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Abstract In this paper, a regularized dynamical system of forward-backward-forward type
method for solving structured monotone inclusions is studied. The novelty of the proposed
dynamics consists of the fact that only the algebraic part of the dynamical system needs to
be regularized, while the differential part remains unchanged. We obtain strong convergence
of the generated trajectories to a solution of the original monotone inclusion and under
strong monotonicity conditions we obtain a convergence estimate. A time discretization of
the dynamical system by explicit Euler scheme provides an iterative regularization forward-
backward-forward splitting method with relaxation parameters. Numerical experiments il-
lustrate the effectiveness of the proposed dynamical system approach with regularization.
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1 Introduction

A dynamical system approach to a monotone inclusion consists of constructing a Cauchy
problem, which has a unique global solution, whose limit at infinity exists and solves the
original problem.
Having enjoyed many interesting features as well as provided several efficient numerical algo-
rithms, the dynamical system approach has already found various applications and attracted
much attention of researchers. For a wide literature, please refer to [1, 2, 6–8, 11–17, 19, 22]
and references therein.
In this paper, we are interested in the following structured variational inclusion (VI),

Find u∗ ∈ H such that 0 ∈ (A+ B)u∗, (VI)

where H is a real Hilbert space, A : H → 2H is a maximally monotone operator and
B : H → H is a monotone and Lipschitz continuous operator.
Throughout this paper, we assume that the solution set Ω = Zer(A + B) of the (VI) is
nonempty.
When A = NC , the normal cone of a nonempty closed convex subset C of H, we come to
the following variational inequality problem (VIP):

Find u∗ ∈ C such that 〈Bu∗, u− u∗〉 ≥ 0, ∀u ∈ C. (VIP)
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Barnet and Boţ addressed in [9] a dynamical systems of forward-backward-forward type for
finding the zeros of the structured variational inclusion (VI):

z(t) = Jγ(t)A (x(t)− γ(t)Bx(t))

0 = ẋ(t) + x(t)− z(t) + γ(t) (Bx(t)− Bz(t))
x(0) = x0,

(1)

where γ : [0,+∞)→ (0, 1
L ) is a measurable function, L is a Lipschitz constant of B, x0 ∈ H

and Jγ(t)A denotes the resolvent of the operator γ(t)A for every t ∈ [0,+∞).
Dynamical system (1) is a continuous counterpart of the forward-backward-forward algo-
rithm [25]: 

zn = JγnA (xn − γnBxn)

xn+1 = zn + γn (Bxn − Bzn)

x(0) = x0.

(2)

Recently, Boţ, Csetnek, and Vuong have attached to pseudo-monotone variational inequality
problem (VIP), a dynamical system, which is a continuous analogue of Tseng’s forward-
backward-forward algorithm.
Weak convergence of the generated trajectories to a solution of the original problem was
established in both works [9, 15].
On the other hand, solutions to monotone inclusions in general are not unique and do not
depend continuously on the input data. Besides, approximate methods can in general provide
only weak convergence to a solution. In this case the so-called regularization technique is
needed to provide strongly convergent algorithms, see, [3–5].
Thus, instead of the monotone inclusion problem (VI), we study the so-called regularized
variational inclusion (RVI for short):

Find u ∈ H such that 0 ∈ (A+ B)u+ αFu. (RVI)

where F : H → H is γ−strongly monotone and K−Lipschitz continuous and α > 0 is a
regularization parameter. It is well known that for each α > 0, the RVI has a unique solution
uα.

To find a special solution to (VI) in a stable manner, we consider the variational inequality
problem on the solution set Ω of the (VI):

Find u† ∈ Ω such that
〈
Fu†, u∗ − u†

〉
≥ 0, ∀u∗ ∈ Ω. (3)

Since the operator F is strongly monotone and the solution set Ω = Zer(A+B) of maximally
monotone operators is closed and convex, see, [10], problem (3) is uniquely solvable.
In a particular case, when F = I − g, where I is an identity operator and g is a suggested
point in H, then the unique solution of the problem (3) is u† = PΩ(g)- a projection of g
onto Ω. If g = 0 then u† is the minimum-norm solution of the VI.
Very recently, Boţ et all [17] have considered the following regularized forward-backward-
forward dynamics:

z(t) = Jλ(t)A (x(t)− λ(t)(Bx(t) + α(t)x(t)))

0 = ẋ(t) + x(t)− z(t)− λ(t) (Bx(t)− Bz(t) + α(t)(x(t)− z(t)))
x(0) = x0 ∈ H,

(4)

where λ(t) and α(t) are Lebesgue measurable functions, and x0 is a given initial condition.
Under certain conditions on the parameters λ(t) and α(t), the authors proved the existence
and uniqueness of the strong global solution as well as strong convergence of trajectories to
the minimum-norm solution of the original monotone inclusion.
We assign to each (RVI) a dynamical system:

z(t) = Jλ(t)A (u(t)− λ(t)(Bu(t) + α(t)Fu(t)))

u̇(t) = −u(t) + z(t) + λ(t) (Bu(t)− Bz(t))
u(0) = u0 ∈ H,

(5)
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where, λ : [0,+∞)→ [a, b] ⊂ (0, 1
L ) and α : [0,+∞)→ (0,+∞) are continuous functions.

Observe that in (5) the differential part needs not to be regularized as in (4). This is no
mean trivial in regularizing differential-algebraic equations (1). The new dynamics, when
F = I, looks simpler and its trajectories may converge faster to the minimum-norm solution
than those of (4).
Motivated by the iterative regularization forward-backward-forward splitting method [20],{

vn = JλnA(un − λn(Bun + αnFun))

un+1 = vn + λn(Bun − Bvn).
(6)

we will establish the strong convergence of trajectories to the specially chosen solution u†.
The paper is structured as follows. In Section 2, we recall some notions and concepts which
will be frequently used in this paper. In Section 3, we establish the existence and uniqueness
of the global solution to (5). Moreover, by proving that u(t)− uα(t) → 0 as t→ +∞, where
uα(t) is the unique solution to (RVI) with α = α(t), we establish strong convergence of

generated trajectories by (5) to u†. Further, we obtain a convergence rate under the strong
monotonicity assumption on A + B. In Sections 4, we consider some discrete dynamical
systems obtained via the explicit time discretization of the corresponding continuous ones.
Finally, in Section 5, we perform several numerical experiments to illustrate the effectiveness
of the proposed method.

2 Preliminaries

We begin by recalling some notations and concepts of multi-valued (set-valued) operators.
Let A : H → 2H be a multi-valued operator acting in a Hilbert space H. The graph of A is
defined by

Graph(A) = {(x, u) : x ∈ H, u ∈ Ax} .
A multi-valued operator A : H → 2H is called: (i) monotone, if 〈u− v, x− y〉 ≥ 0 for all
x, y ∈ H and u ∈ Ax, v ∈ Ay; (ii) γ - strongly monotone, if there exists γ > 0 such that
〈u− v, x− y〉 ≥ γ||x− y||2 for all x, y ∈ H and u ∈ Ax, v ∈ Ay; (iii) maximally monotone,
if A is monotone and its graph is not properly contained in the graph of any other monotone
operator.
The resolvent JλA = (I + λA)−1 of the maximal operator λA for λ > 0 is a single-valued
operator, defined on the whole space H and it is firmly nonespansive, i.e.,

〈JλAu− JλAv, u− v〉 ≥ ‖JλAu− JλAv‖2, ∀u, v ∈ H.

Moreover, according to [24], for all r, s > 0 and for all x ∈ H we have

s− r
s
〈JsAx− JrAx, JsAx− x〉 ≥ ||JsAx− JrAx||2.

In particular, we get

||JsAx− JrAx|| ≤
|s− r|
s
‖x− JsAx‖.

Recall that a single-valued operator B : H → H is called: (i) Lipschitz (L−Lipschitz) contin-
uous, if there exists L > 0, such that ‖Bx−By‖ ≤ L‖x− y‖ for all x, y ∈ H; (ii) monotone,
if 〈Bx−By, x− y〉 ≥ 0 for all x, y ∈ H; (iii) strongly (γ− strongly) monotone, if there exists
a constant γ > 0, such that 〈Bx− By, x− y〉 ≥ γ‖x− y‖2 for all x, y ∈ H.
By [18, Lemma 2.4], if A : A → 2H is a maximally monotone operator and B : H → H is a
Lipschitz continuous and monotone operator, then the sum A+B is a maximally monotone
operator.
Observe that since A is maximally monotone, B is Lipschitz continuous and monotone and
for each α > 0, αF is Lipschitz continuous and strongly monotone, the operator A+B+αF
is maximally and strongly monotone, hence its solution set Zer (A+ B + αF) = {uα} is a
singleton (see [10, Corollary 23.37]).
We call uα the regularized solution to (RVI) and collect some of its properties in the following
lemma, see [20]:
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Lemma 2.1 (i) The net {uα} is bounded;

(ii) There exists a positive constant N such that for all α > 0 and β > 0, ||uα−uβ || ≤ |α−β|α N ;
(iii) lim

α→0+
uα = u†.

Under the strong monotonicity condition of A+B, we obtain an estimate ‖uα−u†‖ = O(α).

Lemma 2.2 If A+ B is ρ-strongly monotone and F is γ-strongly monotone then

‖u† − uα‖ ≤
α

αγ + ρ
‖Fu†‖.

Proof We have 0 ∈ (A + B)u† and −αFuα ∈ (A + B)uα. Using the ρ-strong monotonicity
of A+ B, we obtain 〈

αFuα, u† − uα
〉
≥ ρ‖u† − uα‖2.

On the other hand, since F is γ-strongly monotone, it holds that

α
〈
Fu†, u† − uα

〉
− αγ‖u† − uα‖2 ≥ α

〈
Fuα, u† − uα

〉
≥ ρ‖u† − uα‖2.

Using the Cauchy-Schwarz inequality, we have

‖u† − uα‖ ≤
α

αγ + ρ
‖Fu†‖.

�

Lemma 2.3 [26] Let {ak}, {ζk}, {θk} be sequences of non-negative real numbers satisfying
ζk ∈ (0, 1) and {

ak+1 ≤ (1− ζk)ak + θk ∀k ≥ 0

limk→∞ ζk = 0;
∑∞
k=0 ζk =∞; limk→∞

θk
ζk

= 0.

Then, ak → 0 as k →∞.

Finally, we will denote by ACloc ([0,+∞),H) , L1
loc ([0,+∞),H) the spaces of locally abso-

lutely continuous functions and locally integrable functions, respectively. For more details,
see, [9].

3 The dynamical approach with regularization

3.1 The regularized forward-backward-forward dynamics

Consider the dynamical system of equations (5), where, λ : [0,+∞) → [a, b] ⊂ (0, 1
L ) and

α : [0,+∞)→ (0,+∞) are continuous functions.
Following [9], we call u : [0,+∞) → H a strong global solution of (5) if the following
properties hold:

i) u ∈ ACloc[0,+∞), i.e., u(t) is absolutely continuous on each interval [0, T ], for any
0 < T < +∞;

ii) For almost everywhere t ∈ [0,+∞) the second equation of (5) holds, where z(t) is defined
by the first relation of (5);

iii) u(0) = u0.

Define the function f : (0,+∞)× (0,+∞)×H → H as

f(α, λ, u) := ((I − λB) ◦ JλA ◦ (I − λB − αλF)− (I − λB))u.

Thus (5) is reduced to an initial-value problem for the non-autonomous differential equation{
u̇(t) = f(α(t), λ(t), u(t))

u(0) = u0.
(1)



Title 5

Theorem 3.1 Let α : [0,+∞)→ (0, α∗) and λ : [0,+∞)→ [a, b] ⊂ (0, 1
L ) be two continuous

functions. Then for each u0 ∈ H, there exists a unique global solution u ∈ ACloc([0,+∞),H),
satisfying equation (1) for almost every t ∈ [0,+∞), and u(0) = u0.

Proof For applying the Cauchy-Lipschitz-Picard theorem on the existence and uniqueness
of the global solution, see, [21, Prop. 6.2.1] to (1), we need to verify the following conditions:

(i) ∀u ∈ H, f(·, ·, u) ∈ L1
loc ([0,+∞),H) ;

(ii) ∀t ∈ [0,+∞), f(α(t), λ(t), ·) : H → H is continuous, moreover,
∀u, v ∈ H, ‖f(α(t), λ(t), u) − f(α(t), λ(t), v)‖ ≤ ω(t, ‖u‖ + ‖v‖)‖u − v‖, where ∀r >
0, ω(t, r) ∈ L1

loc[0,+∞).
(iii) ∀t ∈ [0,+∞), ‖f(α(t), λ(t), u)‖ ≤ σ(t)(1 + ‖u‖), where σ ∈ L1

loc[0,+∞).

Indeed, the function α 7−→ f(α, λ, u) is continuous on [0,+∞). Further, due to [9, Lemma
1], the function λ 7−→ f(α, λ, u) is continuous on (0,+∞) and lim

λ↓0
f(α, λ, u) = 0, for every

u ∈ DomA.
Let u† ∈ DomA be a solution to (3), then the function λ 7−→ f(α, λ, u†) can be extended
continuously on the interval [0,+∞), hence the function

t 7−→ ϕ(t) := ‖f(α(t), λ(t), u†)‖ (2)

is continuous on [0,+∞).
In order to have more compact notations, we set C := I − λB, Cα := C − αλF , J := JλA
and rewrite the right-hand-side of (1) as f(α, λ, u) = (C ◦ J ◦ Cα − C)u.
Next we show that the function f(α, λ, u) is globally Lipschitz continuous w.r.t. the third
variable. For all u, v ∈ H, we have ‖f(α, λ, u)− f(α, λ, v)‖2 ≡ T1 + T2, where T1 := ‖C ◦ J ◦
Cαu− C ◦ J ◦ Cαv‖2, T2 := ‖Cu− Cv‖2 − 2〈C ◦ J ◦ Cαu− C ◦ J ◦ Cαv, Cu− Cv〉.
Further, using the L− Lipschitz continuity of B, we obtain T1 = ‖J ◦ Cαu − J ◦ Cαv‖2 +
λ2‖B ◦ J ◦ Cαu − B ◦ J ◦ Cαv‖2 − 2λ〈B ◦ J ◦ Cαu − B ◦ J ◦ Cαv, J ◦ Cαu − J ◦ Cαv〉 ≤
(1 + λ2L2)‖J ◦ Cαu− J ◦ Cαv‖2 − 2λ〈B ◦ J ◦ Cαu−B ◦ J ◦ Cαv, J ◦ Cαu− J ◦ Cαv〉. Since J is
firmly nonexpansive, one gets ‖J ◦ Cαu− J ◦ Cαv‖2 ≤ 〈J ◦ Cαu− J ◦ Cαv, Cαu−Cαv〉, which
ensures that

T1 ≤ (1+λ2L2)〈J◦Cαu−J◦Cαv, Cαu−Cαv〉−2λ〈B◦J◦Cαu−B◦J◦Cαv, J◦Cαu−J◦Cαv〉. (3)

Rewritting T2 = ‖Cu−Cv‖2−2〈J ◦Cαu−J ◦Cαv, Cu−Cv〉+2λ〈B◦J ◦Cαu−B◦J ◦Cα, Cu−Cv〉
and using the firm nonexpansiveness of J , we find
T1 + T2 ≤ (1 + λ2L2 − 2)〈J ◦ Cαu− J ◦ Cαv, Cαu−Cαv〉+ 2〈J ◦ Cαu− J ◦ Cαv, Cαu−Cαv〉 −
2λ〈B ◦ J ◦ Cαu− B ◦ J ◦ Cαv, J ◦ Cαu− J ◦ Cαv〉+ ‖Cu− Cv‖2 − 2〈J ◦ Cαu− J ◦ Cαv, Cu−
Cv〉+ 2λ〈B ◦ J ◦ Cαu− B ◦ J ◦ Cαv, Cu− Cv〉. Taking into account (3), the monotonicity of
B and the relation between Cα and C, we come to the estimation

T1+T2 ≤ ‖Cu−Cv‖2+2〈J ◦Cαu−J ◦Cαv, αλ(Fv−Fu)〉+2λ〈B◦J ◦Cαu−B◦J ◦Cα, Cu−Cv〉.
(4)

Using the L− Lipschitz continuity of B and K− Lipschitz continuity of F we have ‖Cu −
Cv‖ ≤ (1 + λL)‖u− v‖ and ‖Cαu− Cαv‖ ≤ (1 + λL+ αλK)‖u− v‖. Thus, from (4) we get

‖f(α, λ, u)− f(α, λ, v)‖ ≤M(t)‖u− v‖, (5)

where M(t) =
√

(1 + λL)2 + 2αλL(1 + λL+ αλK) + 2λL(1 + λL)(1 + λL+ αλK). Due to
the assumptions α(t) ∈ (0, α∗) and λ(t) ∈ [a, b] ⊂ (0, 1

L ), there exists a number M∗ > 0,
such as M(t) ≤ M∗ for all t ∈ [0,+∞). Thus, the global Lipschitz continuity of f(α, λ, u)
w.r.t. the third variable is proved.
Due to (2), the function σ(t) := max{ϕ(t) +M∗‖u†‖,M∗} is continuous on [0,+∞). Thus,
‖f(α(t), λ(t), u)‖ ≤ ‖f(α(t), λ(t), u†)‖+‖f(α(t), λ(t), u)−f(α(t), λ(t), u†)‖ ≤ ϕ(t)+M∗‖u−
u†‖ ≤ ϕ(t) +M∗‖u†‖+M∗‖u|| ≤ σ(t)(1 + ‖u‖). Thus condition (iii) is satisfied.
Finally, recalling that for each u ∈ H, the function α 7−→ f(α, λ, u) is continuous on [0,+∞),
while the function λ 7−→ f(α, λ, u) is continuous on (0,+∞) we can conclude that the
function t 7−→ f(α(t), λ(t), u) is measurable. Condition (iii) ensures the local integrability
of f(·, ·, u) for each u ∈ H, which means Condition (i).
The proof of Theorem 3.1 is complete. �



6 Pham Ky Anh, Trinh Ngoc Hai

3.2 Convergence analysis

Let α : [0,+∞) → (0,+∞) be a continuous function. For each t ∈ [0,+∞), there exists a
unique solution uα(t) to the problem

Find u ∈ H such that 0 ∈ (A+ B)u+ α(t)Fu. (RVIt)

In what follows, we will call uα(t) a regularized solution to (RVIt) for short.
The following result is a direct consequence of Lemma 2.1.

Lemma 3.1 Suppose α : [0,+∞)→ (0,+∞) is a continuous function. Then it holds:

(i) The set {uα(t)} is uniformly bounded on the interval [0,+∞);
(ii) There exists a constant N > 0, such that for all t, s ∈ [0,+∞);

‖uα(t) − uα(s)‖ ≤ N
|α(t)− α(s)|

α(s)
;

(iii) If limt→+∞ α(t) = 0 then uα(t) → u†, as t→ +∞.

Theorem 3.2 Let α(t) be a positive and strictly decreasing and continuously differentiable
function, satisfying the following conditions

A1) limt→+∞ α(t) = 0;

A2)
∞∫
0

α(t)dt = +∞;

A3) limt→+∞
α̇(t)
α2(t) = 0.

Further, assume that λ(t) is a continuous function, mapping the interval [0,+∞) into a
finite interval [a, b] ⊂ (0, 1

L ). Then the trajectory u(t) defined by (5) strongly converges to u†

as t→ +∞.

Proof First observe that by Condition (A1), there exists a positive number α∗ such that
α(t) ≤ α∗ for all t ∈ [0,+∞). Thus, all the conditions of Theorem 3.1 are satisfied, hence
there exists a unique global solution u ∈ ACloc([0,+∞),H) to (5). From Condition (A3), it
follows that the function α(t) is absolutely continuous.
Further, we show that the regularized solution uα(t) is locally absolutely continuous on
[0,+∞), hence it is differentiable almost everywhere. Indeed, for any T > 0 and for any
t, s ∈ [0, T ], one has α(t), α(s) ≥ α(T ), hence, according to Lemma 3.1 (ii) ‖uα(t)−uα(s)‖ ≤
N |α(t)−α(s)|α(T ) , which implies the absolute continuity of uα(t) on the interval [0, T ].

Moreover, from the relation ‖uα(t+∆) − uα(t)‖ ≤ N |α(t+∆)−α(t)|
α(t+∆) , we have∥∥∥∥ d

dt
uα(t)

∥∥∥∥ ≤ N |α̇(t)|
α(t)

. (6)

Now let us consider the Lyapunov function V (t) := 1
2‖u(t)− uα(t)‖2. From (6), we have

V̇ (t) = 〈u̇(t)− u̇α(t), u(t)− uα(t)〉

≤
〈
−u(t) + z(t) + λ(t) (Bu(t)− Bz(t)) , z(t)− uα(t)

〉
+N

|α̇(t)|
α(t)

‖u(t)− uα(t)‖+

+ 〈−u(t) + z(t) + λ(t) (Bu(t)− Bz(t)) , u(t)− z(t)〉 . (7)

Using the L-Lipschitz continuity of B, we have

〈−u(t) + z(t) + λ(t) (Bu(t)− Bz(t)) , u(t)− z(t)〉 ≤ −(1− λ(t)L)‖u(t)− z(t)‖2. (8)

On the other hand, from the definition of z(t) in (5), we get

u(t)− λ(t) [Bu(t) + α(t)Fu(t)] ∈ z(t) + λ(t)Az(t),

or equivalently,

u(t)− z(t)− λ(t) [Bu(t)− Bz(t) + α(t)Fu(t)] ∈ λ(t)(A+ B)z(t). (9)
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Since uα(t) is a solution of (RVIt), it follows that

− λ(t)α(t)Fuα(t) ∈ λ(t)(A+ B)uα(t). (10)

Using (9), (10) and the monotonicity of (A+ B), we find〈
u(t)− z(t)− λ(t) [Bu(t)− Bz(t)]− λ(t)α(t)

[
Fu(t)−Fuα(t)

]
, z(t)− uα(t)

〉
≥ 0. (11)

Combining (11), the γ-strong monotonicity and the K-Lipschitz continuity of F , we obtain〈
u(t)− z(t)− λ(t) [Bu(t)− Bz(t)] , z(t)− uα(t)

〉
≥ λ(t)α(t)

〈
Fu(t)−Fuα(t), z(t)− uα(t)

〉
≥ −Kλ(t)α(t)‖u(t)− uα(t)‖‖z(t)− u(t)‖+ γλ(t)α(t)‖u(t)− uα(t)‖2. (12)

From (7), (8) and (12), we have

V̇ (t) ≤ Kλ(t)α(t)‖u(t)− uα(t)‖‖z(t)− u(t)‖ − γλ(t)α(t)‖u(t)− uα(t)‖2+

+N
|α̇(t)|
α(t)

‖u(t)− uα(t)‖ − (1− λ(t)L)‖u(t)− z(t)‖2. (13)

Note that

Kλ(t)α(t)‖u(t)−uα(t)‖‖z(t)−u(t)‖− γ
4
λ(t)α(t)‖u(t)−uα(t)‖2−(1−λ(t)L)‖u(t)−z(t)‖2 ≤ 0

(14)
if

K2 − γ(1− λ(t)L)

α(t)λ(t)
≤ 0

or equivalently

α(t) ≤ γ(1− λ(t)L)

K2λ(t)
. (15)

Since λ(t) ∈ [a, b] ⊂ (0; 1
L ) and α(t) → 0, we can assume that for all t ∈ [0,+∞), α(t) ≤

γ(1−La)
K2b , which ensures (15). On the other hand, it holds that

− γ

4
λ(t)α(t)‖u(t)− uα(t)‖2 +N

|α̇(t)|
α(t)

‖u(t)− uα(t)‖ ≤
N2α̇2(t)

α3(t)γλ(t)
. (16)

Combining (13), (14) and (16), we have

V̇ (t) + γλ(t)α(t)V (t) ≤ N2α̇2(t)

α3(t)γλ(t)
.

The last inequality can be rewritten as

d

dt

(
V (t)e

∫ t
0
γλ(u)α(u)du

)
≤ d

dt

(∫ t

0

e
∫ u
0
γλ(s)α(s)ds N2α̇2(u)

α3(u)γλ(u)
du

)
or

d

dt

(
V (t)e

∫ t
0
γλ(u)α(u)du −

∫ t

0

e
∫ u
0
γλ(s)α(s)ds M2α̇2(u)

α3(u)γλ(u)
du

)
≤ 0.

It implies that the function

h(t) := V (t)e
∫ t
0
γλ(u)α(u)du −

∫ t

0

e
∫ u
0
γλ(s)α(s)ds M2α̇2(u)

α3(u)γλ(u)
du

is decreasing and hence, h(t) ≤ h(0) = V (0) for all t ≥ 0. We obtain

V (t) ≤ e−
∫ t
0
γλ(u)α(u)du

(∫ t

0

e
∫ u
0
γλ(s)α(s)ds M2α̇2(u)

α3(u)γλ(u)
du+ V (0)

)
(17)

Under the assumptions that
∫∞
0
α(t)dt =∞, λ(t) ∈ [a, b] ⊂ (0; 1

L ), we have

lim
t→∞

e
∫ t
0
γλ(u)α(u)du =∞. (18)
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If ∫ ∞
0

e
∫ u
0
γλ(s)α(s)du N2α̇2(u)

α3(u)γλ(u)
du <∞,

then from (17) it implies that V (t)→ 0. In the opposite case, applying l’Hospital’s rule, we
have

lim
t→∞

V (t) = lim
t→∞

e
∫ t
0
γλ(s)α(s)ds M2α̇2(t)

α3(t)γλ(t)

e
∫ t
0
γλ(u)α(u)duγλ(t)α(t)

= lim
t→∞

N2α̇2(t)

α4(t)γ2λ2(t)

= 0. (19)

The last equality comes from the conditions α̇(t)
α2(t) → 0, λ(t) ∈ [a, b] ⊂ (0; 1

L ) for all t ≥ 0.

Taking into account Lemma 3.1-(iii), we obtain the desired result. �

Remark 3.1 It is worthy to note that if F = I- an identity operator, then the dynamical
systems (1) and (5) are of the same complexity, however the trajectories of the first system
converge weakly, while those of the second one converge strongly to a solution of the original
variational inclusion.

Remark 3.2 An example of α(t) satisfying the conditions in Theorem 3.2 is α(t) = 1
(t+1)p ,

where 0 < p < 1.

The condition λ(t) ∈ (0, 1
L ) makes the algorithm not applicable when the constant L is

unknown or difficult to estimate. In the following corollary, we propose a different way of
choosing λ(t), without knowing the constant L.

Corollary 3.1 Theorem 3.2 remains true if we replace the condition λ(t) ∈ [a, b] ⊂ (0, 1
L )

with the following conditions: λ(t)→ 0, α̇(t)
α(t)2λ(t) → 0 as t→∞ and

∫∞
0
λ(t)α(t)dt =∞.

Proof In the proof of Theorem 3.2, the condition λ(t) ∈ [a, b] ⊂ (0, 1
L ) is used to obtain (15),

(18) and (19). However, these results are still true under the new conditions of λ(t), listed
in Corollary 3.1. �

Remark 3.3 An example of λ(t) and α(t) satisfying the conditions in Corollary 3.1 is: λ(t) =
1

(t+1)α and α(t) = 1
(t+1)β

, where α, β > 0, α+ β < 1.

Lemma 3.2 Suppose that α(t) satisfies all the conditions in Theorem 3.2. Then for an
arbitrary ε > 0 we have

α(t)eεt →∞ as t→∞.

Proof From Conditions (A3), we have α̇(t)
α(t) → 0 as t→∞. Hence, for all ε > 0, there exists

t0 > 0 such that

α̇(t)

α(t)
≥ − ε

2
∀t ≥ t0.

It implies that

α(t) ≥ e− ε2 (t−t0)α(t0) ∀t ≥ t0.

We obtain the desired result. �

Corollary 3.2 In Theorem 3.2, suppose that A+B is ρ-strongly monotone instead of mono-
tone. Then, we have

‖u(t)− u†‖2 = O(α(t)) as t→∞.
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Proof Since A+ B is ρ-strongly monotone, instead of (11), we have〈
u(t)− z(t)− λ(t) [Bu(t)− Bz(t)]− λ(t)α(t)

[
Fu(t)−Fuα(t)

]
, z(t)− uα(t)

〉
≥ ρ‖z(t)−uα(t)‖2.

(20)
Combining (20), the γ-strong monotonicity and the K-Lipschitz continuity of F , we obtain〈
u(t)− z(t)− λ(t) [Bu(t)−Bz(t)] , z(t)− uα(t)

〉
≥

≥ λ(t)α(t)
〈
Fu(t)−Fuα(t), z(t)− uα(t)

〉
+ ρ‖z(t)− uα(t)‖2

≥ −Kλ(t)α(t)‖u(t)− uα(t)‖‖z(t)− u(t)‖+ γλ(t)α(t)‖u(t)− uα(t)‖2 + ρ‖z(t)− uα(t)‖2.

Hence, instead of (13), now we have

V̇ (t) ≤ Kλ(t)α(t)‖u(t)− uα(t)‖‖z(t)− u(t)‖ − γλ(t)α(t)‖u(t)− uα(t)‖2+

+M
|α̇(t)|
α(t)

‖u(t)− uα(t)‖ − (1− λ(t)L)‖u(t)− z(t)‖2 − ρ‖z(t)− uα(t)‖2. (21)

Since λ(t) ∈ [a, b] ⊂ (0, 1
L ), there exists ε > 0 such that 1 − ε − λ(t)L > 0. Due to the

condition α(t)→ 0, there exists t0 > 0 such that

α(t) ≤ γ(1− ε− λ(t)L)

K2λ(t)
∀t ≥ t0,

and hence for all t ≥ t0, we have

Kλ(t)α(t)‖u(t)−uα(t)‖‖z(t)−u(t)‖−γ
4
λ(t)α(t)‖u(t)−uα(t)‖2−(1− ε− λ(t)L) ‖u(t)−z(t)‖2 ≤ 0.

(22)
On the other hand, due to Condition (A3), there exists a constant Q > 0 satisfying

N2α̇2(t)

α3(t)γλ(t)
≤ Qα(t) ∀t ≥ 0.

Combining this inequality and (16), we get

− γ

4
λ(t)α(t)‖u(t)− uα(t)‖2 +N

|α̇(t)|
α(t)

‖u(t)− uα(t)‖ ≤ Qα(t) ∀t ≥ 0. (23)

Moreover, it is easy seen that

ε‖u(t)− z(t)‖2 + ρ‖z(t)− uα(t)‖2 ≥
ερ

ε+ ρ
‖u(t)− uα(t)‖2. (24)

From (21), (22), (23), (24), we have

V̇ (t) +
2ερ

ε+ ρ
V (t) ≤ Qα(t) ∀t ≥ t0.

Hence

V (t) ≤ e−
2ερ
ε+ρ t

(∫ t

t0

e
2ερ
ε+ρuQα(u)du+ V (t0)e

2ερ
ε+ρ t0

)
.

Using Lemma 3.2 and the l’Hospital’s rule, we have

lim
t→∞

V (t)

α(t)
= lim
t→∞

∫ t
t0
e

2ερ
ε+ρuQα(u)du

e
2ερ
ε+ρ tα(t)

= lim
t→∞

e
2ερ
ε+ρ tQα(t)

e
2ερ
ε+ρ t

(
2ερ
ε+ρα(t) + α̇(t)

)
= Q

2ερ

ε+ ρ
, (25)

where the last equality is inferred from Condition (A3). Combining (25), Lemma 2.2 and
the inequality

‖u(t)− u†‖2 ≤ 2‖u(t)− uα(t)‖2 + 2‖uα(t)− u†‖2,
we obtain the desired result. �
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3.3 Discrete dynamical system

Now, we consider a time discretization of the dynamical system (5):
u0 ∈ H,
zk = JλkA

(
uk − λk(Buk + αkFuk)

)
,

uk+1−uk
hk

= −uk + zk + λk
(
Buk − Bzk

)
,

(26)

where the parameters satisfy the following conditions:

(B1) λk ∈ [a, b] ⊂
(
0, 1

L

)
; αk > 0 for all k ≥ 0;

(B2) limk→∞ αk = 0;

(B3) limk→∞
|αk+1−αk|

α2
k

= 0;

(B4)
∑∞
k=0 αk =∞;

(B5) hk ∈ [c, d] ⊂
(

0, 2(1−bL)1+b2L2

)
.

The last equation in (26) can be rewritten explicitly as

uk+1 = (1− hk)uk + hk
(
zk + λk

(
Buk − Bzk

))
.

Theorem 3.3 The sequence {uk} generated by (26) converges strongly to a solution of (VI).

Proof Denote by uαk the unique solution of the αk-regularized variational inclusion:

Find uαk ∈ H such that 0 ∈ (A+ B + αkF)uαk .

According to Lemma 3.1, we have uαk → u† as k →∞. It remains to prove that ‖uk−uαk‖ →
0. From Lemma 3.1, it implies that there exists P > 0 satisfying

‖uαk − uαk+1
‖ ≤ P |αk − αk+1|

αk
∀k ≥ 0.

Applying the L-Lipschitz continuity and the monotonicity of B, we have∥∥uk+1 − uαk+1

∥∥2 =
∥∥uk − uαk + hk

(
−uk + zk + λk

(
Buk − Bzk

))
+ uαk − uαk+1

∥∥2
≤ ‖uk − uαk‖2 + h2k

(
1 + λ2kL

2
)
‖uk − zk‖2 + P 2 |αk − αk+1|2

α2
k

+

+ 2P
|αk − αk+1|

αk
‖uk − uαk‖+ 2Phk(1 + λkL)

|αk − αk+1|
αk

‖uk − zk‖+

+ 2hk
〈
−uk + zk + λk

(
Buk − Bzk

)
, uk − zk

〉
+

+ 2hk
〈
−uk + zk + λk

(
Buk − Bzk

)
, zk − uαk

〉
. (27)

It holds that 〈
−uk + zk + λk

(
Buk − Bzk

)
, uk − zk

〉
≤ (−1 + λkL)‖uk − zk‖2. (28)

Similarly to (12), we have〈
−uk + zk + λk

(
Buk − Bzk

)
, zk − uαk

〉
≤ Kλkαk‖uk−uαk‖‖zk−uk‖−γλkαk‖uk−uαk‖2.

(29)
Combining (27), (28) and (29), we get∥∥uk+1 − uαk+1

∥∥2 ≤ (1− 2hkγλkαk)‖uk − uαk‖2 +
(
h2k + λ2kL

2h2k − 2hk + 2hkλkL
)
‖uk − zk‖2+

+ 2P
|αk − αk+1|

αk
‖uk − uαk‖+ 2Phk(1 + λkL)

|αk − αk+1|
αk

‖uk − zk‖+

+ 2hkKλkαk‖uk − uαk‖‖zk − uk‖+ P 2 |αk − αk+1|2

α2
k

. (30)
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Under the conditions λk ∈ [a, b] ⊂ (0, 1
L ), hk ∈ [c, d] ⊂

(
0, 2(1−bL)1+b2L2

)
, there exists ξ > 0 such

that

h2k + λ2kL
2h2k − 2hk + 2hkλkL ≤ −2ξ < 0 ∀k ≥ 0. (31)

We have

2Phk(1+λkL)
|αk − αk+1|

αk
‖uk−zk‖ ≤ ξ‖uk−zk‖2+

P 2h2k(1 + bL)2

ξ

(
|αk − αk+1|

αk

)2

, (32)

2hkKλkαk‖uk − uαk‖‖zk − uk‖ ≤ ξ‖uk − zk‖2 +
(hkKbαk)

2

ξ
‖uk − uαk‖2 (33)

and

2P
|αk − αk+1|

αk
‖uk − uαk‖ ≤ hkγaαk‖uk − uαk‖2 +

P 2|αk − αk+1|2

α3
khkγa

. (34)

Combining (30), (32), (33) and (34), we have

∥∥uk+1 − uαk+1

∥∥2 ≤ (1− hkγλkαk +
(hkKbαk)

2

ξ

)
‖uk − uαk‖2 +

P 2|αk − αk+1|2

α3
khkγa

+

+

[
P 2h2k(1 + bL)2

ξ
+ P 2

]
|αk − αk+1|2

α2
k

. (35)

Since λk ∈ [a, b] ⊂ (0, 1
L ), αk → 0, without loss of generality we can suppose that ζk :=

hkγλkαk − (hkKbαk)
2

ξ ∈ (0, 1) for all k ≥ 0. Moreover, from the condition
∑∞
k=0 αk = ∞,

it implies that
∑∞
k=0 ζk =∞. On the other hand, using Condition (B2)-(B3), we infer that

limk→∞
θk
ζk

= 0, where

θk :=
P 2|αk − αk+1|2

α3
khkγa

+

[
P 2h2k(1 + bL)2

ξ
+ P 2

]
|αk − αk+1|2

α2
k

.

Applying Lemma 2.3, from (35) we have ‖uk − uαk‖ → 0 and obtain the desired result. �

Remark 3.4 Theorem 3.3 recovers Theorem 2 in [20] as a special case, when the stepsize
hk = 1 for all k ≥ 0. Moreover, Algorithm (26) may be considered as an iterative regular-
ization forward-backward-forward splitting method with relaxation parameters. Note that

Condition (B5) can be replaced by those of: hk > 0 and limk→∞ hk ∈
(

0, 2(1−bL)1+b2L2

)
.

The following corollary allows us to apply Algorithm (26) when the constant L is unknown.

Corollary 3.3 Theorem 3.3 remains true if we replace the conditions (B1)-(B5) by the fol-

lowing ones: αk, λk > 0, limk→∞ λk = 0, limk→∞
αk
λk

= 0,
∑∞
k=0 αkλk =∞, limk→∞

|αk+1−αk|
α2
k

√
λk

=

0 and hk ∈ [c, d] ⊂ (0, 2).

Proof First, we note that under the new conditions of parameters, (31) is still true and we
arrive at (35). Since limk→∞

αk
λk

= 0,
∑∞
k=0 αkλk = ∞, without loss of generality, we may

assume that ζk ∈ (0, 1) for all k ≥ 0. We have
∑∞
k=0 ζk = ∞. On the other hand, since

limk→∞
|αk+1−αk|
α2
k

√
λk

= 0, it implies that limk→∞
θk
ζk

= 0. This completes the proof.�

Remark 3.5 We can choose the parameters satisfying the condition in Corollary 3.3 as fol-
lows: λk = 1

(k+1)p , αk = 1
(k+1)q , where q > p > 0, p+ q ≤ 1.
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4 Numerical experiments

In this section, we present some numerical experiments to illustrate the effectiveness of our
algorithms. These experiments were conducted using Matlab software, running on a PC with
CPU i5 10400 and 16Gb RAM.

Example 4.1 (Application to variational inequalities) Let A = NC , where

C := {x ∈ Rm,−5 ≤ xi ≤ 5 ∀i = 1, 2, . . . ,m} ,

B : Rm → Rm, B(x) = Bx for all x ∈ Rm, where B = (bij) is an m×m matrix,

bij =


−1 if j = m+ 1− i, j > i

1 if j = m+ 1− i, j < i

0 otherwise.

It is easy seen that the mapping A is maximally monotone, B is monotone and 1-Lipschitz
continuous on Rm. The variational inclusion (VI) now becomes the variational inequality

Find u∗ ∈ C such that 〈Bu∗, u− u∗〉 ≥ 0, ∀u ∈ C (VIP)

and the dynamical system (5) has the following form
z(t) = PC (u(t)− λ(t)(Bu(t) + α(t)Fu(t)))

u̇(t) = −u(t) + z(t) + λ(t) (Bu(t)− Bz(t))
u(0) = u0 ∈ Rm.

Let m = 5. We implement Algorithm (5) with F(u) = u for all u ∈ Rm, α(t) = 10
(t+1)0.5 ,

λ(t) = 10
(t+1)0.4 , the starting point is randomly generated. The trajectories of u(t) are pre-

sented in Figure 1. We can see that the solution of the dynamical system (5) converges to a
solution u† = (0, 0, 0, 0, 0)T of the problem (VIP).
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Fig. 1 Performance of Algorithm (5) in Example 4.1 with different starting points

Next, we study effect of the step size on performance of Algorithm (5). Choosingm = 500,
u(0) = (1, 1, . . . , 1)T , we test Algorithm (5) with different constant functions λk(t), k =
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Fig. 2 Performance of Algorithm (5) with different step sizes

1, . . . , 5. The results are presented in Figure 2. We found that the larger λk(t), the faster
the algorithm converges.

To end this example, we compare Algorithm (26) with the Regularization forward-
backward-forward splitting method (RFBFSM) [20, Algorithm 2] and the Halpern-type
forward-backward-forward splitting method (HFBFSM) [23, Algorithm 3.11]. All these al-
gorithms converge strongly under the same assumptions. In these algorithms, we use the
same starting point, which is randomly generated, and choose αk = 1

(k+1)0.5 , λk = 0.5 for all

k ≥ 0. The mapping F in the two regularization methods is the identity one. In Algorithm
(26), the relaxation parameter is hk = 0.7 + 0.9

ln(k+2) for all k ≥ 0. Comparison results are

presented in Figure 3. We can see that the two regularization algorithms are clearly supe-
rior to the Halpern-type one. Compared with RFBFSM, the new algorithm gives slightly
better results. This advantage is more clear when we use overrelaxion parameters in Algo-
rithm (26). To do this, according to Corollary 3.3, in our algorithm, we choose λk = 1

k0.1 ,
hk = 1.05 for all k ≥ 0. The other settings in the both algorithms are unchanged. We
test the two algorithms in two cases : C := {x ∈ Rm : −5 ≤ xi ≤ 5 ∀i = 1, . . . ,m} and
C := {x ∈ Rm : 2x21 + x22 + . . . + x2m ≤ 1}. The stopping rule in the both algorithms is
‖uk − u†‖ ≤ 10−4. We obtain the comparison results as in Table 1. Our algorithm shows
better behaviors in term of iterations and computational time.

(a) C := {x ∈ Rm : −5 ≤ xi ≤ 5 ∀i = 1, . . . ,m}

Algorithm (26) RFBFSM

Times(s) Iter. Times(s) Iter.

m=50 0.0037 27 0.0058 37
m=1000 0.7145 32 1.0173 45
m=5000 18.6659 34 26.8957 49

(b) C := {x ∈ Rm : 2x2
1 + x2

2 + . . . + x2
m ≤ 1}

Algorithm (26) RFBFSM

Times(s) Iter. Times(s) Iter.

m=50 0.3497 24 0.3803 34
m=1000 2.9248 24 3.3418 36
m=5000 32.1197 35 45.0149 49

Table 1 Comparison results of Algorithm (26) with RFBFSM in two cases: C := {x ∈ Rm : −5 ≤ xi ≤
5 ∀i = 1, . . . ,m} and C := {x ∈ Rm : 2x2

1 + x2
2 + . . . + x2

m ≤ 1}

Example 4.2 In this example, we compare Algorithm (5) with the one introduced by Boţ et
al. [17, Algorithm (5.2)]. Let H = l2, A = NC , where C := {u ∈ l2 : u1 = 0},

B(u) = (u1, 0, u3, . . .)

for all u = (u1, u2, u3, . . .) ∈ l2. It is easy seen that A is maximally monotone, B is monotone
and 1-Lipschitz continuous on l2. In our algorithm, let F be the identity mapping. In the
both algorithms, we choose λ(t) = λ ∈ (0, 1), α(t) = 1

(t+1)0.5 for all t ≥ 0. These parameters

satisfy all conditions in Theorem 3.2 and [17, Theorem 5.8]. It holds that JλA(u) = PC(u) =
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Fig. 3 Comparison of the algorithms in Example 4.1

(0, u2, u3, . . .). From the first equation in (5), we have
z1(t) = 0,

z2(t) = (1− λα(t))u2(t),

zi(t) = (1− λ− λα(t))ui(t) ∀i ≥ 3.

The dynamical system (5) now becomes
u̇1(t) = −(1− λ)u1(t),

u̇2(t) = −λα(t)u2(t),

u̇i(t) = −
(
λ+ λα(t)− λ2 − λ2α(t)

)
ui(t), ∀i ≥ 3,

u(0) ∈ H.

Solving it, we have 
u1(t) = u1(0)e−

∫ t
0
(1−λ)du,

u2(t) = u2(0)e−
∫ t
0
λα(u)du,

ui(t) = ui(0)e−
∫ t
0 [λ+λα(u)−λ2−λ2α(u)]du, ∀i ≥ 3.

Similarly, the Boţ’s algorithm has the following form:
ẋ1(t) = −(1− λ(1 + α(t)))x1(t),

ẋ2(t) = −λα(t)(1− λα(t))x2(t),

ẋi(t) = −
(
λ+ λα(t)− λ2(1 + α(t))2

)
xi(t), ∀i ≥ 3,

x(0) ∈ H.

Thus, 
x1(t) = x1(0)e−

∫ t
0
(1−λ)due

∫ t
0
λα(u)du,

x2(t) = x2(0)e−
∫ t
0
λα(u)due

∫ t
0
λ2α2(u)du,

xi(t) = xi(0)e−
∫ t
0 [λ+λα(u)−λ2−λ2α(u)]due

∫ t
0
λ2α(u)(1+α(u))du, ∀i ≥ 3.
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Assume that the two algorithms start at a same point, i.e. x(0) = u(0). There exists µ > 0
such that

xi(t) ≥ µ.ui(t)e
∫ t
0
λ2α2(u)du = µ.ui(t)e

∫ t
0

λ2

u+1du = µ(t+ 1)λ
2

ui(t) ∀i ≥ 1, t ≥ 0.

Consequently,

lim
t→∞

‖u(t)− u†‖
‖x(t)− u†‖

= 0.

This means that our algorithm converges to the solution faster than the Boţ’s one.

Example 4.3 We compare Algorithm (5) with the Boţ’s algorithm [17, Algorithm (5.2)] using
the example (6.2) in [17]. Let C = {x ∈ R3 : 3x1 − x2 + x3 = 0}, A = NC , B = Bx, where

B =

 0 0.1 0.5
−0.1 0 −0.4
−0.5 0.4 0

 .

Following [17], in the both algorithms, we choose α(t) = 1
(t+1)β

, λ(t) = 0.5 for all t ≥ 0.

Note that, unlike the assertion in [17], if β = 0, the algorithms remain regularized with
the regularization parameter α(t) = 1 for all t ≥ 0. However, this contradicts the condition
α(t) → 0. Hence, we test these algorithms with β ∈ {0.1, 0.5, 0.9} and the starting point
x(0) = u(0) = (1, 1, 1)T . The comparison results are presented in Figure 4. As we can see,
the new algorithm converges faster than the existing one. This happens because in the Boţ’s
algorithm, the dynamical system needs to be regularized in both the algebraic part and
the differential part. Meanwhile, in our algorithm, only the algebraic part of the dynamical
system needs to be regularized.
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Fig. 4 Comparison of the two algorithms in Example 4.3 with different regularization parameters

5 Conclusion

We introduce a regularized forward-backward-forward continuous dynamics and proved
strong convergence of its trajectories to a specially chosen solution of the original varia-
tional inclusion. Under the strong monotonicity assumptions, we obtained a convergence
rate. Time discretization of the continuous dynamics provides a iterative regularization
forward-backward-forward splitting method with relaxation parameters. Some simple nu-
merical examples were given to illustrate the performance of the proposed algorithm.
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