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Abstract—We consider the problem of event-triggered state
estimation for recurrent neural networks subject to unknown
time-varying delays by proposing a robust dynamic event-
triggered state observer. A method based on a novel state observer
and a dynamic event-triggered mechanism (ETM) is proposed to
provide robust state estimation of the delayed recurrent neural
networks. The significance of the new dynamic ETM is that it
helps to reduce unnecessary transmissions from the sensors to the
observer. A sufficient condition for the existence of the dynamic
event-triggered state observer in terms of a convex optimization
problem is proposed based on Lyapunov theory combined with
free-weighting matrix technique and some useful inequalities such
as Wirtinger-based integral inequality, Cauchy matrix inequality
and reciprocally convex combination inequality. The effectiveness
of the proposed estimation method is demonstrated by two
numerical examples and simulation results.

Index Terms—Neural networks, event-triggered state esti-
mation, dynamic event-triggering mechanism, unknown time-
varying delays.

I. INTRODUCTION

Neural network systems have received considerable atten-
tion in recent years due to their advantages in learning abil-
ity, parallel computation, industrial automation, and function
approximation [1], [2], [3]. A wide range of applications of
neural network systems in fault diagnosis, pattern recognition,
signal processing, communication, image processing has been
reported [2], [4]. It has been well realized that the information
of state vectors is necessary for many neural network analysis
problems. However, information of the state of neural net-
works is often unavailable for many reasons such as technical,
economic. Therefore, the problem of estimating state vectors
for neural networks has been widely considered (see, for exam-
ple, [5], [6], [7]). For example, in [5], state estimation problem
was investigated for a class of delay neural networks. By
using Lyapunov theory combined with the Jensen inequality,
the authors in [6] designed an exponential state estimator for
switched Hopfield neural networks. Estimating the state vector
of static delay neural networks has been studied in [7] by using
an improved reciprocally convex inequality.

Note that in all the above works [5], [6], [7], state observers
for neural networks are typically implemented based on a
time-triggered mechanism. On the other hand, event-triggered
mechanism (ETM) is a new approach in state estimation which
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can improve the efficiency in resource utilization of the net-
work components [8]. So far, this new control and estimation
approach based on ETMs has attracted a great deal of research
attention. For instance, in [9], the author proposed an event-
triggered scheduler based on a state feedback controller in
order to solve stabilization problem on embedded processors
while event-triggered adaptive control technique was inves-
tigated in [10], [11] and event-triggered output regulation
problem was solved in [12]. The state estimation problem has
also attracted significant research attention (see, for examples,
[13], [14], [15], [16], [17], [8], [18], [19], [20]). In particular,
for stochastic dynamical systems, in [13], an event-triggered
particle filter was proposed for smart grids with limited com-
munication bandwidth infrastructure, while an event-triggered
cubature Kalman filter was designed in [14] for estimating the
set vectors of power systems. Especially, in [15], the authors
provided some interesting event-triggered nonlinear filters in
order to estimate state of wide-area measurement systems in
power grid. For deterministic dynamical systems, methods
based on a state observer and an ETM for estimating state
vectors of dynamical systems were proposed in [16], [17],
[8], [18]. Reference [19] provided a method to estimate state
vectors of interconnected systems with disturbances based
on event-triggered functional observers, while a robust state
observer on the basis of the continuous dynamic ETM was
discussed in [20]. It is worth noting that the event-driven
conditions in [16], [17], [8], [18], [19] only depend on output
information, while the one in [20] depends on continuous
supervision, which could cause wastage of communication
resources. Up to now, the continuous dynamic ETM in [20] has
not been developed to the case discrete supervision combined
with observers for estimation the state vectors of neural
networks.

We study the event-triggered state estimation problem for
neural networks subject to unknown time-varying delays in
this paper. The contributions of this paper are: (1) For the first
time, a dynamic ETM is designed and utilized for recurrent
neural networks; (2) the structure of the observer is new and
can reduce the utilization of communication resources while
maintaining the desired robust estimation performance; and
(3) based on Wirtinger-based integral inequality combined
Lyapunov theory, a sufficient condition for the existence of the
dynamic event-triggered state observer is established and the
unknown observer matrices are obtained via solving a convex
optimization problem.

In the next Section, we present some preliminaries. In
Section III, the event-triggered state estimation problem for
neural networks is solved based on the design of a dynamic
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ETM and a state observer. The effectiveness of the proposed
method is demonstrated in Section IV by two examples and
simulations. Finally, the conclusion of the paper is given in
Section V.

The symbols used in this paper are listed in the following
table:

MT matrix transpose
|| · || Euclidean norm of a matrix or a vector
Rn n− dimensional linear vector space over R

P > 0 xTPx > 0,∀x 6= 0
sym{M} M +MT

∗ the entries of a matrix implied by symmetry
||f ||Ln

2
(
∫∞

0
||f(t)||2dt) 1

2

Ln2 {f : [0,∞)→ Rn : ||f ||Ln
2
<∞}

II. PRELIMINARIES AND PROBLEM STATEMENT

Let us consider the following recurrent neural networks
subject to unknown time-varying delay τ(t)

ẋ(t) = −Ax(t) +W0f(x(t)) +W1g(x(t− τ(t))

+Bu(t) t ≥ 0, (1)
x(θ) = φ(θ), θ ∈ [−τ2, 0], (2)
y(t) = Cx(t), (3)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp are the state vector,
control input vector, output vector, respectively. f(x(t)) =f1(x1(t))

...
fn(xn(t))

, g(x(t − τ(t))) =

g1(x1(t− τ(t)))
...

gn(xn(t− τ(t)))

 denote

the neuron activation functions with fi(0) = 0, gi(0) = 0(i =
1, . . . , n), A = diag{a1, a2, . . . , an} ∈ Rn×n is a positive di-
agonal matrix, W0 ∈ Rn×n is the weight matrix, W1 ∈ Rn×n
is the delayed weight matrix. B ∈ Rn×m is a constant matrix,
φ(θ) is the initial function. The activation functions f , g and
time-varying delay τ(t) satisfy the following assumptions:
(H1) There are positive scalars `i > 0, ki > 0 for i =
1, 2, . . . , n such that

|fi(v1)− fi(v2)| ≤ `i|v1 − v2|, ∀v1, v2 ∈ R,
|gi(v1)− gi(v2)| ≤ ki|v1 − v2|, ∀v1, v2 ∈ R.

(4)

(H2) τ(t) is unknown but bounded within the interval [τ1, τ2],
where τ1 > 0 and τ2 > 0 are known.

Lemma 1. ([21] Wirtinger-based integral inequality) Let
matrix R > 0 and v : [a, b]→ Rn be a differentiable function.
Then, ∫ b

a

v̇T (s)Rv̇(s)ds ≥ 1

b− a
ΩT1 RΩ1 +

3

b− a
ΩT2 RΩ2,

(5)

where

Ω1 = v(b)− v(a), (6)

Ω2 = v(b) + v(a)− 2

b− a

∫ b

a

v(s)ds. (7)

Lemma 2. ([22] Reciprocal convexity lemma) Given δ ∈
[0, 1], matrices R > 0, S and vectors x1, x2. The following
inequality holds

−1

δ
xT1 Rx1 −

1

1− δ
xT2 Rx2

≤ −
[
x1

x2

]T [
R S
∗ R

] [
x1

x2

]
(8)

subject to [
R S
∗ R

]
> 0. (9)

Lemma 3. ([23]) For r, s ∈ Rn and matrix M ∈ Rn×n,
M > 0, the following inequality holds

±2rT s ≤ rTMr + sTM−1s. (10)

III. MAIN RESULTS

In the following, we assume that the measurement output
y(t) of delayed recurrent neural networks (1)-(3) is time-
triggered with data sampling technique and zero-order hold
(ZOH),

y?(t) = y(kh) = Cx(kh), t ∈ [kh+ νk, kh+ h+ νk+1), (11)

where h > 0 is a sampling period, νk is the network-induced
delay, νk ∈ [0, ν], k = 1, 2, 3, . . ..

In the following, we propose a new event-triggered condi-
tion and design an event-triggered state observer for system
(1)-(3) with requirement that information y(kh) is only trans-
mitted when the event-triggered condition holds.

Consider the following event-triggered state observer for
delayed recurrent neural networks (1)-(3):

ż(t) = −Az(t) +W0f(z(t)) +W1g(z(t− τz)) +Bu(t)

+L(y(tk)− Cz(tk),

τz =
τ1 + τ2

2
, t ∈ [tk + νk, tk+1 + νk+1), (12)

z(s) = ψ(s), s ∈ [−τ2, 0], (13)

where L is the gain matrix to be designed and z(t) ∈ Rn is
the state vector of observer, {tk}k∈N is the triggering sequence
which is defined as below:

t0 = 0, tk+1 = tk + `kh,

`k = min
{
` ∈ N+ |F(εxz(tk`), exz(tk)) > γ(tk)

}
,(14)

where F(εxz(tk`), exz(tk)) = α[εTxz(tk`)∆εxz(tk`) −
βeTxz(tk)∆exz(tk)], exz(t) = x(t)−z(t), εxz(tk`) = exz(tk)−
exz(tk+`h), α > 0, β > 0 are positive scalars, ∆ is a positive
definite matrix, γ(t) is the internal dynamic variable satisfying
the following condition

γ̇(t) = −ργ(t) + βeTxz(tk)∆exz(tk)− εTxz(tk`)∆εxz(tk`),
(15)

γ(0) = 0, ρ > 0. (16)

Lemma 4: Assume that β is a positive scalar, ρ, α are
positive scalars satisfying condition

eρηh ≤ αρ+ 1, (17)
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where h is the sampling period and η is the smallest integer
number such that h ≤ tk+1 − tk ≤ ηh. Then, the internal
dynamic variable γ(t) satisfies γ(t) ≥ 0 for all t > 0.
Proof. From condition (14), we see that

γ(tk) + α[βeTxz(tk)∆exz(tk)− εTxz(tk`)∆εxz(tk`)] ≥ 0,

∀t > 0. (18)

Since α > 0, we obtain

βeTxz(tk)∆exz(tk)− εTxz(tk`)∆εxz(tk`) ≥ −
1

α
γ(tk). (19)

On the other hand, for all t ∈ [tk, tk+1), from (16) we obtain

γ(t) = e−ρ(t−tk)γ(tk)

+

∫ t

tk

e−ρ(t−s)(βeTxz(tk)∆exz(tk)− εTxz(tk`)∆εxz(tk`))ds.

(20)

By using (19), we obtain

γ(t) ≥ e−ρ(t−tk)γ(tk)− 1

α
γ(tk)

∫ t

tk

e−ρ(t−s))ds.(21)

It follows from (21) that

γ(t) ≥
(
e−ρ(t−tk)(1 +

1

αρ
)− 1

αρ

)
γ(tk)

≥
(
e−ρηh(1 +

1

αρ
)− 1

αρ

)
γ(tk). (22)

It follows from (17) that e−ρηh(1 + 1
αρ )− 1

αρ > 0. Therefore,
from (18), (19) and (22), we obtain

γ̇(t) ≥ −ργ(t)− 1

α
γ(tk)

≥ −
(
ρ+

1

α(e−ρηh(1 + 1
αρ )− 1

αρ )

)
γ(t), (23)

for all t > 0 and thus γ(t) ≥ 0. The proof is completed.

Remark 1: Under assumption (H2), instead of using z(t−
τ(t)) in (12), which is not possible due to the unknown nature
of the time-varying delay, we use its estimate z(t − τz). For
this, there is an error, where

ω(t) = z(t− τ(t))− z(t− τz) = −
∫ −τz
−τ(t)

ż(t+ θ)dθ. (24)

The error ω(t) satisfies inequality [24]:

||ω||Ln
2
6
τ2 − τ1

2
||v||Ln

2
, (25)

for all v(t) ∈ Ln2 . Moreover, we obtain the following relation:

||x(t− τ(t))− z(t− τz))||2

≤ 3

2

(
||exz(t− τ(t))||2 + ||ω(t)||2

)
. (26)

Remark 2: Unlike the event-triggered conditions in [17],
[16], [19], which only depend on output information of the
systems, the one in (14) in this paper depends on not only
error vectors exz(t), εxz(tk`) but also dynamic variable γ(t).
This indicates that, ETM (14) can enlarge the time inter-
vals between two consecutive triggering events. Moreover, in

comparison with the continuous-time event-triggered condition
in [20], the event-triggered mechanism (14) offers more ad-
vantages since the event-triggered condition is dependent on
discrete supervision and therefore can reduce the utilization
of communication resources while maintaining the desired
control performance.

Noting that for

s = min
`∈N

{
` | tk + (`+ 1)h+ νk ≥ tk+1 + νk+1

}
,

we can divide interval [tk+νk, tk+1+νk+1) into the following
subintervals

[tk + νk, tk+1 + νk+1) = ∪sn=0In, (27)

where In = [tk + nh + νk, tk + (n + 1)h + νk) for n =
1, 2, . . . , s− 1 and Is = [tk + sh+ νk, tk+1 + νk+1).

By denoting f∆
xz(t) = f(x(t)) − f(z(t)) and g∆

xz(t) =
g(x(t− τ(t)))− g(z(t− τz)), from (1) and (12), we obtain

˙exz(t) = −Aexz(t) +W0f
∆
xz(t) +W1g

∆
xz(t)

−LCexz(tk), t ∈ [tk + νk, tk+1 + νk+1),

(28)
exz(s) = φ(s)− ψ(s), s ∈ [−τ2, 0]. (29)

Next, we define time-varying delay ζ(t) in the interval [tk +
νk, tk+1 + νk+1) as follows:

ζ(t) = t− tk − `h, t ∈ In. (30)

It follows from (30) that εxz(tk`) = exz(tk)− exz(t− ζ(t))
and 0 ≤ ζ(t) ≤ h + τ2 = ζ for all t ∈ [tk + νk, tk+1 +
νk+1). Therefore, the error system (28)-(29) can be expressed
as follows:

˙exz(t) = −Aexz(t) +W0f
∆
xz(t) +W1g

∆
xz(t)

−LCexz(t− ζ(t))− LCεxz(tk`),
t ∈ [tk + νk, tk+1 + νk+1), (31)

exz(s) = φ(s)− ψ(s), s ∈ [−ζ, 0]. (32)

Remark 3: Our newly proposed event-triggered state ob-
server (12)-(13) is different from the ones in [17], [16], [19],
[20], due to the term Cz(t) is replaced by Cz(tk + nh) =
Cz(t − ζ(t)). This change is significant due to the fact that
the measurement received by the observers after a network
delay ζ(t).

Provided that ETM (14) is designed, our objective is to
design gain observer L such that:

(i) The error dynamical system (31)-(32) with two time-
varying delays τ(t) and ζ(t) is asymptotically stable for the
case where ω(t) ≡ 0;

(ii) For the case where ω(t) 6= 0 and initial condition of
exz(t) is zero, the following inequality is guaranteed:

||exz||Ln
2
≤ λ||ω||Ln

2
, (33)

where λ is a positive scalar being optimised.
Remark 4: Unlike the method reported in [20], where error

vector exz(t) holds condition

||exz||Ln
2
≤ δ||x||Ln

2
+ λ||ω||L`

2
, (34)
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where 0 < δ < 1 and λ > 0, the state estimation error exz(t)
in this paper satisfies (33), which is more advantage since the
error between the state of neural networks and its estimation
does not depend on the state x(t).

In the following, we employ Wirtinger-based integral, the
reciprocally convex approach, the free-weighting matrix tech-
nique inequality and Cauchy matrix inequality combined Lya-
punov theory to establish a sufficient condition in term linear
matrix inequalities (LMIs) to guarantee (33) with a minimized
level λ > 0 and gain matrix L.

Theorem 1. Under Assumptions (H1)-(H2) and the assump-
tion of Lemma 4, for a given positive scalar µ, system (31)-
(32) is asymptotically stable with a minimized level λ > 0,
such that condition (33) holds if there exist matrices P > 0,
Q > 0, R > 0, ∆ > 0, X , non-singular H and positive scalars
λω , δ1, δ2 which solve problem:

min(λω) (35)
subject to

Ω?(σ) =

[
Ω(σ) Θ
∗ Ξ

]
< 0, ∀σ ∈ {0, 1}, (36)

Φ =

[
diag(R,R) Z
∗ diag(R,R)

]
> 0, (37)

where

Ω(σ) = Ω1(σ) + Ω2(σ)

+δ1`
2
maxg

T
1 g1 + δ2

3

2
k2

maxg
T
7 g7,

`max = max{`1, . . . , `n},
kmax = max{k1, . . . , kn},

Ω1(σ) = sym{ΨT
σPΓ}+ gT1 Qg1 − gT3 Qg3

+ζ2gT4 Rg4 − ΛTΦΛ + gT1 g1

−λωgT9 g9 + δ2
3

2
k2

maxg
T
9 g9 + βgT2 ∆g2

+βgT7 ∆g7 − sym
{[

gT1 gT4
] [ µH

H

]
g4

}
,

Ω2(σ) = sym
{[

gT1 gT4
] [ µH

H

]
Ag1

−
[
gT1 gT4

] [ µX
X

]
Cg2

−
[
gT1 gT4

] [ µX
X

]
Cg8,

Ψσ =
[
gT1 σζgT5 + (1− σ)ζgT6

]T
,

Γ =
[
gT4 (gT1 − gT3 )

]T
, Λ =

[
Λ1 Λ2

]T
,

Λ1 =
[

(g1 − g2)T
√

3(g1 + g2 − 2g5)T
]
,

Λ2 =
[

(g2 − g3)T
√

3(g2 + g3 − 2g6)T
]
,

gi =
[

0n×(i−1)n In 0n×(9−i)n
]
∈ Rn×9n,

i = 1, . . . , 9,

Θ =
[
gT1 gT4

] [ µH
H

]
(W0h1 +W1h2),

h1 =
[
In 0n×n

]
, h2 =

[
0n×n In

]
,

Ξ = −diag(δ1In, δ2In).

The optimal disturbance attenuation level λ and observer
gain matrix L are obtained as

λ =
√
λω, L = H−1X. (38)

Algorithm 1

Step 1: Check condition (4).
Step 2: Given a scalar µ > 0, solve the convex optimization
problem (35)-(37), P > 0, Q > 0, R > 0, ∆ > 0, X ,
non-singular H and positive scalars λω , δ1, δ2, minimized
level λ and observer gain L.
Step 3: Given scalars h > 0, α, β > 0, ρ > 0, obtain ETM
(14) and observer (12)-(13).

IV. NUMERICAL EXAMPLES

Example 1. Consider recurrent neural networks (1)-(3),
where τ(t) = | sin t| and

A =


2 0 0 0
0 3 0 0
0 0 4 0
0 0 0 5

 , B =


0.1
0.2
0.3
0.4

 ,

W0 =


0 0 0 0
−0.1 −0.02 0.1 0

0 0 0.1 0
0.01 0 −0.1 0

 ,

W1 =


0 1 0 0

0.1 0.02 0.1 0
0 0 0 0

0.01 0 0.1 0.1

 ,

CT =


1 0
0 1
0 0
0 0

 , f(x(t)) =


tanhx1(t)
tanhx2(t)
tanhx3(t)
tanhx4(t)


and

g(x(t− τ(t)))

= 0.5


|x1(t− τ(t)) + 1| − |x1(t− τ(t))− 1|
|x2(t− τ(t)) + 1| − |x2(t− τ(t))− 1|
|x3(t− τ(t)) + 1| − |x3(t− τ(t))− 1|
|x4(t− τ(t)) + 1| − |x4(t− τ(t))− 1|

 .
It is easy to check that condition (4) is satisfied with `i = 1,

ki = 1 for all i = 1, 2, 3, 4, and `max = kmax = 1.
According to Step 2 of Algorithm 1, for given µ = 2, we

obtain

P =
[
P1 P2

]
,

P1 =



0.3282 −0.0073 0.0040 −0.0053
−0.0073 1.6807 −0.6807 0.9012
0.0040 −0.6807 21.9232 20.2009
−0.0053 0.9012 20.2009 22.7257
−0.8710 0.0357 −0.0213 0.0233
−0.0056 −4.2873 0.4247 −1.7198
−0.0039 1.4821 −39.7292 −27.3105
−0.0081 −2.2636 −39.0349 −34.8083


,
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P2 =



−0.8710 −0.0056 −0.0039 −0.0081
0.0357 −4.2873 1.4821 −2.2636
−0.0213 0.4247 −39.7292 −39.0349
0.0233 −1.7198 −27.3105 −34.8083
2.5108 0.0082 0.0251 0.0281
0.0082 27.1551 −6.3393 17.9094
0.0251 −6.3393 330.2087 297.1027
0.0281 17.9094 297.1027 323.2255


,

Q =


0.0335 0.0024 −0.0023 0.0002
0.0024 2.4157 −1.9085 0.8602
−0.0023 −1.9085 35.3096 32.6135
0.0002 0.8602 32.6135 36.4605

 ,

R =


3.6579 −0.0273 0.0063 −0.0227
−0.0273 8.5368 −3.3849 2.9111
0.0063 −3.3849 79.9630 67.5294
−0.0227 2.9111 67.5294 71.8374

 ,

∆ =


0.0078 0 0 0

0 0.0164 0 0
0 0 0.0164 0
0 0 0 0.0164

 ,

X =


0.0558 0
−0.0078 0.006
0.0036 0
−0.0037 −0.004

 ,

H =


0.0779 −0.0062 0.0029 −0.0033
0.0123 0.3205 −0.2121 0.1272
−0.0031 −0.1953 3.7800 3.4332
0.0020 0.0847 3.0339 3.3685

 ,
λω = 0.0.1169, δ1 = 0.0032, δ2 = 0.0777,

and therefore minimized level λ = 0.3419 and gain matrix

L =


0.7127 0.0019
−0.0607 0.0437
−0.0089 0.0237
0.0081 −0.0236

.

According to Step 3 of Algorithm 1, given h = 0.02, α =
0.3, β = 0.01, ρ = 0.4, γ(0) = 0, ETM (14) and observer
(12)-(13) are obtained.

Example 2. Let us consider the following recurrent neural
networks of the form (1)-(3), where τ(t) = 0.98 sin t and

A =

 2 0 0
0 3 0
0 0 2

 , B =

 0.1
0.2
0.3

 ,
W0 =

 0.2 −0.4 0.4
−0.4 0.2 0.2
0.2 0.4 −0.4

 ,
W1 =

 0.2 0.2 0.2
0.2 0.2 0.2
0.2 0.2 0.2

 , C =

[
1 0 0
0 1 0

]
,

f(x(t)) =

 sinx1(t)
sinx2(t)
sinx3(t)

 .
We can check that condition(4) is satisfied with `i = 1 for

all i = 1, 2, 3, and `max = 1.

Given µ = 10, solving (35)-(37), we obtain

P =
[
P1 P2

]
,

P1 =


1.0377 −0.2778 −0.1745
−0.2778 1.3360 −0.2412
−0.1745 −0.2412 1.0205
−2.0813 −0.2664 0.1463
0.6373 −1.9977 0.6040
0.2110 −0.4154 −2.0580

 ,

P2 =


−2.0813 0.6373 0.2110
−0.2664 −1.9977 −0.4154
0.1463 0.6040 −2.0580
9.4023 −1.1802 0.0294
−1.1802 6.6105 −1.0521
0.0294 −1.0521 9.5240

 ,

Q =

 0.5611 −0.2117 −0.3085
−0.2117 0.4786 −0.2190
−0.3085 −0.2190 0.5125

 ,
R =

 2.9906 −0.9781 −1.3164
−0.9781 4.3396 −0.9409
−1.3164 −0.9409 2.7195

 ,

∆ =

 0.4082 −0.0119 −0.0247
−0.0119 0.4210 −0.0128
−0.0247 −0.0128 0.4046

 ,
X =

 0.0047 −0.0008
0.0024 0.0078
−0.0002 −0.0007

 ,
H =

 0.0645 −0.0360 −0.0226
−0.0041 0.1048 0.0019
−0.0206 −0.0356 0.0619

 ,
λω = 0.063, δ1 = 0.2002, δ2 = 0.0419,

and therefore minimized level λ = 0.2509 and gain matrix

L =

 0.1037 0.0466
0.0261 0.0753
0.0457 0.0482

.

According to Step 3 of Algorithm 1, given h = 0.02, α =
0.4, β = 0.2, ρ = 0.5, and γ(0) = 0, we obtain ETM (14)
and observer (12)-(13).

V. CONCLUSION

In this paper, we have considered the problem of designing
event-triggered state estimation for delayed recurrent neural
networks. A new dynamic ETM has been first designed and
then based on it a state observer has been proposed to estimate
state vectors of the delayed recurrent neural networks. Next,
a sufficient condition in term LMIs for the existence of the
dynamic event-triggered state observer has been established.
Finally, two numerical examples and simulation results have
been provided to illustrate the effectiveness of the results.
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