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Abstract In this paper, we introduce a novel iterative method for finding the minimum-
norm solution to a pseudomonotone variational inequality problem in Hilbert spaces. We
establish strong convergence of the proposed method and its linear convergence under some
suitable assumptions. Some numerical experiments are given to illustrate the performance
of our method. Our result improves and extends some existing results in the literature.

Keywords Subgradient extragradient method · variational inequality problem · pseu-
domonotone operator · strong convergence · convergence rate.

Mathematics Subject Classification (2010) 47H09 · 47J20 · 65K15 · 90C25

1 Introduction

Throughout this paper, assume that C is a nonempty, convex and closed subset of the real
Hilbert space H with the inner product ⟨,⟩ and the norm ∥.∥. Let F : H → H be a Lipschitz
continuous operator. The object of our investigation is the following variational inequality
problem (shortly, V I(C,F)):
Find x∗ ∈C such that

⟨Fx∗,x− x∗⟩ ≥ 0 ∀x ∈C. (1)
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We denote the solution set of V I(C,F) by Sol(C,F).
Many problems in various fields such as physic, economics, engineering, optimization

theory can be led to variational inequalities. Iterative methods for solving these problems
have been proposed and analyzed (see, for example, [8,9,10] and references therein). One
of the most famous methods for solving V I(C,F) is the extragradient method introduced
by Korpelevich [11]. In this method, one needs to calculate two projections onto C at each
iteration. This may affect the efficiency of the method when finding a projection onto a
closed and convex set C is not an easy problem.

In recent years, many authors are interested in the extragradient method and improved
it in various ways, see, e.g. [1,3,4,5,16,17,19,20,22,23] and references therein. The sub-
gradient extragradient method, proposed by Censor et al. [2] for solving V I(C,F) in real
Hilbert spaces is one of these modifications.

x0 ∈ H,

yn = PC(xn −λFxn),

Tn = {x ∈ H : ⟨xn −λFxn − yn,x− yn⟩ ≤ 0},
xn+1 = PTn(xn −λFyn),

(2)

where λ ∈ (0,
1
L
), and L is a Lipschitz constant of F . This method replaces two projections

onto C by one projection onto C and one onto a half-space. The sequence {xn} generated by
(2) converges weakly to an element of Sol(C,F) provided that Sol(C,F) is nonempty.

Kraikaew and Seajung [12] used the subgradient extragradient method and Halpern
method to introduce an algorithm for solving V I(C,F) as follows:

x0 ∈ H,

yn = PC(xn −λFxn),

Tn = {x ∈ H : ⟨xn −λFxn − yn,x− yn⟩ ≤ 0},
zn = PTn(xn −λFyn),

xn+1 = αnx0 +(1−αn)zn,

(3)

where λ ∈ (0,
1
L
),{αn}⊂ (0,1),αn → 0,∑∞

n=1 αn =+∞. They proved that the sequence {xn}
generated by (3) converges strongly to PSol(C,F)x0 if F is monotone and L-Lipschitz contin-
uous. The main disadvantage of algorithms (2), (3) is a requirement to know the Lipschitz
constant of F or at least to know some its estimation.

Very recently, Yang [23] proposed a modification of subgradient extragradient method
with step size rule using the inertial-type method as follows:
Given λ0 > 0,µ < µ0 ∈ (0,1). Let x0,x1 ∈ H be arbitrary

wn = xn +αn(xn − xn−1),

yn = PC(wn −λnFwn),

Tn := {x ∈ H : ⟨wn −λnFwn − yn,x− yn⟩ ≤ 0},

xn+1 = PTn(wn −λnFyn),

λn+1 =

min{µ
∥wn − yn∥2 +∥xn+1 − yn∥2

2⟨Fwn −Fyn,xn+1 − yn⟩
,λn} if ⟨Fwn −Fyn,zn − yn⟩> 0,

λn otherwise.
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Under the pseudomonotonicity and sequentially weak continuity of the mapping, the con-
vergence of the algorithm was established without the knowledge of the Lipschitz constant
of the mapping.

Motivated and inspired by the above mentioned works, and by the ongoing research in
these directions, in this paper, we suggest a new iterative scheme for finding the minimum-
norm solution to V I(C,F) (1). It is worth pointing out that the proposed algorithm does
not require the prior knowledge of the Lipschitz-type constant of the variational inequality
mapping and only requires to compute one projection onto a feasible set per iteration as well
as without the assumption on the weakly sequential continuity of the mapping. Moreover,
the convergence rate is obtained under strong pseudomonotonicity and Lipschitz continuity
assumptions of the variational inequality mapping.

The paper is organized as follows. In Section 2, we recall some basic definitions and
results. In Section 3, we present and analyze the convergence of the proposed algorithms.
Finally in Section 4, we present some numerical experiments to illustrate the performance
of the proposed method.

2 Preliminaries

Lemma 2.1 ([6, Lemma 2.1]) Consider the problem V I(C,F) with C being a nonempty,
closed, convex subset of a real Hilbert space H and F : C → H being pseudo-monotone and
continuous. Then, x∗ is a solution of V I(C,F) if and only if

⟨Fx,x− x∗⟩ ≥ 0 ∀x ∈C.

Lemma 2.2 Let H be a real Hilbert space. Then the following results hold:
i) ∥x+ y∥2 = ∥x∥2 +2⟨x,y⟩+∥y∥2 ∀x,y ∈ H;
ii) ∥x+ y∥2 ≤ ∥x∥2 +2⟨y,x+ y⟩ ∀x,y ∈ H.

Definition 2.1 Let T : C → H be an operator, where C is a closed and convex subset of a
real Hilbert space H. Then

– T is called L-Lipschitz continuous with L > 0 if

∥T x−Ty∥ ≤ L∥x− y∥ ∀x,y ∈C.

– T is called monotone if

⟨T x−Ty,x− y⟩ ≥ 0 ∀x,y ∈C.

– T is said to be pseudo-monotone if

⟨T x,y− x⟩ ≥ 0 =⇒ ⟨Ty,y− x⟩ ≥ 0.

It is called δ -strongly pseudo-monotone if there is δ > 0 such that

⟨T x,y− x⟩ ≥ 0 =⇒ ⟨Ty,y− x⟩ ≥ δ∥y− x∥2.

– T is said to be weakly sequentially continuous if, for each sequence {xn} in C, {xn}
converges weakly to a point x ∈C, then {T xn} converges weakly to T x.

– T is called weakly closed on C if for any {xn}⊂C, xn ⇀ x, and T (xn)⇀ y, then T (x)= y.
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– T is said to have ∗-property on C, if the function ∥T (x)∥ is weakly lower-semicontinuous
(w.l.s.c.) on C, i.e., for any {xn} ⊂C, xn ⇀ x,

∥T (x)∥ ≤ liminf
n→∞

∥T (xn)∥.

A relation between the weakly sequential continuity, weak closedness and ∗-property are
revealed in the following simple statement.

Lemma 2.3 i. Any weakly sequentially continuous operator is weakly closed and have
the ∗-property.

ii. A weakly closed operator, mapping bounded subsets into bounded subsets, is weakly
sequentially continuous.

iii. An operator having the ∗-property and mapping bounded subsets into bounded subsets
is not necessarily weakly sequentially continuous, and hence is not necessarily weakly
closed.

Proof i. Suppose T is weakly sequentially continuous on C. Then it is weakly closed by
definition. Further, let C ∋ xn ⇀ x, then T (xn)⇀ T (x), and due to the weak lower continuity
of the norm, one gets ∥T (x)∥ ≤ liminfn→∞ ∥T (xn)∥, which means the ∗-property of T.
ii. Assume that T is weakly closed and maps bounded subsets into bounded subsets. Let
xn ⇀ x, than the sequence {xn} is bounded, hence, the set {T (xn)} is also bounded. Let ζ be
a weak cluster point of {T (xn)}. There exists a weakly convergent subsequence T (xnk)⇀ ζ .
Since xnk ⇀ x, by the weak closedness of T, one gets ζ = T (x). Thus, T (xn)⇀ T (x).
iii. Let H be a real Hilbert space with an orthonormal basis {en} and C be a closed ball cen-
tered at 0 with radius r :=

√
2. Define the operator T : C → H by T (x) := ∥x∥x. Obviously,

T maps bounded subsets into bounded subsets. Further, T has the ∗-property. Indeed, let
xn ⇀ x, then ∥T (x)∥= ∥x∥2 ≤ (liminfn→∞ ∥xn∥)2 ≤ liminfn→∞ ∥xn∥2 = liminfn→∞ ∥T (xn)∥.
On the other hand, T is not weakly sequentially continuous. Indeed, let xn = en + e1. Then
xn ⇀ e1, and for n ≥ 2, T (xn) =

√
2(en + e1)⇀

√
2e1 ̸= T (e1) = 2e1.

Lemma 2.4 ([15]) Let {an} be a sequence of nonnegative real numbers, {αn} be a sequence
of real numbers in (0,1) with ∑

∞
n=1 αn = ∞ and {bn} be a sequence of real numbers. Assume

that

an+1 ≤ (1−αn)an +αnbn ∀n ≥ 1.

If limsupk→∞ bnk ≤ 0 for every subsequence {ank} of {an} satisfying liminfk→∞(ank+1 −
ank)≥ 0 then limn→∞ an = 0.

Definition 2.2 ([14]) Let {xn} be a sequence in H.
i) {xn} is said to converge R-linearly to x∗ with rate ρ ∈ [0,1) if there is a constant c > 0
such that

∥xn − x∗∥ ≤ cρ
n ∀n ∈ N.

ii) {xn} is said to converge Q-linearly to x∗ with rate ρ ∈ [0,1) if

∥xn+1 − x∗∥ ≤ ρ∥xn − x∗∥ ∀n ∈ N.
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3 Main results

In this work, we assume the following conditions:

Condition 1 The feasible set C is nonempty, closed, and convex.

Condition 2 The mapping F : H → H is L-Lipschitz continuous, pseudomonotone on H.
However, the information of L is not necessary to be known.

Condition 3 The solution set Sol(C,F) is nonempty.

The proposed algorithm is of the form:

Algorithm 3.1

Initialization: Let {αn} be a sequence of nonnegative real numbers satisfying ∑
∞
n=1 αn <

+∞. Let θ > 0, τ1 > 0, µ ∈ (0,1) and x0,x1 ∈H be arbitrary. We assume that {θn}, {εn} and

{γn} are three positive sequences such that {θn}⊂ [0,θ) and εn = o(γn), i.e., limn→∞

εn

γn
= 0,

where {γn} ⊂ (0,1) satisfies the following conditions:

lim
n→∞

γn = 0,
∞

∑
n=1

γn = ∞.

Iterative Steps: Calculate xn+1 as follows:

Step 1. Given the iterates xn−1 and xn (n ≥ 1), choose θn such that 0 ≤ θn ≤ θ̄n, where

θ̄n =

min
{

θ , εn
∥xn−xn−1∥

}
if xn ̸= xn−1,

θ otherwise.
(4)

Step 2. Set un = (1− γn)(xn +θn(xn − xn−1)) and compute

qn = PC(un − τnFun).

Step 3. Compute
xn+1 = PTn(un − τnFqn),

where Tn := {x ∈ H|⟨un − τnFun −qn,x−qn⟩ ≤ 0}.
Update

τn+1 :=

min{µ
∥un −qn∥2 +∥xn+1 −qn∥2

2⟨Fun −Fqn,xn+1 −qn⟩
,τn +αn} if ⟨Fun −Fqn,xn+1 −qn⟩> 0,

τn +αn otherwise.
(5)

Set n := n+1 and go to Step 1.



6 Duong Viet Thong et al.

Remark 3.1 As noted in [13], the sequence generated by (5) is allowed to increase from
iteration to iteration. Hence, our results in this work are different from those in [22,23].

Lemma 3.5 ([13]) Assume that Condition 2 holds. Let {τn} be the sequence generated by
(5). Then

lim
n→∞

τn = τ with τ ∈
[

min
{

τ1,
µ

L

}
,τ1 +α

]
,

where α = ∑
∞
n=1 αn. Moreover

2⟨Fun −Fqn,xn+1 −qn⟩ ≤
µ

τn+1
(∥un −qn∥2 +∥xn+1 −qn∥2). (6)

Theorem 3.1 Assume that Conditions 1–3 hold. If the mapping F : H → H satisfies the
∗-property then the sequence {xn}, generated by Algorithm 3.1, converges strongly to an
element z ∈ Sol(C,F), where z = PSol(C,F)(0).

Proof To improve readability, we split the proof of our main theorem into some parts.
Claim 1.

∥xn+1 − z∥2 ≤ ∥un − z∥2 − (1−µ
τn

τn+1
)∥qn −un∥2 − (1−µ

τn

τn+1
)∥xn+1 −qn∥2.

Since z ∈C ⊂ Tn and PTn is firmly nonexpansive, we have

∥xn+1 − z∥2 =∥PTn(un − τnFqn)−PTn z∥2 ≤ ⟨xn+1 − z,un − τnFqn − z⟩

=
1
2
∥xn+1 − z∥2 +

1
2
∥un − τnFqn − z∥2 − 1

2
∥xn+1 −un + τnFqn∥2

=
1
2
∥xn+1 − z∥2 +

1
2
∥un − z∥2 +

1
2

τ
2
n∥Fqn∥2 −⟨un − z,τnFqn⟩

− 1
2
∥xn+1 −un∥2 − 1

2
τ

2
n∥Fqn∥2 −⟨xn+1 −un,τnFqn⟩

=
1
2
∥xn+1 − z∥2 +

1
2
∥un − z∥2 − 1

2
∥xn+1 −un∥2 −⟨xn+1 − z,τnFqn⟩.

This implies that

∥xn+1 − z∥2 ≤ ∥un − z∥2 −∥xn+1 −un∥2 −2⟨xn+1 − z,τnFqn⟩. (7)

Since z is the solution of VI, we have ⟨Fz,x− z⟩ ≥ 0 for all x ∈C. By the pseudomon-
tonicity of F on C we have ⟨Fx,x− z⟩ ≥ 0 for all x ∈C. Taking x := qn ∈C we get

⟨Fqn,z−qn⟩ ≤ 0.

Thus,

⟨Fqn,z− xn+1⟩=⟨Fqn,z−qn⟩+ ⟨Fqn,qn − xn+1⟩ ≤ ⟨Fqn,qn − xn+1⟩. (8)

From (7) and (8) we obtain

∥xn+1 − z∥2 ≤∥un − z∥2 −∥xn+1 −un∥2 +2τn⟨Fqn,qn − xn+1⟩
=∥un − z∥2 −∥xn+1 −qn∥2 −∥qn −un∥2 −2⟨xn+1 −qn,qn −un⟩
+2τn⟨Fqn,qn − xn+1⟩

=∥un − z∥2 −∥xn+1 −qn∥2 −∥qn −un∥2 +2⟨un − τnFqn −qn,xn+1 −qn⟩. (9)
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Since qn = PTn(un − τnFun) and xn+1 ∈ Tn we have

2⟨un − τnFqn −qn,xn+1 −qn⟩
= 2⟨un − τnFun −qn,xn+1 −qn⟩+2τn⟨Fun −Fqn,xn+1 −qn⟩
≤ 2τn⟨Fun −Fqn,xn+1 −qn⟩. (10)

It follows from (6) that

2τn⟨Fun −Fqn,xn+1 −qn⟩ ≤ µ
τn

τn+1
∥un −qn∥2 +µ

τn

τn+1
∥qn − xn+1∥2. (11)

Combining (10) and (11), we obtain

2⟨un − τnFqn −qn,xn+1 −qn⟩ ≤ µ
τn

τn+1
∥un −qn∥2 +µ

τn

τn+1
∥qn − xn+1∥2. (12)

Substituting (12) into (9) we obtain

∥xn+1 − z∥2 ≤ ∥un − z∥2 − (1−µ
τn

τn+1
)∥qn −un∥2 − (1−µ

τn

τn+1
)∥xn+1 −qn∥2.

Claim 2. The sequence {xn} is bounded. Indeed, we have

∥un − z∥= ∥(1− γn)(xn +θn(xn − xn−1))− z∥
= ∥(1− γn)(xn − z)+(1− γn)θn(xn − xn−1)− γnz∥
≤ (1− γn)∥xn − z∥+(1− γn)θn∥xn − xn−1∥+ γn∥z∥

= (1− γn)∥xn − z∥+ γn[(1− γn)
θn

γn
∥xn − xn−1∥+∥z∥]. (13)

On the other hand, since (4) we have

θn

γn
∥xn − xn−1∥ ≤

εn

γn
→ 0,

which implies that limn→∞

[
(1− γn)

θn

γn
∥xn − xn−1∥+∥z∥

]
= ∥z∥, hence there exists M > 0

such that
(1− γn)

θn

γn
∥xn − xn−1∥+∥z∥ ≤ M. (14)

Combining (13) and (14) we obtain

∥un − z∥ ≤ (1− γn)∥xn − z∥+ γnM.

Moreover, we have limn→∞(1− µ
τn

τn+1
) = 1− µ >

1−µ

2
, hence there exists n0 ∈ N such

that 1−µ
τn

τn+1
> 0 ∀n ≥ n0. By Claim 1 we obtain

∥xn+1 − z∥ ≤ ∥un − z∥ ∀n ≥ n0. (15)

Thus

∥xn+1 − z∥ ≤(1− γn)∥xn − z∥+ γnM

≤ max{∥xn − z∥,M} ≤ ...≤ max{∥xn0 − z∥,M}.
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Therefore, the sequence {xn} is bounded.
Claim 3.

(1−µ
τn

τn+1
)∥qn −un∥2 +(1−µ

τn

τn+1
)∥xn+1 −qn∥2

≤∥xn − z∥2 −∥xn+1 − z∥2 + γnM1.

Indeed, we have ∥un − z∥ ≤ (1− γn)∥xn − z∥+ γnM, this implies that

∥un − z∥2 ≤ (1− γn)
2∥xn − z∥2 +2γn(1− γn)M∥xn − z∥+ γ

2
n M2

≤ ∥xn − z∥2 + γn[2(1− γn)M∥xn − z∥+ γnM2]

≤ ∥xn − z∥2 + γnM1, (16)

where M1 := max{2(1− γn)M∥xn − z∥+ γnM2 : n ∈N}. Substituting (16) into Claim 1 we
get

∥xn+1 − z∥2 ≤ ∥xn − z∥2 + γnM1 − (1−µ
τn

τn+1
)∥qn −un∥2 − (1−µ

τn

τn+1
)∥xn+1 −qn∥2.

Or equivalently

(1−µ
τn

τn+1
)∥qn −un∥2 +(1−µ

τn

τn+1
)∥xn+1 −qn∥2

≤ ∥xn − z∥2 −∥xn+1 − z∥2 + γnM1.

Claim 4.

∥xn+1 − z∥2 ≤(1− γn)∥xn − z∥2 + γn

[
2(1− γn)∥xn − z∥θn

γn
∥xn − xn−1∥

+θn∥xn − xn−1∥
θn

γn
∥xn − xn−1∥+2∥z∥∥un − xn+1∥+2⟨−z,xn+1 − z⟩

]
,

∀n ≥ n0. Indeed, using Lemma 2.2 ii) and (15) we get

∥xn+1 − z∥2 ≤∥un − z∥2 ∀n ≥ n0

=∥(1− γn)(xn − z)+(1− γn)θn(xn − xn−1)− γnz∥2 ∀n ≥ n0

≤∥(1− γn)(xn − z)+(1− γn)θn(xn − xn−1)∥2 +2γn⟨−z,un − z⟩ ∀n ≥ n0

≤(1− γn)
2∥xn − z∥2 +2(1− γn)θn∥xn − z∥∥xn − xn−1∥+θ

2
n ∥xn − xn−1∥2

+2γn⟨−z,un − xn+1⟩+2γn⟨−z,xn+1 − z⟩ ∀n ≥ n0

≤(1− γn)∥xn − z∥2 + γn

[
2(1− γn)∥xn − z∥θn

γn
∥xn − xn−1∥

+θn∥xn − xn−1∥
θn

γn
∥xn − xn−1∥+2∥z∥∥un − xn+1∥+2⟨−z,xn+1 − z⟩

]
∀n ≥ n0.

Claim 5. {∥xn − z∥2} converges to zero.
Indeed, by Lemma 2.4 it suffices to show that limsupk→∞⟨−z,xnk+1−z⟩≤ 0 and limsupk→∞ ∥unk −
xnk+1∥ ≤ 0 for every subsequence {∥xnk − z∥} of {∥xn − z∥} satisfying

liminf
k→∞

(∥xnk+1 − z∥−∥xnk − z∥)≥ 0.
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For this purpose, suppose that {∥xnk − z∥} is a subsequence of {∥xn − z∥} such that
liminfk→∞(∥xnk+1 − z∥−∥xnk − z∥)≥ 0. Then

liminf
k→∞

(∥xnk+1−z∥2−∥xnk −z∥2)= liminf
k→∞

[(∥xnk+1−z∥−∥xnk −z∥)(∥xnk+1−z∥+∥xnk −z∥)]≥ 0.

By Claim 3 we obtain

limsup
k→∞

[
(1−µ

τnk

τnk+1
)∥unk −qnk∥

2 +(1−µ
τnk

τnk+1
)∥xnk+1 −qnk∥

2
]

≤ limsup
k→∞

[
∥xnk − z∥2 −∥xnk+1 − z∥2 + γnk M1

]
≤ limsup

k→∞

[
∥xnk − z∥2 −∥xnk+1 − z∥2

]
+ limsup

k→∞

γnk M1

=− liminf
k→∞

[
∥xnk+1 − z∥2 −∥xnk

− z∥2
]

≤ 0.

This implies that

lim
k→∞

∥qnk −unk∥= 0 and lim
k→∞

∥xnk+1 −qnk∥= 0.

Thus
lim
k→∞

∥xnk+1 −unk∥= 0. (17)

Now, we show that
∥xnk+1 − xnk∥→ 0 as k → ∞. (18)

Indeed, using limn→∞ γn = 0 we have

∥xnk −unk∥= ∥(1− γnk)(xnk +θnk(xnk − xnk−1))− xnk∥
= ∥θnk(xnk − xnk−1)− γnk(xnk +θnk(xnk − xnk−1))∥
≤ θnk∥xnk − xnk−1∥+ γnk∥xnk +θnk(xnk − xnk−1)∥

= γnk

θnk

γnk

∥xnk − xnk−1∥+ γnk∥xnk +θnk(xnk − xnk−1)∥→ 0. (19)

From (17) and (19), we get

∥xnk+1 − xnk∥ ≤ ∥xnk+1 −unk∥+∥xnk −unk∥→ 0.

Since the sequence {xnk} is bounded, it follows that there exists a subsequence {xnk j
} of

{xnk}, which converges weakly to some z∗ ∈ H, such that

limsup
k→∞

⟨−z,xnk − z⟩= lim
j→∞

⟨−z,xnk j
− z⟩= ⟨−z,z∗− z⟩. (20)

Using (19), we get
unk ⇀ z∗ as k → ∞,

Using (17), we obtain
xnk ⇀ z∗ as k → ∞.
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Now, we show that z∗ ∈ Sol(C,F). Indeed, since qnk = PC(unk − τnk Funk), we have

⟨unk − τnk Funk −qnk ,x−qnk⟩ ≤ 0 ∀x ∈C,

or equivalently
1

τnk

⟨unk −qnk ,x−qnk⟩ ≤ ⟨Funk ,x−qnk⟩ ∀x ∈C.

Consequently

1
τnk

⟨unk −qnk ,x−qnk⟩+ ⟨Funk ,qnk −unk⟩ ≤ ⟨Funk ,x−unk⟩ ∀x ∈C. (21)

Being weakly convergent, {unk} is bounded. Then, by the Lipschitz continuity of F , {Funk}
is bounded. As ∥unk −qnk∥→ 0, {qnk} is also bounded and τnk ≥ min{τ1,

µ

L
}. Passing (21)

to limit as k → ∞, we get

liminf
k→∞

⟨Funk ,x−unk⟩ ≥ 0 ∀x ∈C. (22)

Moreover, we have

⟨Fqnk ,x−qnk⟩= ⟨Fqnk −Funk ,x−unk⟩+ ⟨Funk ,x−unk⟩+ ⟨Fqnk ,unk −qnk⟩. (23)

Since limk→∞ ∥unk −qnk∥= 0 and F is L-Lipschitz continuous on H, we get

lim
k→∞

∥Funk −Fqnk∥= 0

which, together with (22) and (23) implies that

liminf
k→∞

⟨Fqnk ,x−qnk⟩ ≥ 0.

Next, we choose a sequence {εk} of positive numbers decreasing and tending to 0. For each
k, we denote by Nk the smallest positive integer such that

⟨Fqn j ,x−qn j ⟩+ εk ≥ 0 ∀ j ≥ Nk. (24)

Since {εk} is decreasing, it is easy to see that the sequence {Nk} is increasing. Furthermore,
for each k, since {qNk} ⊂ C we can suppose FqNk ̸= 0 (otherwise, qNk is a solution) and,
setting

vNk =
FqNk

∥FqNk∥2 ,

we have ⟨FqNk ,vNk⟩= 1 for each k. Now, we can deduce from (24) that for each k

⟨FqNk ,x+ εkvNk −qNk⟩ ≥ 0.

From F is pseudomonotone on H, we get

⟨F(x+ εkvNk),x+ εkvNk −qNk⟩ ≥ 0.

This implies that

⟨Fx,x−qNk⟩ ≥ ⟨Fx−F(x+ εkvNk),x+ εkvNk −qNk⟩− εk⟨Fx,vNk⟩. (25)
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Now, we show that limk→∞ εkvNk = 0. Indeed, since unk ⇀ z∗ and limk→∞ ∥unk −qnk∥=
0, we obtain qNk ⇀ z∗ as k → ∞. By {qn} ⊂ C, we obtain z∗ ∈ C. Since F has ∗-property,
we have

0 < ∥Fz∗∥ ≤ liminf
k→∞

∥Fqnk∥.

Since {qNk} ⊂ {qnk} and εk → 0 as k → ∞, we obtain

0 ≤ limsup
k→∞

∥εkvNk∥= limsup
k→∞

(
εk

∥Fqnk∥

)
≤ limsupk→∞ εk

liminfk→∞ ∥Fqnk∥
= 0,

which implies that limk→∞ εkvNk = 0.
Now, letting k → ∞, then the right hand side of (25) tends to zero by F is uniformly

continuous, {uNk},{vNk} are bounded and limk→∞ εkvNk = 0. Thus, we get

liminf
k→∞

⟨Fx,x−qNk⟩ ≥ 0.

Hence, for all x ∈C we have

⟨Fx,x− z∗⟩= lim
k→∞

⟨Fx,x−qNk⟩= liminf
k→∞

⟨Fx,x−qNk⟩ ≥ 0.

By Lemma 2.1, we get

z∗ ∈ Sol(C,F).

Since (20) and the definition of z = PSol(C,F)(0), we have

limsup
k→∞

⟨−z,xnk − z⟩= ⟨−z,z∗− z⟩ ≤ 0. (26)

Combining (18) and (26), we have

limsup
k→∞

⟨−z,xnk+1 − z⟩ ≤ limsup
k→∞

⟨−z,xnk − z⟩

= ⟨−z,z∗− z⟩
≤ 0. (27)

Hence, by (27), limn→∞

θn

γn
∥xn −xn−1∥= 0, limk→∞ ∥xnk+1 −unk∥= 0, Claim 5 and Lemma

2.4, we have limn→∞ ∥xn − z∥= 0, which was to be proved.

Remark 3.2 It should be noted that if the operator F is monotone, the ∗ property is redun-
dant, see [7,21].

4 Convergence rate

In this section we establish a convergence rate for the so-called relaxed inertial subgradient
extragradient method. Actually, we consider the following modification of Algorithm 3.1:
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Algorithm 4.2 Let {αn} be a sequence of nonnegative real numbers which satisfies ∑
∞
n=1 αn <

+∞. Given θ ∈ [0,1),γ ∈ (0,
1
2
), µ ∈ (0,1) and τ1 > 0, Let x0,x1 ∈ H be arbitrary. Let

un = xn +θ(xn − xn−1),

qn = PC(un − τnFun),

zn = PTn(un − τnFqn),

where Tn := {x ∈ H|⟨un − τnFun −qn,x−qn⟩ ≤ 0},
xn+1 = (1− γ)xn + γzn.

Update

τn+1 :=

min{µ
∥un −qn∥2 +∥zn −qn∥2

2⟨Fun −Fqn,zn −qn⟩
,τn +αn} if ⟨Fun −Fqn,zn −qn⟩> 0,

τn +αn otherwise.

Throughout this section, the operator F is assumed to be L-Lipschitz continuous on H and
δ -strongly pseudo-monotone on C. We now prove that the iterative sequence generated by
Algorithm 4.2 converges strongly to the unique solution of problem (VI) with an R-linear
rate.

Theorem 4.2 Assume that F : H →H is L-Lipschitz continuous on H and δ -strongly pseudo-

monotone on C. Let θ ∈
[

0,
δ

L+δ

)
, µ ∈

(
θ

1+θ

L
δ
,

1−θ

1+θ

)
and τ1 >

µ

L
. Then the sequence

{xn} generated by Algorithm 4.2 converges in norm with an R-linear convergence rate to
the unique element z in Sol(C,F).

Proof Since ⟨Fz,qn − z⟩ ≥ 0, the δ -strong pseudo-monotonicity of F on C yields the in-
equality

⟨Fqn,qn − z⟩ ≥ δ∥qn − z∥2.

This implies that

⟨Fqn,z− zn⟩= ⟨Fqn,z−qn⟩+ ⟨Fqn,qn − zn⟩ ≤ −δ∥qn − z∥2 + ⟨Fqn,qn − zn⟩. (28)

Now, using (28) and a similar argument as in Claim 1 of Theorem 3.1, we get

∥zn − z∥2 ≤∥un − z∥2 − (1−µ
τn

τn+1
)∥qn −un∥2 − (1−µ

τn

τn+1
)∥zn −qn∥2 −2δτn∥qn − z∥2

≤∥un − z∥2 − (1−µ
τn

τn+1
)∥qn −un∥2 −2δτn∥qn − z∥2.

Since θ <
δ

L+δ
, it follows that

θ

1+θ

L
δ
<

1−θ

1+θ

therefore there always exists

µ ∈
(

θ

1+θ

L
δ
,

1−θ

1+θ

)
.
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From µ <
1−θ

1+θ
, one finds

1−µ

2
>

θ

1+θ
and µ >

θ

1+θ

L
δ

implies that δ
µ

L
>

θ

1+θ
. Fix

ε ∈
(

θ

1+θ
,min

{
1−µ

2
,δ

µ

L

})
. We have

lim
n→∞

(1−µ
τn

τn+1
) = 1−µ > 2ε

and

lim
n→∞

δτn = δτ ≥ δ min
{

τ1,
µ

L

}
= δ

µ

L
> ε.

Therefore, there exists N ∈ N such that for all n ≥ N, we get

∥zn − z∥2 ≤∥un − z∥2 −2ε∥qn −un∥2 −2ε∥qn − z∥2

≤∥un − z∥2 − ε∥un − z∥2

= (1− ε)∥un − z∥2.

On the other hand, we have

∥xn+1 − z∥2 = ∥(1− γ)xn + γzn − z∥2

= ∥(1− γ)(xn − z)+ γ(zn − z)∥2

= (1− γ)∥xn − z∥2 + γ∥zn − z∥2 − (1− γ)γ∥xn − zn∥2

= (1− γ)∥xn − z∥2 + γ∥zn − z∥2 − 1− γ

γ
∥xn+1 − xn∥2

≤ (1− γ)∥xn − z∥2 + γ(1− ε)∥un − z∥2 − 1− γ

γ
∥xn+1 − xn∥2 ∀n ≥ N.

We also have

∥un − z∥2 = ∥(1+θ)(xn − z)−θ(xn−1 − z)∥2

= (1+θ)∥xn − z∥2 −θ∥xn−1 − z∥2 +θ(1+θ)∥xn − xn−1∥2.

Therefore, we get

∥xn+1 − z∥2 ≤ (1− γ)∥xn − z∥2 + γ(1− ε)[(1+θ)∥xn − z∥2 −θ∥xn−1 − z∥2 +θ(1+θ)∥xn − xn−1∥2]

− 1− γ

γ
∥xn+1 − xn∥2 ∀n ≥ N

≤ (1− γ(1− (1− ε)(1+θ)))∥xn − z∥2 − γ(1− ε)θ∥xn−1 − z∥2

+ γ(1− ε)θ(1+θ)∥xn − xn−1∥2 − 1− γ

γ
∥xn+1 − xn∥2 ∀n ≥ N

≤ (1− γ(1− (1− ε)(1+θ)))∥xn − z∥2 + γ(1− ε)θ(1+θ)∥xn − xn−1∥2

− 1− γ

γ
∥xn+1 − xn∥2 ∀n ≥ N.

Since γ ∈ (0,
1
2
), it implies

1− γ

γ
> 1. Hence, we obtain

∥xn+1 − z∥2 +∥xn+1 − xn∥2 ≤∥xn+1 − z∥2 +
1− γ

γ
∥xn+1 − xn∥2

≤ (1− γ(1− (1− ε)(1+θ)))∥xn − z∥2

+ γ(1− ε)θ(1+θ)∥xn − xn−1∥2 ∀n ≥ N.
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This follows that

∥xn+1 − z∥2 +∥xn+1 − xn∥2 ≤ (1− γ(1− (1− ε)(1+θ)))

[
∥xn − z∥2

+
1

(1− γ(1− (1− ε)(1+θ))))
γ(1− ε)θ(1+θ)∥xn − xn−1∥2

]
∀n ≥ N.

We now show that
1− γ(1− (1− ε)(1+θ)) ∈ (0,1)

and
1

1− γ(1− (1− ε)(1+θ))
γ(1− ε)θ(1+θ) ∈ (0,1).

Indeed, since ε ∈ (
θ

1+θ
,min

{
1−µ

2
,δ

µ

L

}
), this implies that ε >

θ

1+θ
, or, 1−ε <

1
1+θ

that is (1− ε)(1+θ)< 1, hence 1− γ(1− (1− ε)(1+θ)) ∈ (0,1). It is easy to see that

1
1− γ(1− (1− ε)(1+θ))

γ(1− ε)θ(1+θ) ∈ (0,1).

Therefore, we deduce

∥xn+1 − z∥2 +∥xn+1 − xn∥2 ≤ (1− γ(1− (1− ε)(1+θ)))[∥xn − z∥2 +∥xn − xn−1∥2] ∀n ≥ N.

Letting an := ∥xn − z∥2 +∥xn − xn−1∥2 and ξ := (1− γ(1− (1− ε)(1+θ))), we get

∥xn+1 − z∥2 ≤ an+1 ≤ ξ an ≤ ξ
n−N+1aN =

ξ

ξ N aN
ξ

n.

Thus, the sequence {xn} converges R-linearly to z, as desired.

Remark 4.3 It should be emphasized that we obtain the linear convergence rate of Algorithm
4.2 instead of the strong convergence as in [18].

Remark 4.4 In Theorem 4.2, the ∗- property of F is not assumed.

5 Numerical Illustrations

In this section, we present some numerical experiments in solving variational inequality
problems. In the first example, we compare the proposed algorithm with two well-known
algorithms including Algorithm 2 of Yang, J. et al. in [22] and the modified Halpern sub-
gradient extragradient method (HSEGM) of R. Kraikaew and S. Saejung in [12, Section 4]
of Kraikaew et al.. In the second example, we compare the proposed algorithm with Algo-
rithm 1 of Yang, J. et al. in [22], Algorithm 3.1 of Yang, J. et al. in [23], and the subgradient
extragradient algorithm (SEGM) of Censor et al. in [2] and illustrate the convergence of the
proposed algorithm. All the numerical experiments are performed on a HP laptop with In-
tel(R) Core(TM)i5-6200U CPU 2.3GHz with 4 GB RAM. The programs are written in Mat-
lab2015a. We use the sequence Dn = ||xn − x∗||2, n = 0,1,2, . . . to check the convergence
of {xn}, where x∗ is the solution of the problem. The convergence of {Dn} to 0 implies that
{xn} converges to the solution of the problem.
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Remark 5.5 We usually choose αn = θ0 for Algorithm 3.1 of Yang, J. et al. in [23] be-
cause αn and θn have similar roles in their algorithm as well as in our proposed algorithm.
Similarly, we take λ = τ0 for the subgradient extragradient algorithm of Censor et al. in [2].

In numerical experiments, we choose µ = 0.5 for the proposed algorithm, Algorithms 1,
2 of Yang, J. et al. in [22], Algorithm 3.1 of Yang, J. et al. in [23], and the other parameters
as follows:

Proposed algorithm: γn =
1

n+1
,θ0 = 0.5,θn =

{
min{θ0,

γ2
n

∥xn−xn−1∥
}, if xn ̸= xn−1

θ0, otherwise.
,

Algorithm 3.1: αn = θ0 = 0.5
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Example 1 Suppose that H = L2([0,1]) with the inner product

⟨x,y⟩ :=
∫ 1

0
x(t)y(t)dt,∀x,y ∈ H (29)

and the included norm

∥x∥ := (
∫ 1

0
|x(t)|2dt)

1
2 ,∀x ∈ H (30)

Let C := {x ∈ H : ∥x∥ ≤ 1} be the unit ball and define an operator F : C → H by

Fx(t) = max{0,x(t)}.

It is easy to see that F is 1-Lipschitz continuous and monotone on C and so F is pseu-
domonotone.

All the integrals in equations (29) - (30) and others are computed by the trapezoidal
formula with the stepsize t = 0.001 using function trapz of matlab. The starting points are
x0 = (t2−exp(−t))

525 or x0 = (sin(−3∗t)+cos(−10∗t))
600 and x1 = 0.5x0 for the proposed algorithm,

x0 = x1 for other algorithms. We take λ0 = λ = 0.5,αn =
1

n+1 for Algorithm 2 of Yang, J. et
al. in [22], Halpern subgradient extragradient method (HSEGM) of Kraikaew et al. in [12],
respectively, and τ0 = 0.5 for the proposed algorithm. We use stopping rule Dn < 10−10 or
iterations ≥ 2000 for all algorithms. The numerical results are described in Table 5.1 and
Figs. 1 - 2.
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Fig. 1: Comparison of all algorithms with x0 =
(t2−exp(−t))

525 .
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10-3
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Fig. 2: Comparison of all algorithms with x0 =
(sin(−3∗t)+cos(−10∗t))

600 .
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Table 5.1: Numerical results of all algorithms with different x0

Methods x0 =
(t2−exp(−t))

525 x0 =
(sin(−3∗t)+cos(−10∗t))

600

Sec. Iter. Error. Sec. Iter. Error.
Proposed Alg 0.04 57 9.9976e-11 0.05 64 9.7417e-11
Algorithm 2 1.1 2000 2.4867e-10 1.1 2000 7.0810e-10

HSEGM 0.7 2000 2.4867e-10 0.7 2000 7.0810e-10

Table 5.1 and Figures 1-2 give the errors of the proposed algorithm, Algorithm 2 of
Yang, J. et al. in [22], and Kraikaew and Saejung’s algorithm [12] as well as their execution
times. They show that the proposed algorithm is less time consuming and more accurate
than those of Yang, J. et al. in [22], Kraikaew and Saejung’s algorithm in [12] .

Example 2 Assume that F : Rm →Rm is defined by F(x) = Mx+q with M = NNT +S+D,
N is an m×m matrix, S is an m×m skew-symmetric matrix, D is an m×m diagonal matrix,
whose diagonal entries are positive (so M is positive definite), q is a vector in Rm, and

C := {x ∈ Rm : xi ≥−1, i = 1, · · · ,m}.

It is clear that F is monotone and Lipschitz continuous with the Lipschitz constant L = ∥M∥.
For q = 0, the unique solution of the corresponding variational inequality is {0}.

For experiment, all entries of B, S and D are generated randomly from a normal distribu-
tion with mean zero and unit variance. The process is started with the initial x0 =(1, ...,1)T ∈
Rm and x1 = 0.9x0. To terminate algorithms, we use the condition Dn ≤ ε with ε = 10−6 or
the number of iterations ≥ 2000 for all algorithms.

Case 1: We take λ = 0.7
∥M∥ for the subgradient extragradient algorithm of Censor et al.

in [2] and τ0 =
0.7
∥M∥ for Algorithm 1 of Yang, J. et al. in [22], Algorithm 3.1 of Yang, J. et

al. in [23] and the proposed algorithm. The numerical results are described in Table 5.2 and
Figs. 3 - 4.

Table 5.2: Numerical results obtained by other algorithms

Methods m=50 m=100

Sec. Iter. Error. Sec. Iter. Error.
Proposed Alg 0.11 31 9.9773e-07 0.75 43 9.4795e-07
Algorithm 1 5.8 2000 0.0029 34 2000 0.0384

Algorithm 3.1 5.9 2000 4.9922e-05 35 2000 0.0043
SEGM 5.6 2000 0.0012 30 2000 0.0272
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Fig. 3: Comparison of all algorithms with m = 50
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Fig. 4: Comparison of all algorithms with m = 100.

Case 2: We take λ = 0.9
∥M∥ for the subgradient extragradient algorithm of Censor et al.

in [2] and τ0 =
0.9
∥M∥ for Algorithm 1 of Yang, J. et al. in [22], Algorithm 3.1 of Yang, J. et

al. in [23] and the proposed algorithm. The numerical results are described in Table 5.3 and
Figs. 5 - 6.

Table 5.3: Numerical results obtained by other algorithms

Methods m=50 m=100

Sec. Iter. Error. Sec. Iter. Error.
Proposed Alg 0.12 34 9.3168e-07 0.76 45 9.8653e-07
Algorithm 1 5.62 2000 0.0034 34 2000 0.0409

Algorithm 3.1 5.7 2000 8.2121e-05 35 2000 0.0054
SEGM 5.59 2000 3.6547e-04 30 2000 0.0184



A novel method for finding minimum-norm solutions to pseudomonotone variational inequalities 19
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Fig. 5: Comparison of all algorithms with m = 50.
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Fig. 6: Comparison of all algorithms with m = 100.

Table 5.2 - 5.3 and Figures 3 - 6 give the errors of the proposed algorithm, algorithm of
Censor et al. in [2], Algorithm 1 of Yang, J. et al. in [22], Algorithm 3.1 of Yang, J. et al.
in [23] as well as their execution times. They show that the proposed algorithm is less time
consuming and more accurate than those of Yang, J. et al. in [22], [23], Censor et al. in [2].

In Fig. 7 we illustrate the convergence rate of the proposed algorithm for different
choices of the θ with λ = 0.7

∥M∥ ,µ = 0.5,m = 50 and γn =
1

n+1 .
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Fig. 7: Convergence rate of the proposed algorithms for different choice of the θ .

In Fig. 8 we illustrate the convergence rate of the proposed algorithm for different
choices of the γn with λ = 0.7

∥M∥ ,µ = 0.5,m = 50 and θ = 0.5.
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Fig. 8: Convergence rate of the proposed algorithm for different choice of the γn.

Figures 7 - 8 show that the rate of convergence of the proposed algorithm in general
depends strictly on the convergent rate of sequence of γn and θ .
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