Approximation by linear combinations of translates of a single function

Dinh Dũng ${ }^{a}$ and Vu Nhat Huy ${ }^{b, c}$
${ }^{a}$ Vietnam National University, Information Technology Institute
144 Xuan Thuy, Hanoi, Vietnam
${ }^{b}$ Hanoi University of Science, Vietnam National University
334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
${ }^{c}$ TIMAS, Thang Long University
Nghiem Xuan Yem, Hoang Mai, Hanoi, Vietnam

November 4, 2021

Abstract

We study approximation of periodic functions by arbitrary linear combinations of n translates of a single function. We construct some linear methods of this approximation for univariate functions in the class induced by the convolution with a single function, and prove upper bounds of the L^{p}-approximation convergence rate by these methods, when $n \rightarrow \infty$, for $1 \leq p \leq \infty$. We also generalize these results to classes of multivariate functions defined as the convolution with the tensor product of a single function. In the case $p=2$, for this class, we also prove a lower bound of the quantity characterizing best approximation of by arbitrary linear combinations of n translates of arbitrary function.

Keywords: Function spaces induced by the convolution with a given function ; Approximation by arbitrary linear combinations of n translates of a single function.

2010 Mathematics Subject Classifications: 41A46; 41A63; 42A99.

1 Introduction

The present paper continues investigating the problem of function approximation by arbitrary linear combinations of n translates of a single function which has been studied in [1, 3]. In the last papers, some linear methods were constructed for approximation of periodic functions in a class induced by the convolution with a given function, and prove upper bounds of the L^{p}-approximation convergence rate by these methods, when $n \rightarrow \infty$, for the case $1<p<\infty$. The main technique of the proofs of the results is based on Fourier analysis, in particular, the multiplier theory. However, this technique cannot be extended to the two important cases $p=1$ and $p=\infty$. In the present paper, we aim at this approximation problem for the cases $p=1$ and $p=\infty$ by using a different technique. For convenience of presentation we will do this for $1 \leq p \leq \infty$.

We shall begin our discussion here by introducing notation used throughout the paper. In this regard, we merely follow closely the presentation in $[1,3]$. The d-dimensional torus denoted by \mathbb{T}^{d} is
the cross product of d copies of the interval $[0,2 \pi]$ with the identification of the end points. When $d=1$, we merely denote the d-torus by \mathbb{T}. Functions on \mathbb{T}^{d} are identified with functions on \mathbb{R}^{d} which are 2π periodic in each variable. Denote by $L^{p}\left(\mathbb{T}^{d}\right), 1 \leq p \leq \infty$, the space of integrable functions on \mathbb{T}^{d} equipped with the norm

$$
\|f\|_{p}:= \begin{cases}(2 \pi)^{-d / p}\left(\int_{\mathbb{T}^{d}}|f(\boldsymbol{x})|^{p} d \boldsymbol{x}\right)^{1 / p}, & 1 \leq p<\infty \\ \operatorname{ess} \sup _{\boldsymbol{x} \in \mathbb{T}^{d} \mid}|f(\boldsymbol{x})|, & p=\infty\end{cases}
$$

We will consider only real valued functions on \mathbb{T}^{d}. However, all the results in this paper are true for the complex setting. Also, we will use Fourier series of a real valued function in complex form.

Here, we use the notation \mathbb{N}_{m} for the set $\{1,2, \ldots, m\}$. For vectors $\boldsymbol{x}:=\left(x_{l}: l \in \mathbb{N}_{d}\right)$ and $\boldsymbol{y}:=\left(y_{l}: l \in \mathbb{N}_{d}\right)$ in \mathbb{T}^{d} we use $(\boldsymbol{x}, \boldsymbol{y}):=\sum_{l \in \mathbb{N}_{d}} x_{l} y_{l}$ for the inner product of \boldsymbol{x} with \boldsymbol{y}. Also, for notational convenience we allow \mathbb{N}_{0} and \mathbb{Z}_{0} to stand for the empty set. Given any integrable function f on \mathbb{T}^{d} and any lattice vector $\boldsymbol{j}=\left(j_{l}: l \in \mathbb{N}_{d}\right) \in \mathbb{Z}^{d}$, we let $\widehat{f}(\boldsymbol{j})$ denote the \boldsymbol{j}-th Fourier coefficient of f defined by the equation

$$
\widehat{f}(\boldsymbol{j}):=(2 \pi)^{-d} \int_{\mathbb{T}^{d}} f(\boldsymbol{x}) e^{-i(\boldsymbol{j}, \boldsymbol{x})} d \boldsymbol{x} .
$$

Frequently, we use the superscript notation \mathbb{B}^{d} to denote the cross product of d copies of a given set \mathbb{B} in \mathbb{R}^{d}.

Let $S^{\prime}\left(\mathbb{T}^{d}\right)$ be the space of distributions on \mathbb{T}^{d}. Every $f \in S^{\prime}\left(\mathbb{T}^{d}\right)$ can be identified with the formal Fourier series

$$
f=\sum_{\boldsymbol{j} \in \mathbb{Z}^{d}} \widehat{f}(\boldsymbol{j}) e^{i(\boldsymbol{j}, .)},
$$

where the sequence $\left(\widehat{f}(\boldsymbol{j}): \quad \boldsymbol{j} \in \mathbb{Z}^{d}\right)$ forms a tempered sequence.
Let $\lambda: \mathbb{R} \rightarrow \mathbb{R} \backslash\{0\}$ be a bounded function. With the univariate λ we associate the multivariate tensor product function λ_{d} given by

$$
\lambda_{d}(\boldsymbol{x}):=\prod_{l=1}^{d} \lambda\left(x_{l}\right), \quad \boldsymbol{x}=\left(x_{l}: l \in \mathbb{N}_{d}\right)
$$

and introduce the function $\varphi_{\lambda, d}$, defined on \mathbb{T}^{d} by the equation

$$
\begin{equation*}
\varphi_{\lambda, d}(\boldsymbol{x}):=\sum_{\boldsymbol{j} \in \mathbb{Z}^{d}} \lambda_{d}(\boldsymbol{j}) e^{i(\boldsymbol{j}, \boldsymbol{x})} . \tag{1.1}
\end{equation*}
$$

Moreover, in the case that $d=1$ we merely write φ_{λ} for the univariate function $\varphi_{\lambda, 1}$. We introduce a subspace of $L^{p}\left(\mathbb{T}^{d}\right)$ defined as

$$
\mathcal{H}_{\lambda, p}\left(\mathbb{T}^{d}\right):=\left\{f: f=\varphi_{\lambda, d} * g, g \in L^{p}\left(\mathbb{T}^{d}\right)\right\},
$$

with norm

$$
\|f\|_{\mathcal{H}_{\lambda, p}\left(\mathbb{T}^{d}\right)}:=\|g\|_{p},
$$

where $f_{1} * f_{2}$ is the convolution of two functions f_{1} and f_{2} on \mathbb{T}^{d}.

As in $[1,3]$, we are concerned with the following concept. Let \mathbb{W} be a prescribed subset of $L^{p}\left(\mathbb{T}^{d}\right)$ and $\psi \in L^{p}\left(\mathbb{T}^{d}\right)$ be a given function. We are interested in the approximation in $L^{p}\left(\mathbb{T}^{d}\right)$-norm of all functions $f \in \mathbb{W}$ by arbitrary linear combinations of n translates of the function ψ, that is, by the functions in the set $\left\{\psi\left(\cdot-\boldsymbol{y}_{l}\right): \boldsymbol{y}_{l} \in \mathbb{T}^{d}, l \in \mathbb{N}_{n}\right\}$ and measure the error in terms of the quantity

$$
M_{n}(\mathbb{W}, \psi)_{p}:=\sup _{f \in \mathbb{W}} \inf \left\{\left\|f-\sum_{l \in \mathbb{N}_{n}} c_{l} \psi\left(\cdot-\boldsymbol{y}_{l}\right)\right\|_{p}: c_{l} \in \mathbb{R}, \boldsymbol{y}_{l} \in \mathbb{T}^{d}\right\} .
$$

The aim of the present paper is to investigate the convergence rate, when $n \rightarrow \infty$, of $M_{n}\left(U_{\lambda, p}\left(\mathbb{T}^{d}\right), \psi\right)_{p}$ for $1 \leq p \leq \infty$, where

$$
U_{\lambda, p}\left(\mathbb{T}^{d}\right):=\left\{f \in \mathcal{H}_{\lambda, p}\left(\mathbb{T}^{d}\right): \quad\|f\|_{\mathcal{H}_{\lambda, p}\left(\mathbb{T}^{d}\right)} \leq 1\right\}
$$

is the unit ball in $\mathcal{H}_{\lambda, p}\left(\mathbb{T}^{d}\right)$. We shall also obtain a lower bound for the convergence rate as $n \rightarrow \infty$ of the quantity

$$
M_{n}\left(U_{\lambda, 2}\left(\mathbb{T}^{d}\right)\right)_{2}:=\inf \left\{M_{n}\left(U_{\lambda, 2}\left(\mathbb{T}^{d}\right), \psi\right)_{2}: \psi \in L^{2}\left(\mathbb{T}^{d}\right)\right\}
$$

which gives information about the best choice of ψ.
This paper is organized in the following manner. In Section 2, we give the necessary background from Fourier analysis and construct a method for approximation of functions in the univariate case. In Section 3, we extend the method of approximation developed in Section 2 to the multivariate case, in particular, prove upper bounds for the approximation error and convergence rate, we also prove a lower bound of $M_{n}\left(U_{\lambda, 2}\left(\mathbb{T}^{d}\right)\right)_{2}$.

2 Univariate approximation

In this section, we construct a linear method in the form of a linear combination of translates of a function φ_{β} defined as in (1.1) for approximation of univariate functions in $\mathcal{H}_{\lambda, p}(\mathbb{T})$. We give upper bounds of the approximation error for various λ and β.

Let $\lambda, \beta, \vartheta: \mathbb{R} \rightarrow \mathbb{R}$ be given 2-times continuously differentiable functions and ϑ be such that

$$
\vartheta(x):= \begin{cases}1, & \text { if } x \in\left[-\frac{1}{2}, \frac{1}{2}\right], \\ 0, & \text { if } x \notin(-1,1) .\end{cases}
$$

Corresponding to these functions we define the functions \mathcal{G} and H_{m} as

$$
\begin{equation*}
\mathcal{G}(x):=\frac{\lambda(x)}{\beta(x)}, \quad H_{m}(x):=\sum_{k \in \mathbb{Z}} \vartheta(k / m) \mathcal{G}(k) e^{i k x} \tag{2.2}
\end{equation*}
$$

For a function $f \in \mathcal{H}_{\lambda, p}(\mathbb{T})$ represented as $f=\varphi_{\lambda} * g, g \in L^{p}(\mathbb{T})$, we define the operator

$$
\begin{equation*}
Q_{m, \beta}(f):=\frac{1}{2 m+1} \sum_{k=0}^{2 m} V_{m}(g)\left(\frac{k}{2 m+1}\right) \varphi_{\beta}\left(\cdot-\frac{k}{2 m+1}\right), \tag{2.3}
\end{equation*}
$$

where $V_{m}(g):=H_{m} * g$. Finally, we define for a function $h: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\sigma_{m}(h ; f)(x):=\sum_{k \in \mathbb{Z}} h(k / m) \widehat{f}_{k} e^{i k x}
$$

Let us obtain upper estimates for the error of approximating a function $f \in \mathcal{H}_{\lambda, p}(\mathbb{T})$ by the trigonometric polynomial $Q_{m, \beta}(f)$ a linear combination of $2 m+1$ translates of the function φ_{β}.

Definition 2.1 A 2-times continuously differentiable function $\psi: \mathbb{R} \rightarrow \mathbb{R}$ is called a function of monotone type if there exists a positive constant c_{0} such that

$$
|\psi(x)| \geq c_{0}|\psi(y)|, \quad\left|\psi^{\prime \prime}(x)\right| \geq c_{0}\left|\psi^{\prime \prime}(y)\right| \quad \text { for all } 2|y| \geq|x| \geq|y| / 2 .
$$

We put

$$
\varepsilon_{m}:=J_{m}(\lambda)+\sup _{|x| \in[-m, m]}\left(|\mathcal{G}(x)|+m^{2} \sup _{|x| \in[-m, m]}\left|\mathcal{G}^{\prime \prime}(x)\right|\right) J_{m}(\beta),
$$

where for a 2 -times continuously differentiable function ψ,

$$
J_{m}(\psi):=\int_{|x| \geq m}\left(\left|\frac{\psi(x)}{m}\right|+\left|x \psi^{\prime \prime}(x)\right|\right) d x .
$$

Theorem 2.2 Let $1 \leq p \leq \infty$. Assume that the functions λ, β are of monotone type. Then there exists a positive constant c such that for all $f \in \mathcal{H}_{\lambda, p}(\mathbb{T})$ and $m \in \mathbb{N}$,

$$
\left\|f-Q_{m, \beta}(f)\right\|_{p} \leq c \varepsilon_{m}\|f\|_{\mathcal{H}_{\lambda, p}(\mathbb{T})}
$$

Before we give the proof of the above theorem, we recall a lemma proved in [6], [7].
Lemma 2.3 Let $1 \leq p \leq \infty, f \in L^{p}(\mathbb{T})$ and $h: \mathbb{R} \rightarrow \mathbb{R}$ be 2-times continuously differentiable function, supported on $[-1,1]$. Then there exists a constant c_{1} independent of f, h, m such that

$$
\left\|\sigma_{m}(h ; f)\right\|_{p} \leq c_{1}\left\|h^{\prime \prime}\right\|_{\infty}\|f\|_{p} .
$$

We also need a Landau's inequality for derivatives [4].
Lemma 2.4 Let $f \in L^{\infty}(\mathbb{R})$ be 2-times continuously differentiable function. Then

$$
\left\|f^{\prime}\right\|_{\infty}^{2} \leq 4\|f\|_{\infty}\left\|f^{\prime \prime}\right\|_{\infty} .
$$

In particular,

$$
\left\|f^{\prime}\right\|_{\infty} \leq\|f\|_{\infty}+\left\|f^{\prime \prime}\right\|_{\infty}
$$

Proof. (Proof of Theorem 2.2) Let $f \in \mathcal{H}_{\lambda, p}(\mathbb{T})$ be represented as $\varphi_{\lambda, d} * g$ for some $g \in L^{p}(\mathbb{T})$. We define the kernel $P_{m}(x, t)$ for $x, t \in \mathbb{T}$ as

$$
P_{m}(x, t):=\frac{1}{2 m+1} \sum_{k=0}^{2 m} \varphi_{\beta}\left(x-\frac{k}{2 m+1}\right) H_{m}\left(\frac{k}{2 m+1}-t\right) .
$$

It is easy to obtain from the definition (2.3) that

$$
Q_{m, \beta}(f)(x)=\frac{1}{2 \pi} \int_{\mathbb{T}} P_{m}(x, t) g(t) d t
$$

We now use equation (1.1), the definition of the trigonometric polynomial H_{m} given in equation (2.2) and the easily verified fact, for $k, s \in \mathbb{Z}, s \in[-m, m]$, that

$$
\frac{1}{2 m+1} \sum_{\ell=0}^{2 m} e^{i k(t-(\ell / 2 m+1))} e^{i s((\ell / 2 m+1)-t)}= \begin{cases}0, & \text { if } \frac{k-s}{2 m+1} \notin \mathbb{Z} \\ e^{i\left(k-k_{m}\right) t}, & \text { if } \frac{k-s}{2 m+1} \in \mathbb{Z}\end{cases}
$$

to conclude that

$$
P_{m}(x, t)=\sum_{k \in \mathbb{Z}} \gamma(k) e^{i k x} e^{-i k_{m} t}
$$

where $\gamma(k)=\vartheta\left(k_{m} / m\right) \mathcal{G}\left(k_{m}\right) \beta(k)$ and $k_{m} \in[-m, m]$ satisfy $\left(k-k_{m}\right) /(2 m+1) \in \mathbb{Z}$. Hence,

$$
\begin{aligned}
Q_{m, \beta}(f)(x) & =\sum_{k>m} \gamma(k) e^{i k x} \widehat{g}\left(k_{m}\right)+\sum_{k<-m} \gamma(k) e^{i k x} \widehat{g}\left(k_{m}\right)+\sum_{k=-m}^{m} \gamma(k) e^{i k x} \widehat{g}\left(k_{m}\right) \\
& =: \mathcal{A}_{m}(x)+\mathcal{B}_{m}(x)+\mathcal{C}_{m}(x)
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
\left\|f-Q_{m, \beta}(f)\right\|_{p} \leq\left\|\mathcal{A}_{m}\right\|_{p}+\left\|\mathcal{B}_{m}\right\|_{p}+\left\|f-\mathcal{C}_{m}\right\|_{p} \tag{2.4}
\end{equation*}
$$

For each $j \in \mathbb{N}$, we define the functions $\Lambda_{j, m}(x), \mathcal{J}_{m}(x), \mathcal{K}_{j, m}(x), \mathcal{D}_{j, m}(x)$ and the set $I_{j, m}$ as follows

$$
\begin{gathered}
\Lambda_{j, m}(x):=\beta(m x+j(2 m+1)), \quad \mathcal{J}_{m}(x):=\mathcal{G}(m x), \\
\mathcal{K}_{j, m}(x):=\Lambda_{j, m}(x) \vartheta(x) \mathcal{J}_{m}(x), \quad \mathcal{D}_{j, m}(x):=\sum_{k \in I_{j, m}} \gamma(k) e^{i k x} \widehat{g}\left(k_{m}\right), \\
I_{j, m}:=\{k \in \mathbb{Z}: \quad(2 m+1) j-m \leq k \leq(2 m+1) j+m\} .
\end{gathered}
$$

Then we have

$$
\begin{equation*}
\mathcal{A}_{m}(x)=\sum_{j \in \mathbb{N}} \sum_{k \in I_{j, m}} \gamma(k) e^{i k x} \widehat{g}\left(k_{m}\right)=\sum_{j \in \mathbb{N}} \mathcal{D}_{j, m}(x), \tag{2.5}
\end{equation*}
$$

and for all $k \in I_{j, m}$,

$$
\begin{aligned}
\gamma(k) & =\beta(k) \vartheta\left(k_{m} / m\right) \mathcal{G}\left(k_{m}\right)=\beta\left(j(2 m+1)+k_{m}\right) \vartheta\left(k_{m} / m\right) \mathcal{G}\left(k_{m}\right) \\
& =\Lambda_{j, m}\left(k_{m} / m\right) \vartheta\left(k_{m} / m\right) \mathcal{G}\left(k_{m}\right)=\Lambda_{j, m}\left(k_{m} / m\right) \vartheta\left(k_{m} / m\right) \mathcal{J}_{m}\left(k_{m} / m\right)=\mathcal{K}_{j, m}\left(k_{m} / m\right)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\mathcal{D}_{j, m}(x) & =\sum_{k \in I_{j, m}} \gamma(k) e^{i k x} \widehat{g}\left(k_{m}\right)=\sum_{k_{m} \in[-m, m]} \mathcal{K}_{j, m}\left(k_{m} / m\right) e^{i\left(j(2 m+1)+k_{m}\right) x} \widehat{g}\left(k_{m}\right) \\
& =e^{i j(2 m+1) x} \sum_{k_{m} \in[-m, m]} \mathcal{K}_{j, m}\left(k_{m} / m\right) e^{i k_{m} x} \widehat{g}\left(k_{m}\right)=e^{i j(2 m+1) x} \sigma_{m}\left(\mathcal{K}_{j, m} ; g\right) .
\end{aligned}
$$

Therefore, by Lemma 2.3, there exists a constant c_{1} such that

$$
\left\|\mathcal{D}_{j, m}\right\|_{p} \leq c_{1}\left\|\left(\mathcal{K}_{j, m}\right)^{\prime \prime}\right\|_{\infty}\|g\|_{p}
$$

Then it follows from (2.5) that

$$
\begin{equation*}
\left\|\mathcal{A}_{m}\right\|_{p} \leq \sum_{j \in \mathbb{N}}\left\|\mathcal{D}_{j, m}\right\|_{p} \leq c_{1} \sum_{j \in \mathbb{N}}\left\|\left(\mathcal{K}_{j, m}\right)^{\prime \prime}\right\|_{\infty}\|g\|_{p} \tag{2.6}
\end{equation*}
$$

From the definition of $\mathcal{K}_{j, m}, \operatorname{supp} \vartheta \subset[-1,1]$, and $\|\vartheta\|_{\infty} \leq 2\left\|\vartheta^{\prime}\right\|_{\infty} \leq 4\left\|\vartheta^{\prime \prime}\right\|_{\infty}$, we deduce that

$$
\begin{aligned}
\left\|\left(\mathcal{K}_{j, m}\right)^{\prime \prime}\right\|_{\infty} & \leq 4\left\|\vartheta^{\prime \prime}\right\|_{\infty} \sup _{x \in[-1,1]}\left(\left|\Lambda_{j, m}(x) \mathcal{J}_{m}(x)\right|+\left|\left(\Lambda_{j, m} \mathcal{J}_{m}\right)^{\prime}(x)\right|+\left|\left(\Lambda_{j, m} \mathcal{J}_{m}\right)^{\prime \prime}(x)\right|\right) \\
& \leq 4\left\|\vartheta^{\prime \prime}\right\|_{\infty}\left[\sup _{x \in I_{j, m}}\left(|\beta(x)|+m\left|\beta^{\prime}(x)\right|+m^{2}\left|\beta^{\prime \prime}(x)\right|\right) \sup _{x \in[-m, m]}|\mathcal{G}(x)|\right. \\
& \left.+m \sup _{x \in I_{j, m}}\left(|\beta(x)|+m\left|\beta^{\prime}(x)\right|\right) \sup _{x \in[-m, m]}\left|\mathcal{G}^{\prime}(x)\right|+m^{2} \sup _{x \in I_{j, m}}|\beta(x)| \sup _{x \in[-m, m]}\left|\mathcal{G}^{\prime \prime}(x)\right|\right] .
\end{aligned}
$$

Hence,

$$
\left\|\left(\mathcal{K}_{j, m}\right)^{\prime \prime}\right\|_{\infty} \leq 4\left\|\vartheta^{\prime \prime}\right\|_{\infty} \sup _{x \in I_{j, m}}\left(|\beta(x)|+m\left|\beta^{\prime}(x)\right|+m^{2}\left|\beta^{\prime \prime}(x)\right|\right) \sup _{x \in[-m, m]}\left(|\mathcal{G}(x)|+m\left|\mathcal{G}^{\prime}(x)\right|+m^{2}\left|\mathcal{G}^{\prime \prime}(x)\right|\right)
$$

for all $j \in \mathbb{N}$. Therefore, it follows from (2.6) that

$$
\begin{aligned}
\left\|\mathcal{A}_{m}\right\|_{p} \leq 4 c_{1}\left\|\vartheta^{\prime \prime}\right\|_{\infty} \sum_{j \in \mathbb{N}} \sup _{x \in I_{j, m}}\left(|\beta(x)|+m\left|\beta^{\prime}(x)\right|\right. & \left.+m^{2}\left|\beta^{\prime \prime}(x)\right|\right) \times \\
& \times \sup _{x \in[-m, m]}\left(|\mathcal{G}(x)|+m\left|\mathcal{G}^{\prime}(x)\right|+m^{2}\left|\mathcal{G}^{\prime \prime}(x)\right|\right)\|g\|_{p} .
\end{aligned}
$$

So, by Lemma 2.4, we have

$$
\begin{equation*}
\left\|\mathcal{A}_{m}\right\|_{p} \leq 16 c_{1}\left\|\vartheta^{\prime \prime}\right\|_{\infty} \sum_{j \in \mathbb{N}} \sup _{x \in I_{j, m}}\left(|\beta(x)|+m^{2}\left|\beta^{\prime \prime}(x)\right|\right) \sup _{x \in[-m, m]}\left(|\mathcal{G}(x)|+m^{2}\left|\mathcal{G}^{\prime \prime}(x)\right|\right)\|g\|_{p} \tag{2.7}
\end{equation*}
$$

Since the function α, β is of monotone type, there exists a constant c_{0} such that

$$
\begin{equation*}
|\alpha(x)| \geq c_{0}|\alpha(y)|,\left|\alpha^{\prime \prime}(x)\right| \geq c_{0}\left|\alpha^{\prime \prime}(y)\right|,|\beta(x)| \geq c_{0}|\beta(y)|,\left|\beta^{\prime \prime}(x)\right| \geq c_{0}\left|\beta^{\prime \prime}(y)\right| \tag{2.8}
\end{equation*}
$$

for all $4|y| \geq|x| \geq|y| / 4$. Hence,

$$
\begin{aligned}
\sup _{|x| \in I_{j, m}}|\beta(x)| & \leq \frac{c_{0}}{m} \int_{|x| \in I_{j, m}}|\beta(x)| d x, \\
\sup _{|x| \in I_{j, m}}\left|m^{2} \beta^{\prime \prime}(x)\right| & \leq c_{0} m \int_{|x| \in I_{j, m}}\left|\beta^{\prime \prime}(x)\right| d x .
\end{aligned}
$$

So,

$$
\sum_{j \in \mathbb{N}} \sup _{|x| \in I_{j, m}}\left(|\beta(x)|+\left|m^{2} \beta^{\prime \prime}(x)\right|\right) \leq c_{0} \int_{|x| \geq m}\left(\frac{|\beta(x)|}{m}+\left|m \beta^{\prime \prime}(x)\right|\right) d x \leq c_{0} J_{m}(\beta) .
$$

Combining this with (2.7), we obtain that

$$
\begin{equation*}
\left\|\mathcal{A}_{m}\right\|_{p} \leq 16 c_{0} c_{1}\left\|\vartheta^{\prime \prime}\right\|_{\infty} \varepsilon_{m}\|g\|_{p} . \tag{2.9}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\left\|\mathcal{B}_{m}\right\|_{p} \leq 16 c_{0} c_{1}\left\|\vartheta^{\prime \prime}\right\|_{\infty} \varepsilon_{m}\|g\|_{p} . \tag{2.10}
\end{equation*}
$$

Next, we will estimate $\left\|f-\mathcal{C}_{m}\right\|_{p}$. Notice that $\gamma(k)=\vartheta(k / m) \mathcal{G}(k) \beta(k)=\vartheta(k / m) \lambda(k)$ for $k \in[-m, m]$, and then

$$
\sigma_{m}(\vartheta ; f)(x)=\sum_{k \in \mathbb{Z}} \vartheta(k / m) \widehat{f}(k) e^{i k x}=\sum_{k=-m}^{m} \vartheta(k / m) \lambda(k) \widehat{g}(k) e^{i k x}=\sum_{k=-m}^{m} \gamma(k) \widehat{g}(k) e^{i k x}=\mathcal{C}_{m}(x),
$$

and therefore,

$$
\begin{equation*}
\left\|f-\mathcal{C}_{m}\right\|_{p}=\left\|f-\sigma_{m}(\vartheta ; f)\right\|_{p} \tag{2.11}
\end{equation*}
$$

We define the functions $S(x), \Phi_{j, m}(x)$ and $\Psi_{j, m}(x)$ as

$$
S(x):=\vartheta(x)-\vartheta(x / 2), \quad \Phi_{j, m}(x):=\lambda\left(2^{j} m x\right), \quad \Psi_{j, m}(x):=S(x) \Phi_{j, m}(x) .
$$

Clearly, we have that

$$
\left(\vartheta\left(k /\left(2^{j+1} m\right)\right)-\vartheta\left(k /\left(2^{j} m\right)\right)\right) \lambda(k)=S\left(k /\left(2^{j} m\right)\right) \Phi_{j, m}\left(k /\left(2^{j} m\right)\right)=\Psi_{j, m}\left(k /\left(2^{j} m\right)\right),
$$

which together with

$$
\begin{aligned}
& \sigma_{2^{j+1} m}(\vartheta ; f)-\sigma_{2^{j} m}(\vartheta ; f)=\sum_{k \in \mathbb{Z}}\left(\vartheta\left(k /\left(2^{j+1} m\right)\right)-\vartheta\left(k /\left(2^{j} m\right)\right) \widehat{f}(k) e^{i k x}\right. \\
& =\sum_{k \in \mathbb{Z}}\left(\vartheta\left(k /\left(2^{j+1} m\right)\right)-\vartheta\left(k /\left(2^{j} m\right)\right)\right) \lambda(k) \widehat{g}(k) e^{i k x}
\end{aligned}
$$

implies that

$$
\sigma_{2^{j+1} m}(\vartheta ; f)-\sigma_{2^{j} m}(\vartheta ; f)=\sum_{k \in \mathbb{Z}} \Psi_{j, m}\left(k /\left(2^{j} m\right)\right) \widehat{g}(k) e^{i k x}=\sigma_{2^{j} m}\left(\Psi_{j, m} ; g\right) .
$$

Then by Lemma 2.3, we obtain

$$
\begin{equation*}
\left\|\sigma_{2^{j+1} m}(\vartheta ; f)-\sigma_{2^{j} m}(\vartheta ; f)\right\|_{p} \leq c_{1}\left\|\Psi_{j, m}^{\prime \prime}\right\|_{\infty}\|g\|_{p} \tag{2.12}
\end{equation*}
$$

Moreover, from the definition of $\Psi_{j, m}, \operatorname{supp} S \subset[-2,-1 / 2] \cup[1 / 2,2]$, and $\|S\|_{\infty} \leq 2\left\|S^{\prime}\right\|_{\infty} \leq 4\left\|S^{\prime \prime}\right\|_{\infty} \leq$ $8\left\|\vartheta^{\prime \prime}\right\|_{\infty}$, we have that

$$
\begin{aligned}
\left|\Psi_{j, m}^{\prime \prime}(x)\right| & =\left|S^{\prime \prime}(x) \Phi_{j, m}(x)+2 S^{\prime}(x) \Phi_{j, m}^{\prime}(x)+S(x) \Phi_{j, m}^{\prime \prime}(x)\right| \\
& \leq 8\left\|\vartheta^{\prime \prime}\right\|_{\infty} \sup _{|x| \in[1 / 2,2]}\left(\left|\Phi_{j, m}(x)\right|+\Phi_{j, m}^{\prime}(x)\left|+\left|\Phi_{j, m}^{\prime \prime}(x)\right|\right)\right. \\
& \leq 16\left\|\vartheta^{\prime \prime}\right\|_{\infty} \sup _{|x| \in[1 / 2,2]}\left(\left|\Phi_{j, m}(x)\right|+\left|\Phi_{j, m}^{\prime \prime}(x)\right|\right) \\
& =16\left\|\vartheta^{\prime \prime}\right\|_{\infty} \sup _{|x| \in\left[2^{j-1} m, 2^{j+1} m\right]}\left(|\lambda(x)|+\left(2^{j} m\right)^{2}\left|\lambda^{\prime \prime}(x)\right|\right) \\
& \leq 64\left\|\vartheta^{\prime \prime}\right\|_{\infty} \sup _{|x| \in\left[2^{j-1} m, 2^{j+1} m\right]}\left(|\lambda(x)|+\left|x^{2} \lambda^{\prime \prime}(x)\right|\right) .
\end{aligned}
$$

Combining this and (2.12), we deduce

$$
\left\|\sigma_{2^{j+1} m}(\vartheta ; f)-\sigma_{2^{j} m}(\vartheta ; f)\right\|_{p} \leq 64 c_{1}\left\|\vartheta^{\prime \prime}\right\|_{\infty} \sup _{|x| \in\left[2^{j-1} m, 2^{j+1} m\right]}\left(|\lambda(x)|+\left|x^{2} \lambda^{\prime \prime}(x)\right|\right)\|g\|_{p} .
$$

Therefore, by (2.11) and $\lim _{m \rightarrow \infty}\left\|f-\sigma_{2^{j} m}(\vartheta ; f)\right\|_{p}=0$, we have that

$$
\begin{align*}
\left\|f-\mathcal{C}_{m}\right\|_{p} & \leq \sum_{j=0}^{\infty}\left\|\sigma_{2^{j+1} m}(\vartheta ; f)-\sigma_{2^{j} m}(\vartheta ; f)\right\|_{p} \\
& \leq 64 c_{1}\left\|\vartheta^{\prime \prime}\right\|_{\infty} \sum_{j=0}^{\infty} \sup _{|x| \in\left[2^{j-1} m, 2^{j+1} m\right]}\left(|\lambda(x)|+\left|x^{2} \lambda^{\prime \prime}(x)\right|\right)\|g\|_{p} \tag{2.13}
\end{align*}
$$

Since (2.8),

$$
\sup _{|x| \in\left[2^{j-1} m, 2^{j+1} m\right]}|\lambda(x)| \leq \frac{c_{0}}{2^{j} m} \int_{|x| \in\left[2^{j} m, 2^{j+1} m\right]}|\lambda(x)| d x \leq \frac{c_{0}}{m} \int_{|x| \in\left[2^{j} m, 2^{j+1} m\right]}|\lambda(x)| d x,
$$

and

$$
\sup _{|x| \in\left[2^{j-1} m, 2^{j+1} m\right]}\left|x^{2} \lambda^{\prime \prime}(x)\right| \leq 2 c_{0} \int_{|x| \in\left[2^{j} m, 2^{j+1} m\right]}\left|x \lambda^{\prime \prime}(x)\right| d x .
$$

So,

$$
\sum_{j=0}^{\infty} \sup _{|x| \in\left[2^{j-1} m, 2^{j+1} m\right]}\left(|\lambda(x)|+\left|x^{2} \lambda^{\prime \prime}(x)\right|\right) \leq 2 c_{0} \int_{|x| \geq m}\left(\frac{|\lambda(x)|}{m}+\left|x \lambda^{\prime \prime}(x)\right|\right) d x=2 c_{0} J_{m}(\lambda) .
$$

Hence, by (2.13), we deduce

$$
\begin{equation*}
\left\|f-\mathcal{C}_{m}\right\|_{p} \leq 128 c_{0} c_{1}\left\|\vartheta^{\prime \prime}\right\|_{\infty} \varepsilon_{m}\|g\|_{p} . \tag{2.14}
\end{equation*}
$$

Combining (2.9), (2.10) and (2.14) we have

$$
\left\|f-Q_{m, \beta}(f)\right\|_{p} \leq c \varepsilon_{m}\|f\|_{\mathcal{H}_{\lambda, p}(\mathbb{T})} .
$$

From the above theorem, by letting $\lambda=\beta$, we obtain the following corollary.
Corollary 2.5 Let $1 \leq p \leq \infty$ and λ be of monotone type. Then there exists a positive constant c such that for all $f \in \mathcal{H}_{\lambda, p}(\mathbb{T})$ and $m \in \mathbb{N}$,

$$
\left\|f-Q_{m, \lambda}(f)\right\|_{p} \leq c J_{m}(\lambda)\|f\|_{\mathcal{H}_{\lambda, p}(\mathbb{T})} .
$$

Definition 2.6 Let $r, \kappa \in \mathbb{R}$. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ will be called a mask of type (r, κ) if f is an even, 2 times continuously differentiable such that for $t \geq 1, f(t)=|t|^{-r}(\log (|t|+1))^{-\kappa} F(\log |t|)$ for some $F: \mathbb{R} \rightarrow \mathbb{R}$ such that $\left|F^{(k)}(t)\right| \leq a_{1}$ for all $t \geq 1, k=0,1,2$.

Theorem 2.7 Let $1 \leq p \leq \infty, 1<r<\infty, \kappa \in \mathbb{R}$ and the function λ be a mask of type (r, κ). Then there exists a positive constant c such that for all $f \in \mathcal{H}_{\lambda, p}(\mathbb{T})$ and $m \in \mathbb{N}$,

$$
\left\|f-Q_{m, \lambda}(f)\right\|_{p} \leq c m^{-r}(\log m)^{-\kappa}\|f\|_{\mathcal{H}_{\lambda, p}(\mathbb{T})} .
$$

Proof. Since the function λ be a mask of type (r, κ) and $r>1$,

$$
\begin{equation*}
\int_{|x| \geq m}\left|\frac{\lambda(x)}{m}\right| d x \leq a_{1} \int_{|x| \geq m} \frac{|x|^{-r}(\log (|x|+1))^{-\kappa}}{m} d x \leq a_{2} m^{-r}(\log (m+1))^{-\kappa} \quad \forall m \in \mathbb{N} . \tag{2.15}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
& \int_{|x| \geq m}\left|x \lambda^{\prime \prime}(x)\right| d x \leq \int_{|x| \geq m}|x|\left(\left(|x|^{-r}(\log (|x|+1))^{-\kappa}\right)^{\prime \prime}|F(\log |x|)|\right. \\
& \left.+2\left(|x|^{-r}(\log (|x|+1))^{-\kappa}\right)^{\prime}\left|F^{\prime}(\log |x|)\right| /|x|+\left(|x|^{-r}(\log (|x|+1))^{-\kappa}\right)\left|F^{\prime \prime}(\log |x|)-F^{\prime}(\log |x|)\right| / x^{2}\right) d x \\
& \leq a_{1} \int_{|x| \geq m}|x|\left(\left(|x|^{-r}(\log (|x|+1))^{-\kappa}\right)^{\prime \prime}+2\left(|x|^{-r}(\log (|x|+1))^{-\kappa}\right)^{\prime} /|x|+2\left(|x|^{-r}(\log (|x|+1))^{-\kappa}\right) / x^{2}\right) d x \\
& \leq a_{3} m^{-r}(\log (m+1))^{-\kappa} .
\end{aligned}
$$

Hence, by (2.15), we deduce

$$
J_{m}(\lambda) \leq a_{4} m^{-r}(\log (m+1))^{-\kappa} .
$$

From this and Corollary 2.5, we complete the proof.
Corollary 2.8 For $1 \leq p \leq \infty, 1<r<\infty$ and $\lambda(x)=\beta(x)=x^{-r}$ for $x \neq 0, \mathcal{H}_{\lambda, p}(\mathbb{T})$ becomes the Korobov space $K_{p}^{r}(\mathbb{T})$. Then we have the estimate as in [1]:

$$
M_{n}\left(U_{\lambda, p}(\mathbb{T}), \kappa_{r}\right)_{p} \leq c m^{-r}
$$

where κ_{r} is the Korobov function.
Definition 2.9 A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called a function of exponent type if f is 2 times continuously differentiable and there exists a positive constant such that $f(t)=e^{-s|t|} F(|t|)$ for some decreasing function $F:[0,+\infty) \rightarrow(0,+\infty)$.

Theorem 2.10 Let $1 \leq p \leq \infty, 1<r<\infty, \kappa \in \mathbb{Z}$, the function λ be a mash of type (r, κ), the function β of exponent type. Then there exists a positive constant c such that for all $f \in \mathcal{H}_{\lambda, p}(\mathbb{T})$ and $m \in \mathbb{N}$, we have

$$
\left\|f-Q_{m, \beta}(f)\right\|_{p} \leq c m^{-r}(\log (m+1))^{-\kappa}\|f\|_{\mathcal{H}_{\lambda, p}(\mathbb{T})} .
$$

Proof. We will use the notation in the proof of Theorem 2.2. For $k \in I_{j, m}$ we have $k_{m}=k-j(2 m+1)$ and then

$$
\begin{aligned}
|\gamma(k)| & =\left|\beta\left(k_{m}+j(2 m+1)\right) \vartheta\left(k_{m} / m\right) \frac{\lambda\left(k_{m}\right)}{\beta\left(k_{m}\right)}\right| \\
& =e^{-s j(2 m+1))} \frac{\left|\lambda\left(k_{m}\right) F\left(k_{m}+j(2 m+1)\right)\right|}{\left|F\left(k_{m}\right)\right|} \leq b_{1} e^{-s j(2 m+1))} .
\end{aligned}
$$

Hence,

$$
\left\|\sum_{k \in I_{j, m}} \gamma(k) e^{i k x} \widehat{g}\left(k_{m}\right)\right\|_{p} \leq 3 b_{1} m e^{-s j(2 m+1))}\|g\|_{p}
$$

This implies that

$$
\begin{align*}
\left\|\mathcal{A}_{m}\right\|_{p} & =\left\|\sum_{j \in \mathbb{N}} \sum_{k \in I_{j, m}} \gamma(k) e^{i k x} \widehat{g}\left(k_{m}\right)\right\|_{p} \tag{2.16}\\
& \leq 3 b_{1} \sum_{j \in \mathbb{N}} m e^{-s j(2 m+1))}\|g\|_{p} \leq b_{2} m^{-r}(\log (m+1))^{-\kappa}\|g\|_{p} .
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\left\|\mathcal{B}_{m}\right\|_{p} \leq b_{2} m^{-r}(\log (m+1))^{-\kappa}\|g\|_{p} . \tag{2.17}
\end{equation*}
$$

We also known that in the proof of Theorem 2.2 that

$$
\begin{equation*}
\left\|f-\mathcal{C}_{m}\right\|_{p} \leq b_{3} \sum_{j=0}^{\infty} \sup _{|x| \in\left[2^{j-1} m, 2^{j+1} m\right]}\left(|\lambda(x)|+\left|x^{2} \lambda^{\prime \prime}(x)\right|\right)\|g\|_{p} . \tag{2.18}
\end{equation*}
$$

We see that

$$
\begin{aligned}
& \sup _{|x| \in\left[2^{j-1} m, 2^{j+1} m\right]}|\lambda(x)| \leq b_{4} \int_{|x| \in\left[2^{j} m, 2^{j+1} m\right]} \frac{|\lambda(x)|}{|x|} d x \\
& \sup _{|x| \in\left[2^{j-1} m, 2^{j+1} m\right]}\left|x^{2} \lambda^{\prime \prime}(x)\right| \leq b_{4} \int_{|x| \in\left[2^{j} m, 2^{j+1} m\right]}\left|x \lambda^{\prime \prime}(x)\right| d x .
\end{aligned}
$$

So,

$$
\sum_{j=0}^{\infty} \sup _{|x| \in\left[2^{j-1} m, 2^{j+1} m\right]}\left(|\lambda(x)|+\left|x^{2} \lambda^{\prime \prime}(x)\right|\right) \leq b_{4} \int_{|x| \geq m}\left(\frac{|\lambda(x)|}{|x|}+\left|x \lambda^{\prime \prime}(x)\right|\right) d x .
$$

Hence, by (2.18), we deduce that

$$
\left\|f-\mathcal{C}_{m}\right\|_{p} \leq b_{3} b_{4}\|g\|_{p} \int_{|x| \geq m}\left(\frac{|\lambda(x)|}{|x|}+\left|x \lambda^{\prime \prime}(x)\right|\right) d x \leq b_{5} m^{-r}(\log (m+1))^{-\kappa}\|g\|_{p}
$$

Combining this, (2.16), (2.17) and (2.4), we complete the proof.

3 Multivariate approximation

In this section, we make use of the univariate operators $Q_{m, \lambda}$ to construct multivariate operators on sparse Smolyak grids for approximation of functions from $\mathcal{H}_{\lambda, p}\left(\mathbb{T}^{d}\right)$. Based on this approxiation with certain restriction on the function λ we prove an upper bound of $M_{n}\left(U_{\lambda, p}\left(\mathbb{T}^{d}\right), \varphi_{\lambda, d}\right)_{p}$ for $1 \leq p \leq \infty$ as well as a lower bound of $M_{n}\left(U_{\lambda, 2}\left(\mathbb{T}^{d}\right)\right)_{2}$. The results obtained in this section generalize some results in [1, 2].

3.1 Error estimates for functions in the space $\mathcal{H}_{\lambda, p}\left(\mathbb{T}^{d}\right)$

For $\boldsymbol{m} \in \mathbb{N}^{d}$, let the multivariate operator $Q_{\boldsymbol{m}}$ in $\mathcal{H}_{\lambda, p}\left(\mathbb{T}^{d}\right)$ be defined by

$$
\begin{equation*}
Q_{m}:=\prod_{j=1}^{d} Q_{m_{j}, \lambda}, \tag{3.19}
\end{equation*}
$$

where the univariate operator $Q_{m_{j}, \lambda}$ is applied to the univariate function f by considering f as a function of variable x_{j} with the other variables held fixed, $\mathbb{Z}_{+}^{d}:=\left\{\boldsymbol{k} \in \mathbb{Z}^{d}: k_{j} \geq 0, j \in \mathbb{N}_{d}\right\}$ and k_{j} denotes the j th coordinate of \boldsymbol{k}.

Set $\mathbb{Z}_{-1}^{d}:=\left\{\boldsymbol{k} \in \mathbb{Z}^{d}: k_{j} \geq-1, j \in \mathbb{N}_{d}\right\}$. For $k \in \mathbb{Z}_{-1}$, we define the univariate operator T_{k} in $\mathcal{H}_{\lambda, p}(\mathbb{T})$ by

$$
T_{k}:=\mathrm{I}-Q_{2^{k}, \lambda}, \quad k \geq 0, \quad T_{-1}:=\mathrm{I},
$$

where I is the identity operator. If $\boldsymbol{k} \in \mathbb{Z}_{-1}^{d}$, we define the mixed operator $T_{\boldsymbol{k}}$ in $\mathcal{H}_{\lambda, p}\left(\mathbb{T}^{d}\right)$ in the manner of the definition of (3.19) as

$$
T_{k}:=\prod_{i=1}^{d} T_{k_{i}}
$$

Set $|\boldsymbol{k}|:=\sum_{j \in \mathbb{N}_{d}}\left|k_{j}\right|$ for $\boldsymbol{k} \in \mathbb{Z}_{-1}^{d}$ and $\boldsymbol{k}_{(2)}^{-\kappa}=\prod_{j=1}^{d}\left(k_{j}+2\right)^{-\kappa}$.
Lemma 3.1 Let $1 \leq p \leq \infty, 1<r<\infty, 0 \leq \kappa<\infty$ and the function λ be a mask of type (r, κ). Then we have for any $f \in \mathcal{H}_{\lambda, p}\left(\mathbb{T}^{d}\right)$ and $\boldsymbol{k} \in \mathbb{Z}_{-1}^{d}$,

$$
\left\|T_{\boldsymbol{k}}(f)\right\|_{p} \leq C \boldsymbol{k}_{(2)}^{-\kappa} 2^{-r|\boldsymbol{k}|}\|f\|_{\mathcal{H}_{\lambda, p}\left(\mathbb{T}^{d}\right)}
$$

with some constant C independent of f and \boldsymbol{k}.
Proof. We prove the lemma by induction on d. For $d=1$ it follows from Theorems 2.7. Assume the lemma is true for $d-1$. Set $\boldsymbol{x}^{\prime}:=\left\{x_{j}: j \in \mathbb{N}_{d-1}\right\}$ and $\boldsymbol{x}=\left(\boldsymbol{x}^{\prime}, x_{d}\right)$ for $\boldsymbol{x} \in \mathbb{R}^{d}$. We temporarily denote by $\|f\|_{p, \boldsymbol{x}^{\prime}}$ and $\|f\|_{\mathcal{H}_{\lambda, p}\left(\mathbb{T}^{d-1}\right), \boldsymbol{x}^{\prime}}$ or $\|f\|_{p, x_{d}}$ and $\|f\|_{\mathcal{H}_{\lambda, p}(\mathbb{T}), x_{d}}$ the norms applied to the function f by considering f as a function of variable \boldsymbol{x}^{\prime} or x_{d} with the other variable held fixed, respectively. For $\boldsymbol{k}=\left(\boldsymbol{k}^{\prime}, k_{d}\right) \in \mathbb{Z}_{-1}^{d}$, we get by Theorems 2.7 and the induction assumption

$$
\begin{aligned}
\left\|T_{\boldsymbol{k}}(f)\right\|_{p} & =\| \| T_{\boldsymbol{k}^{\prime}} T_{k_{d}}(f)\left\|_{p, \boldsymbol{x}^{\prime}}\right\|_{p, x_{d}} \ll\left\|2^{-r\left|\boldsymbol{k}^{\prime}\right|} \boldsymbol{k}_{(2)}^{\prime-\kappa}\right\| T_{k_{d}}(f)\left\|_{\mathcal{H}_{\lambda, p}\left(\mathbb{T}^{d-1}\right), \boldsymbol{x}^{\prime}}\right\|_{p, x_{d}} \\
& =2^{-r\left|\boldsymbol{k}^{\prime}\right|} \boldsymbol{k}_{(2)}^{\prime-\kappa}\| \| T_{k_{d}}(f)\left\|_{p, x_{d}}\right\|_{\mathcal{H}_{\lambda, p}\left(\mathbb{T}^{d-1}\right), \boldsymbol{x}^{\prime}} \\
& \ll 2^{-r\left|\boldsymbol{k}^{\prime}\right|} \boldsymbol{k}_{(2)}^{\prime-\kappa}\left\|2^{-r k_{d}}\left(k_{d}+2\right)^{-\kappa}\right\| f\left\|_{\mathcal{H}_{\lambda, p}(\mathbb{T}), x_{d}}\right\|_{\mathcal{H}_{\lambda, p}\left(\mathbb{T}^{d-1}\right), \boldsymbol{x}^{\prime}} \\
& =2^{-r|\boldsymbol{k}|} \prod_{j=1}^{d}\left(k_{j}+2\right)^{-\kappa}\|f\|_{\mathcal{H}_{\lambda, p}\left(\mathbb{T}^{d}\right)} .
\end{aligned}
$$

Let the univariate operator q_{k} be defined for $k \in \mathbb{Z}_{+}$, by

$$
q_{k}:=Q_{2^{k}, \lambda}-Q_{2^{k-1}, \lambda}, k>0, \quad q_{0}:=Q_{1, \lambda},
$$

and in the manner of the definition of (3.19), the multivariate operator q_{k} for $\boldsymbol{k} \in \mathbb{Z}_{+}^{d}$, by

$$
q_{k}:=\prod_{j=1}^{d} q_{k_{j}} .
$$

For $\boldsymbol{k} \in \mathbb{Z}_{+}^{d}$, we write $\boldsymbol{k} \rightarrow \infty$ if $k_{j} \rightarrow \infty$ for each $j \in \mathbb{N}_{d}$.

Theorem 3.2 Let $1 \leq p \leq \infty, 1<r<\infty, 0 \leq \kappa<\infty$ and the function λ be a mask of type (r, κ). Then every $f \in \mathcal{H}_{\lambda, p}\left(\mathbb{T}^{d}\right)$ can be represented as the series

$$
\begin{equation*}
f=\sum_{k \in \mathbb{Z}_{+}^{d}} q_{k}(f) \tag{3.20}
\end{equation*}
$$

converging in L^{p}-norm, and we have for $\boldsymbol{k} \in \mathbb{Z}_{+}^{d}$,

$$
\begin{equation*}
\left\|q_{\boldsymbol{k}}(f)\right\|_{p} \leq C 2^{-r|\boldsymbol{k}|} \boldsymbol{k}_{(2)}^{-\kappa}\|f\|_{\mathcal{H}_{\lambda, p}\left(\mathbb{T}^{d}\right)} \tag{3.21}
\end{equation*}
$$

with some constant C independent of f and \boldsymbol{k}.
Proof. Let $f \in \mathcal{H}_{\lambda, p}\left(\mathbb{T}^{d}\right)$. In a way similar to the proof of Lemma 3.1, we can show that

$$
\left\|f-Q_{2^{k}}(f)\right\|_{p} \ll \max _{j \in \mathbb{N}_{d}} 2^{-r k_{j}} k_{j}^{\kappa}\|f\|_{\mathcal{H}_{\lambda, p}\left(\mathbb{T}^{d}\right)},
$$

and therefore,

$$
\left\|f-Q_{2^{k}}(f)\right\|_{p} \rightarrow 0, \boldsymbol{k} \rightarrow \infty
$$

where $2^{k}=\left(2^{k_{j}}: j \in \mathbb{N}_{d}\right)$. On the other hand,

$$
Q_{2^{k}}=\sum_{s_{j} \leq k_{j}, j \in \mathbb{N}_{d}} q_{s}(f) .
$$

This proves (3.20). To prove (3.21) we notice that from the definition it follows that

$$
q_{\boldsymbol{k}}=\sum_{e \subset \mathbb{N}_{d}}(-1)^{|e|} T_{\boldsymbol{k}^{e}},
$$

where \boldsymbol{k}^{e} is defined by $k_{j}^{e}=k_{j}$ if $j \in e$, and $k_{j}^{e}=k_{j}-1$ if $j \notin e$. Hence, by Lemma 3.1

$$
\left\|q_{k}(f)\right\|_{p} \leq \sum_{e \subset \mathbb{N}_{d}}\left\|T_{\boldsymbol{k}^{e}}(f)\right\|_{p} \ll \sum_{e \subset \mathbb{N}_{d}} 2^{-r\left|\boldsymbol{k}^{e}\right|}\left(\boldsymbol{k}_{(2)}^{e}\right)^{-\kappa}\|f\|_{\mathcal{H}_{\lambda, p}\left(\mathbb{T}^{d}\right)} \ll 2^{-r|\boldsymbol{k}|} \boldsymbol{k}_{(2)}^{-\kappa}\|f\|_{\mathcal{H}_{\lambda, p}\left(\mathbb{T}^{d}\right)} .
$$

For approximation of $f \in \mathcal{H}_{\lambda, p}\left(\mathbb{T}^{d}\right)$, we introduce the linear operator $P_{m}, m \in \mathbb{N}$, by

$$
\begin{equation*}
P_{m}(f):=\sum_{|k| \leq m} q_{k}(f) . \tag{3.22}
\end{equation*}
$$

We give an upper bound for the error of the approximation of functions $f \in \mathcal{H}_{\lambda, p}\left(\mathbb{T}^{d}\right)$ by the operator P_{m} in the following theorem.

Theorem 3.3 Let $1 \leq p \leq \infty, 1<r<\infty, 0 \leq \kappa<\infty$ and the function λ be a mask of type (r, κ). Then, we have for every $m \in \mathbb{N}$ and $f \in \mathcal{H}_{\lambda, p}\left(\mathbb{T}^{d}\right)$,

$$
\left\|f-P_{m}(f)\right\|_{p} \leq C 2^{-r m} m^{d-1-\kappa}\|f\|_{\mathcal{H}_{\lambda, p}\left(\mathbb{T}^{d}\right)}
$$

with some constant C independent of f and m.

Proof. From Theorem 3.2 we deduce that

$$
\begin{aligned}
\left\|f-P_{m}(f)\right\|_{p} & =\left\|\sum_{|\boldsymbol{k}|>m} q_{\boldsymbol{k}}(f)\right\|_{p} \leq \sum_{|\boldsymbol{k}|>m}\left\|q_{\boldsymbol{k}}(f)\right\|_{p} \\
& \ll \sum_{|\boldsymbol{k}|>m} 2^{-r|\boldsymbol{k}|} \boldsymbol{k}_{(2)}^{-\kappa}\|f\|_{\mathcal{H}_{\lambda, p}\left(\mathbb{T}^{d}\right)} \ll\|f\|_{\mathcal{H}_{\lambda, p}\left(\mathbb{T}^{d}\right)} \sum_{|\boldsymbol{k}|>m} 2^{-r|\boldsymbol{k}|} \boldsymbol{k}_{(2)}^{-\kappa} \\
& \ll 2^{-r m} m^{d-1-\kappa}\|f\|_{\mathcal{H}_{\lambda, p}\left(\mathbb{T}^{d}\right)} .
\end{aligned}
$$

3.2 Convergence rate

We choose a positive integer $m \in \mathbb{N}$, a lattice vector $\boldsymbol{k} \in \mathbb{Z}_{+}^{d}$ with $|\boldsymbol{k}| \leq m$ and another lattice vector $s=\left(s_{j}: j \in \mathbb{N}_{d}\right) \in \prod_{j \in \mathbb{N}_{d}} Z\left[2^{k_{j}+1}+1\right]$ to define the vector $\boldsymbol{y}_{\boldsymbol{k}, \boldsymbol{s}}=\left(\frac{2 \pi s_{j}}{2^{k_{j}+1}+1}: j \in \mathbb{N}_{d}\right)$. The Smolyak grid on \mathbb{T}^{d} consists of all such vectors and is given as

$$
G^{d}(m):=\left\{\boldsymbol{y}_{\boldsymbol{k}, \boldsymbol{s}}:|\boldsymbol{k}| \leq m, \boldsymbol{s} \in \otimes_{j \in \mathbb{N}_{d}} Z\left[2^{k_{j}+1}+1\right]\right\} .
$$

A simple computation confirms, for $m \rightarrow \infty$ that

$$
\left|G^{d}(m)\right|=\sum_{|\boldsymbol{k}| \leq m} \prod_{j \in \mathbb{N}_{d}}\left(2^{k_{j}+1}+1\right) \asymp 2^{d} m^{d-1},
$$

so, $G^{d}(m)$ is a sparse subset of a full grid of cardinality $2^{d m}$. Moreover, by the definition of the linear operator P_{m} given in equation (3.22) we see that the range of P_{m} is contained in the subspace

$$
\operatorname{span}\left\{\varphi_{\lambda, d}(\cdot-\boldsymbol{y}): \boldsymbol{y} \in G^{d}(m)\right\} .
$$

Other words, P_{m} defines a multivariate method of approximation by translates of the function $\varphi_{\lambda, d}$ on the sparse Smolyak grid $G^{d}(m)$. An upper bound for the error of this approximation of functions from $\mathcal{H}_{\lambda, p}\left(\mathbb{T}^{d}\right)$ is given in Theorem 3.3.

Now, we are ready to prove the next theorem, thereby establishing an upper bound of $M_{n}\left(U_{\lambda, p}, \varphi_{\lambda, d}\right)_{p}$.

Theorem 3.4 If $1 \leq p \leq \infty, 1<r<\infty, 0 \leq \kappa<\infty$ and the function λ be a mask of type (r, κ), then

$$
M_{n}\left(U_{\lambda, p}\left(\mathbb{T}^{d}\right), \varphi_{\lambda, d}\right)_{p} \ll n^{-r}(\log n)^{r(d-1)-\kappa} .
$$

Proof. If $n \in \mathbb{N}$ and m is the largest positive integer such that $\left|G^{d}(m)\right| \leq n$, then $n \asymp 2^{m} m^{d-1}$ and by Theorem 3.3 we have that

$$
M_{n}\left(U_{\lambda, p}\left(\mathbb{T}^{d}\right), \varphi_{\lambda, d}\right)_{p} \leq \sup _{f \in U_{\lambda, p}\left(\mathbb{T}^{d}\right)}\left\|f-P_{m}(f)\right\|_{p} \ll 2^{-r m} m^{d-1-d \kappa} \asymp n^{-r}(\log n)^{r(d-1)-\kappa}
$$

For $p=2$, we are able to establish a lower bound for $M_{n}\left(U_{\lambda, 2}\left(\mathbb{T}^{d}\right), \varphi_{\lambda, d}\right)_{2}$. We prepare some auxiliary results. Let $\mathbb{P}_{q}\left(\mathbb{R}^{l}\right)$ be the set of algebraic polynomials on \mathbb{R}^{l} of total degree at most q, and

$$
\mathbb{E}^{m}:=\left\{\boldsymbol{t}=\left(t_{j}: j \in \mathbb{N}_{m}\right):\left|t_{j}\right|=1, j \in \mathbb{N}_{m}\right\} .
$$

We define the polynomial maifold

$$
\mathbb{M}_{m, l, q}:=\left\{\left(p_{j}(\boldsymbol{u}): j \in \mathbb{N}_{m}\right): p_{j} \in \mathbb{P}_{q}\left(\mathbb{R}^{l}\right), j \in \mathbb{N}_{m}, \boldsymbol{u} \in \mathbb{R}^{l}\right\}
$$

Denote by $\|\boldsymbol{x}\|_{2}$ the Euclidean norm of a vector \boldsymbol{x} in \mathbb{R}^{m}. The following lemma was proven in [5].
Lemma 3.5 Let $m, l, q \in \mathbb{N}$ satisfy the inequality $l \log \left(\frac{4 e m q}{l}\right) \leq \frac{m}{4}$. Then there is a vector $\boldsymbol{t} \in \mathbb{E}^{m}$ and a positive constant c such that

$$
\inf \left\{\|\boldsymbol{t}-\boldsymbol{x}\|_{2}: \boldsymbol{x} \in \mathbb{M}_{m, l, q}\right\} \geq c m^{1 / 2} .
$$

Theorem 3.6 If $1<r<\infty, 0 \leq \kappa<\infty$ and the function λ be a mask of type (r, κ), then we have that

$$
\begin{equation*}
n^{-r}(\log n)^{r(d-2)-d \kappa} \ll M_{n}\left(U_{\lambda, 2}\right)_{2} \ll n^{-r}(\log n)^{r(d-1)-\kappa} . \tag{3.23}
\end{equation*}
$$

Proof. The upper bound of (3.23) is in Theorem 3.4. Let us prove the lower bound by developing a technique used in the proofs of [5, Theorem 1.1] and [1, Theorem 4.4]. For a positive number a we define a subset $\mathbb{H}(a)$ of lattice vectors by

$$
\mathbb{H}(a):=\left\{\boldsymbol{k}=\left(k_{j}: j \in \mathbb{N}_{d}\right) \in \mathbb{Z}^{d}: \prod_{j \in \mathbb{N}_{d}}\left|k_{j}\right| \leq a\right\} .
$$

Notice that $|\mathbb{H}(a)| \asymp a(\log a)^{d-1}$ when $a \rightarrow \infty$. To apply Lemma 3.5, for any $n \in \mathbb{N}$, we take $q=\left\lfloor n(\log n)^{-d+2}\right\rfloor+1, m=5(2 d+1)\lfloor n \log n\rfloor$ and $l=(2 d+1) n$. With these choices we obtain

$$
\begin{equation*}
|\mathbb{H}(q)| \asymp m \tag{3.24}
\end{equation*}
$$

and

$$
\begin{equation*}
q \asymp m(\log m)^{-d+1} \tag{3.25}
\end{equation*}
$$

as $n \rightarrow \infty$. Moreover, we have that

$$
\lim _{n \rightarrow \infty} \frac{l}{m} \log \left(\frac{4 e m q}{l}\right)=\frac{1}{5},
$$

and therefore, the assumption of Lemma 3.5 is satisfied for $n \rightarrow \infty$.
Now, let us specify the polynomial manifold $\mathbb{M}_{m, l, q}$. To this end, we put $\zeta:=q^{-r} m^{-1 / 2}(\log q)^{-d \kappa}$ and let \mathbb{Y} be the set of trigonometric polynomials on \mathbb{T}^{d}, defined by

$$
\mathbb{Y}:=\left\{f=\zeta \sum_{k \in \mathbb{H}(q)} a_{\boldsymbol{k}} t_{\boldsymbol{k}}: \mathbf{t}=\left(t_{\boldsymbol{k}}: \boldsymbol{k} \in \mathbb{H}(q)\right) \in \mathbb{E}^{|\mathbb{H}(q)|}\right\} .
$$

If $f \in \mathbb{Y}$ and

$$
f=\zeta \sum_{k \in \mathbb{H}(q)} a_{k} t_{\boldsymbol{k}},
$$

then $f=\varphi_{\lambda, d} * g$ for some trigonometric polynomial g such that

$$
\|g\|_{L^{2}\left(\mathbb{T}^{d}\right)}^{2} \leq \zeta^{2} \sum_{\boldsymbol{k} \in \mathbb{H}(q)}|\lambda(\boldsymbol{k})|^{-2} .
$$

Since

$$
\begin{aligned}
\zeta^{2} \sum_{\boldsymbol{k} \in \mathbb{H}(q)}|\lambda(\boldsymbol{k})|^{-2} & \leq \zeta^{2} q^{2 r} \sum_{\boldsymbol{k} \in \mathbb{H}(q)}\left|\log \prod_{j=1}^{d} k_{j}\right|^{2 \kappa} \\
& \leq \zeta^{2} q^{2 r} \sum_{\boldsymbol{k} \in \mathbb{H}(q)}\left|\sum_{j=1}^{n} \log k_{j}\right|^{2 d \kappa} \leq \zeta^{2} q^{2 r}(\log q)^{2 d \kappa}|\mathbb{H}(q)|=m^{-1}|\mathbb{H}(q)|,
\end{aligned}
$$

by (3.24) that there is a positive constant c such that $\|g\|_{L^{2}\left(\mathbb{T}^{d}\right)} \leq c$ for all $n \in \mathbb{N}$. Therefore, we can either adjust functions in \mathbb{Y} by dividing them by c, or we can assume without loss of generality that $c=1$, and obtain $\mathbb{Y} \subseteq U_{\lambda, 2}\left(\mathbb{T}^{d}\right)$.

We are now ready to prove the lower bound for $M_{n}\left(U_{\lambda, 2}\left(\mathbb{T}^{d}\right)\right)_{2}$. We choose any $\varphi \in L^{2}\left(\mathbb{T}^{d}\right)$ and let v be any function formed as a linear combination of n translates of the function φ :

$$
v=\sum_{j \in \mathbb{N}_{n}} c_{j} \varphi\left(\cdot-\boldsymbol{y}_{j}\right) .
$$

By the well-known Bessel inequality we have for a function

$$
f=\zeta \sum_{k \in \mathbb{H}(q)} a_{\boldsymbol{k}} t_{\boldsymbol{k}} \in \mathbb{Y}
$$

that

$$
\begin{equation*}
\|f-v\|_{L^{2}\left(\mathbb{T}^{d}\right)}^{2} \geq \zeta^{2} \sum_{\boldsymbol{k} \in \mathbb{H}(q)}\left|t_{\boldsymbol{k}}-\frac{\widehat{\varphi}(\boldsymbol{k})}{\zeta} \sum_{j \in \mathbb{N}_{n}} c_{j} e^{i\left(\boldsymbol{y}_{j}, \boldsymbol{k}\right)}\right|^{2} \tag{3.26}
\end{equation*}
$$

We introduce a polynomial manifold so that we can use Lemma 3.5 to get a lower bound for the expressions on the left hand side of inequality (3.26). To this end, we define the vector $\mathbf{c}=\left(c_{j}: j \in\right.$ $\left.\mathbb{N}_{n}\right) \in \mathbb{R}^{n}$ and for each $j \in \mathbb{N}_{n}$, let $\boldsymbol{z}_{j}=\left(z_{j, l}: l \in \mathbb{N}_{d}\right)$ be a vector in \mathbb{C}^{d} and then concatenate these vectors to form the vector $\boldsymbol{z}=\left(\boldsymbol{z}_{j}: j \in \mathbb{N}_{n}\right) \in \mathbb{C}^{n d}$. We employ the standard multivariate notation

$$
z_{j}^{k}=\prod_{l \in \mathbb{N}_{d}} z_{j, l}^{k_{l}}
$$

and require vectors $\boldsymbol{w}=(\boldsymbol{c}, \boldsymbol{z}) \in \mathbb{R}^{n} \times \mathbb{C}^{n d}$ and $\boldsymbol{u}=(\boldsymbol{c}, \operatorname{Re} \boldsymbol{z}, \operatorname{Im} \boldsymbol{z}) \in \mathbb{R}^{l}$ to be written in concatenate form. Now, we introduce for each $\boldsymbol{k} \in \mathbb{H}(q)$ the polynomial $\boldsymbol{q}_{\boldsymbol{k}}$ defined at \boldsymbol{w} as

$$
\boldsymbol{q}_{\boldsymbol{k}}(\boldsymbol{w}):=\frac{\widehat{\varphi}(\boldsymbol{k})}{\zeta} \sum_{\boldsymbol{j} \in \mathbb{H}(q)} c_{\boldsymbol{j}} z^{j}
$$

We only need to consider the real part of $\boldsymbol{q}_{\boldsymbol{k}}$, namely, $\boldsymbol{p}_{\boldsymbol{k}}=\operatorname{Re} \boldsymbol{q}_{\boldsymbol{k}}$ since we have that

$$
\inf \left\{\sum_{\boldsymbol{k} \in \mathbb{H}(q)}\left|t_{\boldsymbol{k}}-\frac{\widehat{\varphi}(\boldsymbol{k})}{\zeta} \sum_{j \in \mathbb{N}_{n}} c_{j} e^{i\left(\boldsymbol{y}_{j}, \boldsymbol{k}\right)}\right|^{2}: c_{j} \in \mathbb{R}, \boldsymbol{y}_{j} \in \mathbb{T}^{d}\right\} \geq \inf \left\{\sum_{\boldsymbol{k} \in \mathbb{H}(q)}\left|t_{\boldsymbol{k}}-p_{\boldsymbol{k}}(\boldsymbol{u})\right|^{2}: \boldsymbol{u} \in \mathbb{R}^{l}\right\}
$$

Therefore, by Lemma 3.5 and (3.25) we conclude there is a vector $\boldsymbol{t}^{0}=\left(t_{\boldsymbol{k}}^{0}: \boldsymbol{k} \in \mathbb{H}(q)\right) \in \mathbb{E}^{h_{q}}$ and the corresponding function

$$
f^{0}=\zeta \sum_{\boldsymbol{k} \in \mathbb{H}(q)} t_{\boldsymbol{k}}^{0} \chi_{\boldsymbol{k}} \in \mathbb{Y}
$$

for which there is a positive constant c such that for every v of the form

$$
v=\sum_{j \in \mathbb{N}_{n}} c_{j} \varphi\left(\cdot-\boldsymbol{y}_{j}\right),
$$

we have that

$$
\left\|f^{0}-v\right\|_{L^{2}\left(\mathbb{T}^{d}\right)} \geq c \zeta m^{\frac{1}{2}}=q^{-r}(\log q)^{-d \kappa} \asymp n^{-r}(\log n)^{r(d-2)-d \kappa}
$$

which proves the lower bound of (3.23).
Similar to the proof of the above theorem, we can prove the following theorem for the case $-\infty<$ $\kappa<0$.

Theorem 3.7 If $1<r<\infty,-\infty<\kappa<0$ and the function λ be a mask of type (r, κ), then we have that

$$
n^{-r}(\log n)^{r(d-2)-\kappa} \ll M_{n}\left(U_{\lambda, 2}\left(\mathbb{T}^{d}\right)\right)_{2} \ll n^{-r}(\log n)^{r(d-1)-d \kappa} .
$$

Acknowledgments. This work is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 102.01-2020.03. A part of this work was done when Dinh Dũng was working at the Vietnam Institute for Advanced Study in Mathematics (VIASM). He would like to thank the VIASM for providing a fruitful research environment and working condition.

References

[1] D. Dũng and Charles A. Michelli, Multivariate approximation by translates of the Korobov function on Smolyak grids, Journal of Complexity, 29(2013), 424-437.
[2] D. Dũng and C. A. Micchelli, Corrigendum to "Multivariate approximation by translates of the Korobov function on Smolyak grids" [J. Complexity 29(2013), 424-437], J. Complexity 35(2016), 124-125.
[3] D. Dũng, Charles A. Micchelli and V.N. Huy, Approximation by translates of a single function of functions in space induced by the convolution with a given function, Applied Mathematics and Computation 361(2019), 777-787.
[4] E. Landau, Ungleichungen für zweimal differenzierbare Funktionen, Proc. London Math. Soc. 13(1913), 43-49.
[5] V. Maiorov, Almost optimal estimates for best approximation by translates on a torus, Constructive Approx. 21(2005), 1-20.
[6] M. Maggioni and H.N. Mhaskar, Diffusion polynomial frames on metric measure spaces, Appl. Comput. Harmon. Anal. 24(2008), 329-353.
[7] H.N. Mhaskar, Eignets for function approximation on manifolds, Appl. Comput. Harmon. Anal. 29(2010), 63-87.

