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Graphical models 
What causes grass wet? 

 Mr. Holmes leaves his house 

 The grass is wet in front of his 
house. 

 Two reasons are possible: 
either it rained or the sprinkler 
of Holmes has been on during 
the night. 

 Then, Mr. Holmes looks at the sky 
and finds it is cloudy 

 Since when it is cloudy, usually 
the sprinkler is off and it is 
more possible it rained. 

 He concludes it is more likely 
that rain causes grass wet. 

 

Cloudy 

Sprinkler Rain 

Wet Grass 

P S = T C = T                        P R = T C = T                        



Graphical models  
Earthquake or burglary?  

 Mr. Holmes is in his office 

 He receives a call from his 
neighbor that the alarm of his 
house went off. 

 He thinks that somebody broke 
into his house. 

 Afterwards he hears an 
announcement from radio that a 
small earthquake just happened 

 Since the alarm has been going off 
during an earthquake. 

 He concludes it is more likely that 
earthquake causes the alarm.  

 

Call 

Burglary 

Alarm 

Earthquake 

Newscast 



Graphical Models 
An overview  

 Graphical models (probabilistic graphical models) are results 
from the marriage between graph theory and probability theory 

    

                                    

 

 

 

 

 Provides a powerful tool for modeling and solving problems 
related to 

                              Uncertainty and Complexity 

Probability  Theory   +   Graph Theory 



Graphical Models 
An overview 

 Probability theory: ensures 

consistency, provides interface 
models to data. 

 Graph theory: intuitively 

appealing interface for humans.  

“The  graphical language allows us 
to encode in practice: the property 
that variables tend to interact 
directly only with very few others”. 
(Koller’s book). 

 Modularity: a complex system is 

built by combining simpler parts. 
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Example from domain of Monitoring Intensive-Care Patients: A ICU alarm network, 37 nodes, 509 parameters. 

ICU: Incident Command Units. 

 Issues:  
 Representation 
 Learning 
 Inference 
 Applications 

 



Graphical Models 
Useful properties 

 They provide a simple way to visualize 
the structure of a probabilistic model 
and can be used to design and motivate 
new models. 

 Insights into the properties of the 
model can be obtained by inspection of 
the graph. 

 Complex computations, required to 
perform inference and learning in 
sophisticated models, can be expressed 
in terms of graphical manipulations, in 
which underlying mathematical 
expressions are carried along implicitly. 

7 Bishop, WCCI 2008, “A new framework for machine learning” 

𝑃 𝐱 =  𝑃(𝑥𝑖|𝑝𝑎𝑖)

𝐾

𝑖=1

 

𝑃 𝑥1 𝑃 𝑥2 𝑃 𝑥3   
𝑃(𝑥4|𝑥1, 𝑥2, 𝑥3 ) 𝑃 𝑥5 𝑥1, 𝑥3  

𝑃(𝑥6|𝑥4) 𝑃(𝑥7|𝑥4, 𝑥5) 
 



Graphical models 
Representation 

 Graphical models are composed by two parts: 

1. A set 𝐗 = 𝑋1, … , 𝑋𝑝  of random variables describing the quantities of 

interest (observed variables: training data; latent variables). 

2. A graph 𝒢 = 𝑉, 𝐸  in which each vertex (node) 𝑣 ∈ 𝑉 is associated 
with one of the random variables, and edges (link) 𝑒 ∈ 𝐸 express the 
dependence structure of the data (the set of dependence 
relationships among subsets of the variables in X) with different 
semantics for  

 undirected graphs (Markov random field or Markov networks), and 
 directed acyclic graphs (Bayesian networks). 

 The link between the dependence structure of the data and its graphical 
representation is expressed in terms of conditional independence 
(denoted with ⊥𝑃) and graphical separation (denoted with ⊥𝐺). 
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Graphical models 
Representation 

 A graph 𝒢 is a dependency map (or D-map, completeness) of the 
probabilistic dependence structure P of X if there is a one-to-one 
correspondence between the random variables in X and the nodes V       
of 𝒢, such that for all disjoint subsets A, B, C of X we have 

𝐴 ⊥𝑃 𝐵|𝐶 ⟹  𝐴 ⊥𝐺 𝐵|𝐶  

Similarly, 𝒢 is an independency map (or I-map, soundness) of P if 

𝐴 ⊥𝐺 𝐵|𝐶 ⟹ 𝐴 ⊥𝑃 𝐵|𝐶  

𝒢  is a perfect map of P if it is both a D-map and an I-map, that is 

𝐴 ⊥𝑃 𝐵|𝐶 ⟺  𝐴 ⊥𝐺 𝐵|𝐶 

and in this case P is said to be isomorphic to 𝒢. 

 The key concept of separation 

 u-separation in undirected graphical models 

 d-separation in directed graphical models. 
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Graphical models 
Factorization 

 A fundamental result descending from the definitions of u-separation 
and d-separation is the Markov property (or Markov condition), which 
defines the decomposition of the global distribution of the data into a set 
of local distributions. 
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 For Bayesian networks 

 𝑃 𝐗 =  𝑃 𝑋𝑖 Π𝑋𝑖
        

𝑝

𝑖=1

 

     Π𝑋𝑖
is parents of 𝑋𝑖 . 

 For Markov networks 

𝑃 𝐗 =  𝜙𝑖(𝐶𝑖)
𝑝
𝑖=1 ,   

𝜙𝑖 is factor potentials 
(representing the relative mass 
of probability of each clique 𝐶𝑖) 



Graphical models 
Examples 

Independence 
                                          𝐹 ⊥ 𝐻  𝑆)                                             𝐴 ⊥ 𝐶  𝐵, 𝐷) 
         𝐶 ⊥ 𝑆  𝐹, 𝐻)                      𝐵 ⊥ 𝐷  𝐴, 𝐶) 
                                       𝑀 ⊥ 𝐻, 𝐶  𝐹) 
          𝑀 ⊥ 𝐶  𝐹) 
Factorization 

                       𝑃 𝑆, 𝐹, 𝐻, 𝐶,𝑀 = 𝑃 𝑆 𝑃 𝐹 𝑆               𝑃 𝐴, 𝐵, 𝐶, 𝐷 =
1

𝑍
𝜙1 𝐴, 𝐵  

                                  𝑃 𝐻 𝑆 𝑃 𝐶 𝐹,𝐻 𝑃 𝑀 𝐹              𝜙2(𝐵, 𝐶)𝜙3(𝐶, 𝐷)𝜙4(𝐴, 𝐷) 
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Graphical models 
Markov blanket 

 Another fundamental result: Markov blanket (Pearl 1988) of a node 𝑋𝑖, 
the set that completely separates  𝑋𝑖  from the rest of the graph.  

 Markov blanket is the set of nodes that includes all the knowledge 
needed to do inference on  𝑋𝑖  because all the other nodes are 
conditionally independent from  𝑋𝑖 given its Markov blanket.   
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 In Markov networks the 
Markov blanket contains 
nodes that are connected 
to  𝑋𝑖 by an edge. In 
Bayesian networks it is the 
union of the children of  𝑋𝑖  , 
its parents, and its 
children’s other parents. 



Graphical models 
Simple case and serial connection 

 Dependency is described by the 
conditional probability 𝑃(𝐵|𝐴) 

 Knowledge about A: priori 
probability 𝑃(𝐴) 

 Calculate the joint probability of 
the A and B 

      𝑃 𝐴, 𝐵 = 𝑃(𝐵 𝐴 𝑃 𝐴  

A B 

𝑃 𝐗 =  𝑃(𝑋𝑖|𝑝𝑎 𝑋𝑖 )

𝑛

𝑖=1

 

 Calculate as before: 

          𝑃 𝐴, 𝐵 = 𝑃 𝐵 𝐴 𝑃 𝐴  
𝑃(𝐴, 𝐵, 𝐶) = 𝑃(𝐶|𝐴, 𝐵)𝑃(𝐴, 𝐵) 

                         = 𝑃(𝐶|𝐵)𝑃(𝐵|𝐴)𝑃(𝐴) 

 𝐼(𝐶, 𝐴|𝐵) 

 

A B C 

𝑃 𝐗 =  𝑃(𝑋𝑖|𝑝𝑎 𝑋𝑖 )

𝑛

𝑖=1

 



Graphical models 
Converging connection and diverging connection  

 Value of A depends on B and C 

       𝑃(𝐴|𝐵, 𝐶) 

 𝑃(𝐴, 𝐵, 𝐶) = 𝑃(𝐴|𝐵, 𝐶)𝑃(𝐵)𝑃(𝐶) 

B c 

A 

𝑃 𝐗 =  𝑃(𝑋𝑖|𝑝𝑎 𝑋𝑖 )

𝑛

𝑖=1

 

 B and C depend on A:    

          𝑃(𝐵|𝐴) and 𝑃(𝐶|𝐴) 

 𝑃(𝐴, 𝐵, 𝐶) = 𝑃(𝐵|𝐴)𝑃(𝐶|𝐴)𝑃(𝐴) 

 𝐼(𝐵, 𝐶|𝐴) 

B c 

A 

𝑃 𝐗 =  𝑃(𝑋𝑖|𝑝𝑎 𝑋𝑖 )

𝑛

𝑖=1

 



Cloudy 

Sprinkler Rain 

WetGrass 

Graphical models 
Wet grass 

𝑃(𝐶) 

𝑃(𝑆|𝐶) 𝑃(𝑅|𝐶) 

𝑃(𝑊|𝑆, 𝑅) 

𝑃(𝐶, 𝑆, 𝑅,𝑊)

= 𝑃(𝑊|𝑆, 𝑅)𝑃(𝑅|𝐶)𝑃(𝑆|𝐶)𝑃(𝐶) 

Versus 

𝑃(𝐶, 𝑆, 𝑅,𝑊)

= 𝑃(𝑊|𝐶, 𝑆, 𝑅)𝑃(𝑅|𝐶, 𝑆)𝑃(𝑆|𝐶)𝑃(𝐶) 

𝑷(𝑪 = 𝑭) 𝑷(𝑪 = 𝑻) 

0.5 0.5 

C 𝑷(𝑺 = 𝑭) 𝑃(𝑆 = 𝑇) 

F 0.5 0.5 

T 0.9 0.1 

C 𝑷(𝑹 = 𝑭) 𝑃(𝑅 = 𝑇) 

F 0.8 0.2 

T 0.2 0.8 

𝑆 𝑅 𝑃(𝑊 = 𝐹) 𝑃(𝑊 = 𝑇) 

F F 1.0 0.0 

T F 0.1 0.9 

F T 0.1 0.9 

T T 0.01 0.99 



Graphical models 
Markov random fields 

 Links represent symmetrical probabilistic dependencies 

 Direct link between A and B: conditional dependency. 

 Weakness of MRF: inability to represent induced dependencies. 

 

 

 

 

 

 Global Markov property: X is independent of Y given Z iff all paths 
between X and Y are blocked by Z  (here: A is independent of E, given C) 

 Local Markov property: X is independent of all other nodes given its 
neighbors (here: A is independent of D and E, given C and B.  

A B 

C 

D E 



Graphical models 
Learning  

 Form the input of fully or partially 
observable data cases? 

 The learning steps:  

 Structure learning: Qualitative 
dependencies between variables 
(edge between any two nodes?) 

 Parameter learning: Quantitative 
dependencies between variables 
are parameterized conditional 
distributions. Parameters of the 
functions are parameters of the 
graph. 
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Z. Ghahramani,  “Graphical model: Parameter learning” 
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X2 

Spurious edge 

X1 

Y 

X2 

Missing edge 

X1 

Y 

X2 

True structure 



Graphical models 
Approaches to learning of graphical model structure 

 Constraint-based approaches 

 Identify a set of conditional independence properties 

 Identify the network structure that best satisfies these constraints 

 Limitation: sensitive to errors in single dependencies 

 Search-and-Score based approaches 

 Define a scoring function specifying how well the model fits the data 

 Search possible structures for one that has optimal scoring function. 

 Limitation: intractable to evaluate  heuristic, greedy, sub-optimal 

 Regression-based approaches 

 Gaining popularity in recent years 

 Are essentially optimization problems which guarantees global 
optimum for the objective function, and have better scalability. 

18 Structure learning of probabilistic graphical models, Yang Zhu, 2007 



Graphical models 
Approaches to learning of graphical model parameters 

 Learning parameters from complete data: Using maximum likelihood  

ℒ 𝜽 = log 𝑝 𝒅 𝜽 =  log 𝑝 (

𝑛

𝑖=1

𝑥𝑖|𝜽) 

 Learning parameters with hidden variables: EM algorithm 

ℒ 𝜽 = log𝑝 𝒙 𝜽 =  log 𝑝 (

𝑦

𝑥, 𝑦 𝜽 ≥ ℱ(𝑞, 𝜽) 

    E step: 𝑞,𝑘+1- ← arg max
𝑞

ℱ(𝑞, 𝜃,𝑘-) ,   M step: 𝜃,𝑘+1- ← max
𝜃

ℱ(𝑞,𝑘+1-, 𝜽)  

 Parameter learning in undirected graphical models 

 Bayesian learning of  parameter 

𝑃 𝜽 𝒎,𝒅 =
𝑃 𝒅 𝜽,𝒎 𝑃(𝜽|𝒎)

𝑃(𝒅|𝒎)
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Graphical models 
Inference 

 Computational inference problems 

1. Computing the likelihood of observed data. 

2. Computing the marginal distribution 𝑃(𝑥𝐴) over a particular 
subset A ⊂ V of nodes. 

3. Computing the posterior distribution of latent variables. 

4. Computing a mode of the density (i.e., an element 𝑥  in the set 
arg max

𝑥∈𝒳𝑚
𝑃(𝑥))  

 Example:                                                                                                                      
What is the most probable disease? 

symptoms 

diseases 



Graphical models 
Inference 

Exact inference 

 Can exploit structure 
(conditional independence)        
to efficiently perform exact 
inference in many practical 
situations 

 Variable elimination 
(remove irrelevant 
variables for the query) 

 Junction trees and message 
passing, sum-product and 
max-product algorithms. 

 Lack of tractability. 

21 

Approximate inference 

 Sampling inference (stochastic 
methods): Markov Chain Monte 
Carlo, yield their results in the form 
of a set of samples drawn from the 
posterior distribution. 

 Variational inference (deterministic 
methods) seek the optimal member 
of a defined family of approximating 
distributions by minimizing a 
suitable criterion which measures the 
dissimilarity between the 
approximate distribution and the 
exact posterior distribution. 



Graphical models 
Instances of graphical models 
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Probabilistic models 

Graphical models 

Directed Undirected 

Bayes nets MRFs 

DBNs 

Hidden Markov Model (HMM) 

Naïve 

Bayes 

classifier 

Mixture 

models 

Kalman 

filter 

model 

Conditional 

random  

fields 

MaxEnt 

LDA 

Murphy, ML for life sciences 



Content 
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 Introduction to topic models 

 Fully sparse topic model 

 Conditional random fields in NLP 
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Many slides are adapted from lecture of Prof. Padhraic Smyth, Yujuan Lu,   



Introduction to topic modeling 

 The main way of automatic capturing the meaning of documents. 

 Topic: the subject that we talk/write about 

 Topic of an image: a cat, a dog, airplane, … 

 Topic in TM:  

 a set of words which are semantically related  
[Landauer and Dumais, 1997];  

 a distribution over words  
[Blei, Ng, and Jordan, 2003]. 
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Million functions 

Film, movie, show, play, actor, 

cinema 

 

 

Million, tax, program, budget, 

spending, money 



Topic model: a model about topics hidden in data. 
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Introduction to topic modeling 

Blei et al., 2011 



Two key problems in TM. 

 Learning 
estimate a topic  
model from a given  
collection of  
documents. 

 Inference 

we are asked to find  

the topics of a new  

document.  

26 
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Introduction to topic modeling 

http://www.sccs.swarthmore.edu/users/08/ajb/tmve/wiki100k/docs/Elvis_Presley.html
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 A word is the basic unit of discrete data, from vocabulary indexed by 

𝑉 = *1,… , 𝑉+. The vth word is represented by a V-vector 𝑤 such that       

𝑤𝑣 =  1 and 𝑤𝑢 
=  0 for 𝑢 ≠ 𝑣. 

 A document is a sequence of N words denote by    

𝑑 =  (𝑤1, 𝑤2, … , 𝑤𝑁) 

 A corpus is a collection of M documents denoted by     

𝐷 =  *𝑑1, 𝑑2, … , 𝑑𝑀+ 

Topic models 
Notation and terminology 
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Topic models 
Exchangeability and bag of word assumption 

 Random variables *𝑥1, … , 𝑥𝑁+ are exchangeable if the joint distribution is 

invariant to permutation. If π is a permutation of the integers from 1 to N 

𝑃 𝑥1, … , 𝑥𝑁 = 𝑃(𝑥𝜋(1), … , 𝑥𝜋(𝑁)) 

 An infinite sequence of random is infinitely exchangeable  if every finite 

subsequence is exchangeable. 

 Word order is ignored  “bag-of-words” – exchangeability, not i.i.d  

 Theorem (De Finetti, 1935): if *𝑥1, … , 𝑥𝑁+  are infinitely exchangeable, then 

the joint probability has a representation as a mixture 𝑃 𝑥1, … , 𝑥𝑁  for 

some random variable θ 

𝑃 𝑥1, … , 𝑥𝑁 =  𝑑𝜃𝑝(𝜃) 𝑃(𝑥𝑖|𝜃)

𝑁

𝑖=1

 



Topic models 
The intuitions behind topic models 

29 

Documents are mixtures of latent topics, where a topic is a 
probability distribution over words. 



Topic models 
Probabilistic modeling 

 Topic models are part of the larger field of probabilistic graphical 
modeling.  

 In generative probabilistic modeling, we treat our data as arising from 
a generative process that includes hidden variables. This generative 
process defines a joint probability distribution over both the observed 
and hidden random variables.  

 We perform data analysis by using that joint distribution to compute 
the conditional distribution of the hidden variables given the observed 
variables. This conditional distribution is also called the posterior 
distribution. 
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Topic models 
Multinomial models for documents 

 Example: 50,000 possible words in our vocabulary  

 Simple memoryless model  

 50,000-sided die 

o a non-uniform die: each side/word has its own probability  

o to generate N words we toss the die N times  

 This is a simple probability model: 

o 𝑃(𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡| 𝜙 )=  𝑃 𝑤𝑜𝑟𝑑 𝑖 𝜙𝑖  

o to “learn” the model we just count frequencies 

o 𝑃(𝑤𝑜𝑟𝑑 𝑖) = number of occurrences of i / total number 

 Typically interested in conditional multinomials, e.g., 

o  p(words | spam)  versus p(words | non-spam) 

 

 



WORD PROB.

 PROBABILISTIC 0.0778

 BAYESIAN 0.0671

 PROBABILITY 0.0532

 CARLO 0.0309

 MONTE 0.0308

 DISTRIBUTION 0.0257

 INFERENCE 0.0253

 PROBABILITIES 0.0253

 CONDITIONAL 0.0229

 PRIOR 0.0219

.... ...

TOPIC 209

WORD PROB.

 RETRIEVAL 0.1179

 TEXT 0.0853

 DOCUMENTS 0.0527

 INFORMATION 0.0504

 DOCUMENT 0.0441

 CONTENT 0.0242

 INDEXING 0.0205

 RELEVANCE 0.0159

 COLLECTION 0.0146

 RELEVANT 0.0136

... ...

TOPIC 289

Topic models 
Real examples of word multinomials 

𝑃(𝑤|𝑧) 



Topic models 
A graphical model for multinomials 

w1 

𝑃 𝑤 𝜙  

w2 wn 

  𝜙 = "parameter vector" 

      = set of probabilities 

          one per word 

𝑃 𝑑𝑜𝑐  𝜙 =  𝑃(𝑤𝑖 | 𝜙) 

𝜙 

… 



Topic models 
Another view 

𝜙 

𝑤𝑖 

This is “plate notation” 

Items inside the plate are 
conditionally independent 
given the variable outside 
the plate. 

There are “𝑁𝑑” conditionally 
independent replicates 
represented by the plate 

𝑃 𝑑𝑜𝑐  𝜙 =  𝑃(𝑤𝑖 |𝜙) 

𝑖 = 1:𝑁𝑑 



Topic models 
Being Bayesian... 

𝜙 

wi 

𝑖 = 1:𝑁𝑑 

𝛽 

This is a prior on our 
multinomial parameters, 

e.g., a simple Dirichlet 
smoothing prior. 

Learning: infer 𝑃(𝜙| 𝑤𝑜𝑟𝑑𝑠, 𝛽) 

 proportional to  

     𝑃(𝑤𝑜𝑟𝑑𝑠 | 𝜙) 𝑃(𝜙 | 𝛽)  



Topic models 
Multiple Documents   

𝜙 

wi 

𝛽 

 1:𝐷 

𝑃( 𝑐𝑜𝑟𝑝𝑢𝑠 | 𝜙)  =  𝑃 ( 𝑑𝑜𝑐 | 𝜙)  

1:𝑁𝑑 



Topic models 
Different document types   

  𝑃( 𝑤 | 𝜙) is a multinomial over words   

𝑃( 𝑤 | 𝜙, 𝑧𝑑)  

 is a multinomial over words 

 𝑧𝑑  
is the “label” for each doc 

 Different multinomials, 
depending on the value of 𝑧𝑑 

 
(discrete) 

𝜙 

wi 

𝛽 

zd 

1:𝐷 

1:𝑁𝑑 



Topic models 
Unknown document types   

𝜙 

wi 

𝛽 

zd 

𝛼 
Now the values of z for each 
document are unknown - 
hopeless? 

 

Not hopeless :-)   

Can learn about both z and θ,  
e.g., EM algorithm   

This gives   

𝑃(𝑤 | 𝑧 = 𝑘, 𝜃)  

is the kth multinomial over 
words 

 
1:𝐷 

1:𝑁𝑑 



Topic Models   

𝜙 

wi 

𝛽 
𝑧𝑖  

is a “label” for each word 
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      distribution over topics                   

      of a document specific 

 
𝜙:  𝑃 𝑤  𝜙,  𝑧𝑖 =  𝑘)  
    =   multinomial over words 
    =  a "topic" 
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Topic models 
The key ideas 

 Key idea: documents are mixtures of latent topics, where a topic is  a 
probability distribution over words. 

 Hidden variables, generative processes, and statistical inference are the 
foundation of probabilistic modeling of topics. 

Normalized co-
occurrence matrix 

C 

documents 

w
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rd

s 
F 

topics 

w
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  documents 

 t
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s Topic 

models 
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Topic models 
Probabilistic latent semantic indexing (Hofmann, 1999) 
 
 

z w 

D 

d 
Nd  

 Choose a document 𝑑𝑚 with 𝑃(𝑑) 

 For each word 𝑤𝑛 in the 𝑑𝑚 

 Choose a 𝑧𝑛 from a multinomial conditioned on 𝑑𝑚, i.e., from P(𝑧|𝑑𝑚) 

 Choose a 𝑤𝑛 from a multinomial conditioned on 𝑧𝑛, i.e., from 𝑃(𝑤|𝑧𝑛). 


z

nn dzPzwPdPwdP )|()|()(),(

 pLSI: Each word is generated from a 
single topic, different words in the 
document may be generated from 
different topics. 

 Each document is represented as a 
list of mixing proportions for the 
mixture topics. 

 Generative process: 

LSI: Latent semantic indexing , Deerwester et al., 1990 [citation 7037] 
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Topic models 
pLSI limitations 

 
  The model allows multiple topics in each document, but  

 the possible topic proportions have to be learned from the document 
collection 

 pLSI does not make any assumptions about how the mixture weights 𝜃 
are generated, making it difficult to test the generalizability of the 
model to new documents.  

 Topic distribution must be learned for each document in the collection     
 # parameters grows with the number of documents (billion 
documents?). 

 Blei, Ng, and Jordan (2003) extended this model by introducing a Dirichlet 
prior on 𝜃, calling Latent Dirichlet Allocation (LDA).  
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Topic models 
Latent Dirichlet allocation 

 

1. Draw each topic ft ~ Dir(b), t=1,..,T 

2. For each document: 
1. Draw topic proportions qd ~ Dir(a) 

2. For each word: 
1. Draw zd,i ~ Mult(qd) 

2. Draw wd,i ~ Mult(fzd,i)  

1. From collection of documents, infer 

     - per-word topic assignment zd,i 

      - per-document topic proportions 𝜃d 

      - per-topic word distribution 𝜙t 

2. Use posterrior expectations to 
perform the tasks: IR, similarity, ...  

Choose Nd from a Poisson distribution with parameter x 

Zd,i Wd,i 
qd a 

T 

ft b 

Dirichlet 

parameter 
Per-document 

topic proportions 

Per-word  

topic assignment 

 Observed word 
Per-topic 

word proportions 

 Topic 

hyperparameter 

(V-1)-simplex (T-1)-simplex 

1:𝐷 
1:𝑁𝑑 
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LDA model 

46 

z w 

D 

q 
Nd  

a 

b 

f 

T 

1 1

( , ) ( ) ( ) ( , )
d

dn

NM
k

d dn d dn dn d

zd n

p D p p z p w z da b q a q b q
 

 
   

 
 

1 111

1

1

( )
( )

( )
k

k
i i

kk
i i

p
aaa

q a q q
a





 




1

( , , , ) ( ) ( ) ( , )
N

n n n

n

p p p z p w zq a b q a q b


 z w

1

( , ) ( ) ( ) ( , )
n

N
k

n n n

zn

p p p z p w z da b q a q b q


 
   

 
w

Joint distribution of topic mixture θ, a set of N topic z, a set of N words w 

Marginal distribution of a document by integrating over θ and summing over z 

Probability of collection by product of marginal probabilities of single documents 

Dirichlet prior on the document-topic distributions  
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Topic model 
Generative process 

(1) Empty document

word placeholder

(3) Topic sampling for word placeholders (4) Real word generation

(2) Per-document topic 

distribution generation 
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Topic models 
Inference in LDA 

 The posterior is  

                𝑃(f1:𝐾 , 𝜃1:𝐷, 𝑧1:𝐷| 𝑤1:𝐷) = 
𝑃(f1:𝐾,𝜃1:𝐷, 𝑧1:𝐷 ,𝑤1:𝐷)

𝑃(𝑤1:𝐷)
 

 The numerator: joint distribution of all the random variables, which can 
be computed for any setting of the hidden variables.  
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 The denominator: the marginal 
probability of the observations.  

 In theory, it can be computed. 
However, is exponentially large 
and is intractable to compute.  

 A central research goal of modern 
probabilistic graphical modeling 
is to develop efficient methods for 
approximating it. 

Zd,n Wd,n Nd 

M 

qd a 

T 

ft b 

Dirichlet 

parameter 

Per-document 

topic proportions 

Per-word 

topic assignment 

 Observed    

word 

Per-topic 

word proportions 

 Topic 

hyperparameter 



Topic models 
Two categories of inference algorithms 

Sampling based algorithms 

 Attempt to collect samples from 
the posterior to approximate it 
with an empirical distribution.  

 The most commonly used 
sampling algorithm for topic 
modeling is Gibbs sampling, 
where we construct a Markov 
chain a sequence of random 
variables, each dependent on the 
previous whose limiting 
distribution is the posterior.  

49 

Variational methods    

 Posit a parameterized family of 
distributions over the hidden 
structure and then find the 
member of that family that is 
closest to the posterior. 

 The inference problem is 
converted to an optimization 
problem.  

 Variational methods open the 
door for innovations in 
optimization to have practical 
impact in probabilistic modeling 
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Topic models 
Example 

 From 16000 
documents of AP 
corpus  100-
topic LDA model. 
 

 An example 
article from the 
AP corpus. Each 
color codes a 
different factor 
from which the 
word is 
putatively 
generated  
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Topic models 
Visual words 

 Idea: Given a collection of 
images, 

 Think of each image as a 
document. 

 Think of feature patches 
of each image as words. 

 Apply the LDA model to 
extract topics. 

 J. Sivic et al., Discovering 
object categories in image 
collections. MIT AI Lab 
Memo AIM-2005-005, Feb. 
2005 
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Topic models 
Applications in scientific trends 

Blei & Lafferty 2006, Dynamic topic models] 

Analyzed Data: 
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Topic models 
Analyzing a topic 

Source: http://www.cs.princeton.edu/~blei/modeling-science.pdf 

http://www.cs.princeton.edu/~blei/modeling-science.pdf
http://www.cs.princeton.edu/~blei/modeling-science.pdf
http://www.cs.princeton.edu/~blei/modeling-science.pdf
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Topic models 
Visualizing trends within a topic 
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Summary 

 LSA and topic models are roads to text meaning. 

 Can be viewed as a dimensionality reduction technique. 

 Exact inference is intractable, we can approximate instead. 

 Various applications and fundamentals for digitalized era. 

 Exploiting latent information depends on applications, the fields, 
researcher backgrounds, … 
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