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The Bitter Lesson
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The biggest lesson that can be read from 70 years of Al research is that general methods that leverage
computation are ultimately the most effective, and by a large margin. The ultimate reason for this is
Moore's law, or rather its generalization of continued exponentially falling cost per unit of
computation. Most Al research has been conducted as if the computation available to the agent were
constant (in which case leveraging human knowledge would be one of the only ways to improve
performance) but, over a slightly longer time than a typical research project, massively more
computation inevitably becomes available. Seeking an improvement that makes a difference in the
shorter term, researchers seek to leverage their human knowledge of the domain, but the only thing
that matters in the long run is the leveraging of computation. These two need not run counter to each
other, but in practice they tend to. Time spent on one is time not spent on the other. There are
psychological commitments to investment in one approach or the other. And the human-knowledge
approach tends to complicate methods in ways that make them less suited to taking advantage of
general methods leveraging computation. There were many examples of Al researchers' belated
learning of this bitter lesson, and it is instructive to review some of the most prominent.
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Focon The Birth of Machine Learning

* Machine Learning is the branch of A.l. that concerns itself with
building models of systems

 Arthur Samuel coined the term in connection with his Checkers
playing program and reports in 1959:

“Two machine-learning procedures have been investigated in some detail using the
game of checkers. Enough work has been done to verify the fact that a computer can be
programmed so that it will learn to play a better game of checkers than can be played by
the person who wrote the program. Furthermore, it can learn to do this in a remarkably
short period of time (8 or 10 hours of machine-playing time) when given only the rules of
the game, a sense of direction, and a redundant and incomplete list of parameters
which are thought to have something to do with the game, but whose correct signs and
relative weights are unknown and unspecified. The principles of machine learning
verified by these experiments are, of course, applicable to many other situations.”






* The explosive development of hardware




Major Reasons for the Success of ML

* The explosive development of hardware

* The availability of massive amounts of data




* The explosive development of hardware

* The availability of massive amounts of data

qu
.\ )

] "' " - . f
-\.r' o ,',,\_.,,l,, W .-.‘IIT SN S A R e

- The groundlng of ML in mathematlcaI/statlstvlchaI thought

=
H‘ . J, = oy I ' AN m,, " ;A,‘.,f.A. = |__.. ,1 Y
- P o \ ‘_'. - AN ..‘w Wi = .



* The explosive development of hardware

* The availability of massive amounts of data

. The groundlng of ML in mathematlcaI/statlstlcaI thought
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* What do we want to achieve when creating or constructing
“Artificial Intelligence™?

* What IS intelligence!?

* The core of intelligence is the ability of a system to model other
systems (their behavior, possibly their inner workings)

* Modeling other systems entails
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Living Systems have
inspired models of
computation since the
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Blo-INspiration

® Alan Turing; Intelligence, Evolution

® John von Neumann: SR automata, CAs, Artificial Life

® Frank Rosenblatt: Perceptron
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Tree of Bio-inspired Computing

Bio-inspiration

Neural Networks
Fuzzy Logic

Artificial Immune
Systems

Ant Colony Optimization
Swarm Intelligence

Artificial Life

Evolutionary
Computing

1950-1990

Genetic Algorithms

Evolutionary Programming

Evolutionary Strategies

Genetic Programming

Differential Evolution

Estimation Distribution
Algorithms

1960-1995

Tree-based GP

Linear GP

Rule-based GP

Machine Language GP

Decision Tree GP

Graph-based GP

Grammatical Evolution

Push GP

Gene Expression Programming

1990-2000 & later



Evolutionary Algorithms
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General Scheme of EAs

Parent selection

Intiallsation

Recombination

Mutation

Temmination

12



The Feedback Loop of
Evolutionary Computation

Initialization
Evaluatlon

/ \Termmatlon

Variation Selection

S /

Reproduction

13

| 00p

—eedback cycle

Positive = destabilizing
-> growth

Negative = stabilizing
-> disappearance



Elements of a system capable
of GP

1. Population of individuals representing programs/algorithms

2. Individuals have genes specifying behavioral elements
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A GP Individual




A GP Population




A GP Selection Cycle

n individuals

n individuals




Cumulative Selection

Random Diversity Selection R OTIIE
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Tree GP

Functions and Terminals

functions: {a, b, ¢}
terminals: {x, y}

—Xpression Irees

How you read it?

X/ (4-x/x)=x/3

%: Protected division




Linear GP

Follows principles of imperative languages

Based on instruction sequences: Each instruction is a gene

Each instruction contains the elements of operator and
- operand(s) and an assignment
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Many representations in use for GP

— Neural Networks
o ) . — Fuzzy Logic
Bio-inspiration

— Artificial Immune
Systems

— Ant Colony Optimization

— Swarm Intelligence Genetic Algorithms T S

— Artificial Life Evolutionary Programming Linear GP

— Evolutionary
Computing

Evolutionary Strategies Rule-based GP

) . Machine Language GP
Genetic Programming

Decision Tree GP
Differential Evolution

Graph-based GP

Estimation Distribution

Algorithms Grammatical Evolution

Push GP

Gene Expression Programming
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Alan Turing writes the seminal paper “Computing Machinery and
Intelligence” [36]

Friedberg [11] first uses random variation (“mutation”™) for an al-
gorithm.

Samuel, working with Checkers [30], coins the term “Machine
Learning”.

Fogel and his team [9, 10] develop Evolutionary Programming

History of EML

EC to ML methods

Kim et al. [19] propose an evolutionary method based on EP to

proposing it as an alternative to classical Artificial Intelligence.

Holland and Reitman [17] develop Learning Classifier Systems,
an approach to rule-based Machine Learning that borrows ideas
from Genetic Algorithms combining them with a credit assignment
system to learn a set of rules.

Nichael Cramer [6] introduces both tree-based GP and linear GP
operations into an sequential programming system.

John Koza proposes a hierarchical genetic algorithm [20], later
called Genetic Programming [22], for the induction of computer
programs.

David Montana and Lawrence Davis [25] discuss the training of
feed-forward neural networks using a GA.

Chalmers [4] discusses various methods to evolve learning rules
for neural networks.

Phanendra and Narasimha [27] use GAs to evolve the initial posi-
tions of the centroids for K-means clustering

2020 -

Xin Yao [38] introduces the concept of Evolutionary Artificial
Neural Networks an discusses the evolution of the network’s
weights and architecture.

Gruau [16] uses Genetic Programming with a cellular encoding to
evolve Artificial Neural Networks.

Sims [32, 33] work on evolving the morphology and behavior of

virtual creatures.

optimize learning rates for the backpropagation algorithm.

Stanley and Miikulainen propose the NEAT algorithm [34] for
evolving the topology and the weights of a neural network with a
GA.

Friedrichs and Igel [12] explore the evolution of Support Vector
Machine parameters.

Howley and Madden [18] and Gagné et al. [13] use Genetic Pro-
gramming to optimize the mapping and the kernels of Support
Vector Machines.

D’Ambrosio and Stanley introduce HyperNEAT [7], an indirect
encoding method to evolutionarily generate geometric connectivity
patterns in neural networks.

Shinozaki and Watanabe studied structure evolution for deep neu-
ral networks [31), the first published work on deep neural archi-
tecture search.

Goodfellow et al. [15] propose generative adversarial networks
(GANs) as a competitive process for learning representations.

Jason Moore and group [26] develop the TPOT system for auto-
matic ML pipeline assembly.

OpenAl's researchers Salimans et al. realize that Evolutionary
Strategies are a competitive alternative to conventional reinforce-
ment learning techniques.

Esteban Real and colleagues [29] propose AutoML-Zero, as sys-
tem that evolves learning algorithms from data, using a linear GP
system equipped with matrix operations.
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EC Classification
EC Regression

Goldeberg's Ph.D. Thesis [14] is likely to be the first application
of Genetic Algorithms to dynamic systems control problems.

In his dissertation Schaffer proposes Vector Evaluated Genetic
Algorithms, applying them to multiclass pattern discrimination.

Englander [8] applies GAs to a computer vision problem.

[20] Koza proposes Hierarchical GAs, latter called GP, using
them [21] for several classical ML and Al tasks, including sym-
bolic regression, planning, pattern recognition, control, Neural
Network design, concept formation, automatic programming, etc.

Evolutionary Robotics

EC for Reinforcement Learning

EC for “control” e.g. pole Balancing
EC for feature engineering

EC dimensionality reduction

EC for data pre-processing

EC for data augmentation

EC for data generation




T EC for ML Methods

EACON

NN Weights

Clustering Parametization

Evolving SVM Structure

ML Algorithms Structure and topology

Neural Architecture Search
Value Function
Weight Update

Learning Algorithm

Loss Function

AutoML

Pre-Processing
Augmentation
Data Cleaning
Anonymization
Data/Input Balancing
Feature Selection

Feature Construction

Dimensionality Reduction

Results/Output




T EC for ML Problems

EACON

Classification

Evolutionary Competitive
Co-Evolutionary

Meta-Learning

Single vs. Multi Task
Many vs. Zero Shot




T ML for EC Methods

EACON

Hyperparameter
Operator Selection

Onine Adaptation

Crossover
Mutation
Operator Mapping/Repair
Replacement
Local Search
Seeding
Migration

Pop. Management
Diversity

ML Model
Surrogate Model
Fitness

Approximation

Fitness Function Design

Selection Survivor

Analysis Handbook of Evolutionary Machine Learning

W. Banzhaf, P. Machado and M. Zhang (Eds.)

rovizal Springer Series in ‘Genetic and Evolutionary
Computing’, Springer-Nature, 2023

Filtering

Preceding slides will appear in:
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Major Applications of GP

® Modelling by symbolic regression

® (lassification

° > Machlne Learnlng Appllcatlons
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Major Applications of GP

® Modelling by symbolic regression

® (lassification

® -> Machine Learning Applications
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S GP can do
Symbolic Function Regression

Better GP Benchmarks: Community Survey Results and Proposals

Training Set

Y Variables | Equation Testing Set
eijzer- _ {7 » 90,
® Keijzer Keijzer-6 L E[1, 50, 1
E[1, 120, 1]
Korns-12 2 —2.1cos(9.8z) sin(1.3w) | U[-50, 50, 10000]
® Korns . U[-50, 50, 10000]
Vladislavleva-4 [50] — =5 o3 U[0.05, 6.05, 1024]
5+ 2 i=1(zi —3) U[-0.25, 6.35, 5000]
® Nguyen-7 [33] In(z + 1) + In(z? + 1) UJ0, 2, 20]
N gU)’e n None

Pagie-1 1 1 E[- 4
agie-1 [ e A w R b O

Dow Chemical chemical process datﬁ 747 points
(see Section 319 points

GP Challenge |56] protein energy data 1250-2000 per protein
(see Section None

Table 5 Proposed symbolic regression benchmarks. In the training and testing sets, Ula,b,c|
is ¢ uniform random samples drawn from a to b, inclusive. E[a,b,c] is a grid of points evenly
spaced with an interval of ¢, from a to b inclusive.

From: D. White et al., Gen. Progr. and Ev. Mach., 2013
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Table 4. Tested Feynman equations, part 1. Abbreviations in the “Methods used” column: da, dimensional analysis; bf, brute force; pf, polyfit; ev, set two
variables equal; sym, symmetry; sep, separability. Suffixes denote the type of symmetry or separability (sym—, translational symmetry; sep*, multiplicative
separability; etc.) or the preprocessing before brute force (e.g., bf-inverse means inverting the mystery function before bf).

Feynman Eq. Equation Solution Time (s) Methods Used DataNeeded SolvedByEureqa Solved W/o Noise
da Tolerance

1.6.20a f= e 2 3x bf No Yes 1072

f=-e -za:’/z 7[(52 ev, bf—log Yes

(8-,

Y (— oo sym-, ev, bf-log

d = Yo —x)2+ 2 y)? da, pf-squared

= Gmym,
2 —xi) + -y’ +(22-21)°

A=xy1 +X2y2 + X3y3
F=uN,

— 41q:

4zer?

q(Es+ Bv sin 6)
imv?+u?+w?)

U= Gm1 I'7'72(,l = ,l—‘)

From: Udrescu, Tegmark, Feynman Al: A physics-inspired method for symbolic regression, Sci.Adv. 2020
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Symbolic Regression Example

® Schmidt & Lipson, from Science 2009 ...

.. Took an experimental (mechanical) system (chaotic
double pendulum) ...

Measured key observables angles and angular i
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Symbolic Regression Example

® Schmidt & Lipson, from Science 2009 ...

.. Took an experimental (mechanical) system (chaotic
double pendulum) ...

Measured key observables angles and angular
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Processing Pipeline for GP

0 Collect experimental
data from physical system
(e.g. pendulum time series)

f=z+9.8-sin(x)
f=0.5-y-9.8-cos(x)

G When predictive ability
reaches sufficient
accuracy, return the most
parsimonious equations

L) P
Az Az
Ax

o Numerically calculate
partial derivative for every

pair of variables

Ayl _oy

Ax|, ox

f=(x-=1.12)-cos(v)

S =091-exp(y/z)
f=05-y-9.8-cos(x)

0 Generate candidate

symbolic functions. Initially
these are random; later they
are small variations of best

equations selected in (5)

- .
= ] =y+sin(x)£
Explore oy Ay

Candidate '

: 0 of /0

fix,) Equations = f/ f
5 -5

f(x.y) Ox oy

9 Compare predicted
partial derivatives (4) with
numerical partial derivatives
(2). Select best equations.

o
ox

o Derive symbolic partial
derivatives of pairs of variables
for each candidate function

Schmidt & Lipson, Science 2009



Resulting invariants

1.37-w” + 3.29-cos(6)
Lagrangian

2.71a + 0.054w — 3.54sin(6)

Equation of motion

(x—77.72)* + (v — 106.48)

Circular manifold

Tnm‘e (s)

w,z .2 0.32(03: -
124.13cos(6,) — 46.82cos(6-) +
0.82m,w>cos(6, — 6,)

Hamiltonian

%5 36
Time (s)

Schmidt & Lipson, Science 2009



Classification

GP uses in classification

Genetic Programming
in Classification

Model Extraction Ensemble Classifiers

Feature Feature Decision Classification Discriminant Others
Selection Construction Trees Rules Functions

From: P Espejo et al, [IEEE TA SMC-C 2010




GP as a tool for
Software Engineering

® Test case generation

® Bug repair
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Winner of the 2009 Human-
Competitive Algorithms Competition

Fixing Software Bugs with GP
Forrest, Nguyen, Goues, Weimer, GECCO 2009

void zunebug_repair (int days) ({
int year = 1980;
while (days > 365) {
if (isLeapYear (year)) {
if (days > 366) {
// days —-= 366; // repair deletes
year += 1;
}
else {
}
days —= 366; // repair inserts
} else {
days -= 365;
year += 1;
}
}

printf ("current year is %d\n", year);

}

Downloaded from http://pastie.org/349916 (Jan. 2009).

Repairing the Zune bug

* Infinite loop when input is last day of
a leap year

* Repair is nontrivial - Microsoft
recommended draining the battery

* GP discovered bug and repaired in 40
seconds
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Is it possible to automatically discover machine learning algorithms just using mathematical

operations as building blocks?
Esteban Real et al., 2020

AutoML-Zero: Evolving Machine Learning Algorithms From Scratch

Esteban Real ! Chen Liang”' David R. So! Quoc V. Le'

Abstract

Machine learning research has advanced in multiple aspects, including model structures and learning methods. The
effort to automate such research, known as AutoML, has also made significant progress. However, this progress
has largely focused on the architecture of neural networks, where it has relied on sophisticated expert-designed
layers as building blocks—or similarly restrictive search spaces. Our goal is to show that AutoML can go further:
it is possible today to automatically discover complete machine learning algorithms just using basic mathematical
operations as building blocks. We demonstrate this by introducing a novel framework that significantly reduces
human bias through a generic search space. Despite the vastness of this space, evolutionary search can still
discover two-layer neural networks trained by backpropagation. These simple neural networks can then be
surpassed by evolving directly on tasks of interest, e.g. CIFAR-10 variants, where modern techniques emerge in
the top algorithms, such as bilinear interactions, normalized gradients, and weight averaging. Moreover, evolution
adapts algorithms to different task types: e.g., dropout-like techniques appear when little data is available. We
believe these preliminary successes in discovering machine learning algorithms from scratch indicate a promising
new direction for the field.

1. Introduction algorithms, possibly reducing the innovation potential of
AutoML. Innovation is also limited by having fewer op-
tions: you cannot discover what you cannot search for [21].
Indeed, dominant aspects of performance are often left out

In recent years, neural networks have reached remarkable

performance on key tasks and seen a fast increase in their
ity [ 0 901 _Thi ihle
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v S AutoML Zero

Is it possible to automatically discover machine learning algorithms just using mathematical
operations as building blocks?
Esteban Real et al., 2020

# (Setup, Predict, Learn) is the input ML algorithm.
# Dtrain / Dvalid is the training / validation set.
# sX/vX/mX: scalar/vector/matrix var at address X.

def Evaluate(Setup, Predict, Learn, Dtrain, Dvalid):

# Zero—-initialize all the variables (sX/vX/mX).
® AutoML Zero has

initialize_memory ()

Setup() # Execute setup instructions.

® 3 major parts: Setup, Predict, Learn for (x, y) in Dtrain:

vO = x # x will now be accessible to Predict.
Predict() # Execute prediction instructions.
# s1 will now be used as the prediction.

® 2 datasets: Dtl"ain, Dvalld sl = Normalize(sl) # Normalize the prediction.

sO = y # y will now be accessible to Learn.
Learn() # Execute learning instructions.

sum_loss = 0.0
for (x, y) in Dvalid:
v0 = x
Predict() # Only execute Predict(), not Learn().
sl = Normalize(s1l)
sum_loss += Loss(y, s1)

mean_loss = sum_loss / len(Dvalid)
# Use validation loss to evaluate the algorithm.
return mean_loss




Fercon AutoML Zero

Is it possible to automatically discover machine learning algorithms just using mathematical

operations as building blocks?
Esteban Real et al., 2020

population

Nl il N Wi O

det Setup(): det Setup():

4 - 0. - 0.5 atup():
der SevupO: et s S0k e
et Pradicr(vo) w& = gausa(o,1) + Serup(): SAE: PredlcTive)

39 = arctan(s2) ; R y Laarn(vo, 50):
: Prodict (v0)
29 = mean(v5) Prodicr(x :

® AutoML Zero has e EEE o EE

oldest newest

® 3 major parts: Setup, Predict, Learn

® 2 datasets: Dtrain, Dvalid

daf Predict(v0):
dof Loarn(v0, 0):

vi=v2- w1
der Laarn(vo, 50)

def Predict
dof Setupl) i

® Regularized Evolution e =T e

11 Pred

det Learn(v0, 20): Sl =3 = moan(v2)

def o4 = mean(r1)

de? Learn(vo, s0) 3 + 33)
nZ = m2 + m4)

aer Setup!
dof DProdict(v0): det Vredi.
vl = v0 - vB
ael Pradict(vo} 1=l Predic vS = V0 + V8
vi v - w0
=t - a2 e

def Setup(

def Learn(rD,

= v2

def Learn (v, =l 3 moan{v2)
c4 = mean(v1)

r Learn{vo, #0) e 33 + 38)

B2 = 22 + m4)

dor Setup(
st = 0.5
35 = 0.5
4 = gauss(0,1) Setup(): 2 7 def Predict(vo):
: vl vl - vd
¥ = v0 + v
ol = 22 « 02

dof Pradict(v0):

def Laarn(vl), 50):
22 = 22 4+ =4) 03 = abe(a1)
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AutoML Zero

Is it possible to automatically discover machine learning algorithms just using mathematical

operations as building blocks?

AutoML Zero has
3 major parts: Setup, Predict, Learn
2 datasets: Dtrain, Dvalid
Regularized Evolution

Linear GP system with data structures

Esteban Real et al., 2020

def Setup():
s4 = 0.5

def Predict(v0):
vl vO - v9
vb vO + v9
ml = s2 * m2

def Learn(vO, sO0):

s4 = sO0 - s1
s3 = abs(s1)

def Setup():
s4 = 0.5

def Predict(v0):
vi = v0O - v9
vb = vO + v9
ml = s2 * m2

def Learn(vO, s0):

s4 = s0 - si
s3 = abs(s1)

def Setup():
s4 = 0.5

def Predict(v0):
vli = v0 - v9
vb = vO + v9
ml = s2 * m2

def Learn(v0, s0):

s4 = s0 - si
s3 = abs(s1)

def Setup():
s4 = 0.5

def Predict(v0):
vi =v0 - v9
vb = v0O + v9
ml = s2 * m2

def Learn(vO, sO0):
s4 = sO0 - s1
s2 = sin(v1)
s3 = abs(s1)

def Setup():
s4 = 0.5

def Predict(v0):
s0 = mean(m1)
s3 = cos(s7)
m5 = mO + mb

def Learn(vO, s0):
s4 = sO0 - si
s3 = abs(sl)

def Setup():
s4 = 0.5

def Predict(v0):
vli = v3 - v9
vb = vO0 + v9
ml = s2 * m2
def Learn(v0, s0):
s4 = sO - s1
s3 = abs(s1)
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Is it possible to automatically discover machine learning algorithms just using mathematical

operations as building blocks?
Esteban Real et al., 2020

, Multiplicative Interactions
def Se1.:up()t def Learn(): : (SGD)
# Init weights s3 = s1 /

vl = gaussian(0.0, 0.01 s ‘ i
g ( : s i pute (Flawed SGD)
v2 = s1 % Gra : ; ivati
def Predict(): # vO=features vl = vl + Update weights Gradient Normalization A
s1 = dot(v0, vl1) # Prediction ) adl
Random Weight Init /Q

Multiplicative Interactions

Linear Model =i
(Flawed SGD) Random Learning Rate p—-—-r"
o8 9“1\—/
—
=_andl RelU def Setup():
Better Hard-coded LR s3 = 1.8e-3 # Learning rate
HParams Gradient Divided def Predict(): # vO=features
Linear Model (SGD) by Input Norm v2 = vO + vl # Add noise
Loss Clipping v3 = vO - vl # Subtract noise
v4 dot (m0O, v2) # Linear
si dot(v3, v4) # Mult.interac.
mO0 = s2 * m2 # Copy weights

Best Evolved Algorithm

Linear Model PR
(No SGD) def Learn(): # sO=label

Normalize: s3 = sO - s1 # Compute error

y=f(0) = (0, 1) m0 = outer(v3, v0) # Approx grad
s2 norm(m0) # Approx grad norm
sb = s3 / s2 # Normalized error

Best Accuracy Found

def Setup(): 2‘?':{ Ienput:

def Predict(): g v = sb * v3
==w m0 = outer(v5, v2) # Grad

def Learn(): : mi = m1 + mO #

Update weights
m2 m2 + ml # Accumulate wghts.
Backward 0 = B4 * 6t
# Generate noise

vl = uniform(2.4e-3, 0.67)

Empty Algorithm

Experiment Progress (Log # Algorithms Evaluated)




AutoML Zero

Is it possible to automatically discover machine learning algorithms just using mathematical

operations as building blocks?
Esteban Real et al., 2020

® AutoML Zero has
® 3 major parts: Setup, Predict, Learn
® 2 datasets: Dtrain, Dvalid

° Regularized Evolution
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Is it possible to automatically discover machine learning algorithms just using mathematical

operations as building blocks?
Esteban Real et al., 2020

® AutoML Zero has

® 3 major parts: Setup, Predict, Learn
® 2 datasets: Dtrain, Dvalid

® Regularized Evolution




Broader Goals of GP

® Not just equations from data ....

® ... but Machine Learning
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® Static Fitness Dynamic processes, continuously changing environment
® Fixed Representation Interactions of the material under evolution

® C(losed Systems Real-time evolution in (open) stream processing

® Genomes composed of discrete and independent genes

° Feedback and Networks

° S|mple genotype phenotype map
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S|mpIe genotype phenotype map Regulatlon

Challenges and Research Questions

Static Fitness Dynamic processes, continuously changing environment
Fixed Representation Interactions of the material under evolution
Closed Systems Real-time evolution in (open) stream processing
Genomes composed of discrete and independent genes

Feedback and Networks
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® Static Fitness Dynamic processes, continuously changing environment
® Fixed Representation Interactions of the material under evolution

® C(losed Systems Real-time evolution in (open) stream processing

® Genomes composed of discrete and independent genes

° Feedback and Networks
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Challenges and Research Questions

® Static Fitness Dynamic processes, continuously changing environment
® Fixed Representation Interactions of the material under evolution

® C(losed Systems Real-time evolution in (open) stream processing

® Genomes composed of discrete and independent genes
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® Simple genotype-phenotype map Regulation

- ® Predetermined operator features Operators part of the code
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® Allgenes are passed directly from parent to offspring, without any further

" Specification CPIgENELICS




Challenges and Research Questions

® Static Fitness Dynamic processes, continuously changing environment
® Fixed Representation Interactions of the material under evolution
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® Simple genotype-phenotype map Regulation
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Challenges and Research Questions

® Static Fitness Dynamic processes, continuously changing environment
® Fixed Representation Interactions of the material under evolution

® C(losed Systems Real-time evolution in (open) stream processing

® Genomes composed of discrete and independent genes

° Feedback and Networks

® Simple genotype-phenotype map Regulation

Predetermined operator features Operators part of the code
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Our current work in GP

® Artificial Regulatory Networks (since 2004)

® Computational Evolution (since 2005)

® GPGPUs (since 2007)

® Evolvability (since 2010)




The POET Project (NIH funded)

Goal: Find better proteins/oligomers for a specific function -
here Chemical Exchange Saturation Transfer (CEST)
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The POET Project (NIH funded)

Goal: Find better proteins/oligomers for a specific function -
here Chemical Exchange Saturation Transfer (CEST)
contrast for MRI applications

Motif Weight  Status

. rRITRIT | 1620 -

Protein
H E Dataset \\

Genetic . Wet Lab
Programming P_ro?e'n_ Experiments
Optimization

POET Sequence-
Function Models

Individual: Motif rule set

Tool

\ Engineering

Predictor
Models

Crossover

Parent A Parent B

: : . c ]lo Motif Weight  Stat Weight  Stat
GP does Amino-acid Sequence -> Function Modelling e | s s

2
3 ]
B | =

Data Training Best overall Average Total Expressed oot 2

points RMSE RMSE overall RMSE rules # rules # to create a new offspring

42 1.272 ; 10.189 16.583 97 44

51 1.558 2 11.001 15.882 97 45

Motif Weight  Status ) Offspring )
Motif Weight  Status

61 2.238 : 10.185 13.276 96 45

71 2.308 ; 10.096 12.786 96 44

82 2.898 2 8.974 11.531 97 44

92 3.651 : 8.247 11.349 96 44

3.923 : 8.686 10.646 97 44

4.891 : 7.845 9.954 9r 44
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The POET Project (NIH funded)

Goal: Find better proteins/oligomers for a specific function -
here Chemical Exchange Saturation Transfer (CEST)
contrast for MRI applications

[ J-c-.] Motif Weight  Status

{ Protein i
EE . Dataset - . TTRTTRTT 1.620 -

Genetic \ . Wet Lab
. Programming | Protein | Experiments |
’ Optimization - —
Engineering POET Sequence-

Tool % j)cq Function Models

1400 % Hi

GP does Amino-acid Sequence -> Function Modelling
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E1 42 1.272 i 10.189 16.583 97 44

E2 51 1.558 : 11.001 15.882 97 45

E3 61 2.238 . 10.185 13.276 96 45 g .
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E5 82 2.898 ! 8.974 11.531 97 44

E6 92 3.651 ; 8.247 11.349 96 44

E7 3.923 : 8.686 10.646 97 44

E8 112 4.891 : 7.845 9.954 9r 44
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