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Abstract—This paper considers the event-triggered state esti-
mation problem with the aid of machine learning for nonlinear
systems subject to external disturbances in the state and output
vectors. First, we develop a recurrent neural network (RNN)
learning algorithm to predict the nonlinear systems. Second, we
design a discrete-time event-triggered mechanism and a state
observer based on this mechanism for the RNN model. This
discrete-time event-triggered state observer significantly reduces
the utilization of communication resources. Third, we establish a
sufficient condition to ensure that the state observer can robustly
estimate the state vector of the recurrent neural network. Finally,
we provide an illustrative example to verify the merit of the
proposed method.

Index Terms—Nonlinear systems, discrete-time event-triggered
mechanism, disturbances, linear matrix inequality (LMI).

In many engineering fields, the information of state vectors
of dynamical systems is usually required for control design
or fault detection. However, due to technical or economic
reasons, the true state vectors of the systems are not available.
Therefore, dynamical state estimation becomes an important
application in different areas ranging from control engineering,
robotics, tracking and navigation (see, for example, [1], [2],
[3], [4]).

There are many approaches in the literature dealing with
the design of state observers for the purpose of state es-
timation (see, for example, [5]-[14]). It is noted that all
the state observers in the references [5]-[14] are designed
based on time-triggered schemes, i.e., observer designs require
system data for each sampling instant, which may lead to
the wastage of communication resources in practical applica-
tions. To overcome this drawback, some event-triggered state
observers were proposed [15]-[26] in order to maintain the
desired performance while reducing the utilization of commu-
nication resources. In particular, an event-triggered extended
state observer was proposed in [15] for nonlinear systems
with disturbances, where nonlinear functions are continuously
differentiable, while a robust state observer on the basis of the
continuous dynamic event-triggered mechanism was designed
in [16] for a class of nonlinear systems where the nonlinear
function satisfies the one-sided Lipschitz and quadratically
inner-bounded conditions. Noting that the nonlinear functions
in [15] and [16] have some restriction, therefore the event-
triggered state observers in these references cannot applied
to general nonlinear systems. Moreover, since the dynamic
event-triggered mechanism in [16] depends on continuous
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supervision of the event-driven condition, it may cause strict
requirement for driven-condition.

On the other hand, in recent years, machine learning has
attracted a lot of research attentions due to the increase
in its applications in many fileds as fault-tolerant control,
cybersecurity, real-time control, and optimization problems.
With the rapid development of computational resources, ma-
chine learning techniques have been widely utilized to solve
important problem such as classification and regression. RNNs
are belong to machine learning techniques which have received
considerable attention in recent years due to their advantages
in learning ability, parallel computation, industrial automation,
and function approximation [27], [28], [29], [30]. Recently, in
[31], the authors considered the design of model predictive
control systems for nonlinear processes that utilize an ensem-
ble of models to predict nonlinear dynamics. They first trained
a RNN model by using extensive open-loop simulation data
to capture process dynamics in a certain operating region such
that the modeling error between the RNN model and the actual
nonlinear process model was sufficiently small. Then, they
utilized the RNN model as the prediction model in order to
achieve closed-loop state boundedness and convergence to the
origin. However, [31] did not consider the issue of external
disturbances in the RNN as well as the design of discrete-
time event-triggered state observers for the RNN prediction
model.

Motivated by the works [15], [16] and [31], in this paper,
we focus on the design of discrete-time event-triggered state
observers for the nonlinear systems subject to external distur-
bances with the aid of machine learning. The contributions
of this paper are: (1) The nonlinear system is predicted by a
RNN model subject to external disturbances; (2) a discrete-
time event-triggered mechanism is designed and utilized for
designing event-triggered state observers of the RNN model;
(3) the event-triggered the observer is new and can reduce
the utilization of communication resources while maintaining
the desired robust estimation performance; and (4) a sufficient
condition for the existence of the event-triggered state observer
is established and unknown observer matrices are obtained by
solving a convex optimization problem.

Notation: For a matrix A, AT denotes its transpose. Rn is
the n− dimensional linear vector space over the reals with
the Euclidean norm. ||x|| denotes Euclidean norm of vector
x ∈ Rn. If xTPx > 0,∀x 6= 0, then matrix P is called
positive definite and denoted by P > 0. sym

{
M
}

denotes the
notation M + MT . ∗ denotes the entries of a matrix implied
by symmetry. ||g||Ln

2
=
√∫∞

0
gT (t)g(t)dt is the Ln2 norm of
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the vector function g : [0,∞)→ Rn and Ln2 = {g : [0,∞)→
Rn : ||g||Ln

2
<∞}.

I. PRELIMINARIES AND PROBLEM STATEMENT

Let us consider the following nonlinear systems subject to
disturbances

ẋ(t) = F (x, u, ω) = f(x(t)) + g(x(t))u(t)

+h(x(t))ω(t), t ≥ 0, (1)
x(0) = x0, (2)
y(t) = Cx(t) + Ed(t), (3)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the input
vector, y(t) ∈ Rp is the output vector, ω(t) ∈ Rnω is the
disturbance in the state vector, d(t) ∈ Rnd is the disturbance
in the output vector. F (x, u, ω) is a nonlinear function with
respect to x, u and ω. f(·), g(·), h(·) are sufficiently smooth
vector and matrix functions of dimensions n× 1, n×m and
n × nω , respectively. C ∈ Rp×n, E ∈ Rp×nd are constant
matrices.

We need the following assumptions:
(H1) ||F (x, u, ω)|| ≤M ;
(H2) ||F (z, u, ω) − F (z̄, u, ω)|| ≤ Lz||z − z̄||, ∀z, z̄ ∈ D,
∀u ∈ U and ∀ω ∈ W , where D is an open neighborhood
around the origin, U = {u ∈ Rm : ui ∈ [umin

i , umax
i ], i =

1, 2, . . . ,m}, W = {ω ∈ Rnω : ||ω|| ≤ ω̄} and M , Lz , ω̄ are
positive scalars.

II. MAIN RESULTS

A. Recurrent neural network (RNN)

Let us now consider the following RNN model which is
utilized to approximate the nonlinear system (1):

˙̃x(t) = Frnn(x̃, u, ω)

= Ax̃(t) + ΘT y(t), t ≥ 0, (4)
x̃(0) = x0, (5)
ỹ(t) = Cx̃(t) + Ed(t), (6)

where x̃(t) ∈ Rn is the RNN state vector, u(t) ∈ Rm is the
input vector, y(t) =

[
y1(t) y2(t) y3(t)

]T ∈ Rn+m+nω ,
y1(t) =

[
y1 . . . yn

]T
=
[
σ(x̃1) . . . σ(x̃n)

]T
,

y2(t) =
[
yn+1 . . . yn+m

]T
=
[
u1 . . . um

]T
,

y3(t) =
[
yn+m+1 . . . yn+m+nω

]T
=[

ω1 . . . ωnω

]T
, where σ(·) is the nonlinear

activation function. A = diag{−a1,−a2, . . . ,−an}
and Θ =

[
θ1 . . . θn

]
∈ R(n+m+nω)×n,

θi = bi
[
wi1 . . . wi(n+m+nω)

]T
, ai > 0, bi are

constants, wij is the weight connecting the jth input to the
ith neuron, i = 1, . . . , n, j = 1, . . . , n+m+nω are matrices
to be optimized during training.

In this paper we assume that activation function σ(.) and
external disturbance d(t) in the output vector satisfy the
following assumptions:
(H3) There are positive scalars σi > 0 for i = 1, 2, . . . , n such
that

|σi(s1)− σi(s2)| ≤ σi|s1 − s2|, ∀s1, s2 ∈ R. (7)

(H4) The external disturbance d(t) is norm bounded, i.e. there
exist a positive constant d̄ such that

||d(t)|| ≤ d̄, ∀t ≥ 0. (8)

We now develop the RNN learning algorithm in [30], [31]
to obtain an optimal weight matrix θ∗i such that state vector
x̃(t) of the RNN can estimate state vector x(t) of nonlinear
system (1). For this, we first express the dynamic behavior of
each state of the system (1) by the following equation:

ẋi(t) = −aixi + θ∗i y(t) + νi(t), (9)

where

νi(t) = Fi(x, u, ω)− (Frnn)i(x̃, u, ω), (10)

and optimal weight vector θ∗i is defined as below:

θ∗i = arg min
|θi|≤θm

{ N∑
k=1

|Fi(xk, uk, ωk) + aixk − θTi yk|
}
,

(11)

where θm > 0 and N is the number of data samples utilized
for training.

It is assumed that RNN model (4) and nonlinear system (1)
satisfy the following sufficiently small modeling error

||ν(t)|| = ||F (x, u, ω)− Frnn(x̃, u, ω)|| ≤ ν̄, ν̄ > 0.

(12)

We now denote the state error as e(t) = x̃(t)− x(t) ∈ Rn.
Then, it follows from (4) and (9) that

ėi(t) = −aiei(t) + (θi(t)− θ∗i )T yi(t)− νi(t). (13)

The weight θi(t) is updated during the training process as
below:

θ̇i(t) = −ηiy(t)ei(t), i = 1, 2, . . . , n, (14)

where the learning rate ηi is a positive define (n+m+nω)×
(n+m+ nω) matrix.

The following lemma provides an upper bound for the error
e(t):

Lemma 3. Let assumption (H2) and condition (12) be
satisfied. The following inequality holds:

||e(t)|| ≤ ν̄

Lx
(eLxt − 1), t > 0. (15)

Remark 1: In [31], the authors considered a RNN learn-
ing algorithm without external disturbances (ω(t) ≡ 0) for
nonlinear systems with external disturbances of the form (1).
Therefore, the error e(t) between state vector of the RNN and
state vector of the nonlinear system satisfying the following
inequality:

||e(t)|| ≤ Lωω̄ + ν̄

Lx
(eLxt − 1), t > 0, ω(t) ∈W. (16)

Unlike the method in [31], in this paper, we consider a RNN
learning algorithm with external disturbances (ω(t) 6≡ 0) and
thus, term Lωω̄ in the upper bound of the error e(t) in (16)
is removed. The effect of the external disturbances will be
minimized when we solve the robust state estimation for the
RNN subject to external disturbances in the next section.
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B. Event-triggered state observers

Let us first express system (4)-(6) into the following form

˙̃x(t) = Ax̃(t) + Θx̃σ(x̃(t)) + Θuu(t) + Θωω(t) t ≥ 0,

x̃(0) = x0, (17)
ỹ(t) = Cx̃(t) + Ed(t), (18)

where
[

Θx̃ Θu Θω

]
= ΘT .

Next, we propose the following event-triggered state ob-
server for system (17)-(18):

˙̂x(t) = Ax̂(t) + Θx̃σ(x̂(t)) + Θuu(t)

+L(ỹ(tk)− Cx̂(tk + k(t)h), t ∈ [tk, tk+1),

(19)

where x̂(t) ∈ Rn is the estimate of x̃(t), L is the gain matrix
to be designed, k(t) =

⌊
t−tk
h

⌋
= max

{
s ∈ N | s ≤ t−tk

h

}
,

{tkh}k∈N (k ∈ N, t0h = 0 < t1h < · · · < tkh < . . .) is the
measurement transmission instant sequence and consider the
following event-triggered mechanism (ETM):

tk+1h =

min
`>tk, `∈N+

{
`h | H(ỹ(`h), ỹ(tk), δ(tk)) > 0

}
, k ∈ N,

(20)

where δ(tk) = δ1 + δ2e
−δ3t and H(ỹ(`h), ỹ(tk), δ(tk)) =

δ4||ỹ(`h)− ỹ(tk)||2 − δ5||ỹ(tk)||2 − δ(tk), δi, i = 1, 2, 3, 4, 5
are positive scalars.

The state observer (19) has a constraint that the current
sampled measurement ỹ(`h) is only transmitted when the
event-triggered condition (20) is satisfied.

From the above definition of k(t), we have k(t) = max
`

{
` ∈

N | tk ≤ `h+ tk ≤ t
}

. This implies that

t− h < tk + k(t)h ≤ t. (21)

Let us define

eỹ(t) = ỹ(tk)− ỹ(tk + k(t)h), (22)
τ(t) = t− (tk + k(t)h). (23)

Then we obtain 0 ≤ τ(t) < h.
By denoting x(t) = x̃(t) − x̂(t) and σ∆

x̃z(t) = σ(x̃(t)) −
σ(x̂(t)), from (19), (22) and (23), we obtain

ẋ(t) = Ax(t) + Θx̃σ
∆
x̃z(t) + Θωω(t)

−LCx(t− τ(t))− Leỹ(t)

−LEdτ (t), t ∈ [tk, tk+1), (24)
x(θ) = φ(0)− ψ(0), θ ∈ [−h, 0], (25)

where dτ (t) = d(t− τ(t)).
Remark 2: The discrete-time event-triggered state observer

(19) is different from the one in [15], [16], [17], [18], since the
term Cx̂(t) is replaced by Cx̂(tk + k(t)h) = Cx̂(t − τ(t)),
which is more reality because the measurement received by
the observers after a network delay τ(t).

In the following, we will design the gain matrix L such
that, under zero initial condition, estimation error x(t) with a
time-varying delay τ(t) satisfies the following inequality

||x||Ln
2
≤ λω||ω||Lnω

2
+ λd||d||Lnd

2
, (26)

where λω > 0 and λd > 0 will be optimized.
The following theorem allows us to obtain the gain matrix

L and the minimized levels λω and λd.
Theorem 1. Let assumptions (H3) and (H4) be satisfied. For

given positive numbers β and 0 < ξ < 1, the event-triggered
state observer design problem (26) with minimized levels
λω > 0 and λd > 0 is solvable if there exist matrices P > 0,
Q > 0, R > 0, Z, X , non-singular S and positive scalars λ̄ω ,
λ̄d and ε such that the following convex optimization problem
is feasible:

min(ξλ̄ω + (1− ξ)λ̄d) (27)
subject to

Ξ̂(ν) =

[
Ξ(ν) ∇
∗ −εIn,

]
< 0, ∀ν ∈ {0, 1}, (28)

∆ =

[
diag(R,R) Z
∗ diag(R,R)

]
> 0, (29)

where

Ξ(ν) = sym{ΨT
ν PΓ}+ eT1 Qe1 − eT3 Qe3

+h2eT4 R2e4 − ΛT∆Λ + eT1 e1 − λωeT8 e8

−λdeT9 e9 − sym
{[

eT1 eT4
]
Se4

}
,

+sym
{[

eT1 eT4
]
SAe1

−
[
eT1 eT4

]
XCe2

−
[
eT1 eT4

]
Xe7

+
[
eT1 eT4

]
SΘωe8

−
[
eT1 eT4

]
XEe9

}
,

+εσ2
maxe

T
1 e1, σmax = max{σ1, . . . , σn},

S =

[
βS
S

]
, X =

[
βX
X

]
,

Ψν =
[
eT1 νheT5 + (1− ν)heT6

]T
,

Γ =
[
eT4 (eT1 − eT3 )

]T
, Λ =

[
Λ1 Λ2

]T
,

Λ1 =
[

(e1 − e2)T
√

3(e1 + e2 − 2e5)T
]
,

Λ2 =
[

(e2 − e3)T
√

3(e2 + e3 − 2e6)T
]
,

∇ =
[
eT1 eT4

]
SΘx̃

[
In 0n×n

]
,

ei =
[
e1
i e2

i

]
∈ Rn×(6n+p+nω+nd),

i = 1, . . . , 6, e1
i =

[
0n×(i−1)n In

]
,

e2
i =

[
0n×(6−i)n 0n×(p+nω+nd)

]
,

e7 =
[

0p×6n Ip 0p×(nω+nd)

]
∈ Rp×(6n+p+nω+nd),

e8 =
[

0nω×6n 0nω×p Inω
0nω×(nω+nd)

]
∈ Rnω×(6n+p+nω+nd),

e9 =
[

0nd×6n 0nω×p 0nd×nd
Ind

]
∈ Rnd×(6n+p+nω+nd).
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The observer gain matrix L is obtained as

L = S−1X. (30)

Proof. Let us first denote ν = ν(t) = τ(t)
h , ẽ(t) =[

xT (t)
∫ t
t−h x

T (s)ds
]T

and consider the following Lya-
punov functional candidate:

V (t) = ẽT (t)P ẽ(t) +

∫ t

t−h
xT (s)Qx(s)ds

+ h

∫ 0

−h

∫ t

t+η

ẋ
T

(s)Rẋ(s)ds. (31)

Taking derivative of V (t) in t, we obtain

V̇ (t) = 2ẽT (t)P ˙̃e(t) + xT (t)Qx(t)

−xT (t− h)Qx(t− h) + h2ẋ
T

(t)Rẋ(t)

−h
∫ t

t−h
ẋ
T

(s)Rẋ(s)ds (32)

= 2ζT (t)ΨT
ν PΓζ(t) + ζT (t)[eT1 Qe1 − eT3 Qe3]ζ(t)

+h2ζT (t)(eT4 Re4)ζ(t)− h
∫ t

t−τ(t)

ẋ
T

(s)Rẋ(s)ds

−h
∫ t−τ(t)

t−h
ẋ
T

(s)Rẋ(s)ds, (33)

where

ζ(t) =
[
ζ1(t) ζ2(t) ζ3(t) ζ4(t)

]T
,

ζ1(t) =
[
xT (t) xT (t− τ(t)) xT (t− h)

]
,

ζ2(t) =
[
ẋ
T

(t) 1
τ(t)

∫ t
t−τ(t)

xT (s)ds
]
,

ζ3(t) =
[

1
h−τ(t)

∫ t−τ(t)

t−h xT (s)ds
]
,

ζ4(t) =
[
eTỹ (t) ωT (t) dTτ (t)

]
. (34)

From the Wirtinger-based integral inequality (see, [32]), we
have

−h
∫ t

t−τ(t)

ẋ
T

(s)Rẋ(s)ds

≤ −h
{ 1

τ(t)
[x(t)− x(t− τ(t))]TR[x(t)− x(t− τ(t))]

+
3

τ(t)
[x(t) + x(t− τ(t))− 2

τ(t)

∫ t

t−τ(t)

xT (s)ds]TR

×
[
x(t) + x(t− τ(t))− 2

τ(t)

∫ t

t−τ(t)

xT (s)ds
]}
, (35)

and

−h
∫ t−τ(t)

t−h
ẋ
T

(s)Rẋ(s)ds

≤ −h
{ 1

h− τ(t)
[x(t− τ(t))− x(t− h)]TR

×[x(t− τ(t))− x(t− h)] +
3

h− τ(t)

[
x(t− τ(t))

+x(t− h)− 2

h− τ(t)

∫ t−τ(t)

t−h
xT (s)ds

]T
R

×
[
x(t− τ(t)) + x(t− h)− 2

h− τ(t)

∫ t−τ(t)

t−h
xT (s)ds

]}
,

(36)

Form (35) and (36), we obtain

−h
∫ t

t−τ(t)

ẋ
T

(s)Rẋ(s)ds

≤ −1

ν
ζT (t)(e1 − e2)TR(e1 − e2)ζ(t)

−3

ν
ζT (t)(e1 + e2 − 2e5)TR(e1 + e2 − 2e5)ζ(t),

(37)

and

−h
∫ t−τ(t)

t−h
ẋ
T

(s)Rẋ(s)ds

≤ − 1

1− ν
ζT (t)(e2 − e3)TR(e2 − e3)ζ(t)

− 3

1− ν
ζT (t)(e2 + e3 − 2e6)TR(e2 + e3 − 2e6)ζ(t).

(38)

By using assumption (H3) and Cauchy inequality [33], we
obtain:

2eT (t)SΘx̃σ
∆
x̃z(t) ≤ ε−1eT (t)SΘx̃ΘT

x̃S
T
e(t)

+ε(σ∆
x̃z(t))

Tσ∆
x̃z(t)

≤ ε−1eT (t)SΘx̃ΘT
x̃S

T
e(t) + εσ2

maxx
T (t)x(t). (39)

Provided that ∆ > 0, from the reciprocally convex combi-
nation inequality [34], the following inequality is satisfied:

−h
∫ t

t−τ(t)

ẋ
T

(s)Rẋ(s)ds− h
∫ t−τ(t)

t−h
ẋ
T

(s)Rẋ(s)ds

≤ −ζT (t)ΛT∆Λζ(t). (40)

Denoting e(t) =
[
xT (t) ẋ

T
(t)

]T
and applying the free

weighting matrix technique [35], from (24) we obtain

0 = 2eT (t)S
[
−ẋ(t) +Ax(t) + Θωω(t)

−LCx(t− τ(t))− Leỹ(t)− LEdτ (t)
]

(41)

= −2eT (t)Sẋ(t) + 2eT (t)SAx(t)

−2eT (t)XCx(t− τ(t))− 2eT (t)Xeỹ(t)

+2eT (t)SΘωω(t)− 2eT (t)XEdτ (t),

(42)

where S is a non-singular matrix with appropriate dimensions,
β is a scalar and X = SL.

Let us denote λ̄ω = λ2
ω and λ̄d = λ2

d. From equations (35)
to (42), we obtain

V̇ (t) + xT (t)x(t)− λ2
ωω

T (t)ω(t)

−λ2
dd
T
τ (t)dτ (t) ≤ ζT (t)Ξ̂(ν)ζ(t), (43)

where ν ∈ (0, 1).
Therefore, inequality

V̇ (t) + xT (t)x(t)− λ2
ωω

T (t)ω(t)− λ2
dd
T
τ (t)dτ (t) < 0

(44)

is satisfied if ∆ > 0 and Ξ̂(ν) < 0, ∀ν ∈ (0, 1). Since Ξ̂(ν)
is convex with respective to ν, Ξ̂(ν) < 0 ∀ν ∈ {0, 1} implies
Ξ̂(ν) < 0 ∀ν ∈ (0, 1).
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By intergrating both sides of (44) from t = 0 to ∞, we
obtain

V (∞)− V (0) + ||x||2Ln
2
− λ2

ω||ω||2Lnω
2
− λ2

d||d||2Lnd
2
≤ 0. (45)

Therefore, under zero initial condition, we obtain the following
inequality

||x||Ln
2
≤ λω||ω||Lnω

2
+ λd||d||Lnd

2
. (46)

Note that minimisation of λω and λd can be performed by
minimisation of λ̄ω and λ̄d, and the optimal value of λω and
λd are obtained as λω =

√
λ̄ω and λd =

√
λ̄d. Moreover,

since S is invertible, from relation X = SL, the gain matrix
L can be obtained as L = S−1X . The proof is completed.
The following algorithm allows us to design the event-
triggered state observer as defined in (19).

Algorithm 1
Stage 1 (Estimating nonlinear systems by using RNN): Check
assumptions (H1) and (H2). Using the newly RNN to train
the nonlinear systems, obtain a RNN of the form (22)-(23).
Stage 2 (Designing an ETM): Given scalars h > 0, δi,
i = 1, 2, 3, 4, 5, obtain an ETM of the form (25).
Stage 3 (Designing a dynamic state observer):
Step 1: Check conditions (7) and (8).
Step 2: Given a scalar 0 < ξ < 1 and a positive scalar β,
solve the convex optimization problem (32)-(34) to obtain
matrices P > 0, Q > 0, R > 0, S > 0, X , non-singular S
and positive scalars λ̄ω , λ̄d, δ, minimized levels λω , λd and
observer gain L.
Step 3: Obtain an observer of the form (24).

III. A NUMRICAL EXAMPLE

Consider nonlinear system of the form (1)-(3), where

F (x, u, ω) =


F1(x, u, ω)
F2(x, u, ω)
F3(x, u, ω)
F4(x, u, ω)

 ,
F1(x, u, ω) = −x1(t)x2(t)− 0.25 cos t,

F2(x, u, ω) = −0.0081x2(t) + 0.5 cos t,

F3(x, u, ω) = 24.10−4x1(t)− 0.13x3(t)

+10−4x4(t) + 0.5 cos t,

F4(x, u, ω) = −0.5x4(t) + 0.5 sin t+ 0.5 cos t.

For this example, we can check that assumptions (H1), (H2)
satisfy on D = {x ∈ R4||xi| ≤ 35} with M = 1.2252.103,
Lx = 8.3666, respectively.
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Fig. 1. x1(t) and x̃1(t)

0 10 20 30 40 50 60 70 80

Time(s)

-5

0

5

10

15

20

25

30

35

Fig. 2. x2(t) and x̃2(t)

By using (9), (11), (13) and (14), a RNN model of the form
(17)-(18) which approximates the nonlinear system (1)-(3) is
obtained, where

A = diag{−25.0022,−0.0081,−0.13,−0.5},

Θx̃ =


0.6516 −0.3158 −0.0236 0.0106

0 −0.0001 0 0
0.044 −0.0211 −0.0013 −0.0006
0.0001 −0.0001 0 0

 ,

Θu =


−0.007

0
0.0002

0.5

 , Θω =


−0.7642

1
1.0002

1

 .
Figures 1-4 show the responses of x1(t), x2(t), x3(t), x4(t)

and x̃1(t), x̃2(t), x̃3(t), x̃4(t), respectively. It is clear from
figures 1-4 that the RNN can estimate the four states of the
nonlinear system subject to unknown disturbance ω(t), as
expected.

Given scalars h = 0.02, δ1 = 0.1, δ2 = 0.3, δ3 = 0.2,
δ4 = 0.35, δ5 = 0.4, we obtain an ETM of the form (20).

Let us consider the activation σ(.) as σi(xi) =
tanhxi(t), i = 1, 2, 3, 4 and the external disturbance in the
output vector as Ed(t) = 0.01 sin t, t ≥ 0. It is hot hard to

5



0 10 20 30 40 50 60 70 80

Time(s)

-5

0

5

10

15

20

25

30

35

Fig. 3. x3(t) and x̃3(t)
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Fig. 4. x4(t) and x̃4(t)

see conditions (7) and (8) are satisfied. Given 0 < ξ = 0.6 < 1
and β = 10.5, by following Stage 3 of Algorithm 1, we obtain
minimized levels λω = 0.4545, λd = 1.3617× 10−4 and gain

matrix L =


16.9461
−0.0240
1.1136
−0.0234

.

Figure 5 depicts the triggering instants and intervals of ETM
(10) while Figures 6-9 show the responses of x̃(t) and its
estimation.

IV. CONCLUSION

In this paper, we have considered the problem of estimating
state vectors of nonlinear systems with the aid of machine
learning. A RNN model which predicts the nonlinear system
has been first obtained. Then a discrete-time event-triggered
mechanism and a state observer based on this mechanism for
the RNN model have been designed. A sufficient condition in
terms of a convex optimization problem has been established
to ensure that the event-triggered state observer can robustly
estimate the state vector of the RNN model. Finally, a numer-
ical example and simulation results are given to illustrate the
effectiveness of our proposed design method.
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Fig. 5. Triggering instants and intervals of (20)
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Fig. 6. x̃1(t) and its estimation
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