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• The biggest lesson that can be read from 70 years of AI research is 
that general methods that leverage computation are ultimately the 
most effective, and by a large margin.

• We want AI agents that can discover like we can, not which contain 
what we have discovered. Building in our discoveries only makes it 
harder to see how the discovering process can be done.
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The Birth of Machine Learning

• Machine Learning is the branch of A.I. that concerns itself with 
building models of systems

• Arthur Samuel coined the term in connection with his Checkers 
playing program and reports in 1959:

“Two machine-learning procedures have been investigated in some detail using the 
game of checkers. Enough work has been done to verify the fact that a computer can be 
programmed so that it will learn to play a better game of checkers than can be played by 
the person who wrote the program. Furthermore, it can learn to do this in a remarkably 
short period of time (8 or 10 hours of machine-playing time) when given only the rules of 
the game, a sense of direction, and a redundant and incomplete list of parameters 
which are thought to have something to do with the game, but whose correct signs and 
relative weights are unknown and unspecified. The principles of machine learning 
verified by these experiments are, of course, applicable to many other situations.”
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Major Reasons for the Success of ML

• The explosive development of hardware

• The availability of massive amounts of data

• The grounding of ML in mathematical/statistical thought

• The ability to find solvable ML problems
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The Core of Intelligence

• What do we want to achieve when creating or constructing 
“Artificial Intelligence”?

• What IS intelligence?

• The core of intelligence is the ability of a system to model other 
systems (their behavior, possibly their inner workings)

• Modeling other systems entails 

• the ability to remember and understand or explain the behavior of 
other systems

• the ability to predict the behavior of other systems

• Modeling requires a way to represent other systems and to  
manipulate such representations
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How about Evolution?

• Nature has created intelligence by using an evolutionary process

• If that was the way to do it in Nature we should think about a 
similar process if we want to create “Artificial Intelligence”

• The field of evolutionary machine learning (EML) concerns itself with the 
application of the evolutionary process to machine learning problems 
and methods and the application of ML to evolutionary computation 
methods.
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Living Systems have 
inspired models of 

computation since the 
beginning of Computing
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Bio-inspiration

• Alan Turing: Intelligence, Evolution

• John von Neumann: SR automata, CAs, Artificial Life

• Frank Rosenblatt:  Perceptron

• John Holland:  Adaptive Systems, GA

• Ingo Rechenberg: Evolutionary optimization of mechanical 
systems



Tree of Bio-inspired Computing

1950-1990 1960-1995 1990-2000 & later



Evolutionary Algorithms 
and 

Genetic Programming



General Scheme of EAs

12
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The Feedback Loop of 
Evolutionary Computation

Loop 
Feedback cycle 

Positive = destabilizing 
-> growth 

Negative = stabilizing 
-> disappearance
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1. Population of individuals representing programs/algorithms

2. Individuals have genes specifying behavioral elements

3. Selection according to fitness cases characterizing input/output of 
individuals

4. Mutation and recombination for new variants

Elements of a system capable 
of GP
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?Input Output

•   “?”  is a program (or algorithmic model)

•   Define a quality of solutions (e.g. error measure like actual output vs. target output)

•   Generate different programs that solve the problem more or less accurately

•   Test programs on „fitness cases“, i.e. a set of input/output pairs

•   Improve solutions by trying variants

A GP Individual
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A GP Population
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A GP Selection Cycle

n individuals

n+k individuals

n individuals

variation adds k individuals

selection
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Diversity
Generator

Selection
Device

Random
Solutions

Approximate or
exact solutions

Cumulative Selection



Tree GP

Expression Trees



Linear GP

a=a+x

b=a+c

c=b+6

a=b+7

01100
10101
01101
01101
10010
01100
10110
10101
01100

▪ Follows principles of imperative languages 

▪ Based on instruction sequences: Each instruction is a gene  

▪ Each instruction contains the elements of operator and 
operand(s) and an assignment 

▪ Bit sequences code for operators (op-code) and operands 
(register addresses) 

▪ Close relationship between machine code and 
interpretation 



Many representations in use for GP 
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The Advantages of Evolutionary Principles

• If intelligence is fundamentally about prediction in a world with 
many uncertainties - what better way to do it than with populations 
of models that either cooperate (ensembles) or compete (as in EC).

• Intelligence is about problem solving in creative ways. Evolution has 
stochasticity as a creativity engine, which works with cumulative 
selection to generate new, surprising solutions by emergence.

• The populations of evolutionary algorithms are evolving jointly., 
exchanging information. There is no assumption about 
independence between these different models (or statistical 
linearity). 

22
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EC for ML Problems



ML for EC Methods

Preceding slides will appear in: 
Handbook of Evolutionary Machine Learning 
W. Banzhaf, P. Machado and M. Zhang (Eds.) 
Springer Series in ‘Genetic and Evolutionary  
Computing’, Springer-Nature, 2023 
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Major Applications of GP

• Modelling by symbolic regression

• Classification 

• -> Machine Learning Applications

• Code repair and synthesis

• -> Software Engineering

• Meta-Learning
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Symbolic Regression

Given xi, yi ∈R i∈N  Fitness cases

Quadratic Error

Absolute Error

x

y

n=8
Int: Prg × R → R 

      x       y

Fitness independent of representation



From: D. White et al., Gen. Progr. and Ev. Mach., 2013

GP can do  
Symbolic Function Regression

• Keijzer

• Korns 

• Nguyen

• ….



Feynman AI

From: Udrescu, Tegmark, Feynman AI: A physics-inspired method for symbolic regression, Sci.Adv. 2020
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Symbolic Regression Example

• Schmidt & Lipson, from Science 2009 …

• … Took an experimental (mechanical) system (chaotic 
double pendulum) …

• … Measured key observables, angles and angular 
velocities …

• … Searched for equations describing laws relating 
these variables …

• … Found conservation law - the Hamiltonian



Processing Pipeline for GP
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Resulting invariants

Schmidt & Lipson, Science 2009



Classification
GP uses in classification

From:  P. Espejo et al, IEEE TA SMC-C 2010



GP as a tool for 
Software Engineering

• Test case generation

• Bug repair

• Improvement of code

• Co-evolution of tests and program repair

• Automatic programming (?)



Winner of the 2009 Human-
Competitive Algorithms Competition 

Fixing Software Bugs with GP

Repairing the Zune bug

Forrest, Nguyen, Goues, Weimer, GECCO 2009

• Infinite loop when input is last day of 
a leap year

• Repair is nontrivial - Microsoft 
recommended draining the battery

•  GP discovered bug and repaired in 40 
seconds
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AutoML Zero
Is it possible to automatically discover machine learning algorithms just using mathematical 
operations as building blocks?

Esteban Real et al., 2020

• AutoML Zero has

• 3 major parts: Setup, Predict, Learn

• 2 datasets: Dtrain, Dvalid

• Regularized Evolution

• Linear GP system with data structures 

Starting from empty component functions and using only basic mathematical operations, we evolved 
linear regressors, neural networks, gradient descent, multiplicative interactions, weight averaging,
normalized gradients, etc.

We want AI agents that can discover like we can, not which contain what we have discovered. Building in 
our discoveries only makes it harder to see how the discovering process can be done. R. Sutton, 2019



Broader Goals of GP

• Not just equations from data ….

• … but Machine Learning

• … Meta-Learning

• … Autonomous Programming

• … Evolving Structures of arbitrary kind

39
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•                           Dynamic processes, continuously changing environment

•                                    Interactions of the material under evolution

•                                 Real-time evolution in (open) stream processing

•                                  

•                                   Feedback  and Networks                                                                   

•                                                   Regulation

•                                                    Operators part of the code

•                                                       RNA-type 

•                                                       Epigenetics                                                                                                        

•                                         Development



Our current work in GP

• Artificial Regulatory Networks (since 2004)

• Computational Evolution (since 2005)

• GPGPUs (since 2007)

• Evolvability (since 2010)

• Epigenetics (since 2012)

• Novelty (since 2014)

• Software Engineering - Bug repair, code synthesis (since 2017)

• Policy evolution (RL type tasks) (since 2019)

41
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The POET Project (NIH funded)

42

Goal: Find better proteins/oligomers for a specific function - 
here Chemical Exchange Saturation Transfer (CEST)  

contrast for MRI applications

GP does Amino-acid Sequence -> Function Modelling

Individual: Motif rule set400 % Higher CEST Contrast

PeerJ Physical Chemistry 4 (2022) e24 
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• Moore’s law overtakes leveraging of human knowledge

• Most AI researchers have tried to put human knowledge into their systems 
which required considerable ingenuity

• However, computation over the long run has beaten this ingenuity

• Computer Chess, 1997

• Computer Go, 2017

• Speech recognition, computer vision, human language 

One thing that should be learnt from the bitter lesson is the great power of general purpose methods,
of methods that continue to scale with increased computation even as the available computation
becomes very great. The two methods that seem to scale arbitrarily in this way are search and 
learning.

We want AI agents that can discover like we can, not which contain what we have discovered. Building 
in our discoveries only makes it harder to see how the discovering process can be done.
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