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Abstract. We deal with the inquiry about stability for nonlocal differential

equations involving infinite delays. The dissipativity, stability and weak stabil-
ity of solutions are addressed by using local estimates, fixed point arguments

and a new Halanay type inequality. Our analysis is based on suitable assump-

tions on the phase space and nonlinearity function. An application to nonlocal
partial differential equations will be shown to demonstrate our abstract results.

1. Introduction

We consider the following problem

d

dt
[k ∗ (u− u0)](t) +Au(t) = f(t, ut), t > 0, (1.1)

u0 = ϕ ∈ B, (1.2)

where the unknown function u takes values in a separable Hilbert space H, the
kernel k ∈ L1

loc(R+), the notation ‘∗’ denotes the Laplace convolution, A is an
unbounded linear selfadjoint operator and f : R+ × B → H is a given nonlinear
function. The admissible phase space B satisfies certain conditions that will be
defined later. In our model, ut stands for the history of the state function up to
the time t, i.e. ut(s) = u(t+ s), s ≤ 0.

It is worth pointing out that the system under consideration includes some im-
portant classical cases with respect to the kernel function k being of special ones
(see, e.g. [12, 14]). Namely, if k(t) = g1−α(t) := t−α/Γ(1− α), α ∈ (0, 1) then
equation (1.1) is in the form of fractional differential equations since the convo-
lution represents Dα

0 , the Caputo fractional derivative of order α. Regarding the
fractional differential systems involving finite delays in Banach spaces, some results
on (weak) stability and decay solutions were established in [1, 10, 11]. Based on
the special features (e.g., the analyticity, subordinate principle) associated with
the kernel g1−α(t), the fractional differential equations can be considered in a more
general framework:{

Dα
0 [x(t)− h(t, xt)] = Bx(t) + f(t, x(t), xt), t > 0

x(θ) = ϕ(θ), θ ≤ 0.
(1.3)
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where B is the infinitesimal generator of an analytic semigroup on a Banach space
X. Considering abstract neutral functional differential equations like (1.3) involv-
ing infinite delays, we refer the reader to [16, 18] for the existence of integral solu-
tions, and [2] for existence of integral solutions with decay rate. Noting that the
approach in the mentioned works heavily relies on the point-wise decaying of the
Mittag-Leffler functions Eα,β(z), which is no longer available for the general nonlo-
cal derivatives. Nevertheless, system (1.1) without delay has received considerably
attention over decades. It has been employed to model different problems related to
processes in materials with memory (see, e.g. [4, 6, 19]). Particularly, Vergara and
Zacher [23] mentioned that equation (1.1) with an appropriate class of kernels can
be used to describe the anomalous diffusion phenomena including slow/ultraslow
diffusions when H = L2(Ω),Ω ⊂ RN , and A = −∆ is the Laplace operator asso-
ciated with the homogeneous boundary condition of Dirichlet/Neumann type. We
also refer to [15, 12] and the references therein for recent development on this trend.

It should be mentioned that, in modeling of physical/biological processes, the
formulated system is usually subject to the history information, that is, a delay term
comes into the model. The authors in the recent work [14] studied (1.1) in the case
of finite delay, i.e. ϕ ∈ C([−h, 0];H), where some stability results were obtained.
As far as we know, this is the first attempt dealing with stability analysis for
nonlocal differential equations involving delays. In this work, we consider the case
that ϕ belongs to the fading memory spaces, which were axiomatically introduced
by Hale and Kato in [7]. This situation is entirely different from that in [14] due to
the complicated structure of phase spaces. Our aim is to find a class of admissible
phase spaces and conditions on the nonlinearity function f under which our problem
is solvable, and its solution is stable/weakly stable. To this end, we first make the
following fundamental hypotheses.

(A0) The operator A : D(A) → H is self-adjoint on H and its spectral σ(A)
is bounded from below, that is, there exists λ1 := λ1(A) ∈ R such that
σ(A) ⊂ [λ1,+∞).

(K) The kernel function k ∈ L1
loc(R+) is nonnegative and nonincreasing, and

there exists a function l ∈ L1
loc(R+) such that k ∗ l = 1 on (0,∞).

Hypothesis (K) enables us to get a representation of solutions for (1.1)-(1.2). This
hypothesis has been used in a wide range of works (see [15, 12, 14, 20, 23, 24]).

Let us give a brief on our approach. The well-posedness of linear equation is
followed by Prüss’ theory of resolvent families and Lemma 2 below, which extends
the recent result [12, Lemma 2.3]. Namely, the existence and qualitative properties
of the solution operators are established for a general semibounded self-adjoint
operator. The assumption (A0) also covers the case A has a negative spectrum, see
Lemma 2.2(1). The solvability of (1.1)-(1.2) is obtained by fixed point argument.
This will be done by proving the compactness of the Cauchy operator in Proposition
2.3 without regularity assumption on the kernel, see Remark 2.1. The stability of
solution to (1.1)-(1.2) is proved by applying a new Halanay type inequality, which
is more flexible, in comparison with the one in [14]. In addition, we make use of the
technique developed in [3, 14] to get the weakly asymptotic stability result, which
is based on the fixed point principle for condensing maps on a special constructed
subset. We find that the sufficient conditions for weak stability result, Theorem
4.4, only depend on the asymptotic behavior of the coefficients of the system for
large time. This phenomenon provides a compatible observation of existence result
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in finite time, where one has no restriction on the magnitude of Lipschitz constant
of the nonlinear function. Our setting is more practical and relaxes some conditions
proposed by previous works in the literature.

The paper is organized as follows. In Section 2, we collect some necessary re-
sults on the theory of resolvent, establish a compactness of the Cauchy operator
and propose a new Halanay type inequality. Section 3 is devoted to studying the
existence of mild solutions and the dissipativity via the existence of absorbing sets.
In section 4, the stability results and the weakly asymptotic stability of the zero
solution are formulated under suitable assumptions on the nonlinearity as well as
on the phase space. The last section presents an application to a class of nonlocal
partial differential equations with infinite delays.

2. Preliminaries

2.1. Phase spaces. We will utilize the axiomatic definition of the phase space B
introduced by Hale and Kato in [7]. The space B is a linear subspace of functions
mapping (−∞, 0] into H endowed with a suitable seminorm | · |B and satisfying
the following fundamental axioms. If a function v : (−∞, T + σ]→ H is such that
v|[σ,T+σ] ∈ C([σ, T + σ];H) and vσ ∈ B, then

(B1) vt ∈ B for t ∈ [σ, T + σ];
(B2) the function t 7→ vt is continuous on [σ, T + σ];
(B3) |vt|B ≤ K(t−σ) sup

σ≤s≤t
‖v(s)‖+M(t−σ)|vσ|B, where K,M : [0,∞)→ [0,∞)

are independent of v, and K is continuous, M is locally bounded.

In this work, we use a further assumption on B:

(B4) there exists % > 0 such that ‖ϕ(0)‖ ≤ %|ϕ|B, for all ϕ ∈ B.

We give here some examples of phase spaces. We refer to the book by Hino,
Mukarami and Naito [8] for more details. The first one is given by

Cγ = {ϕ ∈ C((−∞, 0];H) : lim
θ→−∞

eγθϕ(θ) exists in H},

for a given positive number γ. This phase space satisfies (B1)-(B3) with

K(t) = 1, M(t) = e−γt,

and it is a Banach space with the following norm

|ϕ|B = sup
θ≤0

eγθ‖ϕ(θ)‖.

Considering another typical example, assume that 1 ≤ p < +∞, 0 ≤ r < +∞ and
g : (−∞,−r] → R is nonnegative, Borel measurable function on (−∞,−r). Let
CLpg be a class of functions ϕ : (−∞, 0] → H such that ϕ is continuous on [−r, 0]

and g(θ)‖ϕ(θ)‖p ∈ L1(−∞,−r). The associated seminorm in CLpg is given by

|ϕ|CLpg = sup
−r≤θ≤0

‖ϕ(θ)‖+
[ ∫ −r
−∞

g(θ)‖ϕ(θ)‖p dθ
] 1
p

.

Assume further that∫ −r
s

g(θ)dθ < +∞, for every s ∈ (−∞,−r) and (2.1)

g(s+ θ) ≤ G(s)g(θ) for s ≤ 0 and θ ∈ (−∞,−r), (2.2)
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where G : (−∞, 0] → R+ is locally bounded function. We know from [8], CLpg
satisfies (B1)-(B3) provided that (2.1)-(2.2) hold true. Moreover, one can take

K(t) =

1 for 0 ≤ t ≤ r,

1+
[ ∫ −r
−t g(θ) dθ

] 1
p

for t > r;
(2.3)

M(t) =

max
{

1+
[ ∫ −r
−t g(θ) dθ

] 1
p

, G(−t)
1
p

}
for 0 ≤ t ≤ r,

max
{[ ∫ −r

−t g(θ) dθ
] 1
p

, G(−t)
1
p

}
for t > r.

(2.4)

2.2. The resolvent families. Consider the following scalar Volterra equations
which describe the relaxation functions

s(t) + λ(l ∗ s)(t) = 1, t ≥ 0, (2.5)

r(t) + λ(l ∗ r)(t) = l(t), t > 0. (2.6)

The existence and uniqueness of s and r were mentioned in [17]. Denote by s(·, λ)
and r(·, λ) the solutions of (2.5) and (2.6), respectively. Recall that the function
l is called a completely positive kernel iff s(·) and r(·) take nonnegative values for
every λ > 0. The complete positivity of l is equivalent to that (see [4, Theorem
2.2]), there exist α ≥ 0 and k ∈ L1

loc(R+) nonnegative and nonincreasing which
satisfy αl(t) + l ∗ k(t) = 1 for all t > 0. So the hypothesis (K) implies that l is
completely positive and particularly, l takes nonnegative values by [4, Proposition
2.1 (1)]. Consequently, the functions s(·, λ) and r(·, λ) take nonnegative values (for
even λ ≤ 0, see also explanation in [24]). We remind some additional properties of
these functions.

Proposition 2.1. [12, 24] Let the hypothesis (K) hold. Then for every λ ∈ R,
s(·, λ), r(·, λ) ∈ L1

loc(R+). In addition, we have:

(1) The function s(·, λ) is nonnegative and nonincreasing. Moreover, for λ > 0

s(t, λ)

[
1 + λ

∫ t

0

l(τ)dτ

]
≤ 1, ∀t ≥ 0. (2.7)

Hence if l 6∈ L1(R+) then lim
t→∞

s(t, λ) = 0 for every λ > 0.

(2) The function r(·, λ) is nonnegative and one has

s(t, λ) = 1− λ
∫ t

0

r(τ, λ)dτ = k ∗ r(·, λ)(t), t ≥ 0,

so
∫ t

0
r(τ, λ)dτ ≤ λ−1, ∀t > 0. If l 6∈ L1(R+) then

∫∞
0
r(τ, λ)dτ = λ−1 for

every λ > 0.
(3) For each t > 0, the functions λ 7→ s(t, λ) and λ 7→ r(t, λ) are nonincreasing

in R.
(4) Equation (2.5) is equivalent to the problem

d

dt
[k ∗ (s− 1)] + λs = 0, s(0) = 1.

(5) Let v(t) = s(t, λ)v0 + (r(·, λ) ∗ g)(t), here g ∈ L1
loc(R+). Then v solves the

problem

d

dt
[k ∗ (v − v0)](t) + λv(t) = g(t), v(0) = v0.
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Using spectral theorem for self-adjoint operator [22, Theorem 1.7], the hypoth-
esis (A0) implies that there exist a measure space (Ξ, dµ), a unitary map U :
L2(Ξ, dµ)→ H and a real-valued function a on Ξ such that

U−1AUf(ξ) = a(ξ)f(ξ), Uf ∈ D(A). (2.8)

Note that for f ∈ L2(Ξ, dµ), Uf ∈ D(A) iff Maf(·) = a(·)f(·) belongs to L2(Ξ, dµ).
Based on this spectral representation of A, the Borelian functional calculus of A

is given by (
U−1g(A)Uv

)
(ξ) = g(a(ξ))v(ξ), for almost every ξ ∈ Ξ, (2.9)

for arbitrary Borel function g : R → C. In general, g(A) is unbounded linear self-
adjoint in H for an arbitrary Borel real-valued function g. If g is bounded in R
then so is g(A) and ‖g(A)‖L(H) ≤ ‖g‖L∞(R).

The spectral boundedness from below of A implies that

a(ξ) ∈ [λ1,+∞), for almost every ξ ∈ Ξ.

Therefore, the functional g(A) only depends on the essential value of g in [λ1,+∞).
In particular, if g ∈ L∞([λ1,∞), dµ) then g(A) is a bounded linear map in H and
furthermore

‖g(A)‖L(H) ≤ ess supξ∈Ξ |g(a(ξ))|. (2.10)

Note that if λ1 ≥ 0 then for γ ≥ 0, one can define the fractional power of A as
follows

D(Aγ) =
{
Uw ∈ H : w ∈ L2(Ξ, dµ), (a(ξ))

γ
w(ξ) ∈ L2(Ξ, dµ)

}
,

U−1AγUw(ξ) = a(ξ)γw(ξ), Uw ∈ D(Aγ).

Let Vγ = D(Aγ). Then Vγ is a Banach space endowed with the norm

‖v‖D(Aγ) =

(∫
Ξ

(
1 + |a(ξ)|2γ

)
|U−1v(ξ)|2dµ

) 1
2

.

For λ1 > 0, this is equivalent to the following norm

‖v‖γ = ‖Aγv‖H =

(∫
Ξ

|a(ξ)|2γ |U−1v(ξ)|2dµ
) 1

2

. (2.11)

Furthermore, for γ > 0, we can identify V−γ with the dual space V ∗γ of Vγ .
By formula (2.9) and properties of the functions s(t, µ), r(t, µ), we now define

the following operators

U−1S(t)Uv(ξ) = s(t, a(ξ))v(ξ), ξ ∈ Ξ, t ≥ 0, Uv ∈ H, (2.12)

U−1R(t)Uv(ξ) = r(t, a(ξ))v(ξ), ξ ∈ Ξ, t > 0, Uv ∈ H. (2.13)

Obviously, S(t) and R(t) are linear self-adjoint operators in H and satisfy the
following relation

S′(t, A) = −AR(t, A), t > 0, (2.14)

due to Proposition 2.1(2) and the relation (2.12)-(2.13). In the following lemma, we
prove some basic properties of these operators which extend the recent result [12,
Lemma 3.2]. By relation (2.14), the statement in Lemma 2.2 (2) below implies that
S(t, A) is differentiable in the sense of Prüss [19, Definition 1.4]. A consequence of
(2.17) is a smoothing effect of the solution operator. This estimate plays an impor-
tant role in analyzing semilinear nonlocal evolution equations since the assumption
on the nonlinearity can be relaxed considerably, as mentioned in [19, Section 13.5].
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Lemma 2.2. Let {S(t)}t≥0 and {R(t)}t>0, be the families of linear operators de-
fined by (2.12) and (2.13), respectively and T > 0 be given.

(1) For each v ∈ H, S(·)v ∈ C([0, T ];H) and AS(·)v ∈ C((0, T ];H). Moreover,

‖S(t)v‖ ≤ s(t, λ1)‖v‖, t ∈ [0, T ];

‖AS(t)v‖ ≤


‖v‖

(1 ∗ l)(t)
, if λ1 ≥ 0,

|λ1|s(t,−|λ1|)‖v‖, if λ1 < 0,

for t ∈ (0, T ].
(2) Let v ∈ H. Then R(·)v ∈ C((0, T ];H). Furthermore,

‖R(t)v‖ ≤ r(t, λ1)‖v‖, t ∈ (0, T ], (2.15)

‖AR(t)v‖ ≤ r(t, λ1)‖Av‖, v ∈ D(A), t > 0. (2.16)

In particular, for t > 0 one has ‖S′(t)v‖ ≤ r(t, λ1)‖v‖D(A) for all v ∈ D(A).
(3) Assume further that λ1 > 0. Then the convolution with R possesses a

smoothing effect in the sense that if g ∈ C([0, T ];Vγ), γ ≥ 0 then A(R∗g) ∈
C([0, T ];Vγ− 1

2
)

‖A(R ∗ g)(t)‖V
γ− 1

2

≤
(∫ t

0

r(t− τ, λ1)‖g(τ)‖2Vγdτ
) 1

2

, t ∈ [0, T ]. (2.17)

Proof. The first part in (1) and (2) follow by the same argument as in [12, Lemma
2.3], so we verify only the remain statement in (1). By (2.10), one has

‖s(t, A)‖L(H) ≤ sup
λ≥λ1

s(t, λ) = s(t, λ1), (2.18)

where the last relation follows from the monotonicity of s(t, ·) with respect to λ.
Analogously, one also gets

‖As(t, A)‖L(H) ≤ sup
ξ
|a(ξ)|s(t, a(ξ)) (2.19)

= sup
λ≥λ1

|λ|s(t, λ) ≤ sup
λ≥−|λ1|

|λ|s(t, λ) (2.20)

= max

{
sup

−|λ1|≤λ≤0

|λ|s(t, λ), sup
λ>0

λs(t, λ)

}
(2.21)

≤ max

{
|λ1|s(t,−|λ1|),

1

1 ∗ l(t)

}
, (2.22)

here the last inequality follows from Proposition 2.1 (1).
The proof of the first part in (3) goes similarly the one above, hence we show

only the last estimate (2.17). Using the representation

U−1A(R ∗ Uĝ)(t, ξ) =

∫ t

0

a(ξ)r(t− τ, a(ξ))ĝ(τ, ξ)dτ,

where ĝ(t, ·) = U−1g(t), we have

‖AR ∗ g(t)‖2Vγ−1/2
=

∫
Ξ

a(ξ)2γ−1

(∫ t

0

a(ξ)r(t− τ, a(ξ))ĝ(τ, ξ)dτ

)2

dµ,
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thanks to (2.11). Then utilizing the Hölder inequality, we get

‖AR ∗ g(t)‖2Vγ−1/2

≤
∫

Ξ

a(ξ)2γ−1

(∫ t

0

a(ξ)r(t− τ, a(ξ))dτ

)(∫ t

0

a(ξ)r(t− τ, a(ξ))|ĝ(τ, ξ)|2dτ
)
dµ

≤
∫

Ξ

(1− s(t, a(ξ))

(∫ t

0

a(ξ)2γr(t− τ, a(ξ))|ĝ(τ, ξ)|2dτ
)
dµ

≤
∫ t

0

(∫
Ξ

r(t− τ, a(ξ))a(ξ)2γ |ĝ(τ, ξ)|2dµ
)
dτ

≤
∫ t

0

(
r(t− τ, λ1)

∫
Ξ

a(ξ)2γ |ĝ(τ, ξ)|2dµ
)
dτ =

∫ t

0

r(t− τ, λ1)‖g(τ)‖2Vγdτ,

which ensures (2.17). In particular, ‖R ∗ g‖C([0,T ];Vγ+1/2) ≤ 1√
λ1
‖g‖C([0,T ],Vγ). This

is the half smoothing effect of the resolvent operator R. �

Let E and F be Banach spaces. The notations L(E,F ),K(E,F ) stand for spaces
of bounded linear operators, linear compact operators from E to F , respectively.
Note that K(E,F ) is closed subset in L(E,F ) with respect to the operator norm.

To gain the compactness of the solution operators, we need further assumption
on the operator A as follows:

(A) The operator A : D(A)→ H is nonnegative, self-adjoint on H with compact
resolvent.

The assumption (A) yields the existence of an orthonormal basis of H consisting
of eigenfunctions {en}∞n=1 of operator A and we have

Av =

∞∑
n=1

λnvnen, vn = (v, en),

where λn > 0 is the eigenvalue corresponding to the eigenfunction en of A,

D(A) = {v =

∞∑
n=1

vnen :

∞∑
n=1

λ2
nv

2
n <∞}.

We can assume that 0 < λ1 ≤ λ2 ≤ ... ≤ λn → ∞ as n → ∞. In this case, Ξ is
the set N of natural numbers and the measure dµ is thus the counting measure, the
function a(n) = λn,∀n ∈ N and the unitary map U : L2(N, dµ)→ H is given by

f = (f1, f2, . . . , fn, . . .) ∈ L2(N) 7→ Uf =

∞∑
k=1

fkek ∈ H.

For a real number s we denote Xs = C([0, T ];D(As)). We need the following result
to investigate the existence results.

Proposition 2.3. Let assumptions (A) and (K) hold. Then the operator

Q : C([0, T ];D(As))→ C([0, T ];D(As+1/2)), f 7→ Qf(t) := R ∗ f(t)

is compact for any s ∈ R.

Proof. Based on the approximation argument, the proof is divided into several
steps.

Step 1. We first remind that for a given g ∈ C[0, T ], the convolution map Cg :
C[0, T ]→ C[0, T ], v 7→ g ∗v is compact. This is classical result, but for convenience
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of the readers, we provide a proof here. Fix any bounded subset D ⊂ C[0, T ], that
is, there exists a positive constant R > 0 such that

‖v‖ ≤ R, ∀v ∈ D.

Clearly, |g ∗ v(t)| ≤ ‖g‖L1(0,T ) max
t∈[0,T ]

|v(t)|, v ∈ D, which implies the point-wise

bounded of Cg(D).
On the other hand, for any ε > 0, by the uniform continuity of g on [0, T ], one

chooses a positive number δ < ε/(2R‖g‖+ 1) such that

|g(s1)− g(s2)| ≤ ε

2RT
for any s1, s2 ∈ [0, T ], |s1 − s2| ≤ δ.

For any t1, t2 ∈ [0, T ], 0 < t2 − t1 < δ and v ∈ D, one has

|g ∗ v(t2)− g ∗ v(t1))| ≤
∫ t1

0

|g(t1 − τ)− g(t2 − τ)||v(τ)|ds+

∫ t2

t1

|g(t2 − τ)v(τ)|ds

≤ ε

2RT

∫ T

0

|v(τ)|ds+ max
τ∈[0,T ]

|v(τ)||t1 − t2| max
τ∈[0,T ]

|g(τ)|

≤
( ε

2RT
T + ‖g‖δ

)
sup
v∈D
‖v‖ ≤ ε,

for any v ∈ D. Therefore, the equi-continuity of Cg(D) is testified. Thus, Cg(D) is
relatively compact in C[0, T ] by Azelà-Ascoli Theorem.

Step 2. Extend the statement above to the singular kernel. For a given g ∈
L1(0, T ) Then g∗ : C[0, T ] → C[0, T ] is compact. Indeed, by density of smooth
function in L1(0, T ) one can choose a sequence of continuous function gn such that
gn converges to g in L1(0, T ). Then we have

‖(Cgn − Cg)v‖ = sup
t∈[0,T ]

|
∫ t

0

(gn(t− τ)− g(t− τ))v(τ)dτ |

≤ sup
t∈[0,T ]

∫ t

0

|gn(t− τ)− g(t− τ)|.|v(τ)|dτ

≤ ‖gn − g‖L1(0,T )‖v‖.

Thus limn→∞ ‖Cgn − Cg‖L(C[0,T ]) = 0, which implies the compactness of Cg.
Step 3. Let denote

Qnf(t) =

n∑
k=1

(∫ t

0

r(t− τ, λk)fk(τ)dτ

)
ek

for any f =
∑∞
k=1 fk(t)ek ∈ C([0, T ];D(As)).

By Step 2, Qn is a compact operator from C([0, T ];D(As)) to C([0, T ];D(As+1/2)).
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Step 4. By Step 3, it reduces to show that Qn converges to Q with respect to
the operator norm in L(Xs, Xs+1/2). Indeed, we have

‖(Q−Qn)v(t)‖2D(As+1/2) =
∑
k>n

|λ1+2s
k

∫ t

0

r(t− τ, λk)vk(τ)dτ |2

≤
∑
k>n

∫ t

0

λkr(t− τ, λk)dτ ·
∫ t

0

r(t− τ, λk)|λskvk(τ)|2dτ (by Hölder’s inequality)

≤
∫ t

0

r(t− τ, λn)
∑
k>n

|λskvk(τ)|2dτ

(since

∫ t

0

λkr(τ, λk)dτ = 1− s(t, λk) ≤ 1 and r(·, λk) ≤ r(·, λn) for k > n)

≤
∫ t

0

r(t− τ, λn)‖v(τ)‖2D(As)dτ

≤
(∫ t

0

r(t− τ, λn)dτ

)
sup

s∈[0,T ]

‖v(τ)‖2D(As)

=
1− s(t, λn)

λn
‖v‖2Xs .

Hence, we obtain

‖Qn −Q‖Xs+1/2
= sup
t∈[0,T ]

‖(Q−Qn)v(t)‖2D(As+1/2) ≤
1

λn
‖v‖2Xs .

In other word, we get

‖Q−Qn‖L(Xs,Xs+1/2) ≤ λ−1/2
n → 0 as n→∞.

This completes the proof. �

Remark 2.1. The standard argument for checking the compactness of a subset in
C([0, T ], D(As+1/2)) is applying Azelà-Ascoli Theorem directly. However, due to
the singularity of the kernel l (so r(·, λ)), it is difficult to testify the equicontinuity
of Q(D) directly without further regularity assumption on the function l. So the
proof of compactness for Q in this work requires less conditions than those in [13,
Lemma 3.5].

2.3. Gronwall and Halanay type inequalities. The following proposition shows
a Gronwall type inequality.

Proposition 2.4. [12] Let v be a nonnegative function satisfying

v(t) ≤ s(t, µ)v0 +

∫ t

0

r(t− τ, µ)[α(τ) + βv(τ)]dτ, t ≥ 0,

for µ > 0, v0 ≥ 0, β > 0 and α ∈ L1
loc(R+). Then

v(t) ≤ s(t, µ− β)v0 +

∫ t

0

r(t− τ, µ− β)α(τ)dτ.

Let X be a Banach space. We denote by BC(R+;X) the space of continuous
and bounded functions defined on R+ taking values in X. It is a Banach space
with the norm given by ‖y‖BC = sup

t≥0
‖y(t)‖. Let BC(R+) = BC(R+;R) and
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BC0 := {v ∈ BC(R+)| lim
t→∞

v(t) = 0}. We prove the following Halanay type

inequality, which plays an important role in our analysis.

Proposition 2.5 (Halanay type inequality). Let v be a continuous and nonnegative
function on R+. Assume that for any t > 0,

v(t) ≤ p(t) +

∫ t

0

r(t− τ, a)q(τ)dτ + b

∫ t

0

r(t− τ, a) sup
ξ∈[τ−ρ(τ),τ ]

v(ξ)dτ, (2.23)

where p, q ∈ BC(R+), a > b ≥ 0 and ρ is a given function such that t ≥ ρ(t) for
t ≥ 0. Then v ∈ BC(R+) and

v(t) ≤
(
‖p‖BC + ‖r(·, a) ∗ q‖BC

) a

a− b
, ∀t ≥ 0. (2.24)

Moreover, if lim
t→∞

(t− ρ(t)) =∞ then

lim sup
t→∞

v(t) ≤ lim sup
t→∞

(
p(t) +

(
r(·, a) ∗ q

)
(t)
) a

a− b
. (2.25)

In particular, for any ε > 0 there exits T (ε) > 0 such that

v(t) ≤ ar∗

a− b
+ ε, ∀t ≥ T (ε),

here r∗ = lim sup
t→∞

p(t) + lim sup
t→∞

r(·, a) ∗ q(t).

Proof. First, we prove (2.24). By (2.23), forall t ∈ [0, T ], one has

v(t) ≤ ‖p+ r(·, a) ∗ q‖BC + b sup
ξ∈[0,T ]

v(ξ)

∫ t

0

r(t− τ, a)dτ

≤ ‖p‖BC + ‖r(·, a) ∗ q‖BC + b sup
ξ∈[0,T ]

v(ξ)
1− s(t, a)

a

≤ ‖p‖BC + ‖r(·, a) ∗ q‖BC +
b

a
sup

ξ∈[0,T ]

v(ξ).

It implies

sup
ξ∈[0,T ]

v(ξ) ≤
(
‖p‖BC + ‖r(·, a) ∗ q‖BC

) a

a− b
.

Let T →∞, we get

sup
ξ∈[0,∞)

v(ξ) ≤
(
‖p‖BC + ‖r(·, a) ∗ q‖BC

) a

a− b
.

Thus (2.24) is verified.
We next show that (2.25) holds. Since t − ρ(t) → ∞ as t → ∞, it follows that

for any T > 0 there exists T1 = T1(T ) > 0 such that

t− ρ(t) ≥ T, ∀t ≥ T1,
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and T1 →∞ as T →∞. Using (2.23) with t ≥ T1 yields

v(t) ≤ p(t) +
(
r(·, a) ∗ q

)
(t) + b

∫ T1

0

r(t− τ, a) sup
ξ∈[τ−ρ(τ),τ ]

v(ξ)dτ

+ b

∫ t

T1

r(t− τ, a) sup
ξ∈[τ−ρ(τ),τ ]

v(ξ)dτ

≤ p(t) +
(
r(·, a) ∗ q

)
(t) + b‖v‖BC

∫ T1

0

r(t− τ, a)dτ

+ b sup
ξ≥T

v(ξ)

∫ t

T1

r(t− τ, a)dτ

≤ p(t) +
(
r(·, a) ∗ q

)
(t) + C

∫ t

t−T1

r(ξ, a)dξ +
b

a
sup
ξ≥T

v(ξ),

here C =
(
‖p‖BC + ‖r(·, a) ∗ q‖BC

)
ab
a−b . Taking the supremum over [2T1,∞), we

have

sup
t≥2T1

v(t) ≤ sup
t≥2T1

(
p(t) +

(
r(·, a) ∗ q

)
(t)
)

+
C

a
s(T1, a) +

b

a
sup
ξ≥T

v(ξ).

Let T →∞, then T1 →∞. So we obtain

lim
T1→∞

sup
t≥2T1

v(t) ≤ lim
T1→∞

sup
t≥2T1

(
p(t) +

(
r(·, a) ∗ q

)
(t)
)

+ lim
T1→∞

C

a
s(T1, a) + lim

T→∞

b

a
sup
ξ≥T

v(ξ).

Hence, it implies

lim sup
t→∞

v(t) ≤
(

lim sup
t→∞

p(t) + lim sup
t→∞

(
r(·, a) ∗ q

)
(t)
) a

a− b
.

Consequently, the last statement in Proposition 2.5 holds. The proof is complete.
�

Corollary 2.6. If p ∈ BC0 and q(t) = q0(t) + q∞(t), t ≥ 0, q0 ∈ BC0, q∞ ∈
BC(R+) then there exits T (ε) > 0, for each given ε > 0, such that

v(t) ≤ ‖q∞‖BC
a− b

+ ε, t ≥ T (ε).

2.4. Definition of mild solutions. For ϕ ∈ B, we define

Cϕ = {u ∈ C([0, T ];H) : u(0) = ϕ(0)}

as a closed subset of C([0, T ];H) with respect to the supremum norm denoted by
‖ · ‖∞.

For any v ∈ Cϕ, we define the function v[ϕ] : R→ H as follows

v[ϕ](t) =

{
ϕ(t), −∞ < t ≤ 0,

v(t), t > 0.

Then, clearly

v[ϕ]t(θ) =

{
ϕ(t+ θ), −∞ < θ < −t,
v(t+ θ), θ ∈ [−t, 0].
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Motivated by arguments in [12], we have the following definition of mild solution
to the system (1.1)-(1.2).

Definition 2.1. A function u ∈ C((−∞, T ];H) is said to be a mild solution to
(1.1)-(1.2) on (−∞, T ] iff u(t) = ϕ(t) for t ∈ (−∞, 0] and

u(t) = S(t)ϕ(0) +

∫ t

0

R(t− τ)f(τ, u[ϕ]τ )dτ,

for t ∈ [0, T ].

3. Existence results and dissipativity of solutions

We use the fixed point method to get our results by considering the operator
defined by

F : Cϕ → Cϕ

F(v)(t) = S(t)ϕ(0) +

∫ t

0

R(t− τ)f(τ, v[ϕ]τ )dτ, t ∈ [0;T ].

It is clear that if v is a fixed point of F then v[ϕ] is a mild solution to (1.1)-(1.2).
So F is referred to as the solution operator.

The first result is obtained in the case that f has a superlinear growth and the
initial datum is sufficiently small.

Theorem 3.1. Let (A) and (K) hold. Assume that f is a continuous function and
satisfies the following condition

‖f(t, w)‖ ≤ β|w|B + Ψ(|w|B),∀t ≥ 0, w ∈ B, (3.1)

where β > 0, Ψ ∈ C(R+;R) such that lim
r→0

Ψ(r)
r = 0. If β < λ1

(
sup

s∈[0;T ]

K(s)
)−1

, then

there is a positive number δ such that a mild solution to (1.1)-(1.2) exists globally
provided |ϕ|B < δ. Moreover, if f is locally Lipschitzian, i.e., for each r̄ > 0, there
is L(r) > 0 such that

‖f(t, w1)− f(t, w2)‖ ≤ L(r̄)|w1 − w2|B, (3.2)

for all t ≥ 0, |wi|B ≤ r̄, i ∈ {1, 2}, then the mild solution is unique.

Proof. By definition of F , we see that it is a continuous map from Cϕ into itself.
We employ the Schauder theorem to prove that F has a fixed point in Cϕ. Firstly,
we find a number η > 0 such that F(Bη) ⊂ Bη, provided that |ϕ|B is small enough.
Here Bη is the closed ball in Cϕ with radius η and center at origin.

Due to the assumption on f , for θ ∈
(
0; λ1

KT
− β

)
, where KT = sup

[0;T ]

K(s), there

exists η̄ > 0 such that

‖f(t, w)‖ ≤ (β + θ)|w|B, for all w ∈ B, |w|B ≤ η̄.

Now we choose η = η̄
2KT

and let ‖u‖∞ ≤ η. If |ϕ|B ≤ δ1 := η̄
2MT

, here MT =

sup
s∈[0;T ]

M(s), then |u[ϕ]τ |B ≤ η̄ for τ > 0.
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One gets

‖F(u)(t)‖ ≤ s(t, λ1)‖ϕ(0)‖+

∫ t

0

r(t− τ, λ1)(β + θ)|u[ϕ]τ |Bdτ

≤ s(t, λ1)‖ϕ(0)‖

+ (β + θ)

∫ t

0

r(t− τ, λ1)[K(τ) sup
s∈[0;τ ]

‖u(s)‖+M(τ)|ϕ|B]dτ

≤ s(t, λ1)%|ϕ|B

+ (β + θ)

∫ t

0

r(t− τ, λ1)[KT η +MT |ϕ|B]dτ.

Using Proposition 2.1, we have

‖F(u)(t)‖ ≤ s(t, λ1)%|ϕ|B + (β + θ)λ−1
1 (1− s(t, λ1))[KT η +MT |ϕ|B]

≤ %|ϕ|B +
β + θ

λ1
(KT η +MT |ϕ|B)

≤ %|ϕ|B +
β + θ

λ1
(KT η +MT |ϕ|B)

=
(
%+

MT (β + θ)

λ1

)
|ϕ|B +

KT (β + θ)

λ1
η.

Putting δ2 := η (λ1−(β+θ)KT )
%λ1+(β+θ)MT

, we obtain ‖F(u)(t)‖ ≤ η if |ϕ|B ≤ δ2.

Thus F(Bη) ⊂ Bη if |ϕ|B < δ := min{δ1, δ2}. Employing Proposition 2.3, we see
that F is a compact operator. Applying the Schauder theorem for F : Bη → Bη,
we have the desired conclusion on solvability.

Finally, assume that f satisfies the Lipschitz condition (3.2). If ui, i ∈ {1, 2}, are
solutions of (1.1)-(1.2), then

ui(t) = S(t)ϕ(0) +

∫ t

0

R(t− τ)f(τ, ui[ϕ]τ )dτ.

Let r̄ = max{|ui[ϕ]|B : i = 1, 2}, then

‖u1(t)− u2(t)‖ ≤
∫ t

0

r(t− τ, λ1)L(r̄)|(u1 − u2)[ϕ]τ |Bdτ

≤ L(r̄)

∫ t

0

r(t− τ, λ1)KT sup
[0,τ ]

‖u1(ξ)− u2(ξ)‖dτ.

Since the last term is nondecreasing in t, we get

sup
[0,t]

‖u1(ξ)− u2(ξ)‖ ≤ L(r̄)

∫ t

0

r(t− τ, λ1)KT sup
[0,τ ]

‖u1(ξ)− u2(ξ)‖dτ.

Employing the Gronwall type inequality stated in Proposition 2.4, we conclude that
u1 = u2. The proof is complete. �

In the next result, we get a global existence to problem (1.1)-(1.2) by relaxing
the smallness condition on both the initial datum and coefficients. However, the
nonlinearity part must satisfy the sublinear condition.
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Theorem 3.2. Assume the hypotheses (A) and (K). Let f be continuous and obey
the condition given by

‖f(t, w)‖ ≤ α(t) + β|w|B,∀t ≥ 0, w ∈ B,

where α ∈ L1
loc(R+;R+) and β is a nonnegative number. Then the problem (1.1)-

(1.2) admits at least one global mild solution.

Proof. Since F is a compact operator, we just find a closed convex set which is
invariant under the solution operator. On the other words, we look for a closed
convex set D ⊂ Cϕ such that F(D) ⊂ D.

Indeed, from the formulation of F , we obtain

‖F(u)(t)‖ ≤ s(t, λ1)‖ϕ(0)‖

+

∫ t

0

r(t− τ, λ1)
(
α(τ) + β|u[ϕ]τ |B

)
dτ

≤ s(t, λ1)‖ϕ(0)‖+

∫ t

0

r(t− τ, λ1)α(τ)dτ

+

∫ t

0

r(t− τ, λ1)β
(
KT sup

ξ∈[0;τ ]

‖u(ξ)‖+MT |ϕ|B
)
dτ, t ∈ [0, T ].

Then, in view of Proposition 2.1, we have

‖F(u)(t)‖ ≤ s(t, λ1)‖ϕ(0)‖+ (r(·, λ1) ∗ α)(t) + βMTλ
−1
1 (1− s(t, λ1))|ϕ|B

+ βKT

∫ t

0

r(t− τ, λ1) sup
[0,τ ]

‖u(ξ)‖dτ

≤ (%+ βMTλ
−1
1 )|ϕ|B + sup

[0,T ]

(r(·, λ1) ∗ α)(t)

+ βKT

∫ t

0

r(t− τ, λ1) sup
[0,τ ]

‖u(ξ)‖dτ, t ∈ [0, T ].

By the fact that the function τ 7→ sup
[0,τ ]

‖u(ξ)‖ is nondecreasing, the last integral

is nondecreasing in t. Thererfore, one gets

sup
[0,t]

‖F(u)(ξ)‖ ≤M0 + βKT

∫ t

0

r(t− τ, λ1) sup
[0,τ ]

‖u(ξ)‖dτ, t ∈ [0, T ]. (3.3)

where M0 = (%+ βMTλ
−1
1 )|ϕ|B + sup

[0,T ]

(r(·, λ1) ∗ α)(t).

Let v ∈ C([0, T ];R+) be the unique solution of the integral equation

v(t) = M0 + βKT

∫ t

0

r(t− τ, λ1)v(τ)dτ, t ∈ [0, T ].

We define the set

D = {w ∈ Cϕ : sup
[0,t]

‖w(ξ)‖ ≤ v(t),∀t ∈ [0, T ]}.

Obviously, D is a bounded closed convex set. Then inequality (3.3) implies that
F(D) ⊂ D. The proof is complete. �
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The rest of this section is devoted to showing the dissipativity of the system.
Denote by S(ϕ) the solution set with respect to the given initial datum ϕ.

The problem (1.1)-(1.2) is said to be uniformly dissipative with an absorbing set
Bσ if we can find a constant σ > 0 such that: For each bounded set D ⊂ B there
exists T (D) > 0 such that ∀u ∈ S(ϕ), ϕ ∈ D, we have

|ut|B ≤ σ, ∀t > T (D).

We now in a position to states a dissipativity result for (1.1)-(1.2).

Theorem 3.3. Let (A) and (K) hold. Assume that f is continuous and satisfies
the condition

‖f(t, w)‖ ≤ α(t) + β|w|B,∀t ≥ 0, w ∈ B,

where β is nonnegative numbers such that βK∞ < λ1, K∞ = sup
s≥0

K(s), α ∈

L1
loc(R+) is a nonnegative nondecreasing function such that r(·, λ1) ∗α ∈ BC(R+).

If l 6∈ L1(R+) and M ∈ BC0, then the system (1.1)-(1.2) is dissipative with the
absorbing set Bσ for any σ satisfying

σ >
λ1α

∗K∞
λ1 − βK∞

,

where α∗ = sup
R+

(r(·, λ1) ∗ α)(t).

Proof. Let D ⊂ B be a bounded set, ϕ ∈ D and u ∈ S(ϕ). Then

u(t) = S(t)ϕ(0) +

∫ t

0

R(t− τ)f(τ, u[ϕ]τ )dτ, t ≥ 0.

Thus

‖u(t)‖ ≤ s(t, λ1)‖ϕ(0)‖+

∫ t

0

r(t− τ, λ1)
[
α(τ) + β|u[ϕ

]
τ
|]dτ

≤ s(t, λ1)%|ϕ|B +

∫ t

0

r(t− τ, λ1)
[
α(τ) + βM(τ)|ϕ|B + βK∞ sup

ξ∈[0;τ ]

‖u(ξ)‖
]
dτ

≤
(
s(t, λ1)%+ β

∫ t

0

r(t− τ, λ1)M(τ)dτ
)
|ϕ|B

+

∫ t

0

r(t− τ, λ1)α(τ)dτ +

∫ t

0

r(t− τ, λ1)βK∞ sup
ξ∈[0;τ ]

‖u(ξ)‖dτ

≤
(
%+

βM∞
λ1

)
|ϕ|B +

∫ t

0

r(t− τ, λ1)α(τ)dτ +
βK∞
λ1

sup
ξ∈[0;t]

‖u(ξ)‖

It implies

sup
ξ∈[0;t]

‖u(ξ)‖ ≤ λ1

λ1 − βK∞

(
%+

βM∞
λ1

)
|ϕ|B +

λ1

λ1 − βK∞
sup
R+

(r(·, λ1) ∗ α)(t)

≤ λ1

λ1 − βK∞

(
%+

βM∞
λ1

)
|D|B +

λ1α
∗

λ1 − βK∞
,

here |D|B := sup{|w|B : w ∈ B} and α∗ = sup
R+

(r(·, λ1) ∗ α)(t).
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Combing the last estimate and the formulation of solution, we have

‖u(t)‖ ≤ s(t, λ1)%|ϕ|B

+

∫ t

0

r(t− τ, λ1)
[
α(τ) + βM(τ/2)|u τ

2
|B + βK(τ/2) sup

ξ∈[τ/2;τ ]

‖u(ξ)‖
]
dτ

≤ s(t, λ1)%|ϕ|B +

∫ t

0

r(t− τ, λ1)
[
α(τ) + βM(τ/2)|u τ

2
|B
]
dτ

+ βK∞

∫ t

0

r(t− τ, λ1) sup
ξ∈[τ/2;τ ]

‖u(ξ)‖dτ

≤ s(t, λ1)%|D|B

+

∫ t

0

r(t− τ, λ1)
[
α(τ) + βM(τ/2)

(
K∞KD +M∞|D|B

)]
dτ

+ βK∞

∫ t

0

r(t− τ, λ1) sup
ξ∈[τ/2;τ ]

‖u(ξ)‖dτ,

where KD = λ1

λ1−βK∞

(
%+ βM∞

λ1

)
|D|B + λ1α

∗

λ1−βK∞ .

In view of Proposition 2.5 with v(t) = ‖u(t)‖, p(t) = s(t, λ1)%|D|B, and q(t) =
α(t) + β

(
K∞KD +M∞|D|B

)
M(t/2), we have ‖u(·)‖ ∈ BC(R+) and

lim sup
t→∞

‖u(t)‖ ≤
[

lim sup
t→∞

s(t, λ1)%|D|B + lim sup
t→∞

(
r(·, λ1) ∗ α

)
(t)
] λ1

λ1 − βK∞

+ lim sup
t→∞

[
r(·, λ1) ∗M

( ·
2

)
(t)
]
β
(
K∞KD +M∞|D|B

) λ1

λ1 − βK∞

≤ λ1α
∗

λ1 − βK∞
,

thanks to the fact that M
( ·

2

)
∈ BC0. So for ε > 0 there exists T1(ε) > 0 such that

sup
ξ≥t
‖u(ξ)‖ ≤ λ1α

∗

λ1 − βK∞
+

ε

2K∞
, ∀t ≥ T1(ε).

Thus

|ut|B ≤ K∞
( λ1α

∗

λ1 − βK∞
+

ε

2K∞

)
+M

( t
2

)
|u t

2
|B, ∀t ≥ 2T1(ε). (3.4)

On the other hand, we have

M
( t

2

)
|u t

2
|B ≤M

( t
2

)(
K∞KD +M∞|D|B

)
.

By virtue of M ∈ BC0, there exists T2(D, ε) > 0 such that

M
( t

2

)
|u t

2
|B ≤

ε

2
, ∀t ≥ T2(D, ε). (3.5)

From (3.4) and (3.5), we arrive at

|ut|B ≤
λ1α

∗K∞
λ1 − βK∞

+ ε, ∀t ≥ T (D, ε),

where T (D, ε) = max{T1(ε), T2(D, ε)}. We choose a fixed number ε small enough

to get the uniform dissipativity with any σ > λ1α
∗K∞

λ1−βK∞ . The proof is complete. �
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4. Asymptotic stability and weakly asymptotic stability

In this section, we will establish the asymptotic stability for our system when it
has unique solution and the weak stability when the uniqueness of solution is not
guaranteed.

4.1. Asymptotic stability. In the following theorem, we prove the asymptotic
stability of solution to (1.1)-(1.2) when the nonlinearity is globally Lipschitzian.

Theorem 4.1. Let (A) and (K) hold. Assume that f satisfies the Lipschitz condi-
tion

‖f(t, w1)− f(t, w2)‖ ≤ β|w1 − w2|B,

for all t ≥ 0, wi ∈ B, i ∈ {1, 2}, where β > 0 such that βK∞ < λ1. If l 6∈ L1(R+)
and M ∈ BC0, then the solution of (1.1)-(1.2) is asymptotically stable.

Proof. Let u(·, ϕ) and v(·, ψ) be solutions of (1.1)-(1.2) with initial data ϕ and ψ,
respectively. Then

‖u(t)− v(t)‖ ≤ s(t, λ1)‖ϕ(0)− ψ(0)‖

+

∫ t

0

r(t− τ, λ1)‖f(τ, u[ϕ]τ )− f(τ, v[ψ]τ )‖dτ

≤ s(t, λ1)‖ϕ(0)− ψ(0)‖

+

∫ t

0

r(t− τ, λ1)β|u[ϕ]τ − v[ψ]τ |Bdτ

≤ s(t, λ1)‖ϕ(0)− ψ(0)‖

+ β

∫ t

0

r(t− τ, λ1)
[
K∞ sup

ξ∈[0;τ ]

‖u(ξ)− v(ξ)‖+M∞|ϕ− ψ|B
]
dτ

≤ βK∞
λ1

sup
ξ∈[0;t]

‖u(ξ)− v(ξ)‖+
(
%+

βM∞
λ1

)
|ϕ− ψ|B.

Therefore

sup
ξ∈[0;t]

‖u(ξ)− v(ξ)‖ ≤ %λ1 + βM∞
λ1 − βK∞

|ϕ− ψ|B. (4.1)

Using (B3) and the estimate above, one gets

|ut − vt|B ≤ K(t) sup
ξ∈[0;t]

‖u(ξ)− v(ξ)‖+M(t)|ϕ− ψ|B

≤ (K∞
%λ1 + βM∞
λ1 − βK∞

+M∞)|ϕ− ψ|B, ∀t ≥ 0. (4.2)
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Thus

‖u(t)− v(t)‖ ≤ s(t, λ1)‖ϕ(0)− ψ(0)‖+ β

∫ t

0

r(t− τ, λ1)M(τ/2)|u τ
2
− v τ

2
|Bdτ

+ β

∫ t

0

r(t− τ, λ1)K(τ/2) sup
ξ∈[τ/2;τ ]

‖u(ξ)− v(ξ)‖dτ

≤ s(t, λ1)‖ϕ(0)− ψ(0)‖

+ β(K∞
%λ1 + βM∞
λ1 − βK∞

+M∞)|ϕ− ψ|B
∫ t

0

r(t− τ, λ1)M(τ/2)dτ

+ βK∞

∫ t

0

r(t− τ, λ1) sup
ξ∈[τ/2;τ ]

‖u(ξ)− v(ξ)‖dτ

By Proposition 2.5, we have

lim sup
t→∞

‖u(t)− v(t)‖ ≤ λ1

λ1 − βK∞
lim sup
t→∞

s(t, λ1)‖ϕ(0)− ψ(0)‖

+ C lim sup
t→∞

(
r(·, λ1) ∗M(·/2)

)
(t),

here C = β(K∞
%λ1+βM∞
λ1−βK∞ +M∞)|ϕ− ψ|B. Then

lim sup
t→∞

‖u(t)− v(t)‖ = 0,

thanks to M ∈ BC0.
It follows that

∀ε > 0, ∃ T1(ε) > 0 : sup
ξ≥t
‖u(ξ)− v(ξ)‖ ≤ ε

2K∞
, ∀t ≥ T1(ε).

Consequently,

|ut − vt|B ≤ K∞
ε

2K∞
+
%λ1 + βM∞
λ1 − βK∞

|ϕ− ψ|BM(t/2), ∀t ≥ 2T1(ε),

due to (4.1). Since M ∈ BC0, there exists T2 > 0 such that

%λ1 + βM∞
λ1 − βK∞

|ϕ− ψ|BM(t/2) ≤ ε

2
, ∀t ≥ T2.

This gives

|ut − vt|B ≤
ε

2
+
ε

2
= ε, ∀t ≥ T, (4.3)

here T = max{2T1(ε), T2}.
Combining (4.2) and (4.3) gives us the desired conclusion. The proof is complete.

�

The next theorem states a result on the asymptotic stability of the zero solution
when f satisfies the hypotheses in Theorem 3.1 with K∞ in place of KT .

Theorem 4.2. Let the hypotheses of Theorem 3.1 hold where KT is replaced by
K∞. If l 6∈ L1(R+) and M ∈ BC0, then the zero solution of (1.1) is asymptotically
stable.
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Proof. Fix the numbers θ ∈ (0, λ1

K∞
− β), η and δ as in the proof of Theorem

3.1. Then under the assumptions (3.1)-(3.2), for ‖ϕ‖∞ < δ, there exists a unique
solution u ∈ Bη of (1.1)-(1.2), which satisfies the following estimate

‖u(t)‖ ≤ (t, λ1)‖ϕ(0)‖+

∫ t

0

r(t− τ, λ1)(β + θ)|u[ϕ]τ |Bdτ

≤ s(t, λ1)‖ϕ(0)‖

+ (β + θ)

∫ t

0

r(t− τ, λ1)[K∞ sup
s∈[0;τ ]

‖u(s)‖+M(τ)|ϕ|B]dτ

≤ (β + θ)K∞
λ1

sup
s∈[0;t]

‖u(s)‖+
(
%+ (β + θ)

∫ t

0

r(t− τ, λ1)M(τ)dτ
)
|ϕ|B,

for all t ≥ 0. Then

sup
s∈[0;t]

‖u(s)‖ ≤ λ1

λ1 − (β + θ)K∞

(
%+ (β + θ)M∗

)
|ϕ|B,

for all t ≥ 0, where M∗ = sup
t≥0

∫ t
0
r(t− τ, λ1)M(τ)dτ .

From the last estimate and (B3), we see that

|ut|B ≤
(λ1K∞

(
%+ (β + θ)M∗

)
λ1 − (β + θ)K∞

+M∞

)
|ϕ|B. (4.4)

By the same arguments as in Theorem 4.1, one gets

lim sup
t→∞

‖u(t)‖ = 0.

Then

lim
t→∞

|ut|B = 0. (4.5)

From (4.4) and (4.5), we obtain the asymptotic stability of the zero solution. �

4.2. Weakly asymptotic stability. In this subsection, we relax the Lipschitz
condition on f and study the weak stability for the zero solution due to the lack of
uniqueness. The concept of weakly asymptotic stability is given below.

Definition 4.1. [3] Let S(ϕ) be the solution set of (1.1)-(1.2) with respect to the
initial datum ϕ. Assume that 0 ∈ S(0), that is (1.1) admits zero solution. The zero
solution of (1.1) is said to be weakly asymptotically stable iff

(1) It is stable, i.e. for every ε > 0 there exists δ > 0 such that if |ϕ|B < δ then
|ut|B < ε for all u ∈ S(ϕ);

(2) It is weakly attractive, i.e. for each ϕ ∈ B, there exists u ∈ S(ϕ) such that
|ut|B → 0 as t→∞.

In order to analyze the weak stability for our system, we make use of the fixed
point theory for condensing maps. So we now collect some notations and results
related to measure of noncompactness (MNC) and fixed point principles.

Definition 4.2. [9] Let E be a Banach space and B(E) the collection of all nonempty
and bounded subsets of E. A function ω : B(E) → R+ is said to be a measure of
noncompactness (MNC) if ω(coD) = ω(D) for all D ∈ B(E). An MNC is called

• nonsingular if ω(D ∪ {x}) = ω(D) for all D ∈ B(E), x ∈ E.
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• monotone if ω(D1) ≤ ω(D2) provided that D1 ⊂ D2.

The Hausdorff measure of noncompactness is a MNC which is defined by

χ(D) = inf{ε > 0 : D admits a finite ε− net}.

Definition 4.3. [9] Let E be a Banach space and D ∈ B(E). A continuous map
F : D → E is said to be condensing with respect to MNC ω (ω-condensing) iff the
relation ω(B) ≤ ω(F(B)), B ⊂ D, implies that B is relatively compact.

The following theorem states a fixed point principle for condensing maps.

Theorem 4.3. [9] Let ω be a monotone and nonsingular MNC on E. Assume that
D ⊂ E is a closed convex set and F : D → D is ω-condensing. Then F admits a
fixed point.

In this subsection, we consider the solution operator on BC0(R+;H) where

BC0(R+;H) = {y ∈ BC(R+;H) : lim
t→∞

‖y(t)‖ = 0}.

It is known that BC0(R+;H) is a closed subspace of BC(R+;H). Given ϕ ∈ B,
put BCϕ0 = {u ∈ BC0(R+;H) : u(0) = ϕ(0)}. Then BCϕ0 is a closed convex set of
BC0(R+;H).

Let D be a bounded set in BCϕ0 and πT : BCϕ0 → C([0, T ];H) the restriction
operator on BCϕ0 , i.e. πT (u) is the restriction of u ∈ BCϕ0 to the interval [0, T ].
Define

d∞(D) = lim
T→∞

sup
u∈D

sup
t≥T
‖u(t)‖,

χ∞(D) = sup
T>0

χT (D),

where χT (·) is the Hausdorff MNC in C([0, T ];H). Put

χ∗(D) = d∞(D) + χ∞(D).

It is shown in [2] that χ∗ possesses all properties stated in Definition 4.2. In
addition, if χ∗(D) = 0 then D is relatively compact in BC0(R+;H). Especially, if
u ∈ C(R+;H), then d∞({u}) = 0 iff u ∈ BC0(R+;H).

The main result in this subsection is the following theorem.

Theorem 4.4. Assume (A) and (K) hold. Let f be continuous and satisfy the
condition

‖f(t, w)‖ ≤ β(t)|w|B, ∀t ≥ 0, w ∈ B, (4.6)

where β ∈ BC(R+) is a nonnegative function. Suppose that l 6∈ L1(R+), K ∈
BC(R+) and M ∈ BC0. Then the zero solution of (1.1) is weakly asymptotically
stable provided that

` = lim sup
t→∞

∫ t

t/2

r(t− τ, λ1)β(τ)K(τ/2)dτ < 1. (4.7)

Let us outline the proof. The idea is employing the fixed point theorem for
condensing maps. We first establish the well-defined and condensing property of
the solution operator in Lemma 4.5. Then Lemma 4.6 reduces the condition on
functions K and M to the auxiliary functions K1 and M1. Using this preparation,
Lemma 4.7 constructs a closed bounded invariant subset of the solution operator.
Combining all these results, the poof is finished by following the standard argument.
We are now in a position to show the proof in details.
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Lemma 4.5. Assume the hypotheses of Theorem 4.4 hold. Then

d∞(F(D)) ≤ ` · d∞(D)

for all bounded set D ⊂ BCϕ0 . In particular, F(BCϕ0 ) ⊂ BCϕ0 .

Proof. We first show that

lim sup
t→+∞

∫ t

0

r(t− τ, λ1)M(τ/2)β(τ)dτ = 0. (4.8)

Indeed, we see that∫ t

0

r(t− τ, λ1)M(τ/2)β(τ)dτ ≤M∞β∞
∫ t/2

0

r(t− τ, λ1)dτ

+ β∞

∫ t

t/2

r(t− τ, λ1)M(τ/2)dτ,

where M∞ = supt≥0M(t) and β∞ = supt≥0 β(t). Moreover,∫ t/2

0

r(t− τ, λ1)dτ =

∫ t

t/2

r(τ, λ1)dτ → 0 as t→∞,

according to r(·, λ1) ∈ L1(R+). In addition,∫ t

t/2

r(t− τ, λ1)M(τ/2)dτ ≤ sup
τ≥t/4

M(τ)

∫ t/2

0

r(τ, λ1)dτ

≤ λ−1
1 sup

τ≥t/4
M(τ)→ 0 as t→∞,

thanks to the assumption M ∈ BC0. Thus (4.8) takes place.
Now let D ⊂ BCϕ0 be a bounded set and u ∈ D. Put RD = sup

u∈D
‖u‖BC + |ϕ|B.

Then

‖F(u)(t)‖ ≤ s(t, λ1)‖ϕ(0)‖+

∫ t

0

r(t− τ, λ1)β(τ)|u[ϕ]τ |Bdτ

≤ s(t, λ1)‖ϕ(0)‖

+

∫ t

0

r(t− τ, λ1)β(τ)

(
M(τ/2)|u[ϕ]τ/2|B +K(τ/2) sup

ξ∈[τ/2,τ ]

‖u(ξ)‖

)
dτ

≤ s(t, λ1)‖ϕ(0)‖

+ r ∗ M̃(t)[M∞|ϕ|B +K∞RD] +

∫ t

0

r(t− τ, λ1)K̃(τ) sup
ξ∈[τ/2,τ ]

‖u(ξ)‖dτ, (4.9)

for all t ≥ 0, where M̃(τ) = β(τ)M(τ/2), K̃(τ) = β(τ)K(τ/2).
In order to estimate the last term, fixed a T > 0, for t > 4T , we get∫ t

0

r(t− τ, λ1)K̃(τ) sup
ξ∈[τ/2,τ ]

‖u(ξ)‖dτ ≤ RDK̃∞
∫ t/2

0

r(t− τ, λ1)dτ

+ sup
ξ≥T
‖u(ξ)‖

∫ t

t/2

r(t− τ, λ1)K̃(τ)dτ.

(4.10)
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Combining (4.9) and (4.10) yields

sup
u∈D

sup
t≥4T

‖F(u)(t)‖ ≤ sup
t≥4T

s(t, λ1)‖ϕ(0)‖

+ sup
t≥4T

(
r ∗ M̃(t)(M∞|ϕ|B +K∞RD) +RDK̃∞

s(t/2, λ1)− s(t, λ1)

λ1

)
+

(
sup
u∈D

sup
ξ≥T
‖u(ξ)‖

)
sup
t≥4T

∫ t

t/2

r(t− τ, λ1)K̃(τ)dτ.

Letting T →∞ we conclude

d∞(Φ(D)) ≤ ` · d∞(D),

thanks to (4.7)-(4.8) and

sup
t≥4T

s(t, λ1) = s(4T, λ1)→ 0 as T →∞.

Consequently, if D = {u} then d∞({F(u)}) ≤ ` · d∞({u}) = 0. This ensures
F(u) ∈ BCϕ0 for all u ∈ BCϕ0 . It follows that F(BCϕ0 ) ⊂ BCϕ0 . �

Lemma 4.6. Assume that (4.7) is satisfied. Let K1(t) = K(t/2) +K(t/2)M(t/2).
Then there exist two positive numbers T1 > 0 and l1 < 1 such that r(·, λ1) ∗
(βK1)(t) ≤ l1 for all t ≥ T1.

Proof. We get

r(·, λ1)∗(βK1)(t)

=

∫ t

0

r(t− τ, λ1)β(τ)K(τ/2)dτ +

∫ t

0

r(t− τ, λ1)β(τ)K(τ/2)M(τ/2)dτ

≤
∫ t/2

0

r(t− τ, λ1)β(τ/2)K(τ/2)dτ +

∫ t

t/2

r(t− τ, λ1)β(τ)K(τ/2)dτ

+

∫ t

0

r(t− τ, λ1)β(τ)K(τ/2)M(τ/2)dτ

≤ K∞β∞
∫ t

t/2

r(τ, λ1)dτ +

∫ t

t/2

r(t− τ, λ1)β(τ)K(τ/2)dτ

+K∞

∫ t

0

r(t− τ, λ1)β(τ)M(τ/2)dτ.

Obviously, the first term tends to zero when t → ∞ thanks to r ∈ L1(R+). The
last term goes to zero by (4.8). Thus it follows from (4.7) that

lim sup
t→∞

r(·, λ1) ∗ (βK1)(t) = lim sup
t→∞

∫ t

t/2

r(t− τ, λ1)β(τ)K(τ/2) = l < 1.

The last inequality implies the desired result. �

Lemma 4.7. Assume the hypotheses of Theorem 4.4 hold. Then there exists a
bounded closed convex set, which is invariant under the solution operator.

Proof. Take T1 and l1 from Lemma 4.6, that is,

r(·, λ1) ∗ (βK1)(t) ≤ l1, ∀t ≥ T1.
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The construction of the invariant set consists of two steps. We first use a suitable
weight function to obtain the invariant set for finite time. Then combining the
estimate on this finite time interval with Lemma 4.6 to get the estimate for the
large time, which gives us the invariant set for all time.

Step1 (Estimate on the interval [0, T1]). We have∫ t

0

r(t− τ, λ1)β(τ)K1(τ)e−µ(t−τ)dτ ≤ ‖βK1‖L∞(0,T1)

∫ t

0

r(t− τ, λ1)e−µ(t−τ)dτ

≤ ‖βK1‖L∞(0,T1)

∫ T1

0

r(τ, λ1)e−µτdτ,∀t ∈ (0, T1].

Observing that

lim
µ→+∞

∫ T1

0

r(τ, λ1)e−µτdτ = 0,

one can take a positive number µ such that

r(·, λ1) ∗ (βK1m)(t) <
m(t)

2
, for all t ∈ [0, T1], (4.11)

where m(t) = e−µt. Let M1(t) = M(t/2)2, then one sees that

|ut|B ≤ K(t/2) sup
ξ∈[t/2,t]

‖u(ξ)‖+M(t/2)|ut/2|B

≤ K(t/2) sup
ξ∈[t/2,t]

‖u(ξ)‖+M(t/2)

(
K(t/2) sup

ξ∈[0,t/2]

‖u(ξ)‖+M(t/2)|ϕ|B

)
≤ K1(t) sup

ξ∈[0,t]

‖u(ξ)‖+M1(t)|ϕ|B, (4.12)

according to the axiom (B3) of phase spaces.
Choose

R1 ≥ 2 sup
t∈[0,T1]

(%+ ‖r(·, λ1) ∗ (βM1)‖∞)|ϕ|B
m(t)

. (4.13)

Then for all u ∈ BC0(R+;H) such that sup
t∈[0,T1]

‖u(t)‖
m(t)

≤ R1, one has

‖F(u)(t)‖ ≤ s(t, λ1)‖ϕ(0)‖+

∫ t

0

r(t− τ, λ1)β(τ)|u[ϕ]τ |Bdτ

≤ ‖ϕ(0)‖+R1

∫ t

0

r(t− τ, λ1)β(τ)K1(τ)m(τ)dτ

+ |ϕ|B
∫ t

0

r(t− τ, λ1)β(τ)M1(τ)dτ

≤ (%+ ‖r(·, λ1) ∗ (βM1)‖∞) |ϕ|B +R1
m(t)

2
,

here we employed (4.11) and (4.12). Hence, combining with (4.13) one gets

sup
t∈[0,T1]

‖F(u)(t)‖
m(t)

≤ R1.

Step 2 (Estimate on the infinite interval [T1,∞)) Fix a number R2 such that

(%+ ‖r(·, λ1) ∗ (βM1)‖∞) |ϕ|B +R1m(T1)‖r(·, λ1) ∗ (βK1)‖BC ≤ (1− l1)R2.
(4.14)
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Then for all u ∈ BC0(R+;H) such that supt≥T1
‖u(t)‖ ≤ R2 and for t ≥ T1, we

obtain

‖F(u)(t)‖ ≤ s(t, λ1)‖ϕ(0)‖+

∫ t

0

r(t− τ, λ1)β(τ)|u[ϕ]τ |Bdτ

≤ ‖ϕ(0)‖+R1m(T1)

∫ T1

0

r(t− τ, λ1)β(τ)K1(τ)dτ

+

∫ t

T1

r(t− τ, λ1)β(τ)K1(τ)

[
max
ξ∈[0,T1]

‖u(ξ)‖+ max
T1≤ξ≤τ

‖u(ξ)‖
]
dτ

+ |ϕ|B
∫ t

0

r(t− τ, λ1)β(τ)M1(τ)dτ

≤ (%+ ‖r(·, λ1) ∗ (βM1)‖∞) |ϕ|B +R1m(T1)‖r(·, λ1) ∗ (βK1)‖BC + l1R2

≤ R2,

thanks to (4.14).
Finally, consider the set

D =

{
u ∈ BCϕ0 : sup

[0,T1]

‖u(t)‖
m(t)

≤ R1; sup
t≥T1

‖u(t)‖ ≤ R2

}
. (4.15)

Then D is a closed bounded convex subset of BCϕ0 satisfying F(D) ⊂ D. This
completes the proof. �

Proof of Theorem 4.4. By Lemma 4.7, we have

F(D) ⊂ D,

where D is given by (4.15). Let D∗ = coF(D), then and πT (D∗) is compact for
all T > 0 thanks to Proposition 2.3, and it is also a convex set. In addition, we
get F(D∗) ⊂ D∗. Considering F : D∗ → D∗, we show that F is χ∗-condensing.
Obviously, if D ⊂ D∗ then χT (D) = 0, which implies χ∞(D) = 0. Using Lemma
4.5, we have

χ∗(F(D)) = χ∞(F(D)) + d∞(F(D)) = d∞(F(D)) ≤ ` · d∞(D) ≤ ` · χ∗(D).

If χ∗(D) ≤ χ∗(F(D)) then χ∗(D) ≤ ` · χ∗(D), which yields χ∗(D) = 0, since
` < 1. This implies the relative compactness of D. Therefore, F is χ∗-condensing
and it admits a fixed point due to Theorem 4.3.

We now show that for all u ∈ S(ϕ), |ut|B ≤ C|ϕ|B for some C > 0.
Let t ∈ [0, T1]. The following estimate holds

‖u(t)‖ ≤ s(t, λ1)‖ϕ(0)‖

+

∫ t

0

r(t− τ, λ1)β(τ)
(
K1(τ) sup

ξ∈[0,τ ]

‖u(ξ)‖+M1(τ)|ϕ|B
)
dτ

≤ s(t, λ1)%|ϕ|B + |ϕ|B
∫ t

0

r(t− τ, λ1)β(τ)M1(τ)dτ

+ β∞K1∞

∫ t

0

r(t− τ, λ1)
(

sup
[0,τ ]

‖u(ξ)‖
)
dτ

≤ (%+ ‖r(·, λ1) ∗ (βM1)‖∞)|ϕ|B + β∞K1∞

∫ t

0

r(t− τ, λ1) sup
[0,τ ]

‖u(ξ)‖dτ.
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Since the last integral is nondecreasing in t, one can take supremum over [0, t] to
get

sup
[0,t]

‖u(ξ)‖ ≤ (%+ ‖r(·, λ1) ∗ (βM1)‖∞)|ϕ|B + β∞K1∞

∫ t

0

r(t− τ, λ1) sup
[0,τ ]

‖u(ξ)‖dτ.

The Gronwall type inequality gives

sup
[0,t]

‖u(ξ)‖ ≤ Y (t)C1(ϕ),∀t ∈ [0, T1],

where C1(ϕ) = (% + ‖r(·, λ1) ∗ (βM1)‖∞)|ϕ|B and Y (t) is the unique solution of
Volterra equation

Y (t) = 1 + β∞K1∞

∫ t

0

r(t− τ, λ1)Y (τ)dτ.

Particularly,
‖u(t)‖ ≤ Y (T1)C1(ϕ),∀t ∈ [0, T1]. (4.16)

Now estimating for t ≥ T1, we have

‖u(t)‖ ≤ s(t, λ1)‖ϕ(0)‖+

∫ t

0

r(t− τ, λ1)β(τ)
(
K1(τ) sup

ξ∈[0,τ ]

‖u(ξ)‖+M1(τ)|ϕ|B
)
dτ

≤ s(t, λ1)%|ϕ|B + |ϕ|B
∫ t

0

r(t− τ, λ1)β(τ)M1(τ)dτ

+

∫ t

0

r(t− τ, λ1)β(τ)K1(τ)
(

sup
[0,T1]

‖u(ξ)‖+ sup
[T1,τ ]

‖u(ξ)‖
)
dτ

≤ C1(ϕ) + ‖r(·, λ1) ∗ (βK1)‖BCY (T1)C1(ϕ)

+ sup
[T1,t]

‖u(ξ)‖
∫ t

0

r(t− τ, λ1)β(τ)K1(τ))dτ

≤ C1(ϕ)[1 + Y (T1)‖r(·, λ1) ∗ (βK1)‖BC ] + l1 sup
[T1,t]

‖u(ξ)‖,

thanks to Lemma 4.7. Let t vary on [T1, T ] for an arbitrary T > T1, one concludes
that

sup
[T1,T ]

‖u(t)‖ ≤ C1(ϕ) (1 + Y (T1)‖r(·, λ1) ∗ (βK1)‖BC) + l1 sup
[T1,T ]

‖u(ξ)‖.

Consequently,

sup
t≥T1

‖u(t)‖ ≤ 1

1− l1
C1(ϕ) (1 + Y (T1)‖r(·, λ1) ∗ (βK1)‖BC) . (4.17)

Combing (4.16) with (4.17), we finally obtain

‖u(t)‖ ≤ C2|ϕ|B,∀t > 0,

where

C2 =
%+ ‖r(, λ1) ∗ (βM1)‖∞

1− l1
(1 + Y (T1)‖r(·, λ1) ∗ (βK1)‖BC) .

This implies

|ut|B ≤M(t)|ϕ|B +K(t) sup
[0,t]

‖u(ξ)‖ ≤ [M(t) +K(t)C2] |ϕ|B ≤ C|ϕ|B, (4.18)

where C = M∞ +K∞C2.
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We now show that lim
t→∞

|ut|B = 0. By properties of phase space, we have

|ut|B ≤ K(t/2) sup
[t/2,t]

‖u(ξ)‖+M(t/2)|u[ϕ]t/2|B (4.19)

≤ K∞ sup
[t/2,t]

‖u(ξ)‖+M(t/2)C|ϕ|B, (4.20)

thanks to (4.18).
Because lim

t→∞
‖u(t)‖ = 0 and M ∈ BC0, for any ε > 0, there exists a positive

T (ε) > 0 such that

‖u(t)‖ < ε, ‖M(t)‖ < ε, for all t > T (ε).

Combining with the inequality (4.20) gives

|ut|B ≤ (K∞ + C|ϕ|B)ε, ∀t > 2T (ε).

The proof is complete. �

Remark 4.1. The statement in Theorem 4.4 presents a new observation, even
for bounded delays. In [14, Theorem 7], the weakly asymptotic stability was proved
under the condition on magnitude of coefficients on the half-line. In contrast to the
latter, the conditions in Theorem 4.4 involves only the asymptotic information of
β(t) near infinity. For example, if β ∈ BC(R+) such that

lim sup
t→∞

β(t) < λ1/K∞,

then the assumptions in Theorem 4.4 are testified even for β possessing large values
in a finite interval.

5. Example

Let Ω ⊂ RN be a bounded domain with smooth boundary ∂Ω. We apply the
obtained results to the following multi-term fractional-in-time PDE:

m∑
i=1

µi∂
αi
t u(t, x)− Λu(t, x) = b(t, x)

∫ 0

−∞

∫
Ω

ν(θ, y)κ(y, u(t+ θ, y))dydθ, (5.1)

for t > 0, x ∈ Ω,

u(t, x) = 0, for t ≥ 0, x ∈ ∂Ω, (5.2)

u(s, x) =ϕ(s, x), x ∈ Ω, s ∈ (−∞, 0], (5.3)

where 0 < α1 < α2 < · · · < αm < 1, µi > 0, ∂αit stand for the Caputo fractional
derivatives of order αi in t, for i = 1,m. The operator Λ is defined by

D(Λ) = {u ∈ H1
0 (Ω) : Λu ∈ L2(Ω)}, Λu =

N∑
i,j=1

∂xi(aij(x)∂xju),

where aij ∈ L∞(Ω), aij = aji, 1 ≤ i, j ≤ N , subject to the condition
N∑

i,j=1

aij(x)ξiξj ≥

θ|ξ|2, for some θ > 0. Apply the Friedrichs theory [21, Prop. 8.5], −Λ is a positive
self-adjoint operator with the compact resolvent.
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Let H = L2(Ω) with the inner product (u, v) =

∫
Ω

u(x)v(x)dx. Put

k(t) =

m∑
i=1

µig1−αi(t),

A = −Λ.

Clearly k is completely monotone, so the associated kernel l exists. Moreover,
the Laplace transform of l is given by

l̂(λ) = λ−1k̂(λ)−1 =
1

µi
m∑
i=1

λαi
.

Thus

(̂1 ∗ l)(λ) =
1

µi
m∑
i=1

λαi+1

∼ 1

µ1λα1+1
as λ→ 0.

Hence l 6∈ L1(R+) which follows from the asymptotic expansion

(1 ∗ l)(t) ∼ tα1

µ1Γ(α1 + 1)
→∞ as t→∞,

thanks to the Karamata-Feller Tauberian theorem (see [5]).
We are now in a position to give the description for the nonlinearity:

(A1) b ∈ BC(R+;L2(Ω)).
(A2) ν : (−∞, 0]×Ω→ R is a continuous function and there exist a nonnegative

function ω ∈ L2(Ω) and ν0 ∈ (0, 1) such that

|ν(t, x)| ≤ ω(x)eν0t, for all t ∈ (−∞, 0], x ∈ Ω.

(A3) κ : Ω × R → R is continuous and there exist a nonnegative function p ∈
L2(Ω) and q ∈ R+ satisfying

|κ(y, z)| ≤ p(y) + q|z|.

In this example, we choose the phase space B = CL1
g with r = 0 and g(s) = eν0s.

The seminorm in B is given by

|w|B = ‖w(0)‖+

∫ 0

−∞
eν0θ‖w(θ)‖dθ.

Then one can see that (2.1)-(2.2) are satisfied with G(s) = g(s). Then B satisfies
(B1)-(B3) with

K(t) = 1 + ν−1
0 (1− e−ν0t), M(t) = e−ν0t,

thanks to the expressions of K and M in (2.3) and (2.4), respectively. Obviously,
M ∈ BC0 and K∞ = 1 + ν−1

0 .
Let f : R+ × B → L2(Ω) be defined as

f(t, φ)(x) = b(t, x)

∫ 0

−∞

∫
Ω

ν(θ, y)κ(y, φ(θ, y))dydθ.

Then the problem (5.1)-(5.3) is in the form of (1.1)-(1.2).
We now testify the conditions related to f in Theorem 3.3 and 4.4.
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For φ ∈ B, we have

‖f(t, φ)‖2 =

∫
Ω

∣∣∣b(t, x)

∫ 0

−∞

∫
Ω

ν(θ, y)κ(y, φ(θ, y))dydθ
∣∣∣2dx

≤ ‖b(t, ·)‖2
[ ∫ 0

−∞

∫
Ω

|ν(θ, y)|
(
p(y) + q|φ(θ, y)|

)
dydθ)

]2
≤ ‖b(t, ·)‖2

[ ∫ 0

−∞
eν0θ

∫
Ω

(
ω(y)p(y) + qω(y)|φ(θ, y)|

)
dydθ)

]2
,

≤ ‖b(t, ·)‖2
[ ∫ 0

−∞
eν0θ‖ω‖

(
‖p‖+ q‖φ(θ, ·)‖

)
dθ
]2

≤ ‖b(t, ·)‖2‖ω‖2
[
ν−1

0 ‖p‖+ q

∫ 0

−∞
eν0θ‖φ(θ, ·)‖dθ

]2
,

thanks to (A2) and (A3) and the Hölder inequality.
Hence

‖f(t, φ)‖ ≤ ‖b(t, ·)‖‖ω‖
[
ν−1

0 ‖p‖+ q|φ|B
]
.

By taking

α(t) = ‖b(t, ·)‖‖ω‖ν−1
0 ‖p‖, β = q‖ω‖ sup

t≥0
‖b(t, ·)‖,

we see that r(·, λ1) ∗ α ∈ BC(R+) due to (A1).
Applying Theorem 3.3, if β

(
1 + ν−1

0

)
< λ1 then our system is dissipative.

On the other hand, let p = 0 then (4.6) takes place with

β(t) = q‖ω‖‖b(t, ·)‖.

Let β̃ = lim sup
t→∞

β(t). Then the condition

β̃
(
1 + ν−1

0

)
< λ1 (5.4)

implies (4.7). By Theorem 4.4, we conclude that the zero solution of (1.1) is weakly
asymptotically stable if the last inequality holds. Note that condition (5.4) holds
even for supt≥0 β(t) being large.

We now replace (A3) with the following one

(A3b) κ : Ω× R→ R is a continuous function and there exists q > 0 such that

|κ(y, z1)− κ(y, z2)| ≤ q|z1 − z2|.
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Then we have the following estimates

‖f(t, φ1)− f(t, φ2)‖2

=

∫
Ω

∣∣∣b(t, x)

∫ 0

−∞

∫
Ω

ν(θ, y)
(
κ(y, φ1(θ, y))− κ(y, φ1(θ2, y))

)
dydθ

∣∣∣2dx
≤ ‖b(t, ·)‖2q2

[ ∫ 0

−∞

∫
Ω

|ν(θ, y)||φ1(θ, y)− φ2(θ, y)|dydθ)
]2

≤ ‖b(t, ·)‖2q2
[ ∫ 0

−∞
eν0θ

∫
Ω

ω(y)|φ1(θ, y)− φ2(θ, y)|dydθ)
]2

≤ ‖b(t, ·)‖2q2
[ ∫ 0

−∞
eν0θ‖ω‖‖φ1(θ, ·)− φ2(θ, ·)‖dθ)

]2
≤ q2‖b(t, ·)‖2‖ω‖2|φ1 − φ2|2B.

It leads to

‖f(t, φ1)− f(t, φ2)‖ ≤ q‖ω‖‖b(t, ·)‖|φ1 − φ2|B,
that is, f satisfies the Lipschitz condition with Lipschitz constant

β = q‖ω‖ sup
t≥0
‖b(t, ·)‖.

Employing Theorem 4.1, one concludes that the solution to (5.1)-(5.3) is asymp-
totically stable provided that β(1 + ν−1

0 ) < λ1.
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