
DATA ASSIMILATION FOR THE THREE-DIMENSIONAL

LERAY-α MODEL USING LOCAL OBSERVABLES ON ANY

TWO COMPONENTS OF THE VELOCITY FIELD

CUNG THE ANH AND VU MANH TOI

Abstract. We study continuous data assimilation for the three-dimensional
Leray-α model using local observables and using only coarse mesh observations

of any two components of the three-dimensional velocity field, and without any
information of the rest component. We prove that, with the spatial resolution

N and the analyticity radius σ are sufficiently large (in the periodic boundary

conditions case), the complement of the full domain Ω0 and the sub-domain
Ω is small enough (in the no-slip boundary conditions case), and with the

relaxation (nudging) parameter µ is sufficiently large, and the spatial mesh

resolution h is sufficiently small, we can approximately recover the unknown
reference solution corresponding to the measurements by the approximating

solution.

1. Introduction and statement main results

Data assimilation is a methodology to estimate weather or ocean variables com-
bining (synchronizing) information from observational data with a numerical dy-
namical (forecast) model. In recent years, data assimilation problems for many
important equations in fluid mechanics have been extensively studied by Edriss
Titi and his coauthors, see e.g. [2, 8, 22, 23, 24, 27, 29, 30, 32]. We also refer the
interested reader to [1, 4, 5, 6, 10, 11, 31] for some results of other authors.

In verry recent years, Biswas et al., [12] studied the data assimilation for the two-
dimensional Navier-Stokes equations using local observables was studied recently
in [12]. To overcome the difficulty due to the local observations, the authors used
spectral inequality and Gevrey property of solutions in the periodic case, and the
assumption of the complement of the full domain Ω0 and the sub-domain Ω is small
enough in the no-slip boundary conditions case.

The Leray-α model was introduced in [17]. In the last years, the mathematical
questions related to the Leray-α model, including existence, regularity, convergence
and long-time behavior of solutions as well as controllability property, has attracted
the attention of many mathematicians, see e.g., [3, 7, 14, 16, 28, 33, 35] and refer-
ences therein.

In this paper, we will investigate the data assimilation for the 3D Leray-α model
using local observables on any two components of the three-dimensional velocity
field, and without any information of the rest component. In the case of periodic
boundary conditions, besides Gevrey assumption of solution, the key ingredient is
a spectral inequality due to Egidi and Veselić [19, 20] which bounds the L2 norm
over the full domain in terms of that over a sub-domain, enabling us to use the local
data obtained from the sub-domain for global assimilation of the system. In the
case of no-slip boundary conditions, we require the sub-domains occupies almost
the full domain. In what follows, we will explain the problem to be investigated.
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Suppose that the evolution of u is governed by the three-dimensional Leray-α
model [17, 25], subject to periodic boundary conditions on Ω0 = [0, L]3 or no-slip
boundary conditions (u = ∆u = 0 on ∂Ω0) if Ω0 is a C2 bounded domain in R3

∂v

∂t
− ν∆v + (u · ∇)v +∇p = f,

∇ · u = ∇ · v = 0,

v = u− α2∆u,

(1.1)

on the interval [0,∞), where the initial data v(0) = v0 is unknown. In the Leray-α
model (1.1), u represents the velocity of the fluid, called the filtered velocity and
α > 0 is a scale parameter with dimension of length, p is the pressure, and f is a
body force which is assumed, for simplicity, to be time-independent.

We will study a data assimilation algorithm for three-dimensional Leray-α model
on the domain Ω0 using local observables on a sub-domain on Ω. Observations are
limited to an open set Ω compactly contained in Ω0. Here, the reference solution
is given by a solution v of (1.1) for which the initial data is missing. We have the
following type 1 local interpolant operator (see [12] for more details) which satisfies
the following property:

‖Ih,Ω(ϕ)− ϕ‖2L2(Ω) ≤ c0h
2‖ϕ‖2H1(Ω0). (1.2)

From the bounded property of the interpolant operator, the local interpolant op-
erator Ih,Ω : L2(Ω0) → L2(Ω) satisfies the following estimate for some positive
constant c1

‖Ih,Ω(ϕ)‖2L2(Ω) ≤ c1‖ϕ‖
2
L2(Ω0). (1.3)

For any positive integral N , we denote Ih,N,Ω = PNIh,Ω where PN is the projection
onto the first N eigenvectors of the Stokes operator (see in Section 2)

Periodic boundary conditions case. We now follow the approach in [12]
to introduce the following data assimilation algorithm for finding an approximate
solution zN of the unknown reference solution v: Given information about a ref-
erence solution v by using the interpolant operator Ih,N,Ω, we look for a function
zN = (z1

N , z
2
N , z

3
N ) satisfies the same boundary conditions for v = (v1, v2, v3), and

the following system

∂z1
N

∂t
− ν∆z1

N + PN (wN · ∇)z1
N + PN∂x1q = PNf1 − µIh,N,Ω(z1

N − v1),

∂z2
N

∂t
− ν∆z2

N + PN (wN · ∇)z2
N + PN∂x2

q = PNf2 − µIh,N,Ω(z2
N − v2),

∂z3
N

∂t
− ν∆z3

N + PN (wN · ∇)z3
N + PN∂x3

q = PNf3,

∇ · wN = ∇ · zN = 0,

zN = wN − α2∆wN ,

zN (0) = 0.

(1.4)

Here the samples used to drive zN are confined to the sub-domain Ω ⊂ Ω0 and
zN lives in span(φ1, . . . , φN ). ν and f are the same kinematic viscosity parameter
and forcing term from (1.1), q is a modified pressure, and µ > 0 is a relaxation
(nudging) parameter. The purpose of µ is to force the coarse spatial scales of zN
toward those of the reference solution v.

We will show that the data assimilation equation (1.4) has a unique solution zN ,
and within any given tolerance ε, under suitable conditions (which are provided by
Ω, ν, the Grashof number G and ε) of N,µ (sufficiently large) and h (sufficiently
small), this approximate solution will capture the long time properties of the ref-
erence solution v of the three-dimensional Leray-α equations. Here, we have to
require the solution v and consequently the forcing f to be uniformly in the L2
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based Gevrey class, i.e., v ∈ L∞((0,∞);D(eσA
1/2

)), with σ sufficiently large as

determined by Ω, ν,G and ε. We will recall the definition of D(eσA
1/2

) in Section
2.

The approximate convergence for local observations is given in the following
theorem.

Theorem 1.1. Let Ω be an open set in [0, L]3. Let v be the weak solution to (1.1)
for some v0 ∈ H and f ∈ H. Assume additionally that

C = lim sup
t→∞

‖v(t)‖
D(eσA

1/2
)

= lim sup
t→∞

|eσA
1/2

v| <∞. (1.5)

Let ε > 0 be given. If

σ >
CΩL

2π
, (1.6)

N ≥ max

{(
L

2πσ

)3

ln3

(
cM2

1CΩC2

α3ν3λ2
1L

3

)
,

(
−α2M2

0 +
√
α−4M4

0 + 2−1/4c−1α−3/2M0M1

23/4α−3/2M0M1

)4

− 1

 , (1.7)

µ =
cM2

1CΩe
CΩ

3√
N

α3ν2λ1
, (1.8)

h ≤
(

ν

2c0µ

)1/2

min
{
λ

1/2
1 , 2−1/2

}
, (1.9)

then there exists a unique global solution zN to (1.4) such that

|zN (t)− v(t)| < ε

for sufficiently large t.
Here, CΩ presents a positive constant in (2.10) which is independent of N , the

constants M0,M1 are defined the upper bounds for u (see (2.6)-(2.7)).

An exact convergence result follows as a corollary of Theorem 1.1. In particular,
we can construct a vector field z that converges to v as t → ∞ in an appropriate
average by increasing the sample size in Theorem 1.1

Corollary 1.2. Under the assumptions of Theorem 1.1, there exists a vector field
z ∈ L∞(0,∞;H) ∩ L2(0, T ;V ) for all T > 0 so that z is a limit (in an appropriate
sense) of a sequence of vector fields satisfying (1.4) and for every measurable set U
we have

lim
t→∞

∫
U

(z(x, t)− v(x, t))dx = 0,

at an exponential rate.

Remark 1.1. As in [12] for the case of two dimensional Navier-Stokes equations,
we do not know the precise dynamics of z since we have not obtained a governing
system for z via the limiting process. This comes from the term µεIhε,Nε,Ω(v) can
go to ∞ as µε →∞.

No-slip boundary conditions case. Now we consider the data assimilation
problem for the three-dimensional Leray-α model in the case of no-slip boundary
conditions. The interpolant operators are localized but we require the sub-domains
occupies almost the full domain. This requirement enables us to use a helpful
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inequality (see (2.10) below) as same as in the smooth boundary case in [9, Lemma
1]. The variant of the local data assimilation equation is given by

∂z1

∂t
− ν∆z1 + (w · ∇)z1 + ∂x1q = f1 − µIh,Ω(z1 − v1),

∂z2

∂t
− ν∆z2 + (w · ∇)z2 + ∂x2

q = f2 − µIh,Ω(z2 − v2),

∂z3

∂t
− ν∆z3 + (w · ∇)z3 + ∂x3

q = f3,

∇ · w = ∇ · z = 0,

z = w − α2∆w,

z(0) = 0.

(1.10)

We have the following result about the exact convergence for large sub-domains.

Theorem 1.3. Let Ω be a sub-domain of Ω0. Let v be the solution to (1.1) for
some v0 ∈ H and f ∈ H.

If

µ ≥ cν, (1.11)

h ≤
(

ν

2c0µ

)1/2

min
{
λ

1/2
1 , 1

}
(1.12)

and

dH(∂Ω, ∂Ω0) ∼ α3/2νλ
1/2
1

M1
(1.13)

then there exists a unique solution z of (1.10) satisfying

|z(t)− v(t)| → 0, as t→∞ (1.14)

at an exponential rate, where dH denotes the Hausdorff distance.

The rest of the paper is organized as follows. In Section 2, for the conve-
nience of the reader, we recall the functional setting and some results on the
three-dimensional Leray-α model which will be used in the proof of main results.
Section 3 is devoted to proving Theorem 1.1, Corollary 1.2, and Theorem 1.3. In
the Appendix, we give the proof of Theorem 2.1 for the case of no-slip boundary
conditions.

2. Preliminaries

We begin by defining a suitable domain Ω0 and space V of smooth functions
which satisfy each type of boundary conditions.

• In the periodic boundary condition case: Ω0 = [0, L]3, we denote by V the
set of all vector valued trigonometric polynomials defined in Ω0, which are
divergence-free and have average zero.

• In the homogeneous Dirichlet boundary condition case: Let Ω0 be an open,
bounded and connected domain with C2 boundary. We denote by V the set
of all C∞ vector fields from Ω0 to R3 that are divergence free and compactly
supported.

Then we denote by H and V the closures of V in the L2(Ω0)3 and H1(Ω0)3, re-
spectively. Then H and V are Hilbert spaces with inner products given by

(u, v) =

3∑
i=1

∫
Ω0

uividx and ((u, v)) =

3∑
i,j=1

∫
Ω0

∂jui∂jvidx,

respectively, and the associated norms

|u| = (u, u)1/2 and ‖u‖ = ((u, u))1/2.
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With the Leray projector P, we denote the Stokes operator A = −P∆ with
domain D(A) = H2(Ω0)3 ∩ V . In the case of periodic boundary conditions, A =
−∆|D(A). The Stokes operator A is a positive self-adjoint operator with compact
inverse. Hence there exists a complete orthonormal set of eigenfunctions {φj}∞j=1 ⊂
H, such that Aφj = λjφj and

0 < λ1 ≤ λ2 ≤ · · · , λj →∞ as j →∞.

Moreover, we have λj ∼ λ−1
1 j2/3.

We have the following versions of the Poincaré inequalities:

‖u‖2V ′ ≤ λ−1
1 |u|2, ∀u ∈ H, (2.1)

|u|2 ≤ λ−1
1 ‖u‖2, ∀u ∈ V. (2.2)

For all v = u− α2∆u, v ∈ H, we have

|v|2 = (u− α2∆u, u− α2∆u)

= (u, u)− 2α2(u,∆u) + α4(∆u,∆u)

= |u|2 + 2α2‖u‖2 + α4|∆u|2.

Thus,

|u| ≤ |v|, ‖u‖ ≤ 2−1/2α−1|v|, |∆u| ≤ α−2|v|. (2.3)

For u, v, w ∈ V we have that

〈(u · ∇)v, w〉V ′,V = −〈(u · ∇)w, v〉V ′,V ,

and consequently

〈(u · ∇)v, v〉V ′,V = 0. (2.4)

Furthermore,

| 〈(u · ∇)v, w〉V ′,V | ≤ c‖u‖
1/2‖u‖1/2H2 |v|‖w‖, ∀u ∈ D(A), v ∈ H,w ∈ V. (2.5)

For external force f ∈ H, we define the Grashof number in three dimension as
follows

G =
|f |

ν2λ
3/4
1

.

We need the following result for the solutions to the Leray-α model (1.1) whose
proof is given in the Appendix.

Theorem 2.1. Let f ∈ H and v0 ∈ H. Then the system (1.1) with the initial
data v(0) = v0 subject to both periodic boundary conditions and no-slip boundary
conditions, has a unique weak solution v that satisfies

v ∈ C([0,∞);H) ∩ L2
loc(0,∞;V ),

dv

dt
∈ L2

loc(0,∞;V ′).

Furthermore, the associated semigroup S(t) : H → H has a global attractor A in
H. Additionally, for any v ∈ A, we have

|v| ≤M0 :=

√
2νG

λ
1/4
1

, (2.6)

‖v‖ ≤M1 := e
|f|2
2ν

(
1 +

2

νλ1
+

2c̃

να3λ1

)1/2

νλ
1/2
1 G, (2.7)

for some dimensionless constant c̃ > 0.
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Now we recall about L2 Gevrey classes. Let ϕ ∈ H then

ϕ(x) =
∑

k∈Z3\{0}

ϕ̂ke
2πi kL ·x,

where

ϕ̂k =

∫
Ω0

ϕ(y)e−2πi kL ·ydy.

On the periodic box Ω0 = [0, L]3, with σ > 0, the Gevrey space D(eσA
s

) is the set
of elements of H satisfying

‖ϕ‖2D(eσAs ) := L3
∑
k∈Z3

e2σ|2π kL |
2s

|ϕ̂k|2 <∞.

Note that for Gevrey class forcing, a solution v to (1.1) becomes and remains Gevrey
regular for positive times (see [36, Theorem 1.3]. More precisely, for v0 ∈ V and

f ∈ D(eσA
1/2

) then v ∈ D(A1/2eσA
1/2

) and then (1.5) is satisfied. However, here

we only assume v ∈ D(eσA
/2

). Then from condition (1.5), we have

lim sup
t→∞

|v̂k(t)|2 ≤ C
2

L3
e−4πσ

|k|
L . (2.8)

Now, we recall some spectral inequalities applying to thick sets (see [19, 20]). A
set S is thick in R3 if there exists γ ∈ (0, 1] and a = (a1, a2, a3) where ai > 0 so
that for every x ∈ R3,

|(S + x) ∩ ([0, a1]× [0, a2]× [0, a3])| ≥ γa1a2a3.

Any open set in [0, L]3 which is periodically extended to R3 is thick. We recall the
spectral theorem on the torus.

Theorem 2.2. [20] Let ϕ ∈ L2(Ω0) where Ω0 denotes the torus [0, L1]× [0, L2]×
[0, L3]. Assume supp ϕ̂ ⊂ J where J is a rectangle in R3 with sides parallel to
coordinate axes and of length b1, b2 and b3. Set b = (b1, b2, b3). Let S ⊂ R3 be a
(γ, a)-thick set with a = (a1, a2, a3) so that 0 < ai < 2πLi for i = 1, 2, 3. Then

‖ϕ‖L2(Ω0) ≤ Cγ−ca·b−
19
2 ‖ϕ‖L2(S∩Ω0),

where c is a numerical constant and a · b stands for the Euclidean inner product in
R3.

We note that here, for any ϕ ∈ span(φ1, . . . , φN ), there exists K ∼ 3
√
N such

that ϕ̂ is supported in [−K,K]3. Then similar to [12], from Theorem 2.2 we have
the following inequality: If ϕ = (ϕ1, ϕ2, ϕ3) ∈ span(φ1, . . . , φN ), then

‖ϕi‖2L2(Ω0) ≤ CΩe
CΩ

3√
N‖ϕi‖2L2(Ω), for i = 1, 2, 3. (2.9)

where CΩ presents a positive constant which is independent of N .
We define λ1(Ω0\Ω) is the first eigenvalue of the Laplace operator on the domain

Ω0 \ Ω with no-slip boundary conditions, i.e.,

λ1(Ω0 \ Ω) := inf

{∫
Ω0\Ω

|∇ϕ|2dx | ∀ϕ ∈ H1
0 (Ω0 \ Ω) with

∫
Ω0\Ω

|ϕ|2dx = 1

}
.

Then we have the following lemma whom proof is same as in [9, Lemma 1] (one
can see in [34]).

Lemma 2.3. Let Ω and Ω0 be bounded domains with smooth boundary so that
Ω ⊂ Ω0. For any ε > 0, there exists `0 = `0(ε) > 0 so that for ` > `0, the following
inequality holds∫

Ω0

(
|∇ϕ|2 + `χΩ|ϕ|2

)
dx ≥ (λ1(Ω0 \ Ω)− ε)

∫
Ω0

|ϕ|2dx, (2.10)
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for ϕ ∈ H1
0 (Ω0).

We note that here

λ1(Ω0 \ Ω) ≥ C

(
sup

x∈Ω0\Ω
dist(x, ∂Ω0)

)−2

. (2.11)

3. Proof of main theorems

3.1. Proof of Theorem 1.1. We will prove this theorem in two steps.
Step 1. Global existence of zN . We first prove that zN exists globally. To

do this, we only need prove that zN is uniformly bounded in H for h is sufficiently
small.

Multiplying (1.4)1, (1.4)2 and (1.4)3 by z1
N , z

2
N and z3

N respectively, then inte-
grating over Ω0 we obtain

1

2

d

dt
|zN |2 + ν‖zN‖2 = (f, zN ) + µ

2∑
i=1

(
Ih,N,Ω(vi), z

i
N

)
− µ

2∑
i=1

(
Ih,N,Ω(ziN ), ziN

)
.

(3.1)
Using the Cauchy inequality and the Poincaré inequality (2.1), we obtain

|(f, zN )| ≤ 1

νλ1
|f |2 +

ν

4
‖zN‖2. (3.2)

Using the Cauchy inequality and the Poincaré inequality (2.1), the fact that vN is
projected onto the first N modes and (1.3), we obtain

µ

2∑
i=1

(
Ih,N,Ω(vi), z

i
N

)
≤ µ2

νλ1

2∑
i=1

‖Ih,N,Ω(vi)‖2L2(Ω) +
ν

4
‖zN‖2

≤ µ2

νλ1

2∑
i=1

‖Ih,Ω(vi)‖2L2(Ω) +
ν

4
‖zN‖2

≤ c1µ
2

νλ1

(
‖v1‖2L2(Ω0) + ‖v2‖2L2(Ω0)

)
+
ν

4
‖zN‖2

≤ c1µ
2

νλ1
|v|2 +

ν

4
‖zN‖2. (3.3)

Using the Cauchy inequality, (1.2) and the Poincaré inequality (2.2), we obtain

−µ
2∑
i=1

(
Ih,N,Ω(ziN ), ziN

)
= −µ

2∑
i=1

(Ih,Ω(ziN ), ziN )

= −µ
2∑
i=1

(
Ih,Ω(ziN )− χΩz

i
N , z

i
N

)
− µ

2∑
i=1

‖ziN‖2L2(Ω)

≤ µ
2∑
i=1

‖Ih,Ω(ziN )− ziN‖L2(Ω)‖ziN‖L2(Ω) − µ
2∑
i=1

‖ziN‖2L2(Ω)

≤ µc0h
2

2λ1

2∑
i=1

‖ziN‖2H1(Ω0) −
µ

2

2∑
i=1

‖ziN‖2L2(Ω). (3.4)

If h is sufficiently small so that µc0h
2

2λ1
≤ ν

4 , we deduce from (3.4) that

− µ
2∑
i=1

(
Ih,N,Ω(ziN ), ziN

)
≤ ν

4
‖zN‖2 −

µ

2

2∑
i=1

‖ziN‖2L2(Ω). (3.5)
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Substituting estimates (3.2), (3.3) and (3.5) into (3.1), we deduce that

1

2

d

dt
|zN |2 +

ν

4
‖zN‖2 ≤

1

νλ1
|f |2 +

c1µ
2

νλ1
|v|2 − µ

2

2∑
i=1

‖ziN‖2L2(Ω).

Using the Poincaré inequality (2.2) and dropping the last term, we have

d

dt
|zN |2 +

νλ1

2
|zN |2 ≤

2

νλ1
|f |2 +

2c1µ
2

νλ1
|v|2. (3.6)

Because the right hand side is uniformly bounded in t, using the Gronwall inequality
for (3.6), we have a uniform in time and independent of N bound on |zN |.

Step 2. Approximate convergence. Let ε be given and we set ε̄ = ενλ1

8 . Let
v and zN be as in the statement of Theorem 1.1. Note that for any N ∈ N, PNv
satisfies

∂

∂t
PNv1 − ν∆(PNv1) + PN (PNu · ∇)v1 + PN∂x1p = PNf1 − PN (QNu · ∇)v1,

∂

∂t
PNv2 − ν∆(PNv2) + PN (PNu · ∇)v2 + PN∂x2p = PNf2 − PN (QNu · ∇)v2,

∂

∂t
PNv3 − ν∆(PNv3) + PN (PNu · ∇)v3 + PN∂x3

p = PNf3 − PN (QNu · ∇)v3,

(3.7)
where QN = I − PN . Let δ = zN − PNv, η = wN − PNu, we have δ = η − α2∆η.
Subtracting (1.4) from (3.7) to obtain

∂δ1
∂t
− ν∆δ1 + PN (wN · ∇)z1

N − PN (PNu · ∇)v1 + PN∂x1
q

= −µIh,N,Ω(δ1) + µIh,N,Ω(QNv1) + PN (QNu · ∇)v1,
∂δ2
∂t
− ν∆δ2 + PN (wN · ∇)z2

N − PN (PNu · ∇)v2 + ∂x2q

= −µIh,N,Ω(δ2) + µIh,N,Ω(QNv2) + PN (QNu · ∇)v2,
∂δ3
∂t
− ν∆δ3 + PN (wN · ∇)z3

N − PN (PNu · ∇)v2 + ∂x3
q

= −µIh,N,Ω(δ3) + µIh,N,Ω(QNv3) + PN (QNu · ∇)v3.

(3.8)

Multiplying the first, the second and the third equation in (3.8) by δ1, δ2 and δ3
respectively, then integrating over Ω0, summing up and using (2.4), we obtain

1

2

d

dt
|δ|2 + ν‖δ‖2 + ((η · ∇)PNv, δ)− ((QNu · ∇)v, δ)− ((PNu · ∇)QNv, δ)

=− µ
2∑
i=1

(Ih,N,Ω(δi), δi) + µ

2∑
i=1

(Ih,N,Ω(QNvi), δi), (3.9)

where we have used the fact that

PN (wN · ∇)zN − PN (PNu · ∇)v = PN (PNu · ∇)δ + PN (η · ∇)δ + PN (η · ∇)PNv.

Using the Cauchy inequality and (1.2), we have

−µ
2∑
i=1

(Ih,N,Ω(δi), δi) = µ

2∑
i=1

(χΩδi − Ih,Ω(δi), δi)− µ
2∑
i=1

‖δi‖2L2(Ω)

≤ µ
2∑
i=1

‖Ih,Ω(δi)− δi‖L2(Ω) ‖δi‖L2(Ω) − µ
2∑
i=1

‖δi‖2L2(Ω)

≤ µc0h2
2∑
i=1

‖δi‖2 −
3µ

4

2∑
i=1

‖δi‖2L2(Ω)
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≤ µc0h2‖δ‖2 − 3µ

4

2∑
i=1

‖δi‖2L2(Ω). (3.10)

We now have

((η · ∇)PNv, δ) =

3∑
i=1

I1i +

3∑
i=1

I2i +

3∑
i=1

I3i, (3.11)

where

I1i = (ηi∂xiPNv1, δ1), I2i = (ηi∂xiPNv2, δ2), I3i = (ηi∂xiPNv3, δ3), i = 1, 2, 3.

By the Hölder inequality, the Agmon inequality, inequalities (2.3) and the Cauchy
inequality we have

3∑
i=1

I1i ≤
3∑
i=1

‖ηi‖L∞(Ω0)‖∂xiPNv1‖L2(Ω0)‖δ1‖L2(Ω0)

≤ c
3∑
i=1

‖ηi‖1/2H1(Ω0)‖ηi‖
1/2
H2(Ω0)‖∂xiPNv1‖L2(Ω0)‖δ1‖L2(Ω0)

≤ cα−3/2
3∑
i=1

‖δi‖L2(Ω0)‖∂xiPNv1‖L2(Ω0)‖δ1‖L2(Ω0)

≤ cα−3/2λ
−1/2
1

3∑
i=1

‖∇δi‖L2(Ω0)‖∂xiPNv1‖L2(Ω0)‖δ1‖L2(Ω0)

≤ ν

8

3∑
i=1

‖∇δi‖2L2(Ω0) + cα−3ν−1λ−1
1

3∑
i=1

‖∂xiPNv1‖2L2(Ω0)‖δ1‖
2
L2(Ω0).

Hence,
3∑
i=1

I1i ≤
ν

16
‖δ‖2 + cα−3ν−1λ−1

1 ‖∇v1‖2L2(Ω0)‖δ1‖
2
L2(Ω0). (3.12)

By the same as above we have

3∑
i=1

I2i ≤
ν

16
‖δ‖2 + cα−3ν−1λ−1

1 ‖∇v2‖2L2(Ω0)‖δ2‖
2
L2(Ω0), (3.13)

and
2∑
i=1

I3i ≤
ν

16
‖δ3‖2 + cα−3ν−1λ−1

1

2∑
i=1

‖∂xiv3‖2L2(Ω0)‖δi‖
2
L2(Ω0)

≤ ν

16
‖δ3‖2 + cα−3ν−1λ−1

1 ‖∇v3‖2L2(Ω0)

(
‖δ1‖2L2(Ω0) + ‖δ2‖2L2(Ω0)

)
. (3.14)

For the last term, integrating by parts and using ∇ · η = ∇ · δ = 0, we have

I33 = (η3∂x3PNv3, δ3) = −(PNv3, ∂x3(η3δ3))

= −(PNv3, δ3∂x3
η3)− (PNv3, η3∂x3

δ3)

= (PNv3, δ3(∂x1
η1 + ∂x2

η2)) + (PNv3, η3(∂x1
δ1 + ∂x2

δ2)).

Integrating by parts once again and using the Hölder inequality, the Agmon in-
equality, inequalities (2.3) and the Cauchy inequality we deduce that

(PNv3, δ3(∂x1
η1 + ∂x2

η2)) = −
2∑
i=1

(δ3∂xiPNv3, ηi)−
2∑
i=1

(PNv3∂xiδ3, ηi)

≤
2∑
i=1

[
‖δ3‖L2(Ω0)‖∂xiPNv3‖L2(Ω0) + ‖PNv3‖L2(Ω0)‖∂xiδ3‖L2(Ω)

]
‖ηi‖L∞(Ω0)
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≤ c
2∑
i=1

[
‖δ3‖L2(Ω0)‖∂xiv3‖L2(Ω0) + ‖v3‖L2(Ω0)‖∂xiδ3‖L2(Ω)

]
‖ηi‖1/2H1(Ω0)‖ηi‖H2(Ω0)

≤ cα− 3
2λ
− 1

2
1

2∑
i=1

[
‖∇δ3‖L2(Ω0)‖∂xiv3‖L2(Ω0) + ‖∇v3‖L2(Ω0)‖∂xiδ3‖L2(Ω0)

]
‖δi‖L2(Ω0).

Hence, by the Cauchy inequality one obtains that

(PNv3, δ3(∂x1η1 + ∂x2η2))

≤ ν

32
‖∇δ3‖2L2(Ω0) + cα−3λ−1

1 ν−1‖∇v3‖2L2(Ω0)

(
‖δ1‖2L2(Ω0) + ‖δ2‖2L2(Ω0)

)
. (3.15)

By similarly, we have

(PNv3, η3(∂x1δ1 + ∂x2δ2))

≤ ν

32
‖∇δ3‖2L2(Ω0) + cα−3λ−1

1 ν−1‖∇v3‖2L2(Ω0)

(
‖δ1‖2L2(Ω0) + ‖δ2‖2L2(Ω0)

)
. (3.16)

From (3.15) and (3.16) then we have

I33 ≤
ν

16
‖∇δ3‖2L2(Ω0) + cα−3λ−1

1 ν−1‖∇v3‖2L2(Ω0)

(
‖δ1‖2L2(Ω0) + ‖δ2‖2L2(Ω0)

)
.

(3.17)
Substituting estimates (3.12), (3.13), (3.14) and (3.17) into (3.11) we infer that

((η · ∇)PNv, δ) ≤
ν

4
‖δ‖2 + cα−3λ−1

1 ν−1‖v‖2
(
‖δ1‖2L2(Ω0) + ‖δ2‖2L2(Ω0)

)
. (3.18)

Using (2.9) and (2.7), we obtain from (3.18) that

((η · ∇)PNv, δ) ≤
ν

4
‖δ‖2 +

cM2
1CΩe

CΩ
3√
N

α3νλ1

(
‖δ1‖2L2(Ω) + ‖δ2‖2L2(Ω)

)
. (3.19)

Combining (2.5), (2.3), (2.6), (2.7) and the Cauchy inequality, we obtain

((QNu · ∇)v, δ) + ((PNu · ∇)QNv, δ)

≤ c
(
‖QNu‖1/2|AQNu|1/2|v|+ ‖PNu‖1/2|APNu|1/2|QNv|

)
‖δ‖

≤ c
(
λ
−1/4
N+1 |Au||v|+ λ

−1/2
N+1 ‖u‖

1/2|Au|1/2‖v‖
)
‖δ‖

≤ c
(
λ
−1/4
N+1α

−2|v|2 + λ
−1/2
N+1 2−1/4α−3/2|v|‖v‖

)
‖δ‖

≤ c
(
λ
−1/4
N+1α

−2M2
0 + λ

−1/2
N+1 2−1/4α−3/2M0M1

)
‖δ‖

≤ c2
(
λ
−1/4
N+1α

−2M2
0 + λ

−1/2
N+1 2−1/4α−3/2M0M1

)2

+
ν

4
‖δ‖2. (3.20)

The last term is bounded uniformly in time for sufficiently large times by our
assumption on Gevrey bounds for v (see (1.5) and then (2.8)) as following estimate

µ

2∑
i=1

(Ih,N,Ω(QNvi), δi) ≤ µ
2∑
i=1

‖Ih,Ω(QNvi)‖L2(Ω)‖δi‖L2(Ω)

≤ µc1/21

2∑
i=1

‖QNvi‖L2(Ω0)‖δi‖L2(Ω)

≤ c1µ|QNv|2 +
µ

4
(‖δ1‖2L2(Ω) + ‖δ2‖2L2(Ω))

≤ c1µ
∑

3√
N≤|k|

|v̂k|2 +
µ

4
(‖δ1‖2L2(Ω) + ‖δ2‖2L2(Ω))
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≤ c1µ
∑

3√
N≤|k|

C2

L3
e−4πσ

|k|
L +

µ

4
(‖δ1‖2L2(Ω) + ‖δ2‖2L2(Ω)).

(3.21)

Now, substituting (3.10), (3.19), (3.20) and (3.21) into (3.9) to deduce that

1

2

d

dt
|δ|2 +

ν

2
‖δ‖2 ≤ µc0h2‖δ‖2 +

(
cM2

1CΩe
CΩ

3√
N

α3ν2λ1
− µ

2

)
(‖δ1‖2L2(Ω) + ‖δ2‖2L2(Ω))

+ c2
(
λ
−1/4
N+1α

−2M2
0 + λ

−1/2
N+1 2−1/4α−3/2M0M1

)2

+ c1µ
∑

3√
N≤|k|

C2

L3
e−4πσ

|k|
L . (3.22)

Chose N large enough satisfying condition (1.7), we have

c2
(
λ
−1/4
N+1α

−2M2
0 + λ

−1/2
N+1 2−1/4α−3/2M0M1

)2

≤ ε̄

2
.

From condition (1.8) on µ and (1.9) on h, then from (3.22) we have

1

2

d

dt
|δ|2 +

ν

4
‖δ‖2 ≤ c1µ

∑
3√
N≤|k|

C2

L3
e−4πσ

|k|
L +

ε̄

2
.

From condition (1.8) on µ then

c1µ
∑

3√
N≤|k|

C2

L3
e−4πσ

|k|
L =

cM2
1CΩ

α3ν2λ1

∑
3√
N≤|k|

C2

L3
eCΩ

3√
N−4πσ

|k|
L

=
cM2

1CΩC2

α3ν2λ1L3

∑
3√
N≤|k|

eCΩ
3√
N−2πσ

|k|
L e−2πσ

|k|
L

≤ cM2
1CΩC2

α3ν2λ1L3e2πσ
3√
N
L

∑
3√
N≤|k|

eCΩ
3√
N−2πσ

|k|
L .

Here we have used the fact that∑
3√
N≤|k|

eCΩ
3√
N−2πσ

|k|
L e−2πσ

|k|
L ≤ 1

e2πσ
3√
N
L

∑
3√
N≤|k|

eCΩ
3√
N−2πσ

|k|
L .

Taking σ satisfying (1.6) we have∑
3√
N≤|k|

eCΩ
3√
N−2πσ

|k|
L ≤ 1.

Hence
1

2

d

dt
|δ|2 +

ν

4
‖δ‖2 ≤ ε̄ (3.23)

provided N is large enough satisfying (1.7), i.e.,

N ≥
(

L

2πσ

)3

ln3

(
cM2

1CΩC2

α3ν2λ1L3ε̄

)
.

Using (2.2), we obtain
d

dt
|δ|2 +

ν

2
λ1|δ|2 ≤ 2ε̄.

Hence, by using Gronwall inequality and the fact that ε̄ = ενλ1

8 , we deduce that

|δ(t)|2 ≤ |v0|2e−νλ1t/2 +
4ε̄

νλ1
(1− 2−νλ1t/2) ≤ |v0|2e−νλ1t/2 +

ε

2
. (3.24)



THREE-DIMENSIONAL LERAY-α MODEL 12

Note that

|v(t)− zN (t)|2 ≤ |δ(t)|2 + |QNv(t)|2 ≤ |v0|2e−νλ1t/2 +
3ε

4
, (3.25)

provided N is taken large enough so that

|QNv|2 ≤
ε

4
.

Thus,

|v(t)− zN (t)| < ε,

for t sufficiently large.

Remark 3.1. In Theorem 1.1 we work with the periodic boundary conditions
since to proving this result we have to use the Gevrey property of solution and
a spectral inequality in the case of periodic boundary conditions. We note that
here we also have the spectral inequality for the no-slip boundary conditions (see
[15, Theorem 3.1]). However, in order to overcome the difficulty concerning with
QNv (see (3.21)), we need to assume that v̂N = (v, φN ) is decay sufficiently fast as

N →∞. More precisely, we need v̂N ∼ e−C
3√
N for some positive constant C. But

we do not know when this holds for the case of no-slip boundary conditions. This
is true for the case of periodic boundary conditions.

Remark 3.2. The results in Theorem 1.1 also hold for the local interpolant oper-
ators of type 2 satisfying (see [12])

‖Ih,Ω(ϕ)− ϕ‖2L2(Ω) ≤ c
2
0

(
h2‖ϕ‖2H1(Ω0) + h4‖ϕ‖2H2(Ω0)

)
, ∀ϕ ∈ H2(Ω0). (3.26)

Indeed, we have the same proof, with a note that by using (3.26) then (3.4) is
replaced by the following estimate

− µ
2∑
i=1

(
Ih,N,Ω(ziN ), ziN

)
= −µ

2∑
i=1

(
Ih,Ω(ziN )− χΩz

i
N , z

i
N

)
− µ

2∑
i=1

‖ziN‖2L2(Ω)

≤ µ
2∑
i=1

‖Ih,Ω(ziN )− ziN‖L2(Ω)‖ziN‖L2(Ω) − µ
2∑
i=1

‖ziN‖2L2(Ω)

≤ µ

2

2∑
i=1

c20

(
h2‖ziN‖2H1(Ω0) + h4‖ziN‖2H2(Ω0)

)
− µ

2

2∑
i=1

‖ziN‖2L2(Ω)

≤ µc20h
2(1 + h2λN+1)

2
‖zN‖2 −

µ

2

2∑
i=1

‖ziN‖2L2(Ω). (3.27)

And (3.10) is similarly as (3.27) replaced by

−µ
2∑
i=1

(Ih,N,Ω(δi), δi) = µ

2∑
i=1

(χΩδi − Ih,Ω(δi), δi)− µ
2∑
i=1

‖δi‖2L2(Ω)

≤ µc20h(1 + h2λN+1)‖δ‖2 − 3µ

4

2∑
i=1

‖δi‖2L2(Ω).
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3.2. Proof of Corollary 1.2. From (3.24) in the proof of Theorem 1.1, we have

|zN (t)| ≤ |zN (t)− PNv|+ |PNv| < |v0|e−
νλ1t

4 + ε+ |v|.

This implies that zN is bounded in L∞(0, T ;H) uniformly in µ and N . Moreover,
from (3.23) one can see that zN is bounded in L2(0, T ;V ) uniformly in µ and N .
Thus, for any 0 < ε� 1 we can construct a solution zNε for parameters Nε, µε and
hε to (1.4) with the usual energy class bounds holding independent of Nε and µε,
provided we have knowledge of v at all points in Ω. As ε→ 0, we have Nε, µε →∞
while hε → 0. By the Banach-Alaoglu theorem, there exists z so that zNε → z in
the weak-star topology on L∞(0, T ;H) for every T > 0 as well as the weak topology
on L2(0, T ;V ).

Let U be a fixed measurable set and let ∆ > 0 be a given time scale. For any t,
we have∫ t+∆

t

∫
U

(v − z)dxds =

∫ t+∆

t

∫
U

(v − zNε)dxds+

∫ t+∆

t

∫
U

(zNε − z)dxds.

Using (3.25) in the proof of Theorem 1.1, we have

∫ t+∆

t

∫
U

(v − zNε)dxds ≤ |U |1/2
(

sup
s∈[t,t+∆]

|v − zNε |2(s)

)1/2

≤ |U |1/2
(

sup
s∈[t,t+∆]

|v0|2e−
νλ1s

2 +
3

4
ε

)1/2

.

Additionally, because of ∗-weak convergence in L∞L2, we have∣∣∣∣∣
∫ t+∆

t

∫
U

(zNε − z)(x, s)dxds

∣∣∣∣∣→ 0.

Thus, we can choose ε so that ε < e−t and the above quantity is smaller than e−t.
So that, we obtain the advertised exponentially decaying bound.

Now we prove the second item in Corollary 1.2. By the Lebesgue differentiation
theorem, for almost t we have

lim
∆t→0

1

∆t

∫ t+∆t

t

∫
U

(v − z)(x, s)dxds =

∫
U

(v − z)(x, t)dx,

where the time-scale ∆t is depended on t. Denote S the set of times for which this
holds. Then |Sc| = 0 where |.| denotes Lebesgue measure on the line. Fix t > 0.
Then for ∆t sufficiently small we have∫

U

(v − z)(x, t)dx ≤ 1

∆t

∫ t+∆t

t

∫
U

(v − z)(x, s)dxds+ e−t

≤ 1

∆t

∫ t+∆t

t

∫
U

(v − zNε)(x, s)dxds+
1

∆t

∫ t+∆t

t

∫
U

(zNε − z)(x, s)dxds+ e−t.

The first two terms can be made exponentially small that have been already ex-
plained. Because this holds for all t ∈ S, we obtain

χS(t)

∫
U

(v − z)(x, t)dx→ 0,

at an exponential rate. Redefining v to equal u on Sc completes the proof.
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3.3. Proof of Theorem 1.3. We prove in two steps as follows.
Step 1. Existence and uniqueness of z. The existence of z is based on the
Galerkin approximation method. We give some a priori estimates for z.

Multiplying (1.10)1, (1.10)2 and (1.10)3 by z1, z2 and z3 respectively, then inte-
grating over Ω0 we obtain

1

2

d

dt
|z|2 + ν‖z‖2 = (f, z) + µ

2∑
i=1

(Ih,Ω(vi), zi)− µ
2∑
i=1

(Ih,Ω(zi), zi) . (3.28)

Using the Cauchy inequality and the Poincaré inequality (2.1), we obtain

|(f, z)| ≤ 1

νλ1
|f |2 +

ν

4
‖z‖2. (3.29)

Using the Cauchy inequality and the Poincaré inequality (2.1) and (3.26), we obtain

µ

2∑
i=1

(Ih,Ω(vi), zi) ≤
µ2

νλ1

2∑
i=1

‖Ih,Ω(vi)‖2L2(Ω) +
ν

4
‖z‖2

≤ c1µ
2

νλ1

(
‖v1‖2L2(Ω0) + ‖v2‖2L2(Ω0)

)
+
ν

4
‖z‖2

≤ c1µ
2

νλ1
|v|2 +

ν

4
‖z‖2. (3.30)

Using the Cauchy inequality, (1.2) and the Poincaré inequality (2.2), we obtain

−µ
2∑
i=1

(Ih,Ω(zi), zi) = −µ
2∑
i=1

(Ih,Ω(zi), zi)

= −µ
2∑
i=1

(Ih,Ω(zi)− χΩzi, zi)− µ
2∑
i=1

‖zi‖2L2(Ω)

≤ µ
2∑
i=1

‖Ih,Ω(zi)− zi‖L2(Ω)‖zi‖L2(Ω) − µ
2∑
i=1

‖zi‖2L2(Ω)

≤ µc0h
2

2λ1

2∑
i=1

‖zi‖2H1(Ω0) −
µ

2

2∑
i=1

‖zi‖2L2(Ω).

Since h is sufficiently small satisfying (1.12), then µc0h
2

2λ1
≤ ν

4 , we have

− µ
2∑
i=1

(Ih,Ω(zi), zi) ≤
ν

4
‖z‖2 − µ

2

2∑
i=1

‖zi‖2L2(Ω). (3.31)

Substituting estimates (3.29), (3.30) and (3.31) into (3.28), we deduce that

1

2

d

dt
|z|2 +

ν

4
‖z‖2 ≤ 1

νλ1
|f |2 +

c1µ
2

νλ1
|v|2 − µ

2

2∑
i=1

‖zi‖2L2(Ω). (3.32)

Using the Poincaré inequality (2.2) and dropping the last term, we have

d

dt
|z|2 +

νλ1

2
|z|2 ≤ 2

νλ1
|f |2 +

2c1µ
2

νλ1
|v|2. (3.33)

From (3.33), using the Gronwall inequality, we conclude that z ∈ L∞(0,∞;H).
Moreover, from (3.32) we obtain that z ∈ L2

loc(0,∞;V ). From these bounds, one
gets the global existence of z. The proof of uniqueness is standard.
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Step 2. Prove the convergence (1.14). Consider δ = z− v, η = w−u, we have
δ = η − α2∆η. Then δ satisfies

1

2

d

dt
|δ|2 + ν‖δ‖2 + ((w · ∇)z − (u · ∇)v, δ) = −µ

2∑
i=1

(Ih,Ω(δi), δi). (3.34)

Since (w ·∇)z− (u ·∇)v = (w ·∇)δ+ (η ·∇)v and by the property (2.4), we deduce
from (3.34) that

1

2

d

dt
|δ|2 + ν‖δ‖2 = − ((η · ∇)v, δ)− µ

2∑
i=1

(Ih,Ω(δi), δi). (3.35)

By the Cauchy inequality and using (2.3) we deduce that

−µ
2∑
i=1

(Ih,Ω(δi), δi) = µ

2∑
i=1

(χΩδi − Ih,Ω(δi), δi)− µ‖δi‖2L2(Ω)

≤ µ

2

2∑
i=1

‖δi − Ih,Ω(δi)‖2L2(Ω) −
µ

2

2∑
i=1

‖δi‖2L2(Ω)

≤ c0µh
2

2

2∑
i=1

‖δi‖2 −
µ

2

2∑
i=1

‖δi‖2L2(Ω)

≤ c0µh
2

2
‖δ‖2 − µ

2

2∑
i=1

‖δi‖2L2(Ω). (3.36)

For the nonlinear term ((η · ∇)v, δ), we process as same as when estimates for
((η · ∇)PNv, δ) in the proof of Theorem 1.1 (see (3.18)), we infer that

((η · ∇)v, δ) ≤ ν

4
‖δ‖2 + cα−3λ−1

1 ν−1‖v‖2
(
‖δ1‖2L2(Ω0) + ‖δ2‖2L2(Ω0)

)
. (3.37)

Combining (3.36) and (3.37), using (2.3) and note that c0µh
2

2 ≤ ν
4 we obtain from

(3.35) that

d

dt
|δ|2 + ν‖δ‖2 ≤ cM2

1

α3νλ1

(
‖δ1‖2L2(Ω0) + ‖δ2‖2L2(Ω0)

)
− µ

(
‖δ1‖2L2(Ω) + ‖δ2‖2L2(Ω)

)
.

(3.38)
By using the inequality (2.10) then (3.38) becomes

d

dt
|δ|2 + ν‖δ‖2 ≤ cM2

1

α3νλ1

(
`

λ1(Ω0 \ Ω)

(
‖δ1‖2L2(Ω) + ‖δ2‖2L2(Ω)

)
+

1

λ1(Ω0 \ Ω)
‖δ‖2

)
− µ

(
‖δ1‖2L2(Ω) + ‖δ2‖2L2(Ω)

)
.

So we require Ω0 \ Ω to be thin enough such that

cM2
1 `

α3νλ1λ1(Ω0 \ Ω)
≤ ν

2
, (3.39)

then

d

dt
|δ|2 +

ν

2
‖δ‖2 ≤ −

(
µ− cM2

1 `

α3νλ1λ1(Ω0 \ Ω)

)(
‖δ1‖2L2(Ω) + ‖δ2‖2L2(Ω)

)
.

From (2.11) we see that dH(∂Ω, ∂Ω0) ∼ 1√
λ1(Ω0\Ω)

. Therefore, if Ω0 \ Ω is thin

enough satisfying (1.13), then from (3.39) and using condition (1.11) we have

µ− cM2
1 `

α3νλ1λ1(Ω0 \ Ω)
≥ 0.
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Thus
d

dt
|δ|2 +

νλ1

2
|δ|2 ≤ 0.

By the Gronwall inequality we obtain the convergence (1.14) at an exponential rate.

Remark 3.3. This theorem is only proved when the local interpolant operator
is of type 1, i.e., the operator Ih,Ω satisfies (1.2). The data assimilation for the
three-dimensional Leray-α model (1.10) using observables of type 2 is much more
complicate even for the global observables cases (see [25]). Here, due to the local
observables we have to use estimate (2.10) to treat the local terms. Thus, the data
assimilation for the Leray-α model using local in of type 2 for both fully or reduced
observables are interesting questions to study.

4. Appendix

Proof of Theorem 2.1. The proof in the case of periodic boundary conditions is
given in [17, 21, 25]. For the case of no-slip boundary conditions, the proof is
similarly to the case of Navier-Stokes-α equations (see [13, 18]). To convenience for
readers, we sketch the proof for the case of no-slip boundary conditions.

The existence and uniqueness of solutions is proved by the Garlenkin approxi-
mate method. We only give some uniform bounded estimates for the approximate
solution of the following system

∂vn
∂t
− ν∆vn + (un · ∇)vn +∇p = f,

vn = un − α2∆un,

∇ · un = ∇ · vn = 0,

un = vn = 0 on ∂Ω.

(4.1)

Multiplying the first equation in (1.10) by vn and integrating in Ω0, using boundary
conditions (4.1)3 and free divergence (4.1)2 we obtain that

1

2

d

dt
|vn|2 + ν‖vn‖2 + ((un · ∇)vn, vn) = (f, vn). (4.2)

From (2.2) and the Cauchy inequality, we deduce from (4.2) that

1

2

d

dt
|vn|2 + ν‖vn‖2 ≤

|f |2

2νλ1
+
νλ1

2
|vn|2.

By the Poincaré inequality (2.2) one obtain that

d

dt
|vn|2 + ν‖vn‖2 ≤

|f |2

νλ1
. (4.3)

From this inequality, by using the Poincaré inequality (2.2) once again to deduce

|vn(t)|2 ≤ |v0|2e−νλ1t +
|f |2

ν2λ2
1

(1− e−νλ1t).

This inequality implies estimate (2.6).
Multiplying the first equation in (4.1) by ∆vn, integrating in Ω0, using the

boundary conditions (4.1)3 and free divergence (4.1)2 we deduce that

1

2

d

dt
‖vn‖2 + ν|∆vn|2 = − ((un · ∇)vn,∆vn) + (f,∆vn)

≤ ‖un‖L∞(Ω0)3 |∇vn||∆vn|+
|f |2

ν
+
ν

4
|∆vn|2

(by Cauchy’s inequality) ≤ c

ν
‖un‖2L∞(Ω0)3‖vn‖2 +

ν

2
|∆vn|2 +

|f |2

ν
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(by Agmon’s inequality) ≤ c

ν
‖un‖|∆un|‖vn‖2 +

ν

2
|∆vn|2 +

|f |2

ν

(by (2.3)) ≤ c

να3
|vn|2‖vn‖2 +

ν

2
|∆vn|2 +

|f |2

ν
.

Thus,

d

dt
‖vn‖2 + ν|∆vn|2 ≤

c

να3
|vn|2‖vn‖2 +

|f |2

ν
. (4.4)

From (4.3) then ∫ t+1

t

‖vn(s)‖2ds ≤ |f |
2

ν2λ1
+

1

ν
|vn(t)|2. (4.5)

Noting that |vn(t)|2 ≤ 2|f |2

ν2λ2
1

for t ≥ t0 := t0(|v0|2) > 0, then from (4.4) and (4.5),

we use the uniform Gronwall inequality to deduce that

‖vn(t)‖2 ≤
(

1

ν2λ1
+

2

ν3λ2
1

+
2c

ν3α3λ2
1

)
|f |2e

|f|2
ν , ∀t ≥ t0 + 1.

This inequality implies (2.7). �
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