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Abstract We consider sensitivity analysis in terms of variational sets for nonsmooth vector optimization.
First, relations between variational sets, or their minima/weak minima, of a set-valued map and that of
its profile map are obtained. Second, given an objective map, relationships between the above sets of this
objective map and that of the perturbation map and weak perturbation map are established. Finally,
applications to constrained vector optimization are given. Many examples are provided to illustrate the
essentialness of the imposed assumptions and some advantages of our results.
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1 Introduction

Stability and sensitivity analysis are of great importance for optimization, as well as for other fields of
applied mathematics, from both the theoretical and practical view points. As usual, stability is under-
stood as a qualitative analysis, which concerns mainly studies of various continuity (or semicontinuity)
properties of solution maps and optimal-value maps. Sensitivity means a quantitative analysis, i.e., stud-
ies of kinds of derivatives of the mentioned maps. For sensitivity results in nonlinear programming using
classical derivatives, see, e.g., [1]. However, practical optimization problems are often nonsmooth. To
cope this crucial difficulty, most of approaches to studies of optimality conditions and sensitivity analysis
are based on generalized derivatives. Nowadays, set-valued maps (or multimaps) are involved frequently
in optimization-related models. In particular, for vector optimization, both perturbation and solution
maps are set-valued. One of the first and most important derivatives of a multimap is the contingent
derivative. In [2-8], behaviors of perturbation maps for vector optimization were investigated quanti-
tatively by making use of contingent derivatives. Higher-order sensitivity analysis was studied in [9,
13], applying kinds contingent derivatives. To the best of our knowledge, no other kinds of generalized
derivatives have been used in contributions to this topic, while so many notions of generalzed differ-
entiability have been introduced and applied effectively in investigations of optimality conditions, see
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excellent books [14-18]. We mention in more detail only several recent papers on generalized derivatives
of set-valued maps and optimality conditions. In [19, 20], optimality conditions for set-valued vector
optimization were discussed in terms of contingent derivatives. Variants of contingent epidderivatives
were developed with applications in optimality conditions for several types of solutions in [21-25]. In [26,
27], lower and upper Dini derivatives were used for a similar purpose. In [28, 29], radial epiderivatives
were the generalized differentiability for getting optimality conditions. Variants of higher-order radial
derivatives for establishing higher-order conditions were proposed in [31, 32]. In [33] the higher-order
Neustadt derivative was employed to extend the classical Dubovitski-Milyutin scheme. The higher-order
lower Hadamard directional derivative was the tool for set-valued vector optimization in [34]. In [10, 11],
higher-order variational sets of a multimap were proposed in dealing with optimality conditions for set-
valued optimization. Calculus rules for variational sets were established in [12] to ensure the applicability
of variational sets. We can expect that many generalized derivatives, besides the contingent ones, can be
employed effectively in sensitivity analysis. However, only few generalized derivatives admit extentions
to higher orders. Here we choose variational sets for higher-order considerations of perturbation maps,
since some advantages of this generalized differentiability were shown in [11-13], e.g., almost no assump-
tions are required for variational sets to exist (to be nonempty); direct calculating these sets is simply
a computation of a set limit; extentions to higher orders are direct; they are bigger than corresponding
sets of most derivatives (this property is decisively advantageous in establishing necessary optimality
conditions by separation techniques), etc.

The aim of this paper is to study properties of perturbation maps, in terms of higher-order variational
sets. Regarding solutions of vector optimization, we restrict ourselves to the two basic notions of (Pareto)
minima and weak minima. Correspondingly, our concern is to deal with perturbation maps and weak
perturbation maps. We employ variational sets in both assumptions and conclusions of our results. We
also show cases where our results can be employed but some existing results cannot. Examples are
provided to ensure the essentialness of each imposed assumption.

The plan of the paper is as follows. Some preliminary facts are given in Sect. 2 for our later use.
In Sect. 3, we prove relations between a variational set of a multifunction or the minima/weak minima
of this set and that of the corresponding profile multifunction. The obtained results are employed in
Sect. 4 to get relationships between the variational sets of a perturbation map or weak perturbation
map or the minima/weak minima of these sets and the corresponding ones of the feasible-set map to the
objective space. Sect. 5 is devoted to applications of the above sensitivity analysis to a set-constrained
vector optimization problem. In this case we go further to have an analysis including variational sets of
the constrained-set map into the decision space. Concluding observations are included in Sect. 6.

2 Preliminaries

Let X and Y be normed spaces, A ⊆ Y , BY the closed unit ball in Y , and S = {y ∈ Y : ||y|| = 1}.
By intA and clA we denote the interior and closure of A. N, Rk, and Rk

+ stand for the set of natural
numbers, the k-dimensional space and its nonnegative orthant, respectively (resp). We often use the
following notations: coneA = {λa : λ ≥ 0, a ∈ A}, cone+A = {λa : λ > 0, a ∈ A}. A nonempty subset
Q of a cone K is called a base of K iff K = coneQ and 0 6∈ clQ. It is easy to see that if K has a convex
base, then K is convex and pointed. For A ⊆ Y , ŷ ∈ A is said to be a (Pareto) minimum of A (with
respect to, shortly wrt, the ordering cone K) iff (A − ŷ) ∩ (−K) ⊆ K. When intK 6= ∅, ŷ ∈ A is said
to be a weak minimum of A iff (A− ŷ) ∩ (−intK) = ∅. Let MinKA (WMinKA) stand for the set of all
minima (weak minima) of A.

A subset A of Y is said to have the domination property iff A ⊆ MinKA + K. Similarly, when
intK 6= ∅, we say that A has the weak domination property iff A ⊆WMinKA+ (intK ∪ {0}).

For a set-valued map H : X ⇒ Y , the domain, graph and epigraph of H are denoted by domH, grH,
and epiH, resp. H +K is called the profile mapping of H. H is said to be calm around x0 ∈ domH iff
∃V (neighborhood of x0), ∃M > 0, ∀x ∈ V , H(x) ⊆ H(x0) +M ||x− x0||BY . The Kuratowski-Painlevé
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upper limit (lower limit, resp) of H at x0 is defined by

Limsup
x
H→x0

H(x) = {y ∈ Y : ∃xn ∈ domH : xn → x0,∃yn ∈ H(xn), yn → y}

(Liminf
x
H→x0

H(x) = {y ∈ Y : ∀xn ∈ domH : xn → x0,∃yn ∈ H(xn), yn → y}),

where x
H→ x0 means that x ∈ domH and x → x0. If we have Limsup

x
H→x0

H(x) = Liminf
x
H→x0

H(x),

then this value is called the (Kuratowski-Painlevé) limit of H at x0 and denoted by Lim
x
H→x0

H(x).

3 Variational Sets of Set-Valued Maps

In this section, let X and Y be normed spaces, K ⊆ Y a closed convex cone and F : X ⇒ Y . We recall
first the concept of variational sets of set-valued maps and establish some results on the relationship
between variational sets of F +K and F .
Definition 3.1 Let (x0, y0) ∈ grF , v1, · · · , vm−1 ∈ Y , and m ∈ N.

(i) ([10, 11]) The mth-order variational set of type 1 (type 2, resp) of F at (x0, y0) (relative to
v1, · · · , vm−1) is

V m(F, x0, y0, v1, · · · , vm−1) = Limsup
x

F→x0, t→0+

1

tm
(F (x)− y0 − tv1 − · · · − tm−1vm−1)

(Wm(F, x0, y0, v1, · · · , vm−1) = Limsup
x

F→x0 t→0+

1

tm−1
(cone+(F (x)− y0)− v1 − · · · − tm−2vm−1)).

(ii) If the upper limit in (i) is equal to the lower one, then this limit is called a proto-variational set of
order m of type 1 of F at (x0, y0). Similar terminology is defined for type 2.

We can easily prove the following formulas for V m and Wm:

V m(F, x0, y0, v1, · · · , vm−1) = {y ∈ Y |∃tn → 0+, ∃xn
F→ x0, ∃vn → y,∀n,

y0 + tnv1 + ...+ tm−1n vm−1 + tmn vn ∈ F (xn)},
Wm(F, x0, y0, v1, · · · , vm−1) = {y ∈ Y |∃tn → 0+, ∃xn

F→ x0, ∃vn → y,∀n,
v1 + ...+ tm−2n vm−1 + tm−1n vn ∈ cone+(F (xn)− y0)}.

Remark 3.1 Recall that themth-order contingent derivative of F at (x0, y0) (relative to (u1, v1), · · · , (um−1, vm−1))
is the map DmF (x0, y0, u1, v1, · · · , um−1, vm−1) : X ⇒ Y defined by

DmF (x0, y0, u1, v1, · · · , um−1, vm−1)(u) = Limsup
u′→u,t→0+

1

tm
(F (x0+tu1+· · ·+tm−1um−1+tmu′)−y0−tv1−· · ·−tm−1vm−1).

We can say roughly that the contingent derivative is a directional variant of variational set V m. Sim-
ilarly, most of generalized derivatives (e.g., the (upper) Dini derivative, Hadamard derivative, adjacent
derivative, etc) are also based on directional rates, while for the variational sets we allow the flexibility

xn
F→ x0. That is why these sets are big:

DmF (x0, y0, u1, v1, · · · , um−1, vm−1)X ⊆ V m(F, x0, y0, v1, · · · , vm−1) ⊆Wm(F, x0, y0, v1, · · · , vm−1).

The first simple result is about a relation between the variational sets of the two maps F and F +K.
Proposition 3.1

(i) V m(F, x0, y0, v1, · · · , vm−1) +K ⊆ V m(F +K,x0, y0, v1, · · · , vm−1);
(ii) Wm(F, x0, y0, v1, · · · , vm−1) +K ⊆Wm(F +K,x0, y0, v1, · · · , vm−1).
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Proof By the similarity we present only a proof for (ii). Let y ∈Wm(F, x0, y0, v1, · · · , vm−1) +K, i.e.,
there exist v ∈ Wm(F, x0, y0, v1, · · · , vm−1) and k ∈ K such that y = v + k. Then, there are tn → 0+

and xn
F→ x0 such that hn(v1 + · · ·+ tm−2n vm−1 + tm−1n (vn + k)) ∈ F (xn) +K − y0.

So, v + k ∈Wm(F +K,x0, y0, v1, · · · , vm−1) and the proof is complete. �
The inclusions opposite to those in Proposition 3.1 may not hold as the following example shows.

Example 3.1 Let X = R, Y = R2, K = R2
+, (x0, y0) = (0, (0, 0)), and F (x) is equal to {(0, 0)} if x = 0,

and to {(−1,−1)} if x 6= 0. Then, we have V 1(F, x0, y0) = {(0, 0)} and V 1(F + K,x0, y0) = R2. Thus,
V 1(F+K,x0, y0) 6⊆ V 1(F, x0, y0)+K. Let v1 = (0, 1) ∈ V 1(F+K,x0, y0). Then, V 2(F+K,x0, y0, v1) 6= ∅
and V 2(F, x0, y0, v1) = ∅. Consequently, V 2(F +K,x0, y0, v1) 6⊆ V 2(F, x0, y0, v1) +K.

For variational sets of type 2 one has W 1(F, x0, y0) +K = R2 = W 1(F +K,x0, y0), and
v1 ∈W 1(F +K,x0, y0). But, W 2(F +K,x0, y0, v1) = R2, W 2(F, x0, y0, v1) = ∅. Hence,
W 2(F +K,x0, y0, v1) 6⊆W 2(F, x0, y0, v1) +K.
Proposition 3.2 Suppose K have a compact convex base. Then,

(i) MinKV
m(F +K,x0, y0, v1, · · · , vm−1) ⊆ V m(F, x0, y0, v1, · · · , vm−1);

(ii) MinKW
m(F +K,x0, y0, v1, · · · , vm−1) ⊆Wm(F, x0, y0, v1, · · · , vm−1).

Proof We prove only (i). Let v ∈ MinKV
m(F + K,x0, y0, v1, · · · , vm−1). Then, there exist tn → 0+,

xn
F→ x0, yn ∈ F (xn), and kn ∈ K such that vn :=

1

tmn
(yn + kn− y0− tnv1− · · · − tm−1n vm−1)→ v. Then,

y0 + tnv1 + · · ·+ tm−1n vm−1 + tmn vn − kn ∈ F (xn). (1)

We claim that
kn
tmn
→ 0 (for a subsequence). For a convex compact base Q of K, one has kn = αnbn for

some αn ≥ 0 and bn ∈ Q and all n. If αn = 0 for infinitely many n ∈ N, we are done. Hence, let αn > 0

for all n. We may assume that bn → b ∈ Q. Then,
kn
tmn

=
αnbn
tmn
→ 0 if and only if

αn

tmn
→ 0. Suppose

αn

tmn
does not converge to 0. Then, nothing is lost by assuming that

αn

tmn
≥ ε for some ε > 0 and all n. Let

kn := (ε
tmn
αn

)kn. Then, kn − kn ∈ −K and y0 + tnv1 + · · · + tm−1n vm−1 + tmn vn − kn ∈ F (xn) + K. Since

kn
tmn
→ εb 6= 0, one has vn −

kn
tmn
→ v − εb, and hence v − εb ∈ V m(F +K,x0, y0, v1, · · · , vm−1). Thus,

−εb ∈ (V m(F +K,x0, y0, v1, · · · , vm−1)− v) ∩ (−K).

Because K has a convex base, −εb 6∈ K, contradicting the minimality of v. Therefore,
kn
tmn
→ 0. It

follows from (1) that y0 + tnv1 + · · ·+ tm−1n vm−1 + tmn (vn −
kn
tmn

) ∈ F (xn), and vn −
kn
tmn
→ v. Therefore,

v ∈ V m(F, x0, y0, v1, · · · , vm−1). �
For weak minima we do not have a similar result, as indicated by the following example.

Example 3.2 Let X = R, Y = R2, K = R2
+, (x0, y0) = (0, (0, 0)), and F (x)is equal to {(0, 0)} if x = 0,

to {(0,−1)} if x =
1

n
, to {( 1

n
,
−1

n
)} if x = sin

1

n
for n ∈ N, and to ∅ otherwise. Then, we have

V 1(F, x0, y0) = {(x, y) ∈ Y : y = −x, x ≥ 0},

W 1(F, x0, y0) = {(0, y) ∈ Y : y ≤ 0} ∪ {(x, y) ∈ Y : y = −x, x ≥ 0},

V 1(F +K,x0, y0) = W 1(F +K,x0, y0) = R+ × R.

Consequently, WMinKV
1(F +K,x0, y0) = WMinKW

1(F +K,x0, y0) = {0} × R. Therefore,
WMinKV

1(F +K,x0, y0) 6⊆ V 1(F, x0, y0), WMinKW
1(F +K,x0, y0) 6⊆W 1(F, x0, y0).

If intK 6= ∅, for weak minima, we have the following analogous properties.
Proposition 3.3 Suppose K̂ ⊆ intK ∪ {0} be a closed convex cone with a compact convex base. Then,
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(i) WMinKV
m(F + K̂, x0, y0, v1, · · · , vm−1) ⊆ V m(F, x0, y0, v1, · · · , vm−1);

(ii) WMinKW
m(F + K̂, x0, y0, v1, · · · , vm−1) ⊆Wm(F, x0, y0, v1, · · · , vm−1).

Proof Consider (ii). Since K̂ ⊆ intK ∪ {0}, any v ∈WMinKW
m(F + K̂, x0, y0, v1, · · · , vm−1) satisfies

v ∈Wm(F + K̂, x0, y0, v1, · · · , vm−1) ∩MinK̂W
m(F + K̂, x0, y0, v1, · · · , vm−1). (2)

Hence, there exist tn → 0+, xn
F→ x0, vn → v, kn ∈ K̂, and hn > 0 such that, for all n,

v1 + · · ·+ tm−2n vm−1 + tm−1n vn
hn

− kn ∈ F (xn)− y0. (3)

For a compact base Q̂ of K̂, there exist αn ≥ 0 and qn ∈ Q̂ such that kn = αnqn. We may assume that

qn → q ∈ Q̂. We claim that
hnαn

tm−1n
→ 0 (for a subsequence). This is true if αn = 0 for infinitely many

n ∈ N. Now, suppose to the contrary that αn > 0, for all n, and
hnαn

tm−1n
6→ 0. Then, we may assume

that
hnαn

tm−1n
≥ ε for some ε > 0 and all n. Let kn :=

εtm−1n

hnαn
kn ∈ K̂. Then, we have kn − kn ∈ K̂. By (3),

we obtain
v1 + · · ·+ tm−2n vm−1 + tm−1n vn

hn
− kn ∈ F (xn) + K̂ − y0. As

hnkn

tm−1n
→ εq 6= 0, this implies that

v−εq ∈Wm(F+K̂, x0, y0, v1, · · · , vm−1). Therefore, −εq ∈ (Wm(F+K̂, x0, y0, v1, · · · , vm−1)−v)∩(−K̂),

and −εq 6∈ K̂, which contradicts (2). Hence,
hnαn

tm−1n
→ 0 and vn −

hnkn

tm−1n
→ v. It follows from (3) that

v ∈Wm(F, x0, y0, v1, · · · , vm−1) and the proof is complete. �
To get the equalities in Proposition 3.1, we need the following new notion.

Definition 3.2 Let (x0, y0) ∈ grF , v1, · · · , vm−1 ∈ Y , and m ∈ N. The mth-order singular variational
set of type 1 (type 2, resp) of F at (x0, y0) is defined by

V∞(m)(F, x0, y0, v1, · · · , vm−1) = {y ∈ Y | ∃xn
F→ x0,∃tn → 0+,∃λn → 0+,

∃yn ∈
F (xn)− y0 − tnv1 − · · · − tm−1n vm−1

tmn
, λnyn → y}

(W∞(m)(F, x0, y0, v1, · · · , vm−1) = {y ∈ Y | ∃xn
F→ x0,∃tn → 0+,∃λn → 0+,

∃yn ∈
cone+(F (xn)− y0)− v1 − · · · − tm−2n vm−1

tm−1n
, λnyn → y}).

Proposition 3.4 Let K have a compact convex base.
(i) Let either of the following conditions hold:

(i1) V
m(F +K,x0, y0, v1, · · · , vm−1) has the domination property;

(i2) V
∞(m)(F, x0, y0, v1, · · · , vm−1) ∩ (−K) = {0}.

Then,
V m(F +K,x0, y0, v1, · · · , vm−1) = V m(F, x0, y0, v1, · · · , vm−1) +K, (4)

MinKV
m(F +K,x0, y0, v1, · · · , vm−1) = MinKV

m(F, x0, y0, v1, · · · , vm−1). (5)

(ii) Let either of the following two conditions hold:
(ii1) W

m(F +K,x0, y0, v1, · · · , vm−1) has the domination property;
(ii2) W

∞(m)(F, x0, y0, v1, · · · , vm−1) ∩ (−K) = {0}.
Then,

Wm(F +K,x0, y0, v1, · · · , vm−1) = Wm(F, x0, y0, v1, · · · , vm−1) +K,

MinKW
m(F +K,x0, y0, v1, · · · , vm−1) = MinKW

m(F, x0, y0, v1, · · · , vm−1).

Proof We prove only (i). First, we check (4). By Proposition 3.1(i), we need simply to verify that

V m(F +K,x0, y0, v1, · · · , vm−1) ⊆ V m(F, x0, y0, v1, · · · , vm−1) +K.
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If (i1) holds, then V m(F +K,x0, y0, v1, · · · , vm−1) ⊆ MinKV
m(F +K,x0, y0, v1, · · · , vm−1) +K. Hence,

(4) is satisfied, since we have (by Proposition 3.2)

MinKV
m(F +K,x0, y0, v1, · · · , vm−1) +K ⊆ V m(F, x0, y0, v1, · · · , vm−1) +K.

If (i2) holds and v ∈ V m(F+K,x0, y0, v1, · · · , vm−1), then there exist tn → 0+, xn
F→ x0, yn ∈ F (xn),

and kn ∈ K such that
1

tmn
(yn + kn − y0 − tnv1 − · · · − tm−1n vm−1) → v. If one has n0 such that kn = 0

for all n ≥ n0, then, v ∈ V m(F, x0, y0, v1, · · · , vm−1). If there is a subsequence, denoted again by {kn}

with kn 6= 0, we claim that {||kn||
tmn
} be bounded. Indeed, otherwise we may assume that

||kn||
tmn

→∞ and

kn
||kn||

→ k ∈ K \ {0}. Setting

vn :=
yn + kn − y0 − tnv1 − · · · − tm−1n vm−1

tmn
, λn :=

tmn
||kn||

,

we get

λn
yn − y0 − tnv1 − · · · − tm−1n vm−1 − tmn vn

tmn
→ −k ∈ −K \ {0}.

As λn → 0+, this means −k ∈ V∞(m)(F, x0, y0, v1, · · · , vm−1)∩−K \{0}, contradicting (i2). So, {||kn||
tmn
}

is bounded and
||kn||
tmn

→ a ≥ 0. With vn :=
1

||kn||
(yn − y0 − tnv1 − · · · − tm−1n vm−1 − tmn vn), one has

y0 + tnv1 + · · ·+ tm−1n vm−1 + tmn (vn +
||kn||vn
tmn

) = yn ∈ F (xn).

It easy to see that vn +
||kn||vn
tmn

→ v−ak. Thus, v−ak ∈ V m(F, x0, y0, v1, · · · , vm−1) and (4) is satisfied.

(5) is implied directly from (4) and Proposition 2.2. �
The following result for weak minima can be proved similarly as Proposition 4.3.

Proposition 3.5 Let K̂ ⊆ intK ∪ {0} be a closed convex cone with a compact convex base.
(i) Impose either of the following two conditions:

(i1) V
m(F + K̂, x0, y0, v1, · · · , vm−1) has the weak domination property;

(i2) V
∞(m)(F, x0, y0, v1, · · · , vm−1) ∩ (−K̂) = {0}.

Then,

WMinKV
m(F, x0, y0, v1, · · · , vm−1) = WMinKV

m(F + K̂, x0, y0, v1, · · · , vm−1).

(ii) Let either of the following conditions hold:
(ii1) W

m(F + K̂, x0, y0, v1, · · · , vm−1) possesses the weak domination property;
(ii2) W

∞(m)(F, x0, y0, v1, · · · , vm−1) ∩ (−K̂) = {0}.
Then,

WMinKW
m(F, x0, y0, v1, · · · , vm−1) = WMinKW

m(F + K̂, x0, y0, v1, · · · , vm−1).

4 Variational Sets of Perturbation Maps

In this section, we apply the results of Sect. 3 to set-valued optimization. Let U be a normed space of
perturbation parameters, Y be the objective (normed) space ordered partially by a closed convex cone
K, and F : X ⇒ Y . One aims at finding minima or weak minima of F (u) for a given parameter value
u. Hence, we define set-valued maps G and S from U to Y by, for u ∈ U ,

G(u) = MinKF (u), S(u) = WMinKF (u).
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As it is well-known, G and S are called the perturbation map and weak perturbation map, resp. The
purpose of this section is to investigate relationships between the variational sets of F and that of G and
S, including relations between minima or weak minima of these variational sets.

F has the domination property around u0 iff there exists a neighborhood V of u0 such that F (u) has
the domination property for all u ∈ V . F has the weak domination property around u0 with respect to
(wrt) K̂ iff there exists a neighborhood V of u0 such that F (u) ⊆WMinKF (u) + K̂ for all u ∈ V .
Remark 4.1 (i) Suppose y0 ∈ G(u0) and F have the domination property around u0. Then,

V m(G+K,u0, y0, v1, · · · , vm−1) = V m(F +K,u0, y0, v1, · · · , vm−1),

Wm(G+K,u0, y0, v1, · · · , vm−1) = Wm(F +K,u0, y0, v1, · · · , vm−1).

(ii) If y0 ∈ S(u0) and F has the weak domination property around u0 wrt K̂, then

V m(S + K̂, u0, y0, v1, · · · , vm−1) = V m(F + K̂, u0, y0, v1, · · · , vm−1),

Wm(S + K̂, u0, y0, v1, · · · , vm−1) = Wm(F + K̂, u0, y0, v1, · · · , vm−1).

Theorem 4.1 Let (u0, y0) ∈ grG and v1, · · · , vm−1 ∈ Y . Let F have the domination property around
u0, and K have a compact convex base.

(i) Assume further either of the following two conditions:
(i1) V

m(F +K,u0, y0, v1, · · · , vm−1) has the domination property;
(i2) V

∞(m)(F, u0, y0, v1, · · · , vm−1) ∩ (−K) = {0}.
Then,

MinKV
m(F, u0, y0, v1, · · · , vm−1) = MinKV

m(G, u0, y0, v1, · · · , vm−1).

(ii) Impose either of the following conditions:
(ii1) W

m(F +K,u0, y0, v1, · · · , vm−1) has the domination property;
(ii2) W

∞(m)(F, u0, y0, v1, · · · , vm−1) ∩ (−K) = {0}.
Then,

MinKW
m(F, u0, y0, v1, · · · , vm−1) = MinKW

m(G, u0, y0, v1, · · · , vm−1).

Proof We prove only Assertion (i). Remark 4.1(i) yields that V m(G+K,u0, y0, v1, · · · , vm−1) also has
the domination property. Because either (i1) or (i2) holds, from Proposition 3.4 we get

MinKV
m(F, u0, y0, v1, · · · , vm−1) = MinKV

m(F +K,u0, y0, v1, · · · , vm−1)

= MinKV
m(G+K,u0, y0, v1, · · · , vm−1) = MinKV

m(G, u0, y0, y1, · · · , ym−1).

�
The following example illustrates Theorem 4.1.

Example 4.1 Let U = R, Y = R2, K = R2
+, u0 = 0, y0 = (0, 0), and

F (u) = {(y1, y2) ∈ Y : y1 = u, y2 ≥ |y1|} for u ∈ U . Then, G(u) = {(y1, y2) ∈ Y : y1 = u, y2 = |y1|}.
Let vi = (−1, 1) for i = 1, · · · ,m− 1. Direct calculations give

V m(F, u0, y0, v1, · · · , vm−1) = Wm(F, u0, y0, v1, · · · , vm−1) =

{
{(y1, y2) ∈ Y : y2 ≥ |y1|}, if m = 1,
{(y1, y2) ∈ Y : y1 + y2 ≥ 0}, if m > 1.

V m(G, u0, y0, v1, · · · , vm−1) = Wm(G, u0, y0, v1, · · · , vm−1) =

{
{(y1, y2) ∈ Y : y2 = |y1|}, if m = 1,
{(y1, y2) ∈ Y : y1 + y2 = 0}, if m > 1.

We can check that the assumptions of Theorem 4.1 are satisfied for all m. Direct checking yields

MinKV
m(F, u0, y0, v1, · · · , vm−1) = MinKV

m(G, u0, y0, v1, · · · , vm−1) = MinKW
m(G, u0, y0, v1, · · · , vm−1)

=

{
{(y1, y2) ∈ Y : y1 ≤ 0, y2 = |y1|}, if m = 1,
{(y1, y2) ∈ Y : y1 + y2 = 0}, if m > 1.
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Similarly, by Remark 4.1(ii) and Proposition 3.5, we have the following for weak minima.
Theorem 4.2 Let (u0, y0) ∈ grS and v1, · · · , vm−1 ∈ Y . Let F have the weak domination property
around u0 wrt K̂, where K̂ ⊆ intK ∪ {0} is a closed convex cone having a compact convex base.

(i) Let either of the following two conditions hold:
(i1) V

m(F + K̂, u0, y0, v1 · · · , vm−1) has the weak domination property;
(i2) V

∞(m)(F, u0, y0, v1, · · · , vm−1) ∩ (−K̂) = {0}.
Then,

WMinKV
m(F, u0, y0, v1, · · · , vm−1) = WMinKV

m(S, u0, y0, v1, · · · , vm−1).

(ii) Impose one of the following two conditions:
(ii1) W

m(F + K̂, u0, y0, v1, · · · , vm−1) has the weak domination property;
(ii2) W

∞(m)(F, u0, y0, v1, · · · , vm−1) ∩ (−K̂) = {0}.
Then,

WMinKW
m(F, u0, y0, v1, · · · , vm−1) = WMinKW

m(S, u0, y0, v1, · · · , vm−1).

Example 4.2 Let U = R, Y = R2, K = R2
+, u0 = 0, y0 = (0, 0), and F (u) is equal to {(y1, y2) ∈ Y :

y1 = u, y2 ≥ −y1} if u ≤ 0, and to {(y1, y2) ∈ Y : 0 ≤ y1 ≤ u, y2 ≥ 0} if u > 0. Then, S(u) is equal
to {(y1, y2) ∈ Y : y1 = u, y2 ≥ −y1} if u ≤ 0, and to {(y1, y2) ∈ Y : 0 ≤ y1 ≤ u, y2 = 0} if u > 0. Let
vi = (1, 0) for i = 1, · · · ,m − 1. Direct computations yield that V m(F, u0, y0, v1, · · · , vm−1) is equal to
R2
+∪{(y1, y2) ∈ Y : y1 ≤ 0, y2 ≥ −y1} if m = 1, and to R×R+ if m > 1, and V m(S, u0, y0, v1, · · · , vm−1)

is equal to {(y1, y2) ∈ Y : y1 ≤ 0, y2 ≥ −y1} ∪ (R+ × {0}) if m = 1, and to R× {0} if m > 1.
For each of F and S, the variational sets of the two types coincide for all m ≥ 1. We can check that

the assumptions of Theorem 4.2 are fulfilled for all m (for an arbitrary closed convex cone K̂ such that
K̂ ∈ intR2

+ ∪ {(0, 0)}). Direct verifying gives

WMinKV
m(F, u0, y0, v1, · · · , vm−1) = WMinKV

m(S, u0, y0, v1, · · · , vm−1) = WMinKW
m(S, u0, y0, v1, · · · , vm−1)

=

{
{(y1, y2) ∈ Y : y1 ≤ 0, y2 = −y1} ∪ (R+ × {0}), if m = 1,
R× {0}, if m > 1.

Note that the set of (Pareto) minima is much smaller than that of weak minima: G(u) is equal to
{(y1, y2) ∈ Y : y1 = u, y2 = −y1} if u ≤ 0, and to {(0, 0)} if u > 0. For vi = (1, 0), i = 1, · · · ,m− 1, we
have V 1(G, u0, y0) = Wm(G, u0, y0) = {(y1, y2) ∈ Y : y1 ≤ 0, y2 = −y1}, and they are empty for m > 1.
We can check that the assumptions of Theorem 4.1 are satisfied for m = 1 and

MinKV
1(F, u0, y0) = MinKV

1(G, u0, y0) = MinKW
1(G, u0, y0) = {(y1, y2) ∈ Y : y1 ≤ 0, y2 = −y1)}.

In the following case, Theorems 4.1 and 4.2 can be used, but some recent existing results cannot.
Example 4.3 Let U = R, Y = R2, K = R2

+, u0 = 0, y0 = (0, 0), and F (u) is equal to {(0, 0)} if u = 0,

and to {(0, 0); (
1

n3
,
−1

n3
); (
−1

n3
,

1

n3
)} if u =

1

n
for n ∈ N, and is empty otherwise.

Then, S(u) = G(u) = F (u). For v1 = (1,−1), v2 = (−1, 1). Calculations give

V 1(F, u0, y0) = W 1(F, u0, y0) = {(y1, y2) ∈ Y : y1 + y2 = 0},

V 2(F, u0, y0, v1) = W 2(F, u0, y0, v1) = {(y1, y2) ∈ Y : y1 + y2 = 0},

V 3(F, u0, y0, v1, v2) = W 3(F, u0, y0, v1, v2) = {(y1, y2) ∈ Y : y1 + y2 = 0}.

We can check that the assumptions of Theorems 4.1 and 4.2 are satisfied. Calculating the lower Stud-
niarski derivative of F at (u0, y0) (see [13] for the definition), we have dmF (u0, y0)(u) = ∅ for all u ∈ R.
Hence, Theorems 4.1-4.3 and Corollaries 4.1-4.3 of [13] cannot be in use.

Theorems 4.3, 4.7, and 4.10 of [9] in terms of second-order contingent derivatives cannot be applied
either, since D2F (u0, y0, u1, v1)(u) = ∅, for all u ∈ R.
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Proposition 4.1 Let (u0, y0) ∈ grS and v1, · · · , vm−1 ∈ Y . Let F have a proto-variational set of order
m of type 1 at (u0, y0), and intK 6= ∅. Then,

V m(S, u0, y0, v1, · · · , vm−1) ⊆WMinKV
m(F, u0, y0, v1, · · · , vm−1).

Proof Let y ∈ V m(S, u0, y0, v1, · · · , vm−1), i.e., there exist tn → 0+, un
S→ u0, and yn → y such that

y0 + tnv1 + · · ·+ tmn yn ∈ S(un) ⊆ F (un), (6)

and y ∈ V m(F, u0, y0, v1, · · · , vm−1). Suppose y 6∈ WMinKV
m(F, u0, y0, v1, · · · , vm−1), i.e., there exists

y′ ∈ V m(F, u0, y0, v1, · · · , vm−1) such that y−y′ ∈ intK. For the above sequences tn and un, there exists
y′n → y′ such that y0 + tnv1 + · · ·+ tmn y

′
n ∈ F (un), and yn − y′n ∈ intK for large n. Consequently,

(y0 + tnv1 + · · ·+ tmn yn)− (y0 + tnv1 + · · ·+ tmn y
′
n) = tmn (yn − y′n) ∈ intK,

i.e., y0 + tnv1 + · · ·+ tmn yn 6∈WMinKF (un) = S(un), which contradicts (6). �
Unfortunately, the similar result is not true for Wm, as indicated by the next example.

Example 4.4 Let U = R, Y = R2, K = R2
+, and F (u) is equal to ({0} × R) ∪ (R× {0}) ∪ {(x, y) :

x2 + y2 = 1} u = 0, and empty if u 6= 0. Then, S(u) ≡WMinKF (u) and S(u) is equal to ((−∞,−1)
×{0}) ∪ ({0} × (−∞,−1)) ∪ {(x, y) : x2 + y2 = 1, x ≤ 0, y ≤ 0} if u = 0, and empty if u 6= 0. F has a
proto-variational set at (0, (−1, 0)) and W 1(F, 0, (−1, 0)) = (R+ × R) ∪ (R− × {0}). However, we have

WMinKW
1(F, 0, (−1, 0)) = ({0} × R−) ∪ (R− × {0}),

W 1(S, 0, (−1, 0)) = (R− × {0}) ∪ {(x, y) : y ≤ −x, x ≥ 0},

and hence W 1(S, 0, (−1, 0)) 6⊆WMinKW
1(F, 0, (−1, 0)).

Replacing ”S” in Proposition 4.1 by ”G” is impossible as shown now.
Example 4.5 Let U = R, Y = R2, K = R2

+, and F (u) is equal to {(x, y) : x > 0, y < −x} ∪ {(x, y) : y
= −x} if u = 0, and empty if u 6= 0. Then, G(u) ≡ MinKF (u) is defined by G(0) = {(x, y) : y = −x,
x ≤ 0} and G(u) = ∅ for any u 6= 0. We see that F has the following proto-variational set V 1(F, 0, (0, 0))
= {(x, y) : x ≥ 0, y < −x} ∪ {(x, y) : y = −x}. Since MinKV

1(F, 0, (0, 0)) = {(x, y) : y = −x, x < 0},
V 1(G, 0, (0, 0)) = {(x, y) : y = −x, x ≤ 0}, one has V 1(G, 0, (0, 0)) 6⊆ MinKV

1(F, 0, (0, 0)).
Theorem 4.3 Let (u0, y0) ∈ grS and v1, · · · , vm−1 ∈ Y . Let K̂ be a closed convex cone contained in
intK ∪ {0} and have a compact convex base. Let the following conditions be satisfied:

(i) either of the following holds
(i1) V

m(F + K̂, u0, y0, v1, · · · , vm−1) has the weak domination property;
(i2) V

∞(m)(F, u0, y0, v1, · · · , vm−1) ∩ (−K̂) = {0};
(ii) F has the weak domination property around u0 wrt K̂;
(iii) F has a proto-variational set of order m of type 1 at (u0, y0).
Then,

V m(S, u0, y0, v1, · · · , vm−1) = WMinKV
m(F, u0, y0, v1, · · · , vm−1).

Proof Obviously, by Proposition 4.1, we need to prove only that

V m(S, u0, y0, v1, · · · , vm−1) ⊇WMinKV
m(F, u0, y0, v1, · · · , vm−1).

Propositions 3.3, 3.5, and Remark 4.1(ii) together imply that

WMinKV
m(F, u0, y0, v1, · · · , vm−1) = WMinKV

m(F + K̂, u0, y0, v1, · · · , vm−1)

= WMinKV
m(S + K̂, u0, y0, v1, · · · , vm−1) ⊆ V m(S, u0, y0, v1, · · · , vm−1).

�

5 Applications to Constrained Vector Optimization
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In this section, we consider the following two constrained vector optimization problems, where both the
objective map and the constraint set depend on a perturbation parameter,

MinK F (x, u), subject to x ∈ X(u), (7)

WMinK F (x, u), subject to x ∈ X(u). (8)

Here, as before U,W, Y are normed spaces, K is a nonempty closed convex ordering cone in Y , which is
now assumed additionally to be pointed, F is a set-valued objective map from W × U to Y , and X is a
set-valued map from U to W . We define a set-valued map H from U to Y by

H(u) = F (X(u), u) = {y ∈ Y : y ∈ F (x, u), x ∈ X(u)}.

So, H(u) is the parameterized feasible set in the objective space. In problems (7) and (8), we aim to
obtain minima and weak minima of H(u), resp. The solution sets in Y to problems (7) and (8) are
denoted by MinKH(u) and WMinKH(u), resp. Like in Sect. 4, we define

G(u) = MinKH(u), S(u) = WMinKH(u).

We need the following new definition.
Definition 5.1 Let W,U, Y be normed spaces, F : W × U ⇒ Y , ((x0, u0), y0) ∈ grF , x ∈W , (wi, vi)
∈W × Y for i = 1, · · · ,m− 1.

(i) The mth-order upper (lower, resp) variation of F at ((x0, u0), y0) wrt x is

V m
q (F, (x0[x], u0), y0, w1, v1, · · · , wm−1, vm−1) = {v : ∃tn → 0+, ∃hn → 0+,∃xn → x,∃un → u0,∃vn → v,∀n,

y0 + hnv1 + · · ·+ hm−1n vm−1 + hmn vn ∈ F (x0 + tnw1 + · · ·+ tm−1n wm−1 + tmn xn, un)}

(V m
q (F, (x0[x], u0), y0, w1, v1..., wm−1, vm−1) = {v : ∀tn → 0+, ∀xn → x,∀un → u0, ∃vn → v,∀n,

y0 + tnv1 + ...+ tm−1n vm−1 + tmn vn ∈ F (x0 + tnw1 + ...+ tm−1n wm−1 + tmn xn, un)}).

(ii) F is said to have a mth-order proto variation of F at ((x0, u0), y0) iff, for all x,

V m
q (F, (x0[x], u0), y0, w1, v1, · · · , wm−1, vm−1) = V m

q (F, (x0[x], u0), y0, w1, v1, · · · , wm−1, vm−1).

We now investigate connections of a proto variation of F and a variational set of X to the corre-
sponding variational set of H.
Proposition 5.1 Let u0 ∈ U , x0 ∈ X(u0), and y0 ∈ F (x0, u0). If F has a mth-order proto variation at
((x0, u0), y0), then ⋃

x∈V m(X,u0,x0,w1,··· ,wm−1)

V m
q (F, (x0[x], u0), y0, w1, v1, · · · , wm−1, vm−1)

 ⊆ V m(H,u0, y0, v1, · · · , vm−1).

(9)
Moreover, if W is finite dimensional, X̃(u, y) := {x ∈ Rn : x ∈ X(u), y ∈ F (x, u)} is calm around
(u0, y0), X̃(u0, y0) = {x0}, and V 1

q (X̃, (u0, y0[0]), x0) = {0}, then, the inclusion opposite to (9) is valid.
Proof Let there exist x ∈ V m(X,u0, x0, w1, · · · , wm−1) such that v ∈ V m

q (F, (x0[x], u0), y0, w1, v1, · · · ,
wm−1, vm−1). x ∈ V m(X,u0, x0, w1, · · · , wm−1) means the existence of tn → 0+, un → u0, xn

X→ x such
that, for all n, x0 + tnw1 + · · ·+ tm−1n wm−1 + tmn xn ∈ X(un). Then,

F (x0 + tnw1 + · · ·+ tm−1n wm−1 + tmn xn, un) ⊆ H(un). (10)

Because v ∈ V m
q (F, (x0[x], u0), y0, w1, v1, · · · , wm−1, vm−1), with the above tn, un, xn, there exists

yn ∈ F (x0 + tnw1 + · · ·+ tm−1n wm−1 + tmn xn, un) such that
1

tmn
(yn− y0− tnv1− · · · − tm−1n vm−1)→ v. So,

we have

y0 + tnv1 + · · ·+ tm−1n vm−1 + tmn (
yn − y0 − tnv1 − · · · − tm−1n vm−1

tmn
)
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= yn ∈ F (x0 + tnw1 + · · ·+ tm−1n wm−1 + tmn xn, un).

It follows from (10) that v ∈ V m(H,u0, y0, v1, · · · , vm−1).
Next, we prove the inclusion reverse to (9). Let v ∈ V m(H,u0, y0, v1, · · · , vm−1), i.e., there exist

tn → 0+, un → u0, and vn
H→ v such that y0 + tnv1 + · · · + tm−1n vm−1 + tmn vn ∈ H(un) for all n.

Then, there exists xn ∈ X(un) such that y0 + tnv1 + · · · + tm−1n vm−1 + tmn vn ∈ F (xn, un). Hence,
xn ∈ X̃(un, y0 + tnv1 + · · ·+ tm−1n vm−1 + tmn vn). The calmness of X̃ yields M > 0 such that

||xn − x0|| ≤M ||(un, y0 + tnv1 + · · ·+ tm−1n vm−1 + tmn vn)− (u0, y0)||.

Then, xn → x0 and hence (xn − x0 − tnw1 − · · · − tm−1n wm−1)→ 0. We claim that { 1

tmn
(xn − x0 − tnw1

− · · · − tm−1n wm−1)} is bounded. Indeed, we have

x0 + ||xn − x0||
(xn − x0)
||xn − x0||

= xn ∈ X̃(un, y0 + tnv1 + · · ·+ tm−1n vm−1 + tmn vn). (11)

We may assume that an :=
(xn − x0)
||xn − x0||

→ a with norm one. Setting rmn = ||xn − x0 − tnw1

− · · · − tm−1n wm−1||, we have rmn → 0+ and

y0 + tnv1 + · · ·+ tm−1n vm−1 + tmn vn = y0 + rn
tn
rn
v1 + · · ·+ rm−1n

tm−1n

rm−1n
vm−1 + rmn

tmn
rmn

vn

= y0 + rn(
tn
rn
v1 + · · ·+ rm−2n

tm−1n

rm−1n
vm−1 + rm−1n

tmn
rmn

vn) := y0 + rnqn.

For hn = ||xn−x0||, (11) is written equivalently as x0+hnan ∈ X̃(un, y0+rnqn). If
tmn
rmn
→ 0+, then qn → 0

and a ∈ V 1
q (X̃, (u0, y0[0]), x0), impossible. Thus, { 1

tmn
(xn−x0− tnw1−· · ·− tm−1n wm−1)} is bounded and

xn :=
1

tmn
(xn−x0− tnw1−· · ·− tm−1n wm−1) converges to some x ∈ Rn. Since x0 + tnw1 + · · ·+ tm−1n wm−1

+tmn xn ∈ X(un), one has y0 + tnv1 + · · ·+ tm−1n vm−1 + tmn vn ∈ F (x0 + tnw1 + · · ·+ tm−1n wm−1 + tmn xn, un).
Therefore, x ∈ V m(X,u0, x0, w1, · · · , wm−1) and v ∈ V m

q (F, (x0[x], u0), y0, w1, v1, · · · , wm−1, vm−1). �
The following four examples ensure the essentialness of each assumption of Proposition 5.1.

Example 5.1 (X̃(u0, y0) = {x0} is needed) Let U = W = Y = R, F (x, u) = {x(x− 1)}, u0 = 0, x0 = 1,

y0 = 0 ∈ F (x0, u0), and X(u) is equal to {x : 0 ≤ x ≤ 1} if u = 0, to {x : −u ≤ x ≤ 1} if u =
1

n
, n ∈ N,

and empty otherwise. Then,

X̃(u, y) =


{1−

√
1 + 4y

2
,
1 +
√

1 + 4y

2
}, if u ∈ {0} ∪ { 1

n
: n ∈ N}, −1

4
≤ y ≤ 0,

{1−
√

1 + 4y

2
}, if u ∈ { 1

n
: n ∈ N}, 0 < y ≤ u(u+ 1),

∅, otherwise,

and H(u) is equal to {y :
−1

4
≤ y ≤ 0} if u = 0, to {y :

−1

4
≤ y ≤ u(u+ 1)} if u =

1

n
, n ∈ N, and empty

otherwise. X̃ is clearly calm around (u0, y0) and we can obtain by direct calculations that

V 1
q (X̃, (u0, y0[0]), x0) = {0}, V 1(X,u0, x0) = −R+,

V 1
q (F, (x0[x], u0), y0) = {x}, V 1(H,u0, y0) = R.

So, ⋃
x∈V 1(X,u0,x0)

V 1
q (F, (x0[x], u0), y0) = −R+.
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Thus, since X̃(u0, y0) = {0, 1} 6= {x0}, we have

V 1(H,u0, y0) 6⊆
⋃

x∈V 1(X,u0,x0)

V 1
q (F, (x0[x], u0), y0).

Example 5.2 (the calmness around (u0, y0) cannot be dropped) Let U = W = Y = R, F (x, u)
= {x(x − 1)}, u0 = 0, x0 = 1, y0 = 0 ∈ F (x0, u0), and X(u) is equal to {x : 0 < x ≤ 1} if u = 0, to

{x : −u < x ≤ 1} if u =
1

n
, n ∈ N, and empty otherwise. Then,

X̃(u, y) =



{1}, if u ∈ {0} ∪ { 1

n
: n ∈ N}, y = 0,

{1−
√

1 + 4y

2
,
1 +
√

1 + 4y

2
}, if u ∈ {0} ∪ { 1

n
: n ∈ N}, −1

4
≤ y < 0,

{1−
√

1 + 4y

2
}, if u ∈ { 1

n
: n ∈ N}, 0 < y < u(u+ 1),

∅, otherwise,

and H(u) is as in Example 5.1 with only “y ≤ u(u+ 1)” replaced by the strict inequality. Hence,

X̃(u0, y0) = {x0}, V 1
q (X̃, (u0, y0[0]), x0) = {0},

V 1(X,u0, x0) = −R+, V
1
q (F, (x0[x], u0), y0) = {x}, V 1(H,u0, y0) = R.

Consequently, because X̃ is not calm around (u0, y0), we really have⋃
x∈V 1(X,u0,x0)

V 1
q (F, (x0[x], u0), y0) = −R+,

V 1(H,u0, y0) 6⊆
⋃

x∈V 1(X,u0,x0)

V 1
q (F, (x0[x], u0), y0).

Example 5.3 (Vq(X̃, (u0, y0[0]), x0) = {0} is essential) Let U = Y = R, W = R2, X(u) = {x ∈ R2 : x1
= u, x2 = 0}, F (x, u) = {x21(x1 − 1)}, u0 = 0, x0 = (0, 0), and y0 = f(x0, u0) = 0. Then, X̃(u, y) is
equal to {(u, 0)} if u ∈ R, y = u2(u − 1), and is empty otherwise, and H(u) = {u2(u − 1)}. Hence,
X̃(u0, y0) = {x0} and X̃ is calm around (u0, y0). Direct calculations give V 1(X,u0, x0) = R × {0},
V 1
q (F, (x0[x], u0), y0) = {0}. Therefore,⋃

x∈V 1(X,u0,x0)

V 1
q (F, (x0[x], u0), y0) = {0}.

By taking tn =
1

n
, un =

1√
n

, xn = (un, 0) ∈ X(un), vn =
1√
n
− 1→ −1, we can check that y0 + tnvn

∈ H(un). Thus, −1 ∈ V 1(H,u0, y0). Consequently,

V 1(H,u0, y0) 6⊆
⋃

x∈V 1(X,u0,x0)

V 1
q (F, (x0[x], u0), y0).

To see the reason, let tn =
1

n
, un =

1

n
, yn =

1

n
(
1

n
− 1)→ 0, xn = (1, 0) to have that x0 + tnxn

∈ X̃(un, y0 + tnyn), and so (1, 0) ∈ V 1
q (X̃, (u0, y0[0]), x0).

Example 5.4 (W needs be finite dimensional) Let U = Y = R and W = l1, the space of all real sequences

x = (xi)i∈N with
∞∑
i=1

∣∣xi∣∣ < ∞. Let X(u) be {0} if u = 0, {x = (xi)i∈N ∈ X : xi = u if i = n; xi = 0, if

i 6= n} if u =
1

n
, n ∈ N, and empty otherwise, F (x, u) = {||x||(||x|| − 1)}, u0 = 0, x0 = 0 ∈ X(u0), and
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y0 = 0 ∈ F (x0, u0). Then, X̃(u, y) is equal to {0} if u = 0, to {x = (xi)i∈N ∈ X : xi = u if i = n, xi = 0,

if i 6= n} if u =
1

n
, n ∈ N, y = |u|(|u| − 1), and empty otherwise, and H(u) is {0} if u = 0, {|u|(|u| − 1)}

if u =
1

n
, n ∈ N, and empty otherwise. Hence, X̃ is calm around (u0, y0). We can compute directly that

X̃(u0, y0) = {x0}, V 1
q (X̃, (u0, y0[0]), x0) = {0},

V 1
q (F, (x0[x], u0), y0) = {−||x||}, V 1(X,u0, x0) = {0}.

Therefore, ⋃
x∈V 1(X,u0,x0)

V 1
q (F, (x0[x], u0), y0) = {0}.

By taking tn =
1

n
, un =

1

n
, xn = (xin)i∈N ∈ X(un) satisfying xin = un if i = n and xin = 0 if i 6= n, and

vn =
1

n
− 1→ −1, we can check that y0 + tnvn ∈ H(un). Hence, −1 ∈ V 1(H,u0, y0). Thus,

V 1(H,u0, y0) 6⊆
⋃

x∈V 1(X,u0,x0)

V 1
q (F, (x0[x], u0), y0).

Finally, invoking to Proposition 5.1 and results of Sect. 4, we easily establish relations between
minima and weak minima of the mentioned variational sets stated in the following three theorems.
Theorem 5.1 Let (u0, y0) ∈ grG, x0 ∈ X(u0), y0 ∈ F (x0, u0), W be finite dimensional, and K have a
compact convex base. Suppose

(i) H has the domination property around u0;
(ii) either of the following two conditions holds:

(ii1) V
m(H +K,u0, y0, v1, · · · , vm−1) has the domination property;

(ii2) V
∞(m)(H,x0, y0, v1, · · · , vm−1) ∩ (−K) = {0};

(iii) F has a mth-order proto variation at ((x0, u0), y0);
(iv) X̃ is calm around (u0, y0);
(v) X̃(u0, y0) = {x0} and V 1

q (X̃, (u0, y0[0]), x0) = {0}.
Then,

MinK

 ⋃
x∈V m(X,u0,x0,w1,··· ,wm−1)

V m
q (F, (x0[x], u0), y0, w1, v1, · · · , wm−1, vm−1)


= MinKV

m(G, x0, y0, v1, · · · , vm−1).

Proof This follows from Theorem 4.1(i) and Proposition 5.1. �
Theorem 5.2 Let (u0, y0) ∈ grS, x0 ∈ X(u0), y0 ∈ F (x0, u0), W be finite dimensional, and K̂ be a
closed convex cone contained in intK ∪ {0} and have a compact convex base. Suppose

(i) Y has the weak domination property around u0 wrt K̂;
(ii) either of the following two conditions is satisfied:

(ii1) V
m(H + K̂, u0, y0, v1, · · · , vm−1) has the weak domination property;

(ii2) V
∞(m)(H,x0, y0, v1, · · · , vm−1) ∩ (−K̂) = {0};

(iii) F has a mth-order proto variation at ((x0, u0), y0);
(iv) X̃ is calm around ((u0, y0), x0);
(v) X̃(u0, y0) = {x0} and V 1

q (X̃, (u0, y0[0]), x0) = {0}.
Then,

WMinK

 ⋃
x∈V m(X,u0,x0,w1,··· ,wm−1)

V m
q (F, (x0[x], u0), y0, w1, v1, · · · , wm−1, vm−1)


13



= WMinKV
m(G, x0, y0, v1, · · · , vm−1).

Proof Theorem 4.2(i) and Proposition 5.1 together imply this theorem. �
Theorem 5.3 Let the assumptions of Theorem 5.2 be satisfied and H have a proto-variational set of
order m of type 1 at (u0, y0). Then

V m(S, u0, y0, v1, · · · , vm−1) = WMinK

 ⋃
x∈V m(X,u0,x0,w1,··· ,wm−1)

V m
q (F, (x0[x], u0), y0, w1, v1, · · · , wm−1, vm−1)

 .

Proof Applying Theorem 4.3 and Proposition 5.1, we are done. �
Remark 5.1 Though there have been several contributions to analysis of perturbation map G and
weak perturbation map S for unconstrained feasible map F (defined in Sect. 4), we see only Tanino [2]
dealing with this topic for a map F in a set-constrained smooth single-valued problem. That paper was
limited to first-order results in terms of gradients of F . The present paper is the first attempt of higher-
order considerations of F for a set-constrained nonsmooth multivalued problem. The extension has been
performed in several aspects. Furthermore, we have extended successfully almost directly Theorem 4.1
of [2]. However, a drawback here is that the results are technically complicated. We hope that, excluding
inevitable complexity, e.g. with higher-order derivatives (at least because of long expressions) and a high
level of nonsmoothness, improvements can be obtained in future. In this paper, we restrict ourselves to
making sure that the relatively complicated assumptions imposed in the results cannot be avoided by
showing (in examples) their essentialness.

6 Conclusion

Since quantitative properties of perturbation maps of nonsmooth vector optimization is of high impor-
tance, but there have been only considerations in terms of contingent derivatives, we discuss higher-order
analysis of such maps in terms of variational sets, a kind of generalized derivatives which is suitable for a
high level of nonsmoothness and relatively easy to compute. We establish relations between variational
sets of a perturbation map or weak perturbation map or the minima/weak minima of these sets and the
corresponding ones of the feasible-set map to the objective space. These results are applied to sensitivity
analysis for set-constrained vector optimization. As some results look complicated, we have tried to
confirm the essentialness of each imposed assumption as well as to illustrate advantages of our results
by a number of examples, which indicate also that computing variational sets is not a hard work.
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