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Introduction 

 SVMs are currently of great interest to theoretical researchers and 
applied scientists. 

 By means of the new technology of kernel methods, SVMs have been 
very successful in building highly nonlinear classifiers.  

 SVMs have also been successful in dealing with situations in which 
there are many more variables than observations, and complexly 
structured data. 

 Wide applications in machine learning, natural language processing, 
boinformatics. 
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Kernel methods: the basic ideas 
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Kernel methods: key idea 



Kernel PCA 

Using kernel function, linear operators of 

PCA is carried out in a reproducing kernel 

Hilbert space with a linear mapping.  



Regularization (1/4) 
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 Classification is one inverse problem 
(induction):  Data → Model parameters    

 Inverse problems are typically ill posed, as 
opposed to the well-posed problems typically 
when modeling physical situations where the 
model parameters or material properties are 
known (a unique solution exists that depends 
continuously on the data).     

 To solve these problems numerically one            
must introduce some additional information 
about the solution, such as an assumption  on 
the smoothness or a bound on the norm. 

4 8 12 16 20

In
te

n
si

ty
 (

ar
b

. 
u

n
it

)

2

deduction 

induction 

data 

model 



Regularization (2/4) 
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 Input of the classification problem: m pairs of training data (xi, yi) generated 
from some distribution P(x,y), xi  X, yi  C = {C1, C2, …, Ck} (training data). 

 Task: Predict y given x at a new location, i.e., to find a function f (model)     
to do the task, f: X  C.  

 Training error (empirical risk): Average of a loss function on the training 
data, for example 

 

 

 Target: (risk minimization) to find a function f that minimizes the test error 
(expected risk) 
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Regularization (3/4) 

 Problem: Small Remp[f] does not always ensure small R[f] (overfitting), i.e.,     
we may get small 

 

 Fact 1: Statistical learning theory says the difference is small if F is small. 

 Fact 2: Practical work says the difference is small if f is smooth. 

Remp[f1] = 0 Remp[f2] = 3/40 Remp[f2] = 5/40 

}][][{supProb  fRfRempf F
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Regularization (4/4) 

 Regularization is restriction of a class F of possible minimizers (with fF) 
of the empirical risk functional Remp[f] such that F becomes a compact set. 

 Key idea: Add a regularization (stabilization) term W[f] such that small W[f] 
corresponds to smooth f (or otherwise simple f) and minimize 

  

 Rreg[f]: regularized risk functionals;  

 Remp[f]: empirical risk;                      

 W[f]: regularization term; and  

 l: regularization parameter that specifies the trade-off between 
minimization of Remp[f] and the smoothness or simplicity enforced by 
small W[f] (i.e., complexity penalty). 

 We need someway to measure if the set FC = {f | W[f] < C} is a “small” class 

of functions. 

][][:][ ffRfR empreg W l
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Linear support vector machines 
The linearly separable case 
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 Learning set of data L = {(𝒙𝑖 ,𝑦𝑖): i = 1, 2, …, n}, 𝒙𝑖 ∈ ℜ
𝑟 , 𝑦𝑖 ∈ −1,+1 . 

 The binary classification problem is to use L to construct a function 

𝑓:ℜ𝑟  ℜ so that C(x) = sign(f(x)) is a classifier. 

 Function  f  classifies each x in a test set T into one of two classes, Π+ or 

Π−, depending upon whether C(x) is +1 (if f(x) ≥ 0) or −1 (if f(x) < 0), 
respectively. The goal is to have f assign all positive points in T (i.e., 
those with y = +1) to Π+ and all negative points in T (y = −1) to Π−. 

 The simplest situation: positive (𝑦𝑖  = +1) and negative (𝑦𝑖  = −1) data 
points from the learning set L can be separated by a hyperplane, 

                                             *𝒙: 𝑓 𝒙 = 𝛽0 + 𝒙𝜏𝜷 = 0+                                       (1) 

β is the weight vector with Euclidean norm 𝜷 , and β0 is the bias. 

 

 



Linear support vector machines 
The linearly separable case 
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 If no error, the hyperplane is called a separating hyperplane. 

 Let d− and d+ be the shortest distance from the separating hyperplane 
to the nearest negative and positive data points. Then, the margin of the 
separating hyperplane is defined as d = d− + d+.  

 We look for maximal margin classifier (optimal separating hyperplane). 

 If the learning data are linearly separable, ∃ 𝛽0 and β such that 

          𝛽0 + 𝒙𝒊
𝝉𝜷 ≥ +1, 𝑖𝑓 𝑦𝑖= + 1      (2)           𝛽0 + 𝒙𝒊

𝝉𝜷  ≤ −1, 𝑖𝑓 𝑦𝑖=  1      (3) 

 If there are data vectors in L such that equality holds in (1), then they lie 

on the hyperplane H+1: (β0 − 1) + 𝒙𝜏𝜷 = 0; similarly, for hyperplane H−1: 
(β0 + 1) + 𝒙𝜏𝜷 = 0. Points in L that lie on either one of the hyperplanes 

H−1 or H+1, are said to be support vectors. 



Linear support vector machines 
The linearly separable case 

 If x−1 lies on H−1, and if x+1 lies on 
H+1, then 

     𝛽0 + 𝒙−𝟏
𝝉 𝜷 = −1 and  𝛽0 + 𝒙+𝟏

𝝉 𝜷 = +𝟏 
  

the difference between them is 
𝒙+1
𝜏 𝜷 − 𝒙−1

𝜏 𝜷 =2 and their sum is  

𝛽0= - 
1

2
(𝒙+1
𝜏 𝜷 − 𝒙−1

𝜏 𝜷 ). The 

perpendicular distances of the 
hyperplane 𝛽0 + 𝒙𝜏𝜷 = 0 to x-1 and 
x+1 are 

𝑑−=
|𝛽0 + 𝒙−𝟏

𝝉 𝜷|

𝜷
=
1

𝜷
 

𝑑+=
|𝛽0 + 𝒙+𝟏

𝝉 𝜷|

𝜷
=
1

𝜷
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Linear support vector machines 
The linearly separable case 
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 Combine (2) and (3) into a single set of inequalities 

𝑦𝑖(𝛽0 + 𝒙𝑖
𝜏𝜷) ≥ +1, i = 1, 2, …, n. 

 The quantity 𝑦𝑖(𝛽0 + 𝒙𝑖
𝜏𝜷)   is called the margin of (𝒙𝑖 , yi) with respect to 

the  hyperplane (1), i = 1, …, n and 𝒙𝒊 is the support vectors wrt to (1) if 
𝑦𝑖(𝛽0 + 𝒙𝑖

𝜏𝜷) =1.  

 Problem: Find the hyperplane that miximizes the margin 
2

𝜷
. 

 Equivalently, find b0 and b  to  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒     
1

2
𝜷 2 

                                 subject to     𝑦𝑖(𝛽0 + 𝒙𝑖
𝜏𝜷) ≥ 1, 𝑖 = 1, 2, … , 𝑛                       (4) 

 Solve this primal optimization problem using Lagrangian multipliers. 



Linear support vector machines 
The linearly separable case 
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 Multiply the constraints, 𝑦𝑖(𝛽0 + 𝒙𝑖
𝜏𝜷) – 1 ≥ 0, by positive Lagrangian 

multipliers and subtract each product from the objective function … 

 Dual optimization problem: Find a  to, 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒   𝐹𝐷(𝜶) = 𝟏𝑛
𝜏𝜶  

1

2
𝜶𝜏H𝜶 

                                               subject to    𝜶 ≥ 0, 𝜶𝜏y = 0                                           (5) 

 where 𝒚 = (𝑦1, 𝑦2, …, 𝑦𝑛)𝜏, 𝐇 = (Hij) = 𝑦𝑖𝑦𝑗(𝒙𝑖
𝜏𝒙𝑗). 

 If  𝜶∗solves this problem, then 𝜷∗= 𝛼𝑖
∗𝑦𝑖𝒙𝒊

𝑛
𝑖=1  𝜷∗= 𝛼𝑖

∗𝑦𝑖𝑖∈𝑠𝑣 𝒙𝑖  

𝛽0
∗=
1

|𝑠𝑣|
 

1−𝑦𝑖𝒙𝑖
𝜏𝜷∗

𝑦𝑖
𝑖∈𝑠𝑣  

 Optimal hyperplane     𝑓∗(x) =𝛽0
∗ + 𝒙𝜏𝜷∗ = 𝛽0

∗ +  𝛼𝑖
∗

𝑖∈𝑠𝑣 𝑦𝑖(𝒙
𝜏𝒙𝑖) 



Linear support vector machines 
The linearly nonseparable case 

 The nonseparable case occurs if 
either the two classes are 
separable, but not linearly so, or 
that no clear separability exists 
between the two classes, linearly 
or nonlinearly (caused by, for 
example, noise). 

 Create a more flexible formulation 
of the problem, which leads to a 
soft-margin solution. We introduce 
a nonnegative slack variable, ξi, for 
each observation (xi, yi) in ℒ, i = 1, 
2, . . . , n. Let 

ξ = (ξ1, · · · , ξn)τ ≥ 0.  
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Linear support vector machines 
The linearly nonseparable case 

 The constraints in (5) become 𝑦𝑖(𝛽0 + 𝒙𝑖
𝜏𝜷) + 𝜉𝑖 ≥ 1 for i = 1, 2, …, n. 

 Find the optimal hyperplane that controls both the margin, 2/ 𝜷 , and 
some computationally simple function of the slack variables, such as 
𝑔𝜎(𝜉)= 𝜉𝑖

𝜎𝑛
𝑖=1 . Consider “1-norm” (𝜎 = 1) and “2-norm” (𝜎 = 2). 

 The 1-norm soft-margin optimization problem is to find 𝛽0, 𝜷 and 𝝃 to 

minimize    
1

2
𝛽 2 + C 𝜉𝑖𝑛

𝑖=1  

                 subject to    𝜉𝑖 ≥ 0, 𝑦𝑖(𝛽0 + 𝒙𝑖
𝜏𝜷) ≥ 1 − 𝜉𝑖 , 𝑖 = 1, 2, … , 𝑛.            (6) 

where C > 0 is a regularization parameter. C takes the form of a tuning 
constant that controls the size of the slack variables and balances the 
two terms in the minimizing function. 
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Linear support vector machines 
The linearly nonseparable case 

 We can write the dual maximization problem in matrix notation as 
follows. Find α to 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐹𝐷(𝜶) = 𝟏𝑛
𝜏𝜶  

1

2
𝜶𝜏H𝜶 

                                      subject to    𝜶𝜏y = 0,  𝟎 ≤ 𝜶 ≤ 𝐶𝟏𝑛                               (7) 

 The difference between this optimization problem and (4), is that here the 
coefficients αi, i = 1.. n, are each bounded above by C; this upper bound 
restricts the influence of each observation in determining the solution. 

 This constraint is referred to as a box constraint because α is constrained 
by the box of side C in the positive orthant. The feasible region for the 
solution to this problem is the intersection of  hyperplane 𝜶𝜏𝒚 = 0 with 
the box constraint 0 ≤ 𝜶 ≤ C1n. If C = ∞  hard-margin separable case. 

 If 𝜶∗solves (7) then   𝜷∗ =  𝛼𝑖
∗

𝑖∈𝑠𝑣 𝑦𝑖𝒙𝑖   yields the optimal weight vector. 
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Nonlinear support vector machines 

 What if a linear classifier is not appropriate for the data set?  

 Can we extend the idea of linear SVM to the nonlinear case? 

 The key to constructing a nonlinear SVM is to observe that the 
observations in ℒ only enter the dual optimization problem through 

the inner products 𝒙𝑖, 𝒙𝑗  = 𝒙𝑖
𝜏𝒙𝑗 , i, j = 1, 2, …, n. 

𝐹𝐷(𝜶) =  𝛼𝑖
𝑛
𝑖=1  

1

2
  𝛼𝑖

𝑛
𝑗=1

𝑛
𝑖=1 𝛼𝑗𝑦𝑖𝑦𝑗(𝒙𝑖

𝜏𝒙𝑗) 
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Nonlinear support vector machines 
Nonlinear transformations 

 
 Suppose we transform each observation, 𝑥𝑖  ∈ ℜ

𝑟, inℒusing some 
nonlinear mapping 𝚽:ℜ𝑟 → ℋ,ℋis an Nℋ-dimensional feature space. 

 The nonlinear map Φ is generally called the feature map and the space ℋ 
is called the feature space.  

 The space ℋ may be very high-dimensional, possibly even infinite 
dimensional. We will generally assume that ℋ is a Hilbert space of real-
valued functions on  with inner product . , .  and norm . . 

 Let 𝚽(𝑥𝑖) = (𝜙1(𝒙𝑖), …, 𝜙𝑁
ℋ

(𝒙𝒊))𝜏 ∈ ℋ, i =1..n. The transformed sample is 
{Φ(xi), yi}, where yi ∈ {−1, +1} identifies the two classes.  

 If substitute Φ(xi) for xi in the development of the linear SVM, then data 
would only enter the optimization problem by way of the inner products 
Φ(xi),Φ(xj)  = Φ(𝒙𝑖)

τΦ(𝒙𝑗). The difficulty in using nonlinear transform is 

computing such inner products in high-dimensional space ℋ. 
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Nonlinear support vector machines 
The “kernel trick” 

 The idea behind nonlinear SVM is to find an optimal separating 
hyperplane in high-dimensional feature space ℋ just as we did for the 
linear SVM in input space. 

 The “kernel trick” was first applied to SVMs by Cortes & Vapnik (1995). 

 Kernel trick: Wonderful idea that is widely used in algorithms for 
computing inner products Φ(xi),Φ(xj)  in feature space ℋ.  

 The trick: instead of computing the inner products in ℋ, which would be 
computationally expensive due to its high dimensionality, we compute 

them using a nonlinear kernel function, 𝐾(𝒙i, 𝒙j) = Φ(𝒙i), Φ(𝒙j)  in 

input space, which helps speed up the computations. 

 Then, we just compute a linear SVM, but where the computations are 
carried out in some other space. 
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Nonlinear support vector machines 
Kernels and their properties 

 A kernel K is a function K : ℜ𝑟 × ℜ𝑟 →  ℜ such that ∀ 𝒙, 𝒚 ∈ ℜ𝑟  

K(𝒙, 𝒚) = Φ(x), Φ(𝒚)   

 The kernel function is designed to compute inner-products in ℋ by 
using only the original input data  substitute Φ(x), Φ(y)  by K(x, y) 
whenever. Advantage: given K, no need to know the explicit form of Φ. 

 K should be symmetric: K(x, y) = K(y, x), and ,𝐾 𝒙, 𝒚 -2≤ 𝐾 𝒙, 𝒙 𝐾 𝒚, 𝒚 . 

 K is a reproducing kernel if    ∀ f ∈ ℋ: 𝑓 . , 𝐾(𝒙, . ) = f(x)                     (8), 
K is called the representer of evaluation. Particularly, if 𝑓 . = 𝐾(. , 𝒙) 
then 𝐾 𝒙, . , K(y, . ) = 𝐾(𝒙, 𝒚). 

 Let 𝒙1,…, 𝒙𝑛 be n points in ℜ𝑟 . The (n x n)-matrix   𝐊 = (𝐾𝑖𝑗) = (K(𝒙𝑖 , 𝒙𝑗)) 

is called Gram (or kernel) matrix wrt 𝒙1,…, 𝒙𝑛. 
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Nonlinear support vector machines 
Kernels and their properties 

 If for any n-vector u, we have 𝐮𝜏𝐊𝐮 ≥ 0, K is said to be nonnegative-
definite with nonnegative eigenvalues and K is nonnegative-definite 
kernel (or Mercer kernel). 

 If K is a Mercer kernel on ℜ𝑟  × ℜ𝑟 , we can construct a unique Hilbert 
space ℋK, say, of real-valued functions for which K is its reproducing 
kernel. We call ℋK a (real) reproducing kernel Hilbert space (rkhs). We 
write the inner-product and norm of ℋK by . , . ℋK

 and . ℋK
. 

 Ex: inhomogeneous polynomial kernel of degree d (c, d: parameters) 

𝐾 𝒙, 𝒚 = ( 𝒙, 𝒚  + c)d ,  𝒙, 𝒚 ∈  ℜ𝑟  

 If r = 2, d = 2, 𝒙 = (𝑥1, 𝑥2)
𝜏, 𝒚 = (𝑦1, 𝑦2)

𝜏, 

𝐾 𝒙, 𝒚 =  𝒙, 𝒚 + 𝑐 2 = (𝑥1𝑦1 + 𝑥2𝑦2 + 𝑐)
2 = Φ 𝒙 ,Φ(𝒚)  

Φ 𝒙 = (𝑥1
2, 𝑥2
2,  2𝑥1𝑥2, 2𝑐𝑥1𝑥2, 2𝑐𝑥1, 2𝑐𝑥2, c) 
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Nonlinear support vector machines 
Examples of kernels 

 Here ℋ = ℜ6, monomials have degree ≤ 2. In general, dim(ℋ) = 
𝑟 + 𝑑
𝑑

 

consisting of monomials with degree ≤ 𝑑.   
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 For 16x16 pixels, r = 
256. If d =2, dim(ℋ) = 
33,670; d = 4, dim(ℋ)  = 
186,043,585. 

Examples of translation-invariant     
(stationary) kernels having the 
general form                                  
𝐾 𝒙, 𝒚 = 𝑘 𝒙 − 𝒚 , 𝑘: ℜ𝑟 →  ℜ  

sigmoid kernel is not strictly a kernel 
but very popular in certain situations 

If no information, the best approach is to try either a Gaussian RBF, which has only a 

single parameter (σ) to be determined, or a polynomial kernel of low degree (d = 1 or 2).  



Nonlinear support vector machines 
Example: String kernels for text (Lodhi et al., 2002) 

 A “string”  𝑠 = 𝑠1𝑠2…𝑠 𝑠  is a finite sequence of elements of a finite 

alphabet 𝒜. 

 We call u a subsequence of s (written 𝑢 =  𝑠(𝒊)) if there are indices 

𝒊 = 𝑖1, 𝑖2, … , 𝑖 𝑢 , 1 ≤ i1 < · · · < i|u| ≤ |s|, such that uj = sij , j = 1, 2, . . . , |u|. 

 If the indices i are contiguous, we say that u is a substring of s. The 
length of u in s is 𝑙 𝑖 =  𝑖|𝑢| − 𝑖1 + 1. 

 Let s =“cat” (s1 = c, s2 = a, s3 = t, |s| = 3). Consider all possible 2-symbol 
sequences, “ca,” “ct,” and “at,” derived from s.  

 u = ca has u1 = c = s1, u2 = a = s2, u = s(i), i = (i1, i2) = (1, 2), (i) = 2.  

 u = ct has u1 = c = s1, u2 = t = s3, i = (i1, i2) = (1, 3), and (i) = 3.  

 u = at has u1 = a = s2, u2 = t = s3, i = (2, 3), and (i) = 2. 

26 



Nonlinear support vector machines 
Examples: String kernels for text 

 If 𝐷 =  𝒜𝑚 = *all strings of length at most m from A}, then, the feature 
space for a string kernel is ℜ𝐷 .  

 Using 𝜆 ∈  (0, 1) (drop-off rate or decay factor) to weight the interior 
gaps in the subsequences, we define the feature map Φ𝑢:  ℜ

𝐷⟶ℜ  

Φ𝑢 𝑠 =  𝜆𝑙(𝐢)𝐢:𝑢=𝑠(𝐢) , 𝑢 ∈ 𝒜𝑚 

 Φ𝑢 𝑠  is computed as follows: identify all subsequences (indexed by i) 
of s that are identical to u; for each such subsequence, raise λ to the 
power (i); and then sum the results over all subsequences. 

 In our example above, Φca(cat) = λ2, Φct(cat) = λ3, and Φat(cat) = λ2. 

 Two documents are considered to be “similar” if they have many 
subsequences in common: the more subsequences they have in 
common, the more similar they are deemed to be. 

27 



Nonlinear support vector machines 
Examples: String kernels for text 

 The kernel associated with the feature maps corresponding to s and t is 
the sum of inner products for all common substrings of length m 

𝐾𝑚 𝑠, 𝑡 =  Φ𝑢(𝑠), Φ𝑢(𝑡)

𝑢∈𝒟

=    𝜆𝑙 𝑖 +𝑙(𝑗)

𝐣:𝑢=𝑠(𝐣)𝐢:𝑢=𝑠(𝐢)𝑢∈𝒟

 

    and  it is called a string kernel (or a gap-weighted subsequences kernel). 

 Let t = “car” (t1 = c, t2 = a, t3 = r, |t| = 3). The strings “cat” and “car” are 
both substrings of the string “cart.” The three 2-symbol substrings of t 
are “ca,” “cr,” and “ar.” We have that Φca(car) = λ2,Φcr(car) = λ3, Φar(car) 
= λ2, and thus K2(cat, car) = Φca(cat),Φca(car) = λ4. 

 We normalize the kernel by removing any bias by document length 

𝐾𝑚
∗ 𝑠, 𝑡 =

𝐾𝑚(𝑠, 𝑡)

𝐾𝑚 𝑠, 𝑠 𝐾𝑚(𝑡, 𝑡)
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Nonlinear support vector machines 
Optimizing in feature space 

 Let K be a kernel. Suppose obs. in ℒ are linearly separable in the feature 
space corr. to K. The dual opt. problem is to find α and β0 to 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐹𝐷(𝜶) = 𝟏𝑛
𝜏𝜶  

1

2
𝜶𝜏H𝜶 

                                               subject to 𝜶 ≥ 0, 𝜶𝜏y = 0                                            (9) 

 where 𝒚 = (𝑦1, 𝑦1, …, 𝑦1)
𝜏, 𝐇 = (Hij) = 𝑦𝑖𝑦𝑗𝐾 𝑥𝑖 , 𝑥𝑗 = 𝑦𝑖𝑦𝑗𝐾𝑖𝑗 . 

 Because K is a kernel, the K = (Kij) and so H are nonnegative-definite  
the functional 𝐹𝐷(𝜶) is convex  unique solution. If α and  β0 solve this 
problem, the SVM decision rule is (𝑓∗(x) is optimal in feature space) 

sign{𝑓∗(x)} = sign{𝛽0
∗+ 𝛼𝑖

∗
𝑖∈𝑠𝑣 𝑦𝑖K(𝒙, 𝒙𝑖)} 

 In the nonseparable case, the dual problem of the 1-norm soft-margin 
opt. problem is to find α to 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐹𝐷(𝜶) = 𝟏𝑛
𝜏𝜶  

1

2
𝜶𝜏H𝜶 

 subject to    𝜶𝜏y = 0,  𝟎 ≤ 𝜶 ≤ 𝐶𝟏𝑛 
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Nonlinear support vector Machines 
Example: E-mail or spam? 

 4,601 messages: 1,813 spam e-mails and 2,788 non-spam e-mails. There 
are 57 variables (attributes). 

 Apply nonlinear SVM (R package libsvm) using a Gaussian RBF kernel to 
the 4,601 messages. The solution depends on the cost C of violating the 
constraints and σ2 of the Gaussian RBF kernel. After applying a trial-and-
error method, we used the following grid of values for C and γ = 1/σ2: 

 C = 10, 80, 100, 200, 500, 1,000, 

 γ = 0.00001(0.00001)0.0001(0.0001)0.002(0.001)0.01(0.01)0.04. 

 Plot the 10-fold CV misclassification rate against γ listed above, where 
each curve (connected set of points) represents a different value of C.  

 For each C, we see that the CV/10 misclassification curves have similar 
shapes: a minimum value for γ very close to zero, and for values of γ 
away from zero, the curve trends upwards. 
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Nonlinear support vector Machines 
Example: E-mail or spam? 

 We find a minimum CV/10 misclassification rate of 8.06% at (C, γ) = 
(500, 0.0002) and (1,000, 0.0002). The level of the misclassification rate 
tends to decrease as C increases and γ decreases together. 
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Initial grid search for the minimum 10-fold CV misclassification 

rate using 0.00001 ≤ γ ≤ 0.04. The curves correspond to C = 10 

(dark blue), 80 (brown), 100 (green), 200 (orange), 500 (light 

blue), and 1,000 (red). Within this intial grid search, the minimum 

CV/10 misclassification rate is 8.06%, which occurs at (C, γ) = 

(500, 0.0002) and (1,000, 0.0002). 

 misclassification rate of 
6.91% at C = 11, 000 and γ = 
0.00001, at corresponding 
to classification rate: 

 0.9043, 0.9478, 0.9304, 
0.9261, 0.9109, 

 0.9413, 0.9326, 0.9500. 
0.9326, 0.9328.  

    is better than LDA and QDA. 

 931 support vectors (482 e-
mails, 449 spam).  



Nonlinear Support Vector Machines 
SVM as a Regularization Method 

 Regularization involves introducing additional information in order to 
solve an ill-posed problem or to prevent overfitting. This information is 
usually of the form of a penalty for complexity. 

 Let f ∈ ℋK, the reproducing kernel Hilbert space associated with the 
kernel K, with 𝑓 ℋ𝐾

2  the squared-norm of f in ℋK. 

 Consider the classification error, yi − f(𝒙𝑖), where yi ∈ {−1, +1}. Then 

𝑦𝑖 − 𝑓(𝒙𝑖)  = 𝑦𝑖(1 − 𝑦𝑖𝑓 𝒙𝑖 )  = 1 − 𝑦𝑖𝑓(𝒙𝑖)  = (1− 𝑦𝑖𝑓(𝒙𝑖))+ 

i =1 .. n, (x)+= max  (x, 0). The quantity                                                                                 

(1− 𝑦𝑖𝑓(𝒙𝑖))+, which could be zero if                                                              
all 𝒙𝑖  are correctly classified, called                                                                   
hinge loss function. The hinge loss plays                                                            
a vital role in SVM methodology. 
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Nonlinear Support Vector Machines 
SVM as a Regularization Method 

 Want to find f ∈ ℋK to minimize a penalized version of the hinge loss. 
Specifically, we wish to find f ∈ ℋK to 

                           𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒   
1

2
 (1 − 𝑦𝑖
𝑛
𝑖=1 f(𝒙𝑖))+   +  𝜆 𝑓 ℋ𝐾

2                         (10)                   

 The tuning parameter λ > 0 balances the trade-off between estimating f 
(first term: measures the distance of the data from separability) and 
how well f can be approximated (second term: penalizes overfitting).  

 After the minimizing f has been found, the SVM classifier is                 
C(x) = sign{f(x)}, x ∈ ℜ𝑟 . 

 (10) is nondifferentiable, but every f ∈ ℋ can be written as sum 

𝑓 . =  𝑓∥(.) + 𝑓⊥(.) = 𝛼𝑖
𝑛
𝑖=1 𝐾(𝒙𝑖 , .) +𝑓⊥(.) 

 where 𝑓∥∈ ℋK  is the projection of f onto the subspace ℋK of ℋ and 𝑓⊥ 
is in the subspace perpendicular to ℋK ; that is, 𝑓⊥(.), 𝐾(𝒙𝑖 , . ) ℋ= 0. 
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Nonlinear support vector machines 
SVM as a regularization method 

 We write 𝑓 𝒙𝑖  via the reproducing property 

𝑓(𝒙𝑖) = 𝑓 . , 𝐾(𝒙𝑖 , . )  = 𝑓∥ . , 𝐾(𝒙𝑖 , . )   + 𝑓⊥ . , 𝐾(𝒙𝑖 , . )  

 We have                              𝑓 𝒙 =   𝛼𝑖
𝑛
𝑖=1 𝐾(𝒙𝑖 , 𝒙)                                     (11)  

      is independent of 𝑓⊥ as the second term is zero. We have 

                                              𝑓 ℋ𝐾
2  ≥   𝛼𝑖𝐾(𝒙𝑖𝑖 , . ) ℋ𝐾

2                                  (12) 

This important result is known as the representer, says that the 
minimizing f can be written as a linear combination of a reproducing 
kernel evaluated at each of the n data points (Kimeldorf and Wahba, 
1971). Problem (10) is equivalent  to find 𝛽0 and 𝜷 to 

                𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  
1

𝑛
 1 − 𝑦𝑖(𝛽0 +𝜱(𝒙𝑖)

𝜏𝛽 + + 𝜆 𝜷
2𝑛

𝑖=1               (13) 
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Linear algebra, probability/statistics, functional analysis, optimization 

 Mercer theorem: Any positive definite function can be written as an inner 

product in some feature space. 

 Kernel trick: Using kernel matrix instead of inner product in the feature space. 

 Representer theorem (Wahba): 
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Kernel methods: math background 

 k(xi,xj) = f(xi)
.f(xj) 

Kernel matrix Knxn 
kernel function k: XxX  R kernel-based algorithm on K 

(computation on kernel matrix) 
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Multiclass support vector machines 
Multiclass SVM as a series of binary problems 

 
 One-versus-rest: 

Divide the K-class 

problem into K 

binary classification 

subproblems of the 

type “kth class” vs. 

“not kth class,”         

k = 1, 2, . . .,K. 

 One-versus-one: 

Divide the K-class 

problem into 

comparisons of all 

pairs of classes.  
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Multiclass support vector machines 
A true multiclass SVM 

 
 To construct a true multiclass SVM classifier, we need to consider all K 

classes, Π1,Π2, . . . ,ΠK, simultaneously, and the classifier has to reduce to 
the binary SVM classifier if K = 2.  

 One construction due to Lee, Lin, and Wahba (2004). 

 Provide a unifying framework to multicategory SVM when there are 
either equal or unequal misclassification costs. 
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Other issues 
Support vector regression 

 The SVM was designed for classification. Can we extend (or generalize) 
the idea to regression?  

 How would the main concepts used in SVM — convex optimization, 
optimal separating hyperplane, support vectors, margin, sparseness of 
the solution, slack variables, and the use of kernels — translate to the 
regression situation?  

 It turns out that all of these concepts find their analogues in regression 
analysis and they add a different view to the topic than the views we 
saw previously. 

 𝜀-insensitive loss functions 

 Optimization for linear -insensitive loss 
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Other issues  
Optimization algorithms for SVMs 

 Quadratic programming (QP) optimizers can solve problems having 
about a thousand points, general-purpose linear programming (LP) 
optimizers can deal with hundreds of thousands of points.  With large 
data sets, however, a more sophisticated approach is required. 

 Gradient ascent: Start with an estimate of the α-coefficient then 
successively update α one α-coefficient by steepest ascent algorithm. 

 Chunking: Start with a small subset; train an SVM on it, keep only 
support vectors; apply the resulting classifier to the remaining data. 

 Decomposition: Similar to chunking, except that at each iteration, the 
size of the subset is always the same. 

 Sequential minimal optimization (SMO): An extreme version of the 
decomposition algorithm. 
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Other issues 
Software packages 
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Some of our work on SVM and kernel methods 
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Some challenges in kernel methods 
Scalability and choice of kernels etc. 

 
 The choice of kernel function. In general, there is no way of choosing or 

constructing a kernel that is optimal for a given problem.   

 The complexity of kernel algorithms. Kernel methods access the 
feature space via the input samples and need to store all the relevant 
input samples.                                                                                                                  

Examples: Store all support vectors or size of the kernel matrices 
grows quadratically with sample size  scalability of kernel methods. 

 Incorporating priors knowledge and invariances in to kernel functions 
are some of the challenges in kernel methods. 

 L1 regularization may allow some coefficients to be zore  hot topic 

 Multiple kernel learning (MKL) is initially (2004, Lanckriet) of high 
computational cost  Many subsequent work, still ongoing, has not 
been a practical tool yet.  

John Langford, Yahoo Research 


