and HomOX

(E,F ) are strat-
ified bundles in a bifunctorial way. 2

Proof. The first two statements follow from Proposition 1.7 and Corollary 1.9.
The last statement is entirely analog to characteristic 0. �

In fact we know more:

2.5 Theorem ([SR72]). After the choice of a fiber functor Strat(X)→ Vectfk
(Vectfk = the category of finite dimension k-vector spaces), the category Strat(X)
is neutral tannakian over k. 2

We avoid Tannaka theory in these lectures, but we need the following defini-
tion:

2.6 Definition. Let E be a stratified bundle. Then we denote by 〈E〉⊗ the full
subcategory of Strat(X) with objects all subquotients of stratified bundles of
the form P (E,E∨), for P (x, y) ∈ N[x, y]. Here, if P (x, y) = mxayb, then

P (E,E∨) :=

m⊕
i=1

E ⊗ . . .⊗ E︸ ︷︷ ︸
a times

⊗E∨ ⊗ . . .⊗ E∨︸ ︷︷ ︸
b times

.

2

12



2.1.2 Restriction to an open subset

In this section we analyze how the category Strat(X) is related to the category
Strat(U) for U ⊆ X an open dense subset.

2.7 Proposition. Let U ⊆ X be an open dense subset and ρ : Strat(X) →
Strat(U) the restriction functor. Then the following statements are true:

(a) The restriction functor ρ : Strat(X)→ Strat(U) is fully faithful.

(b) If E ∈ Strat(X), then the restriction functor ρE : 〈E〉⊗ → 〈E|U 〉⊗ is an
equivalence.

(c) If codimX X \U ≥ 2, then the restriction functor ρ : Strat(X)→ Strat(U)
is an equivalence. 2

Proof. We sketch the proof and begin with (c), i.e. we assume that codimX(X \
U) ≥ 2. Then j∗E is an OX -coherent DX/k-module restricting to E, so ρ is

essentially surjective. Note that j∗E, it is locally free. If E is any other locally
free extension of E, then there is a short exact sequence

0→ E → j∗E → G→ O

of OX -modules, and G is supported on X \ U . By the assumption on the
codimension, HomOX

(G,OX) = Ext1
OX

(G,OX) = 0. Thus E ∼= (j∗E)∨∨ ∼= j∗E.
Finally, the DX/k-action on j∗E is uniquely determined by the DU/k-action
on E, so the bijection HomOX

(j∗E, j∗F ) = HomOU
(E,F ) induces a bijection

HomStrat(X)(j∗E, j∗F ) = HomStrat(U)(E,F ), so ρ is an equivalence.
Now for (a), by what we just proved, we may assume that X \ U is a

disjoint union of codimension 1 closed subsets, and then that X \ U is a smooth
divisor. We may also shrink X around the generic point of this divisor, to
assume that X = SpecA has global coordinates x1, . . . , xn such that X \ U =
(x1). Then U = SpecA[x−1

1 ]. It suffices to show that HomStrat(X)(OX , E) →
HomStrat(U)(OU , E|U ) is bijective for every E ∈ Strat(X). Shrinking X further
around η, we may assume that E is free with basis e1, . . . , er. Assume that
φ : OU → E|U is given by φ(1) =

∑
φiei, with φi ∈ A[x−1

1 ]. Then

0 = ∂(1)
x1

(φ(1)) =
∑

∂(1)
x1

(φi)ei + φi∂
(1)
x1

(ei).

This shows that ∂
(1)
x1 (φi) ∈ φi · A ⊆ A[x−1

1 ]. By induction we see that in

fact ∂
(m)
x1 φi ∈ φiA for all m ≥ 0. But this means that the pole order of φi

along x1 is the same as the pole order of ∂
(m)
xi for all m > 0, so φi ∈ A and

HomStrat(X)(OX , E)→ HomStrat(Y )(OU , E|U ) is surjective.
It is also injective, since if ψ1, ψ2 ∈ HomStrat(X)(OX , E), then (ψ1 − ψ2) ⊗

A[x−1
1 ] = 0 means that ψ1 = ψ2.
Finally, lets prove (b). By what we have seen, we only need to prove that ρ :

〈E〉⊗ → 〈E|U 〉⊗ is essentially surjective. First note that for all P (x, y) ∈ N[x, y],
P (E|U , E|∨U ) are in the essential image of the restriction functor ρ : 〈E〉⊗ →
〈E|U 〉⊗, so we just have to check that for F ∈ Strat(X), all subquotients of F |U
in Strat(U) lift to X. Let F ′ ⊆ F |U be a subobject. Then j∗F

′ ⊆ j∗F and
F ⊆ j∗F are sub-DX/k-modules, and j∗F

′∩F is a stratified bundle extending F ′.
Now if G is a quotient of F |U , and F ′ the kernel of F |U � G, then F/(j∗F

′ ∩F )
is a lift of G. �
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2.2 (X,X)-regular singular stratified bundles

Now we fix X ⊆ X two smooth, connected, separated, finite type k-schemes,
with X ⊆ X open dense and such that D := X \X is a strict normal crossings
divisor.

2.8 Definition. A stratified bundle E ∈ Strat(X) is called (X,X)-regular
singular if there exists an OX -coherent, OX -torsion free DX/k(logD)-module E

extending the DX/k-module E. We write Stratrs((X,X)) for the full subcategory

of Strat(X) with objects the (X,X)-regular singular stratified bundles. 2

2.9 Remark. The extension E is far from unique. 2

2.10 Proposition. For E ∈ Strat(X), the following are equivalent:

(a) E is (X,X)-regular singular.

(b) There is some open dense subset U ⊆ X containing all generic points of
X \X, such that E|X∩U is (X ∩ U,U)-regular singular. 2

Proof. “⇒” is clear. Conversely, Let E be an OU -coherent, torsion free
DU/k(logU \X)-module extending E|U∩X . Then we can glue it to E over X

to see that E is (X,X ∪ U)-regular singular, say with extension E
′
. Finally, if

j : U ↪→ X is the open immersion, then j∗E
′

is an OX -coherent, torsion free
DX/k(logD)-module, extending E, by the assumption on the codimension. �

2.2.1 Exponents

For an (X,X)-regular singular stratified bundle E there are many extensions to
an OX -coherent DX/k(logD)-module. In the first lecture, we defined the notion

of exponents of such an DX/k(logD)-module. Luckily, we understand very well
how these exponents for different extensions of E are related:

2.11 Proposition. Let E be an (X,X)-regular singular stratified bundle, and

E, E
′

two OX-coherent, OX-torsion free DX/k(logD)-extensions of E. If Di is

a smooth component of D, then the set of exponents of E and E
′

along Di has
the same image in Zp/Z. 2

Proof. We clearly may assume that D = X \X is a smooth divisor, say with
generic point η, and we may shrink X around η, so that we can assume that

X = SpecA is affine, E,E
′

are free, and that there are global coordinates

x1, . . . , xn, such that D = (x1). Write j : X ↪→ X. Then E,E
′ ⊆ j∗E

are DX/k(logD)-submodules, and E ∩ E′ is also an OX -coherent, torsion free

DX/k(logD)-module extending E. Thus, to prove the proposition, we may

assume that E ⊆ E′ is a DX/k(logD)-submodule.
We may now consider the situation over OX,η, which is a discrete valuation

ring. Hence E
′
η/Eη is a torsion-module so there exists a minimal N ≥ 0, such

14



that xN1 Eη ⊆ Eη. If e ∈ E′η is an element such that δ
(m)
x1 (e) =

(
α
m

)
e + x1E

′
η,

then

δ(m)
x1

(xN1 e) =
∑

a+b=m
a,b≥0

(
N

a

)(
α

e

)
xN1 e+ xN+1

1 E
′
η =

(
N + α

m

)
xN1 e+ x1Eη

Thus N +α is an exponent of E along D. Since E and E
′

have the same number
of exponents, the claim follows. �

2.12 Definition. The exponents of E ∈ Stratrs((X,X)) are the exponents of
an OX -coherent, torsion free DX/k(logD)-extension of E modulo Z. Hence the

exponents of E lie in Zp/Z. 2

2.2.2 Canonical extensions

2.13 Definition. Let τ be a (set theoretic) section of the projection Zp � Zp/Z
and E ∈ Stratrs((X,X)). A τ -extension of E is an OX-locally free finite rank
DX/k(logD)-module E such that the exponents of E lie in the image of τ . 2

While the extension to X of an (X,X)-regular singular stratified bundle is
not unique, there always exists a unique τ -extension. This is completely parallel
to the situation in characteristic 0.

2.14 Theorem ([Kin12, Sec. 3.2.2]). Let E be an (X,X)-regular singular
stratified bundle. Then a τ -extension exists and it is unique up to isomorphisms
restricting to the identity on E. 2

Proof. We sketch the construction of a τ -extension, and do not discuss the
unicity. The proof is an extension of methods of Gieseker. As usual we may
reduce to the following situation (using Corollary 1.19): X = SpecA with global
coordinates x1, . . . , xn, such that D = (x1) and X = SpecA[x−1

1 ]. Let E be
any OX -coherent, torsion free extension of E to a DX/k(logD)-module. By

shrinking X around the generic point of D, we may assume E is free. Write
Exp(E) = {α1, . . . , αr} ⊆ Zp for the set of exponents of E along D. Let
b := (b1, . . . , br) ∈ Zr be an r-tuple, such that bi = bj whenever αi = αj . From

E we construct an OX -coherent, torsion free DX/k(logD)-extension E
(b)

of E,

such that the set of exponents of E
(b)

is {α1 + b1, α2 + b2, . . . , αr + br}. This
would prove the theorem, we “move” the exponents of E into the image of the
section τ .

The construction is done in two steps:

(a) If a ∈ N, then E(aD) has exponents {α1 − a, . . . , αr − a}.

(b) For i ∈ [1, r] we construct Ei such that Exp(Ei) = {αj |j 6= i} ∪ {αi + 1}.
In fact, let i = 1. Then E1 is defined as the submodule of E generated by

x1E and the images of δ
(pj)
x1 −

(
α1

j

)
id. This is a DX/k(logD)-submodule

of E, because ∂
(m)
xj commutes with δ

(pj)
x1 for all m, i, n, j.
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Now assume that α1 = α2 = . . . = α`, and α1 6= αj for j > `. Let
s1, . . . , sr be a basis of E such that

δ(m)
x1

(si) =

(
αi
m

)
si + x1E, for all i,m

Then define s′i := x1si for i ∈ [1, `] and s′i = si for i > `. Then the s′i are a
basis of E1 which finishes the proof. �

2.15 Corollary. The essential image of the restriction functor

Strat(X)→ Stratrs((X,X))

is the full subcategory of (X,X)-regular singular bundles with exponents equal to
0 ∈ Zp/Z. 2

Proof. By the τ -extension theorem, we have to show that a locally free OX -
coherent, OX -torsion free DX/k(logD)-module with exponents 0 has a canonical

DX/k-action. This is enough by Proposition 2.7. For this we may assume that X

is affine with local coordinates x1, . . . , xn such that D = (x1) and E free. Then
having exponents 0 means that for every e ∈ E,

δ(1)
x1

(e) = 0 · e+ x1E.

Thus we can define ∂
(1)
x1 (e) :=

δ(1)x1
(e)

x1
. In particular, the DX/k(logD)-action

defines an honest flat connection with p-curvature 0 on E. Then, by Cartier’s
Theorem ([Kat70]), if (−)(1) denotes Frobenius twist, then E = F ∗X/kE1, where

E1 is the D
X

(1)
/k

-module obtained as the sheaf of sections s of E such that

∂
(1)
xi (s) = 0 for all i. Moreover, E1 also has exponents 0, and δ

(p)
x1 acts as δ

(1)

x
(1)
1

on E1. We reapply the argument, to give meaning to the action of ∂
(1)

x
(1)
1

= ∂
(p)
x1

on E. Then we apply Cartier’s Theorem again, etc. �

2.2.3 Proof of the Main Lemma with respect to (X,X)

We now have all the tools we need to prove the Main Lemma Theorem 1.2 with
respect to a fixed partial compactification X ⊆ X.

2.16 Theorem ((X,X)-Main Lemma). Let X ⊆ X be an open immersion
of smooth, finite type, separated, connected k-schemes, such that DX := X \X
is a strict normal crossings divisor. Let f : Y → X be a finite étale galois
covering. Then f is tamely ramified with respect to DX if and only if f∗OY is
(X,X)-regular singular. 2

Proof. By taking the normalization f̄ : Y → X of X in k(Y ), and by removing
codimension ≥ 2 subsets of X if necessary, we arrive at the following situation:
DY := Y \ Y has strict normal crossings, the diagram

Y
f̄ // X

Y
f //?�

OO

X
?�

OO
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commutes, and f̄ is finite. This implies that f̄ is flat since X and Y are both
smooth, and the dimensions of the fiber of f̄ is constantly 0. Then it follows
that f̄ is surjective, as it is open and closed, and X is connected.

The direction “⇒” is easier: Corollary 1.22 shows that f̄∗OY is an OX -
coherent, OX -torsion free DX/k(logDX)-module extending the stratified bundle

f∗OY , so f∗OY is (X,X)-regular singular.
The converse direction is more involved: We assume f∗OY to be (X,X)-

regular singular, and we construct a finite étale morphism h : Z → X, which is
tamely ramified with respect to (X,X), such that Y ×X Z → Z is the trivial
covering

∐
Z → Z. Then h dominates f , so f is tame with respect to (X,X).

Again we may assume without loss of generality that X \ X is a smooth
divisor with generic point η, and in the construction we may shrink X around η.
We proceed in five steps:

(a) Note that the exponents of f∗OY are torsion in Zp/Z, because by Proposi-
tion 1.21 pulling back an DX/k(logDX)-extension of f∗OY along f̄ multi-

plies the exponents by the ramification indices of f̄ along DX , and clearly
f∗f∗OY = Odeg f

Y is trivial.

(b) By Theorem 2.14 we find an OX -coherent, torsion free DX/k(logDX)-

extension E of f∗OY with exponents in Z∩Q; say a1
b , . . . ,

ar
b with (b, p) = 1.

(c) Shrinking X around η, if necessary, we may assume that X = SpecA,
with local coordinates x1, . . . , xn such that DX = (x1). Then define

Z1 := SpecA[x
1/b
1 ], and let h̄ : Z1 → X be the associated covering. Let

Z1 := h̄−1(X) and h = h̄|Z1
. Then h is étale and h̄ finite and tamely

ramified with respect to X \X. Then h∗f∗OY has exponents equal to 0
in Zp/Z, which means by Corollary 2.15 there exists a stratified bundle
E1 ∈ Strat(Z1) extending h∗f∗OY .

(d) Now we claim that there exists a finite étale covering ḡ : Z → Z1 such that
ḡ∗E1 is trivial. Indeed, this is true for E1|Z1

because it is true for f∗OY , and
Proposition 2.7 shows that the restriction functor

〈
E1

〉
⊗ → 〈h

∗f∗OY 〉⊗ is
an equivalence. This uses a tiny bit of Tannakian category. In other words:
The Picard-Vessiot torsor associated with E1 restricts to the Picard-Vessiot
torsor of E1|X = h∗f∗OY , which is finite.

(e) We can finish up: Write Z := ḡ−1(Z1), g = ḡ|Z and h = h1g. Then we
have the following diagram

Y ×X Z

hY

��

fZ // Z

g

��
h

{{

Z1

h1

��
Y

f // X

and h is tamely ramified with respect to X \ X by construction. But
also by construction h∗f∗OY is trivial, and since h∗f∗OY = fZ,∗h

∗
YOY ,

Example 2.3 shows that fZ is the trivial covering, so the proof is complete.�
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2.3 Regular singular stratified bundles in general

This section was not covered in the lectures.

2.17 Definition. (a) Let X be a smooth, connected, separated, finite type
k-scheme. A pair (X,X)) is called good partial compactification if

• X is smooth, separated, and of finite type over k,

• X ⊆ X is a dense open subset.

• X \X is a strict normal crossings divisor.

(b) A finite étale covering f : Y → X is called tame, if it is tamely ramified
with respect to every good partial compactifications (X,X) of X.

(c) A stratified bundle E ∈ Strat(X) is called regular singular, if and only if it
is (X,X)-regular singular for every good partial compactification (X,X)
of X. 2

2.18 Remark. • Note that X is not required to be proper. Hence the name
partial good compactification.

• The notion of tameness from the above definition was intensively studied
in [KS10] under the name “divisor tameness”. 2

Finally, Theorem 2.16 immediately implies the Main Lemma Theorem 1.2
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