
Lecture 3

Nonparametric Methods
Statistical models with weak assumptions
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Topics

• Nonparametric regression

• Sparse additive models

• Constrained rank additive models

• Nonparametric graphical models
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Nonparametric Regression

Given (X1,Y1), . . . , (Xn,Yn) predict Y from X .

Assume only that Yi = m(Xi) + εi where where m(x) is a smooth
function of x .

The most popular methods are kernel methods. However, there are
two types of kernels:

1 Smoothing kernels
2 Mercer kernels

Smoothing kernels involve local averaging.
Mercer kernels involve regularization.
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Smoothing Kernels

• Smoothing kernel estimator:

m̂h(x) =

∑n
i=1 Yi Kh(Xi , x)∑n

i=1 Kh(Xi , x)

where Kh(x , z) is a kernel such as

Kh(x , z) = exp
(
−‖x − z‖2

2h2

)
and h > 0 is called the bandwidth.

• m̂h(x) is just a local average of the Yi ’s near x .

• The bandwidth h controls the bias-variance tradeoff:
Small h = large variance while large h = large bias.
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Example: Some Data – Plot of Yi versus Xi

●

●

●

●

●

●

●
●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●
●

●●

●

●
●

● ●

●

●

●
●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

X

Y

5



Example: m̂(x)

●

●

●

●

●

●

●
●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●
●

●●

●

●
●

● ●

●

●

●
●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

X

Y

6



m̂(x) is a local average
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Effect of the bandwidth h
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Smoothing Kernels

Risk = E(Y − m̂h(X ))2 = bias2 + variance + σ2.

bias2 ≈ h4,

variance ≈ 1
nhp where p = dimension of X .

σ2 = E(Y −m(X ))2 is the unavoidable prediction error.

small h: low bias, high variance (undersmoothing)
large h: high bias, low variance (oversmoothing)
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Risk Versus Bandwidth

h
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Risk
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Estimating the Risk: Cross-Validation

To choose h we need to estimate the risk R(h). We can estimate the
risk by using cross-validation.

1 Omit (Xi ,Yi) to get m̂h,(i), then predict: Ŷ(i) = m̂h,(i)(Xi).
2 Repeat this for all observations.
3 The cross-validation estimate of risk is:

R̂(h) =
1
n

n∑
i=1

(Yi − Ŷ(i))
2.

Shortcut formula:

R̂(h) =
1
n

n∑
i=1

(
Yi − Ŷi

1− Lii

)2

where Lii = Kh(Xi ,Xi)/
∑

t Kh(Xi ,Xt ).
11



Summary so far

1 Compute m̂h for each h.
2 Estimate the risk R̂(h).

3 Choose bandwidth ĥ to minimize R̂(h).
4 Let m̂(x) = m̂bh(x).
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Example
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Another Approach: Mercer Kernels

Instead of using local smoothing, we can optimize the fit to the data
subject to regularization (penalization). Choose m̂ to minimize∑

i

(Yi − m̂(Xi))2 + λ penalty(m)

where penalty(m) is a roughness penalty.

λ is a smoothing parameter that controls the amount of smoothing.

How do we construct a penalty that measures roughness? One
approach is: Mercer Kernels and RKHS = Reproducing Kernel Hilbert
Spaces.
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What is a Mercer Kernel?

A Mercer Kernel K (x , y) is symmetric and positive definite:∫ ∫
f (x)f (y)K (x , y) dx dy ≥ 0 for all f .

Example: K (x , y) = e−||x−y ||2/2.

Think of K (x , y) as the similarity between x and y . We will create a
set of basis functions based on K .

Fix z and think of K (z, x) as a function of x . That is,

K (z, x) = Kz(x)

is a function of the second argument, with the first argument fixed.
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Mercer Kernels

Let

F =

{
f (·) =

k∑
j=1

βj K (zj , ·)

}

Define a norm: ‖f‖K =
∑

j
∑

k βjβkK (zj , zk ). ‖f‖K small means f
smooth.

If f =
∑

r αr K (zr , ·), g =
∑

s βsK (ws, ·), the inner product is

〈f ,g〉K =
∑

r

∑
s

αrβsK (zr ,ws).

F is a reproducing kernel Hilbert space (RKHS) because

〈f ,K (x , ·)〉 = f (x)
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Nonparametric Regression: Mercer Kernels

Representer Theorem: Let m̂ minimize

J =
n∑

i=1

(Yi −m(Xi))2 + λ‖m‖2K .

Then

m̂(x) =
n∑

i=1

αi K (Xi , x)

for some α1, . . . , αn.

So, we only need to find the coefficients

α = (α1, . . . , αn).
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Nonparametric Regression: Mercer Kernels

Plug m̂(x) =
∑n

i=1 αiK (Xi , x) into J:

J = ||Y −Kα||2 + λαT Kα

where Kjk = K (Xj ,Xk )

Now we find α to minimize J. We get: α̂ = (K + λI)−1Y and
m̂(x) =

∑
i α̂iK (Xi , x).

The estimator depends on the amount of regularization λ. Again,
there is a bias-variance tradeoff. We choose λ by cross-validation.
This is like the bandwidth in smoothing kernel regression.

18



Smoothing Kernels Versus Mercer Kernels

Smoothing kernels: the bandwidth h controls the amount of
smoothing.

Mercer kernels: norm ‖f‖K controls the amount of smoothing.

In practice these two methods give answers that are very similar.
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Mercer Kernels: Examples
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Multiple Regression

Both methods extend easily to the case where X has dimension
p > 1. For example, just use

K (x , y) = e−‖x−y‖2/2.

However, this is hard to interpret and is subject to the curse of
dimensionality. This means that the statistical performance and the
computational complexity degrade as dimension p increases.

An alternative is to use something less nonparametric such as
additive model where we restrict m(x1, . . . , xp) to be of the form:

m(x1, . . . , xp) = β0 +
∑

j

mj(xj).

21



Topics

• Nonparametric regression

• Sparse additive models

• Nonparametric graphical models
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Additive Models

Model: m(x) = β0 +
∑p

j=1 mj(xj).

We can take β̂0 = Y and we will ignore β0 from now on.

We want to minimize

n∑
i=1

(
Yi −

(
m1(Xi1) + · · ·+ mp(Xip)

))2

subject to mj smooth.
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Additive Models

The backfitting algorithm:

• Set m̂j = 0
• Iterate until convergence:

• Iterate over j :
• Ri = Yi −

∑
k 6=j m̂k (Xik )

• m̂j ←− smooth(Xj ,R)

Here, smooth(Xj ,R) is any one-dimensional nonparametric regression
function.

R: glm

But what if p is large?
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Sparse Additive Models
Ravikumar, Lafferty, Liu and Wasserman, JRSS B (2009)

Additive Model: Yi =
∑p

j=1 mj(Xij) + εi , i = 1, . . . ,n

High dimensional: n� p, with most mj = 0.

Optimization: minimize E
(

Y −
∑

j mj(Xj)
)2

subject to
p∑

j=1

√
E(m2

j ) ≤ Ln

E(mj) = 0

Related work by Bühlmann and van de Geer (2009), Koltchinskii and Yuan
(2010), Raskutti, Wainwright and Yu (2011)
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Sparse Additive Models

C =

{
m ∈ R4 :

√
m1(x1)2 + m1(x2)2 +

√
m2(x1)2 + m2(x2)2 ≤ L

}

π12C =

Geometry

9

1.1. Sparse Vectors 3

p =  0.5 p =  1

p =  1.5 p =  2

Figure 1.1. Lp neighborhoods for various values of p

π13C =

Geometry

9

1.1. Sparse Vectors 3

p =  0.5 p =  1

p =  1.5 p =  2

Figure 1.1. Lp neighborhoods for various values of p
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Stationary Conditions

Lagrangian

L(f , λ) =
1
2

E
(

Y −
∑p

j=1 mj(Xj)
)2

+ λ

p∑
j=1

√
E(m2

j (Xj))

Let Rj = Y −
∑

k 6=j mk (Xk ) be j th residual. Stationary condition

mj − E(Rj |Xj) + λvj = 0 a.e.

where vj ∈ ∂
√

E(m2
j ) satisfies

vj =
mj√

E(m2
j )

if E(m2
j ) 6= 0

√
Ev2

j ≤ 1 otherwise
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Stationary Conditions

Rewriting,

mj + λvj = E(Rj |Xj) ≡ Pj1 +
λ√

E(m2
j )

mj = Pj if E(P2
j ) > λ

mj = 0 otherwise

This implies

mj =

1− λ√
E(P2

j )


+

Pj

28



SpAM Backfitting Algorithm

Input: Data (Xi ,Yi), regularization parameter λ.
Iterate until convergence:

For each j = 1, . . . ,p:

Compute residual: Rj = Y −
∑

k 6=j m̂k (Xk )

Estimate projection Pj = E(Rj |Xj), smooth: P̂j = SjRj

Estimate norm: sj =
√

E[Pj ]2

Soft-threshold: m̂j ←
[
1− λ

ŝj

]
+

P̂j

Output: Estimator m̂(Xi) =
∑

j m̂j(Xij).
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Example: Boston Housing Data

Predict house value Y from 10 covariates.

We added 20 irrelevant (random) covariates to test the method.

Y = house value; n = 506, p = 30.

Y = β0 + m1(crime) + m2(tax) + · · ·+ · · ·m30(X30) + ε.

Note that m11 = · · · = m30 = 0.

We choose λ by minimizing the estimated risk.

SpAM yields 6 nonzero functions. It correctly reports that
m̂11 = · · · = m̂30 = 0.
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L2 norms of fitted functions versus 1/λ
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Estimated Risk Versus λ
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Example Fits
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Example Fits
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RKHS Version
Raskutti, Wainwright and Yu (2011)

Sample optimization

min
f

1
n

n∑
i=1

(
yi −

p∑
j=1

mj(xij)
)2

+ λ
∑

j

‖mj‖Hj + µ
∑

j

‖mj‖L2(Pn)

where ‖mj‖L2(Pn) =
√

1
n
∑n

i=1 m2
j (xij).

By Representer Theorem, with mj(·) = Kjαj ,

min
f

1
n

n∑
i=1

(
yi −

p∑
j=1

Kjαj

)2
+ λ

∑
j

√
αT

j Kjαj + µ
∑

j

√
αT

j K 2
j αj

Finite dimensional SOCP, but no scalable algorithms known.
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Open Problems

• Under what conditions do the backfitting algorithms converge?

• What guarantees can be given on the solution to the infinite
dimensional optimization?

• Is it possible to simultaneously adapt to unknown smoothness
and sparsity?
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Multivariate Regression

Y ∈ Rq and X ∈ Rp. Regression function M(X ) = E(Y |X ).

Linear model M(X ) = BX where B ∈ Rq×p.

Reduced rank regression: r = rank(B) ≤ C.

Recent work has studied properties and high dimensional scaling of
reduced rank regression where nuclear norm

‖B‖∗ :=

min(p,q)∑
j=1

σj(B)

as convex surrogate for rank constraint (Yuan et al., 2007; Negahban
and Wainwright, 2011)
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Nonparametric Reduced Rank Regression
Foygel, Horrell, Drton and Lafferty (2012)

Nonparametric multivariate regression M(X ) = (m1(X ), . . . ,mq(X ))T

Each component an additive model

mk (X ) =

p∑
j=1

mk
j (Xj)

What is the nonparametric analogue of ‖B‖∗ penalty?
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Low Rank Functions

What does it mean for a set of functions m1(x), . . . ,mq(x) to be low
rank?

Let x1, . . . , xn be a collection of points.

We require the n × q matrix M(x1:n) = [mk (xi)] is low rank.

Stochastic setting: M = [mk (Xi)]. Natural penalty is

‖M‖∗ =

q∑
s=1

σs(M) =

q∑
s=1

√
λs(MT M)

Population version:

|||M|||∗ :=
∥∥∥√Cov(M(X ))

∥∥∥
∗

=
∥∥∥Σ(M)1/2

∥∥∥
∗

39



Constrained Rank Additive Models (CRAM)

Let Σj = Cov(Mj). Two natural penalties:∥∥∥Σ
1/2
1

∥∥∥
∗

+
∥∥∥Σ

1/2
2

∥∥∥
∗

+ · · ·+
∥∥∥Σ

1/2
p

∥∥∥
∗∥∥∥(Σ

1/2
1 Σ

1/2
2 · · ·Σ1/2

p )
∥∥∥
∗

Population risk functional (first penalty)

1
2

E
∥∥∥Y −

∑
j

Mj(Xj)
∥∥∥2

2
+ λ

∑
j

∣∣∣∣∣∣Mj
∣∣∣∣∣∣
∗
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Stationary Conditions

Subdifferential is ∂|||F |||∗ =

{(√
E(FF>)

)−1
F + H

}
where

|||H|||sp ≤ 1, E(FH>) = 0, E(FF>)H = 0

Let P(X ) := E(Y |X ) and consider optimization

1
2

E
∥∥Y −M(X )

∥∥2
2 + λ |||M|||∗

Let E(PPT ) = U diag(τ) UT be the SVD. Define

M = U diag([1− λ/
√
τ ]+) UT P

Then M is a stationary point of the optimization, satisfying

E(Y |X ) = M(X ) + λV (X ) a.e., for some V ∈ ∂ |||M|||∗
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CRAM Backfitting Algorithm (Penalty 1)

Input: Data (Xi ,Yi), regularization parameter λ.
Iterate until convergence:

For each j = 1, . . . ,p:

Compute residual: Rj = Y −
∑

k 6=j f̂k (Xk )

Estimate projection Pj = E(Rj |Xj), smooth: P̂j = SjRj

Compute SVD: 1
n P̂j P̂T

j = U diag(τ) UT

Soft-threshold: M̂j = U diag([1− λ/
√
τ ]+)UT P̂j

Output: Estimator M̂(Xi) =
∑

j M̂j(Xij).
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Example

Data of Smith et al. (1962), chemical measurements for 33 individual
urine specimens.

q = 5 response variables: pigment creatinine, and the concentrations
(in mg/ml) of phosphate, phosphorus, creatinine and choline.

p = 3 covariates: weight of subject, volume and specific gravity of
specimen.

We use Penalty 2 with local linear smoothing.

We take λ = 1 and bandwidth h = .3.
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Xj \ Yk pigment creatinine phosphate phosphorus choline
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Statistical Scaling for Prediction

Let F be class of matrices of functions that have a functional SVD

M(X ) = UDV (X )>

where E(V>V ) = I, and V (X ) = [vsj(Xj)] with each vsj in a
second-order Sobolev space. Define

Mn =

{
M : M ∈ F , ‖D‖∗ = o

(
n

q + log(pq)

)1/4
}
.

Let M̂ minimize the empirical risk 1
n
∑

i ‖Yi −
∑

j Mj(Xij)‖22 over the
classMn. Then

R(M̂)− inf
M∈Mn

R(M)
P−→ 0 .
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Nonparametric CCA

Canonical correlation analysis (CCA, Hotelling, 1936) is classical
method for finding correlations between components of two random
vectors X ∈ Rp and Y ∈ Rq.

Sparse versions have been proposed for high dimensional data
(Witten & Tibshirani, 2009)

Sparse additive models can be extended to this setting.
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Sparse Additive Functional CCA
Balasubramanian, Puniyani and Lafferty (2012)

Population version of optimization:

max
f∈F , g∈G

E (f (X )g(Y )) subject to

max
j

E(f 2
j ) ≤ 1,

p∑
j=1

√
E(f 2

j ) ≤ Cf

max
k

E(g2
k ) ≤ 1,

q∑
k=1

√
E(g2

k ) ≤ Cg

Estimated with analogues of SpAM backfitting, together with
screening procedures. See ICML paper.
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Topics

• Nonparametric regression

• Sparse additive models

• Nonparametric graphical models
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Regression vs. Graphical Models

assumptions regression graphical models

parametric lasso graphical lasso

nonparametric sparse additive model nonparanormal
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The Nonparanormal (Liu, Lafferty, Wasserman, 2009)

A random vector X = (X1, . . . ,Xp)T has a nonparanormal distribution

X ∼ NPN(µ,Σ, f )

in case
Z ≡ f (X ) ∼ N(µ,Σ)

where f (X ) = (f1(X1), . . . , fp(Xp)).

Joint density

pX (x) =
1

(2π)p/2|Σ|1/2 exp
{
−1

2
(f (x)− µ)T Σ−1 (f (x)− µ)

} p∏
j=1

|f ′j (xj)|

• Semiparametric Gaussian copula
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Examples
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The Nonparanormal

• Define hj(x) = Φ−1(Fj(x)) where Fj(x) = P(Xj ≤ x).

• Let Λ be the covariance matrix of Z = h(X ). Then

Xj q Xk

∣∣∣∣∣ Xrest

if and only if Λ−1
jk = 0.

• Hence we need to:

1 Estimate ĥj(x) = Φ−1(F̂j(x)).

2 Estimate covariance matrix of Z = ĥ(X ) using the glasso.
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Winsorizing the CDF

Truncation to estimate F̂j for n > p:

−3 −2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Winsorized Estimator

We truncate the empirical distribution function

F̂j(t) ≡
1

n

n∑

i=1

1n

X(i)
j ≤t

o.

as

F̃j(x) =






δn if F̂j(x) < δn

F̂j(x) if δn ≤ F̂j(x) ≤ 1 − δn

(1 − δn) if F̂j(x) > 1 − δn,

where

δn ≡
1

4n1/4
√

π log n
.

Winsorized Estimator

We truncate the empirical distribution function

F̂j(t) ≡
1

n

n∑

i=1

1n

X(i)
j ≤t

o.

as

F̃j(x) =






δn if F̂j(x) < δn

F̂j(x) if δn ≤ F̂j(x) ≤ 1 − δn

(1 − δn) if F̂j(x) > 1 − δn,

where

δn ≡
1

4n1/4
√

π log n
.
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Properties

• LLW (2009) show that the resulting procedure has the same
theoretical properties as the glasso, even with dimension p
increasing with n.

• The truncation of the empirical distribution is crucial for the
theoretical results when p is large, although in practice it does
not seem to matter too much.

• If the nonparanormal is used when the data are actually Normal,
little efficiency is lost.
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Gene-Gene Interactions for Arabidopsis thaliana

source: wikipedia.org

Dataset from Affymetrix microarrays,
sample size n = 118, p = 40 genes
(isoprenoid pathway).
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Example Results

NPN glasso difference
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Transformations for 3 Genes
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• These genes have highly non-Normal marginal distributions.

• The graphs are different at these genes.
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S&P Data (2003–2008): Graphical Lasso
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S&P Data: Nonparanormal
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S&P Data: Nonparanormal vs. Glasso
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The Nonparanormal SKEPTIC
Liu, Han, Yuan, Lafferty & Wasserman, 2012

Assuming X ∼ NPN(f ,Σ0), we have

Σ0
jk = 2 sin

(π
6
ρjk

)
where ρ is Spearman’s rho:

ρjk := Corr
(
Fj(Xj),Fk (Xk )

)
.

Empirical estimate:

ρ̂jk =

∑n
i=1(r i

j − r̄j)(r i
k − r̄k )√∑n

i=1(r i
j − r̄j)2 ·

∑n
i=1(r i

k − r̄k )2
.

Similar relation holds for Kendall’s tau.
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The Nonparanormal SKEPTIC

Using a Hoeffding inequality for U-statistics, we get

max
jk

∣∣∣Σ̂ρ
jk − Σ0

jk

∣∣∣ ≤ 3
√

2π
2

√
log d + log n

n
,

with probability at least 1− 1/n2.

Can thus estimate the covariance at the parametric rate

Punch line: For graph and covariance estimation, no loss in statistical
or computational efficiency comes from using Nonparanormal rather
than Normal graphical model.
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Graph-Valued Regression

• (X1,Y1), . . . , (Xn,Yn) where Yi is high-dimensional

• We’ll discuss one particular version: graph-valued regression
(Chen, Lafferty, Liu, Wasserman, 2010)

• Let G(x) be the graph for Y based on p(y |x)

• This defines a partition X1, . . . ,Xk where G(x) is constant over
each partition.

• Three methods to find G(x):
I Parametric

I Kernel graph-valued regression

I GO-CART (Graph-Optimized CART)
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Graph-Valued Regression

multivariate regression graphical model
(supervised) (unsupervised)
µ(x) = E(Y | x) Graph(Y ) = (V ,E)
Y ∈ Rp, x ∈ Rq (j , k) 6∈ E ⇐⇒ Yj q Yk |Yrest

@
@@R

�
��	

graph-valued regression
Graph(Y | x)

• Gene associations from phenotype (or vice versa)

• Voting patterns from covariates on bills

• Stock interactions given market conditions, news items
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Method I: Parametric

• Assume that Z = (X ,Y ) is jointly multivariate Gaussian.

• Σ =

0@ ΣX ΣXY
ΣYX ΣY

1A.

• Get Σ̂X , Σ̂Y , and Σ̂XY

• Get ΩX by the glasso.

• Σ̂Y |X = Σ̂Y − Σ̂YX Ω̂X Σ̂XY .

• But, the estimated graph does not vary with different values of X .
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Method II: Kernel Smoothing

• Y |X = x ∼ N(µ(x),Σ(x)).

Σ̂(x) =

∑n
i=1 K

(
‖x−xi‖

h

)
(yi − µ̂(x)) (yi − µ̂(x))T∑n

i=1 K
(
‖x−xi‖

h

)
µ̂(x) =

∑n
i=1 K

(
‖x−xi‖

h

)
yi∑n

i=1 K
(
‖x−xi‖

h

) .

• Apply glasso to Σ̂(x)

• Easy to do but recovering X1, . . . ,Xk requires difficult
post-processing.
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Method III: Partition Estimator

• Run CART but use Gaussian log-likelihood (on held out data) to
determine the splits

• This yields a partition X1, . . . ,Xk (and a correspdonding tree)

• Run the glasso within each partition element
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Simulated Data
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Climate Data
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Tradeoff

• Nonparanormal: Unrestricted graphs, semiparametric

• We’ll now trade off structural flexibility for greater
nonparametricity
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Forest Densities (Gupta, Lafferty, Liu, Wasserman, Xu, 2011)

A distribution is supported by a forest F with edge set E(F ) if

p(x) =
∏

(i,j)∈E(F )

p(xi , xj)

p(xi) p(xj)

∏
k∈V

p(xk )

• For known marginal densities p(xi , xj), best tree obtained by
minimum weight spanning tree algorithms.

• In high dimensions, a spanning tree will overfit.

• We prune back to a forest.
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Step 1: Constructing a Full Tree

• Compute kernel density estimates

f̂n1(xi , xj) =
1
n1

∑
s∈D1

1
h2

2
K

(
X (s)

i − xi

h2

)
K

X (s)
j − xj

h2


• Estimate mutual informations

În1(Xi ,Xj) =
1

m2

m∑
k=1

m∑
`=1

f̂n1(xki , x`j) log
f̂n1(xki , x`j)

f̂n1(xki) f̂n1(x`j)

• Run Kruskal’s algorithm (Chow-Liu) on edge weights
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Step 2: Pruning the Tree

• Heldout risk

R̂n2(fF ) = −
∑

(i,j)∈E

∫
f̂n2(xi , xj) log

f (xi , xj)

f (xi) f (xj)
dxidxj

• Selected forest given by

k̂ = arg min
k∈{0,...,p−1}

R̂n2

(
f̂bT (k)

n1

)

where T̂ (k)
n1

is forest obtained after k steps of Kruskal
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S&P Data: Forest Graph—Oops!
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S&P Data: Forest Graph
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S&P Data: Forest vs. Nonparanormal
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Summary

• Smoothing kernels, Mercer kernels

• Sparse additive models

• Constrained rank additive models

• Nonparametric graphical models: Nonparanormal and
forest-structured densities

• A little nonparametricity goes a long way.
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Summary

• Thresholded backfitting algorithms derived from subdifferential
calculus

• RKHS formulations are problematic

• Theory for infinite dimensional optimizations still incomplete

• Many extensions possible: Nonparanormal component analysis,
etc.

• Variations on additive models enjoy most of the good statistical
and computational properties of sparse linear models, with
relaxed assumptions

• We’re building a toolbox for large scale, high dimensional
nonparametric inference.
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