Lecture 3
Nonparametric Methods

Statistical models with weak assumptions



Nonparametric regression

Sparse additive models

Constrained rank additive models

Nonparametric graphical models



Nonparametric Regression

Given (X1, Y1),...,(Xn, Yn) predict Y from X.

Assume only that Y; = m(X;) + ¢; where where m(x) is a smooth
function of x.

The most popular methods are kernel methods. However, there are
two types of kernels:

€@ Smoothing kernels
® Mercer kernels

Smoothing kernels involve local averaging.
Mercer kernels involve regularization.



Smoothing Kernels

e Smoothing kernel estimator:

fhh(X) — 27:1 YI Kh()(,‘,X)
27:1 Kh()(/a X)

where Ky (x, z) is a kernel such as

x—2z|?
Kitx.2) = oxp (-1°3.210)

and h > 0 is called the bandwidih.
e my(x) is just a local average of the Y;’s near x.

e The bandwidth h controls the bias-variance tradeoff:
Small h = large variance while large h = large bias.



Example: Some Data — Plot of Y; versus X;







m(x) is a local average




Effect of the bandwidth h

very small bandwidth

medium bandwidth

small bandwidth

large bandwidth




Smoothing Kernels

Risk = E(Y — mp(X))? = bias? + variance 4 o2,
bias® ~ h?,
variance ~ 15 where p = dimension of X.

02 = E(Y — m(X))? is the unavoidable prediction error.

small h: low bias, high variance (undersmoothing)
large h: high bias, low variance (oversmoothing)



Risk Versus Bandwidth

Variance

Bias

optimal h



Estimating the Risk: Cross-Validation

To choose h we need to estimate the risk R(h). We can estimate the
risk by using cross-validation.

© Omit (X;, Y;) to get My, (;), then predict: )A/(,-) = mp () (X))
@ Repeat this for all observations.
@ The cross-validation estimate of risk is:

n

R(h) = 1 S V)2

i=1

Shortcut formula:

i=1
where L,',' = Kh()(,,)(,)/ Zt Kh()(,', Xt)



Summary so far

@ Compute my, for each h.
@ Estimate the risk ﬁ(h).

© Choose bandwidth h to minimize R(h).

O Let m(x) = my(x).
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Another Approach: Mercer Kernels

Instead of using local smoothing, we can optimize the fit to the data
subject to regularization (penalization). Choose m to minimize

D (Yi = m(X;))? + A penalty(m)

I

where penalty(m) is a roughness penalty.
A is a smoothing parameter that controls the amount of smoothing.

How do we construct a penalty that measures roughness? One
approach is: Mercer Kernels and RKHS = Reproducing Kernel Hilbert
Spaces.



What is a Mercer Kernel?

A Mercer Kernel K(x, y) is symmetric and positive definite:
//f(x)f(y)K(x,y) dxdy >0 forall f.
Example: K(x, y) = e~ lIx-vIP/2,

Think of K(x, y) as the similarity between x and y. We will create a
set of basis functions based on K.

Fix z and think of K(z, x) as a function of x. That is,
K(z,x) = Kz(x)

is a function of the second argument, with the first argument fixed.



Mercer Kernels
Let

Define a norm: ||fllx = 3°; >« Bi8kK(2), 2k)- ||fll small means f

smooth.

Iff=>,a,K(z,-), g =>sBsK(ws,-), the inner product is
(f,9)k = ZzarﬁsK (2r, ws).

F is a reproducing kernel Hilbert space (RKHS) because

<f’K(X7')> = f(X)



Nonparametric Regression: Mercer Kernels
Representer Theorem: Let m minimize
n
J = (Yi— m(X))? + A mlk.

Then

Z Oé, )(lv X
for some aq,...,an.
So, we only need to find the coefficients

a=(aq,...,ap).



Nonparametric Regression: Mercer Kernels

Plug m(x) = 37, a;K(X;, x) into J:
J=]Y =Ko+ Aa"Ka

where Ky = K(X;, Xk)

Now we find « to minimize J. We get: @ = (K + A/)~'Y and
m(x) = > ;a;K(X;, x).

The estimator depends on the amount of regularization A. Again,
there is a bias-variance tradeoff. We choose \ by cross-validation.
This is like the bandwidth in smoothing kernel regression.



Smoothing Kernels Versus Mercer Kernels

Smoothing kernels: the bandwidth h controls the amount of
smoothing.

Mercer kernels: norm ||f||x controls the amount of smoothing.

In practice these two methods give answers that are very similar.



Mercer Kernels: Examples

very small lambda

medium lambda

small lambda

large lambda
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Multiple Regression

Both methods extend easily to the case where X has dimension
p > 1. For example, just use

K(X,y) — e*||X*}’||2/2‘

However, this is hard to interpret and is subject to the curse of
dimensionality. This means that the statistical performance and the
computational complexity degrade as dimension p increases.

An alternative is to use something less honparametric such as
additive model where we restrict m(xi, ..., Xp) to be of the form:

m(x1,...,Xp) = Bo+ Y _ mj(x).
j
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» Nonparametric regression
o Sparse additive models

» Nonparametric graphical models
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Additive Models

Model: m(x) = Go + Y74 mj(x)).

We can take Bo = Y and we will ignore 3y from now on.

We want to minimize

n

2
Z(Yi— (7 (Xn) -+ + mp(X, )))

i=1

subject to m; smooth.
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Additive Models

The backfitting algorithm:

o Set ﬁ’lj =0
e lterate until convergence:
o lterate over j:
¢ Nj= Y/—Zk#ﬁ?k(X/ )
o ﬁ’lj «— smooth(Xj, R)

Here, smooth(X;, R) is any one-dimensional nonparametric regression
function.

R: glm

But what if p is large?
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Sparse Additive Models

Ravikumar, Lafferty, Liu and Wasserman, JRSS B (2009)

Additive Model: Y; = Zj; mi(Xj) +ei, i=1,...,n
High dimensional:  n < p, with most m; = 0.

2
Optimization: minimize  E (Y - mj(Xj))

p
subjectto > "\ /E(m?) < L,
j=1

E(m/) =0

Related work by Bihlmann and van de Geer (2009), Koltchinskii and Yuan
(2010), Raskutti, Wainwright and Yu (2011)
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Sparse Additive Models

C= {m S R* \/m1 (X1)2 + my (X2)2 + \/mg(X1)2 + I’I’lg(Xg)2 < L}

m12C = m13C =

26



Stationary Conditions

Lagrangian

L(f, ) = ; E (Y- 5P, my ,) +AZ,/

Let Rj =Y — > ,; mk(Xk) be jth residual. Stationary condition

m; —E(R;| X;) + A\v;=0 a.e.

where v; € 0, /E(m ) satisfies

M if E(m2) =0
v e (m?) #

EvZ < 1 otherwise
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Stationary Conditions

Rewriting,
m; + /\Vj
A
14+ — mj
( E(mf>>
m;
This implies

E(R| X)) = P
P; if E(P?) > A

0 otherwise
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SpAM Backfitting Algorithm

Input: Data (X;, Y;), regularization parameter \.
lterate until convergence:
Foreachj=1,...,p:

Compute residual: R; = Y — >, ; mk(Xk)
Estimate projection P; = E(R; | X;), smooth: IA:’] = SiR;

Estimate norm: s; = ,/E[P}]2

Soft-threshold: m; — [1 — 2‘} P,
S; n

Output: Estimator m(X;) = 3=, m;(Xj).
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Example: Boston Housing Data

Predict house value Y from 10 covariates.
We added 20 irrelevant (random) covariates to test the method.

Y = house value; n =506, p = 30.
Y = 6o+ my (crime) + mg(tax) + et m30(X30) +e€

Note that my; = --- = mgp = 0.
We choose \ by minimizing the estimated risk.

SpAM ylelds 6 nonzero functions. It correctly reports that
Myq == Mg = 0.
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L, norms of fitted functions versus 1/\

2 3
| |

Clomponent Norms

________
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Estimated Risk Versus )\
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Example Fits
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Example Fits

11=478.29
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RKHS Version

Raskutti, Wainwright and Yu (2011)

Sample optimization
min — Z(yl Z m;(Xi ) F A Ml + 1) Ml e,
J J

where ||mj||L2(Pn) = %2?21 mjz(x’/)

By Representer Theorem, with m;(-) = Kjay,

mln—Z(y, ZKa,) +AZ,/a Koz/—kuZ\/ K2a

Finite dimensional SOCP, but no scalable algorithms known.
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Open Problems

Under what conditions do the backfitting algorithms converge?

What guarantees can be given on the solution to the infinite
dimensional optimization?

Is it possible to simultaneously adapt to unknown smoothness
and sparsity?
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Multivariate Regression
Y € R9 and X € RP. Regression function M(X) = E(Y| X).
Linear model M(X) = BX where B € R9*P.
Reduced rank regression: r = rank(B) < C.
Recent work has studied properties and high dimensional scaling of

reduced rank regression where nuclear norm

min(p.q)

1Bl == oi(B)

j=1

as convex surrogate for rank constraint (Yuan et al., 2007; Negahban
and Wainwright, 2011)
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Nonparametric Reduced Rank Regression
Foygel, Horrell, Drton and Lafferty (2012)

Nonparametric multivariate regression M(X) = (m'(X),...,m9(X))"

Each component an additive model

What is the nonparametric analogue of || B||.. penalty?
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Low Rank Functions

What does it mean for a set of functions m'(x), ..., m9(x) to be low
rank?
Let x1, ..., X, be a collection of points.

We require the n x g matrix M(xy.,) = [m*(x;)] is low rank.

Stochastic setting: M = [m*(X;)]. Natural penalty is

q q
M =Y os(M) = Y 4 /As(MTM)
s=1 s=1

Population version:

M, := ||/Cov(M(X))

[

*
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Constrained Rank Additive Models (CRAM)

Let &; = Cov(M;). Two natural penalties:

1/2 1/2

=2 e+ =2

1/2¢1/2 1/2
!

Population risk functional (first penalty)

S| Y = S M0+ 23 Im,
J )
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Stationary Conditions

—1
Subdifferential is 9| F]|. = {( E(FFT)) F+ H} where
IHIlp < 1, E(FHT) =0, E(FFT)H =0
Let P(X) := E(Y| X) and consider optimization

1
SEIY = MOX) 5 + Alm],

Let E(PPT) = Udiag(r) U' be the SVD. Define
M = Udiag([1 — \//7]4) UTP
Then M is a stationary point of the optimization, satisfying
E(Y|X)=M(X)+ V(X)) a.e., forsome V € 9||M|,
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CRAM Backfitting Algorithm (penatty 1)

Input: Data (X;, Y;), regularization parameter \.
lterate until convergence:
Foreachj=1,...,p:

Compute residual: R =Y — Zk#?k(xk)

Estimate projection P; = E(R; | X;), smooth: I?’/ = SiR;
Compute SVD: ,13/3,/3]7 = U diag(r) U
Soft-threshold: M; = U diag([1 — A//7],)UT P;

Output: Estimator M(X;) = 3=; Mi(X;).
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Example

Data of Smith et al. (1962), chemical measurements for 33 individual
urine specimens.

q = 5 response variables: pigment creatinine, and the concentrations
(in mg/ml) of phosphate, phosphorus, creatinine and choline.

p = 3 covariates: weight of subject, volume and specific gravity of
specimen.

We use Penalty 2 with local linear smoothing.

We take A = 1 and bandwidth h = .3.
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X; \ Yk pigment creatinine phosphate phosphorus choline

volume

spec. gravity
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Statistical Scaling for Prediction

Let F be class of matrices of functions that have a functional SVD
M(X) = UDV(X)"

where E(VT V) = I, and V(X) = [vg(X;)] with each vgjin a
second-order Sobolev space. Define

n 1/4
Mp=4L{M: McF, ]DH*o() .
q +log(pq)

Let M minimize the empirical risk 1 5, ||Y; — 32 Mi(Xj)|I5 over the
class Mp. Then

R(M) — nf R(M) 0.
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Nonparametric CCA

Canonical correlation analysis (CCA, Hotelling, 1936) is classical
method for finding correlations between components of two random
vectors X € RP and Y € RY.

Sparse versions have been proposed for high dimensional data
(Witten & Tibshirani, 2009)

Sparse additive models can be extended to this setting.
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Sparse Additive Functional CCA

Balasubramanian, Puniyani and Lafferty (2012)

Population version of optimization:

max E(f(X)g(Y bject t
(max E(f(X)g(Y))  subjectto

p
maxE(f?) <1, > /E(?) < G
=1 j

I
q
maxE(gf) <1, D \/E(gf) < Cg
k=1

Estimated with analogues of SpAM backfitting, together with
screening procedures. See ICML paper.
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» Nonparametric regression
» Sparse additive models

o Nonparametric graphical models
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Regression vs. Graphical Models

assumptions regression graphical models

parametric lasso graphical lasso

nonparametric sparse additive model | nonparanormal




The Nonparanormal (Liu, Lafferty, Wasserman, 2009)
A random vector X = (Xj, ... ,Xp)T has a nonparanormal distribution
X ~ NPN(u, X, f)

in case
Z=1(X)~ N(uXxX)
where f(X) = (f1(X1),...,f(Xp)).

Joint density

Px() = Garprargire O { 3 (00— )T (00 — )

Semiparametric Gaussian copula
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The Nonparanormal
Define hj(x) = ®~1(Fj(x)) where Fj(x) = P(X; < x).
Let A be the covariance matrix of Z = h(X). Then

)(j nl Xk )(rest

if and only if A" = 0.
Hence we need to:

© Estimate hj(x) = o~ 1(F;(x)).
@ Estimate covariance matrix of Z = h(X) using the glasso.
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Winsorizing the CDF

Truncation to estimate It'j forn> p:

1.0

1

0.8
1

0.6

0.4

Oop = 1 ?

4nt/4\/Tlogn

0.0
|

op =
"7 4nt/Ay/rlogn
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Properties

LLW (2009) show that the resulting procedure has the same
theoretical properties as the glasso, even with dimension p
increasing with n.

The truncation of the empirical distribution is crucial for the
theoretical results when p is large, although in practice it does
not seem to matter too much.

If the nonparanormal is used when the data are actually Normal,
little efficiency is lost.
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Dataset from Affymetrix microarrays,
sample size n = 118, p = 40 genes
(isoprenoid pathway).

source: wikipedia.org
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Example Results

difference

f
IR
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Transformations for 3 Genes

x5 x8 x18

These genes have highly non-Normal marginal distributions.

The graphs are different at these genes.
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S&P Data (2003-2008): Graphical Lasso
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S&P Data: Nonparanormal vs. Glasso
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The Nonparanormal SKEPTIC
Liu, Han, Yuan, Lafferty & Wasserman, 2012

Assuming X ~ NPN(f,x°), we have
. m
S = 2sin <gpjk>
where p is Spearman’s rho:
pi = Corr (F(X)), Fi(Xk)) -
Empirical estimate:

S (] =Rk = T)

=

Similar relation holds for Kendall’s tau.

NSRS
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The Nonparanormal SKEPTIC

Using a Hoeffding inequality for U-statistics, we get

max‘ ’<3\f7r logd +logn
\/ - :

with probability at least 1 — 1/n?.

Can thus estimate the covariance at the parametric rate

Punch line: For graph and covariance estimation, no loss in statistical

or computational efficiency comes from using Nonparanormal rather
than Normal graphical model.
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Graph-Valued Regression

(X1, Y1), ..., (Xn, Yn) where Y; is high-dimensional

We'll discuss one particular version: graph-valued regression
(Chen, Lafferty, Liu, Wasserman, 2010)

Let G(x) be the graph for Y based on p(y|x)

This defines a partition X7, ..., Xk where G(x) is constant over
each partition.

Three methods to find G(x):
Parametric
Kernel graph-valued regression
GO-CART (Graph-Optimized CART)
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Graph-Valued Regression

multivariate regression graphical model
(supervised) (unsupervised)
u(x) = E(Y | x) Graph(Y) = (V. E)
YeRP, xecRY (,k) € E <= Y11 Yk | Yeest

N\ /

graph-valued regression
Graph(Y | x)

Gene associations from phenotype (or vice versa)
Voting patterns from covariates on bills

Stock interactions given market conditions, news items
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Method I: Parametric

Assume that Z = (X, Y) is jointly multivariate Gaussian.
5 - (ZZ;(X Z{XJ).

Get Sy, Ty, and Ty

Get Qx by the glasso.

fwx =%y — TyxQxZxy.

But, the estimated graph does not vary with different values of X.
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Method II: Kernel Smoothing

Y|X = x ~ N(u(x), £(x)).

_ S K (B (v = ) (i = alx)T
Y(x) = S5 (M)

s <HX x,u)y,
i) = —

S K ()

Apply glasso to )f(x)

Easy to do but recovering Xj, ..., X requires difficult
post-processing.
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Method lll: Partition Estimator

Run CART but use Gaussian log-likelihood (on held out data) to
determine the splits

This yields a partition X7, ..., X (and a correspdonding tree)

Run the glasso within each partition element

67



Simulated Data

Held—out Risk
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Climate Data
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Tradeoff

Nonparanormal: Unrestricted graphs, semiparametric

We'll now trade off structural flexibility for greater
nonparametricity
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Forest Densities (Gupta, Lafferty, Liu, Wasserman, Xu, 2011)

A distribution is supported by a forest F with edge set E(F) if

po) = T eyl T ot

(i.))eE(F) P(Xi keV

For known marginal densities p(x;, x;), best tree obtained by
minimum weight spanning tree algorithms.

In high dimensions, a spanning tree will overfit.

We prune back to a forest.
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Step 1: Constructing a Full Tree

Compute kernel density estimates

- 1 1 (X9 _x X _ x;
oo (X1, X)) = — Z th(’hZ' K JT

S€D1

Estimate mutual informations

T (.2 = 3 375 O fog - 0 X0)
: 2k 10=1 oy (Xki) g (Xg5)

Run Kruskal’s algorithm (Chow-Liu) on edge weights
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Step 2: Pruning the Tree

Heldout risk

~ ~ f(Xi, X;
Ar) == 30 [Tl x)ton 7o dicy

x;) f(x;)

(if)eE
Selected forest given by

k = argmin :E)'nz (?”f(k))
ke{o,...,0—1} M

where 7',(,1") is forest obtained after k steps of Kruskal
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S&P Data: Forest Graph—Oops!
-~ ; _
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/‘
\
f:
:v»v
>
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S&P Data: Forest Graph
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S&P Data: Forest vs. Nonparanormal

common edges

differences
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Summary

Smoothing kernels, Mercer kernels
Sparse additive models
Constrained rank additive models

Nonparametric graphical models: Nonparanormal and
forest-structured densities

A little nonparametricity goes a long way.
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Summary

Thresholded backfitting algorithms derived from subdifferential
calculus

RKHS formulations are problematic
Theory for infinite dimensional optimizations still incomplete

Many extensions possible: Nonparanormal component analysis,
etc.

Variations on additive models enjoy most of the good statistical
and computational properties of sparse linear models, with
relaxed assumptions

We’re building a toolbox for large scale, high dimensional
nonparametric inference.
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