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Hidden Markov Model (HMM) aka State Space Model of a Dynamical System
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Multi-Object Hidden Markov Model (HMM)



Particles Cells

People Astronomy

Molecules

Orbital Debris

Multi-Object Hidden Markov Model (HMM)
What if the state & observation are not vectors but point patterns, i.e., finite sets?



Neuron point cloud

SIFT key points Bag of words Transaction record

Tree locations Sparse data

Point patterns in data science 

§ Multiple Instance (MI) Learning: Machine Learning for point patterns [Amores 13]

Multi-Object Hidden Markov Model (HMM)



What’s the big deal about working with sets? 
Most widely adopted practice (in engineering/computer science):

𝑋 = {𝑥!, … , 𝑥"}
Finite Set

𝑝 𝑋 = 𝑝 𝑥!, … , 𝑥"
Probability Density Function (PDF)

𝑝 𝑋| DataBayesian:

Non-Bayesian: 𝑝 Data |𝑋

Posterior PDF

Data likelihood function 

including finite sets 

Stochastic Geometry



1-1 0

§ Apples land on the ground independently from each other

§ Daily landing patterns are independent from each other

𝑝 𝑋 = 𝑝 𝑥!, … , 𝑥" ='
#$!

"
𝑝%(𝑥#)

Landing positions (meters)𝑥! 𝑥"…

pf (PDF of landing positions learned from “normal” training data)
1

What’s the big deal about working with sets? 

§ Novelty Detection: find unlikely daily landing patterns

Stochastic Geometry



pf (PDF of landing positions learned from “normal” training data)

Landing positions (meters)10.4-0.4 0.8-1 0

0.6 0.6
0.2

𝑥# 𝑥!𝑥$

Day 1: 𝑥!
𝑥$, 𝑥#

§ Q: Which pattern is less likely?   Ans: day 1 less likely than day 2. 

Day 2:

1

§ Change unit of measurement from m to cm and … 

What’s the big deal about working with sets? 

BN. Vo et. al. “Model-based learning for point pattern data” Pattern Recognition 84, 136-151, 2018

Stochastic Geometry
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multi-object observation
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Multi-Object HMM: HMM where the state is a finite set - multi-object state

𝕏

ℤ

F(𝕏)

F(ℤ)

Model multi-object state as a random finite set (RFS) …

§ Needs: Markov transition density & observation likelihood for finite-set-valued state 
§ Can’t treat a (random) finite set as if it were a (random) vector

§ PDF of random finite set not the same as PDF of random vector

§ Need PDFs ( + suitable notion of density & integration) for Random Finite Sets 

Stochastic Geometry



Mathematical tools for dealing with Random Sets

D. Kendall (1918-2007)

Foundation (1960s-1970s): mostly due to independent work by Matheron
and Kendall, both of whom gave credits to earlier work by Choquet

G. Matheron (1930-2000) G. Choquet (1915-2006)

Stochastic Geometry



VSD 
(2005)

Belief “density” of S
fS : F(𝕏) ® [0,¥)

bS (T ) = òT fS (X)dX

Probability density of S
pS : F(𝕏) ® [0,¥)

PS (T ) = òT pS (X)µ(dX)

Mahler’s Finite Set Statistics (1994)

Conventional integral Set integral

Point Process Theory (1950-1960’s)

Belief “distribution” of S
bS (T ) = P(S Í T ) , T Í 𝕏

𝕏

S

Probability distribution of S
PS (T ) = P(S ÎT  ) , T Í F(𝕏)

S

Collection of finite 
subsets of 𝕏

State space

Choquet 
(1968)

T T

Stochastic Geometry



states multi-object state

multi-object observation

X

S

observations

X

Z

R. Mahler, Statistical Multisource-Multitarget Information Fusion, Artech House, 2007.
R. Mahler, Advances in Statistical Multisource-Multitarget Information Fusion, Artech House, 2014.

Multi-Object HMM: Finite-set-valued HMM

Inference for Multi-Object HMM

Inference for Multi-Object HMM: State Estimation on the space F(𝕏) of finite sets of 𝕏

𝕏

ℤ

F(𝕏)

F(ℤ)

Fundamental difference from classical dynamical system:
§ Random time-varying number of states and measurements 

§ False negatives, false positives, association uncertainty

§ Much more challenging computationally!



x x’

X’

x
Ædeath

Æ creation

X’

x

spawn

motion

x z

x
Æ

Æ

likelihood

misdetection

clutter

state space observation space

gk(Zk|Xk)Observation likelihood fk|k-1(Xk |Xk-1 )State transition kernel

A Standard Multi-Object HMM

state space

Inference for Multi-Object HMM
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State Estimation: estimate state trajectory
Online Operation: need fixed complexity per time step to be useful in practice

state trajectory =  history of states

x0:k = [x0  ,…, xk]

S. Sarkka, Bayesian filtering and smoothing, Cambridge University Press, 2013

Filtering: x0,…, xk, suitable for online – Kalman  & particle filters

Smoothing: x0:k , not suitable for online – Kalman & particle smoothers

Inference for Multi-Object HMM



Bayes filter

pk-1(xk-1 |z1:k-1) pk|k-1(xk| z1:k-1) pk(xk| z1:k)
prediction data-update ××××××

ò pk-1(xk-1| z1:k-1)     dxk-1fk|k-1(xk| xk-1) gk(zk| xk) pk|k-1(xk| z1:k-1)

ò gk(zk| xk)pk-1(xk-1| z1:k-1)dxk

Bayes smoother

p0:k-1(x0:k-1 |z1:k-1) p0:k(x0:k| z1:k) ××××××

fk|k-1(xk| xk-1)gk(zk| xk) p0:k-1(x0:k-1 |z1:k-1)

Fixed complexity per time step - suitable for online, widely used

Complexity per time step increases with time - not suitable for online
Smooth over a fix-length moving window - fixed complexity per time step 

ò gk(zk| xk) fk|k-1(xk| xk-1)p0:k-1(x0:k-1|z1:k-1)dx0:ksmoothing-while-filtering

Inference for Multi-Object HMM



multi-object state history
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Unlike standard HMM

Trajectory ≠ State History

multi-object trajectory
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multi-object trajectory = history of labeled multi-object states

multi-object state augmented 
with distinct labels

Inference for Multi-Object HMM

Labels provides multi-object trajectory estimate (even from a single scan) 
§ filtering with labeled multi-object states: X0,…, Xk

§ smoothing with labeled multi-object states: X0:k



Labels provides multi-object trajectory estimate (even from a single scan) 
§ filtering with labeled multi-object states: X0,…, Xk

§ smoothing with labeled multi-object states: X0:k

Labels admits closure under posterior truncation 

𝑔#(𝑍|𝐗) ∝4
$

Ψ%,#
($(ℒ(⋅))(⋅)

𝐗

Vo & Vo "Labeled RFSs and Multi-Object Conjugate Priors," IEEE Trans. SP, 61(13): 3460-3475, 2013 

§ Each term of the multi-object likelihood is symmetric
§ Truncated labeled posterior/filtering density is a function of sets

2 birds with one stone: provides trajectories & closure under truncation 

multi-object likelihood

Inference for Multi-Object HMM



Vo & Vo "Labeled RFSs and Multi-Object Conjugate Priors," IEEE Trans. SP, 61(13): 3460-3475, 2013 

Vo & Vo  “A Multi-Scan Labeled RFS Model for Multi-object State Estimation,” IEEE Trans. SP, 67(19):4948-4963, 2019

Generalized Labeled Multi-Bernoulli (GLMB) 

§ Multi-object Bayes Posterior Recursion (Smoothing-while-filtering)

§ Multi-object Bayes Filtering Recursion

GLMB filter: Multi-object Analogue of Kalman Smoother/Filter 

Closure under Bayes recursion - Analytic solutions to:

estimated labeled multi-object states X0,…,Xk forms a set of tracks

estimated labeled multi-object state history X0:k



GLMB density - multi-object analogue of exponential mixture:

distinct label indicator

labels of X ( ) ( )p x

Î
Õ
x X

x

multi-object exponential

B.-T. Vo, et. al. "Labeled Random Finite Sets and Multi-Object Conjugate Priors," IEEE Trans. SP, 61(13): 3460-3475, 2013. 

§ Weight Normalization

§ Cardinality Distribution & 1st moment

Generalized Labeled Multi-Bernoulli (GLMB)

associations history



Truncation of GLMB
§ Any truncation of a GLMB is a GLMB – closure under truncation

§ L1-norm of truncation error can be computed analytically

§ Minimum L1-norm truncation error: truncate smallest weights
Vo et. al. "Labeled RFS and the Bayes Multi-Target Tracking Filter," IEEE Trans. SP, 62(24):6554-6567, 2014

Approximation of GLMB by a 1-term GLMB (or LMB) with
§ Same PHD & same Cardinality distribution

Reuter et. al. "The labelled multi-Bernoulli filter," IEEE Trans. SP, 62(12):3246-3260, 2014 

Approximation of labeled multi-object density by a GLMB with:  
§ Same PHD & same Cardinality distribution

§ Minimal Kullback-Leibler divergence 
Papi et. al., “GLMB approximation of Multi-object densities,” IEEE Trans. SP, 63(20):5487-5497, 2015

Labeled Multi-Object Density Approximations 

Generalized Labeled Multi-Bernoulli (GLMB) 



Filter implementation:
§ K-shortest path prediction & ranked assignment update (cubic in no. detections)
§ Gibbs sampling + Joint Prediction & Update (linear in no. detections)

Vo et. al. "Labeled RFS and the Bayes Multi-Target Tracking Filter," IEEE Trans. SP, 62(24):6554-6567, 2014.
Vo et. al. “An Efficient Implementation of the GLMB Filter,” IEEE Trans. SP, 65(8):1975-1987, 2017.

Vo & Vo  “A Multi-Scan Labeled RFS Model for Multi-object State Estimation,” IEEE Trans. SP, 67(19):4948-4963, 2019

Vo et. al.  “Multi-sensor multi-object tracking with the GLMB filter,” IEEE Trans. SP, 67 (23):5952-5967, 2019.

GLMB Filtering/Posterior sum grows in no. terms, requires reduction of terms

Truncate terms with smallest weights ⇒ minimum L1-norm truncation error

Implementation: How to truncate without exhaustive enumeration of the terms?

Multi-sensor filter implementation:
§ Multi-dimensional assignment (NP-Hard): Gibbs sampling (linear in total no. of detections)

Smoother implementation:
§ Multi-dimensional assignment (NP-Hard): Gibbs sampling (linear in total no. of time steps)
§ On-line: smooth over fixed-length window and link trajectories with the same labels 

Generalized Labeled Multi-Bernoulli (GLMB)



estimated trajectories on a 64km by 32km area                 
M. Beard et. al. "A Solution for Large-scale Multi-object Tracking," IEEE Trans. SP, 68:2754–2769, 2020. 

Generalized Labeled Multi-Bernoulli (GLMB)
Computational Tractability? 



Beard et. al. "A Solution for Large-scale MOT," IEEE Trans. SP, 68:2754–2769, 2020. 

§ OSPA(2): metric for sets of tracks,

§ Generalization of OSPA that accounts for:

• Localization & Cardinality error; 

• Track fragmentation;

• ID switches 

Generalized Labeled Multi-Bernoulli (GLMB)

Advanced algorithms: at best hundreds of objects/frame 

Problem size = no. objects or observations/frame

§ Over 1 million objects per frame

§ Peak cardinality: 1,217,531 objects/frame (at time 700)

§ Peak object density: 520 km-2

§ Duration 1000 instances   … ~ 1 billion data points

Computational Tractability? 

GLMB 



§ Duration 1000mins, sampling period D=10mins
§ Clutter 0.3/scan, 
§ Detection probability 0.33 (very low)
§ Observation noise sigma  0.3mm
§ Dynamic noise sigma  0.01mm/D2

Scenario:
§ min 001: 4 cells appear, live for 100mins
§ min 200: 4 cells appear, live for 200mins
§ min 500: 4 cells appear, live for 400mins

Statistics on births/deaths, cell-life, migration pattern

Smoother: posterior statistics example in cell-microscopy 

Vo & Vo  “A Multi-Scan Labeled RFS Model for Multi-object State Estimation,” IEEE Trans. SP, 67(19):4948-4963, 2019

Generalized Labeled Multi-Bernoulli (GLMB)



Kim et al. "A GLMB tracker for time lapse cell migration,"  ICCAIS’17, Thailand, 2017.

MHT (tree depth=5) [Chenouard et. al.13] GLMB filter: online & less parameters

Application: Cell-Microscopy

Cell Migration Analysos

§ 4320 mins stem cell migration sequence, 1 image every 16 min



Cell Migration Analysis

§ Provides more than just tracking results: Statistics from the posterior distribution of the cells: 

Time averaged intensity function in position space …. Mean number of cells per unit area

Application: Cell-Microscopy

Net migration  Top –Bottom!



Time averaged intensity function in velocity space 

Interpretation: Velocity heatmap or concentration of cells at different velocities

Application: Cell-Microscopy

Cell Migration Analysis

§ Provides more than just tracking results: Statistics from the posterior distribution of the cells: 

Net migration  Top –Bottom!



Application: Multi-Sensor Fusion
3D (state + extent) tracking from multiple camera views
§ 4 Kinect sensors placed high up and facing inwards in each corner

§ YOLO detector produces 2D detections of bounding boxes in pixel space

§ Detections are noisy and subject to false positives/negatives

Ong et. al. “A Bayesian Filter for Multi-view 3D Multi-object Tracking with Occlusion Handling,” IEEE Trans. PAMI, 2020. 



CLEAR MOT scores and OSPA(2) 3D errors with 3D GIoU base-distance

Detectors (monocular): Faster-RCNN(VGG16) and YOLOv3

GLMB Filters: Standard Multi-Sensor (MS), Multi-View with Occlusion Model (MV)

Asterisk e.g. MV-GLMB-OC* indicates tracking while reconfiguring cameras

Ong et. al. “A Bayesian Filter for Multi-view 3D Multi-object Tracking with Occlusion Handling,” IEEE Trans. PAMI, 2020. 

Provides tracks in 3D instead of ground-plane tracks as in existing methods

No retraining when reconfiguring cameras

Application: Multi-Sensor Fusion



Autonomous Driving: SLAM + multi-object filtering

Prototype system with E-Class Mercedes-Benz

H. Deusch et. al. “The Labeled Multi-Bernoulli SLAM filter,” IEEE Signal Proc. Letters, 22(10), 2015.

Application: Autonomous Driving



National Park Service

Handheld device

How biologists track VHF-collared wildlife:
§ Trek long distances with VHF radio receivers, directional antennas and battery packs
§ Manually home in on radio collar signals from collared wildlife to find and locate them 

Use drone to autonomously track and localize animals

Application: Reinforcement Learning



Autonomous Drone:
§ Pros: Low cost, reduces time and operating costs
§ Cons: Introduce disturbances to wildlife

§ Need intelligent drones that can perform prescribed mission on their own

Application: Reinforcement Learning



Team of agents to track and search for a time-varying number of mobile objects

Real-time operation
Limited FoVs
Competing Objectives

Track? Explore

Nguyen et al., “Multi-Objective Multi-Agent Planning for Jointly Discovering and Tracking Mobile Objects,” AAAI-2020. 
Nguyen et al., “Multi-Objective Multi-Agent Planning for Discovering and Tracking Unknown and Varying Number of Mobile Objects,” 2022 
( arXiv:2203.04551) 

Application: Reinforcement Learning



Inspired by the multi-objective RFS control solution in [Zhu et. al. 2019]
Nguyen et al., “Multi-Objective Multi-Agent Planning for Jointly Discovering and Tracking Mobile Objects,” AAAI-2020. 
Nguyen et al., “Multi-Objective Multi-Agent Planning for Discovering and Tracking Unknown and Varying Number of Mobile Objects,” 2022 
( arXiv:2203.04551) 

Application: Reinforcement Learning



Application: Reinforcement Learning
Multi-objective strategies are more effective …



Application: Reinforcement Learning
Multi-objective strategies are more effective …



Conclusions

Thank You!

http://ba-ngu.vo-au.com/publications.html
http://ba-tuong.vo-au.com/codes.html

Preprints/latest works:
Matlab code: 

Multi-Object HMM provides:

§ insights into the foundations of applications involving multiple objects &

§ efficient  and scalable solutions not possible previously

§ Artificial intelligence, machine learning, data mining 
§ Communications, Astro-dynamics (Space Debris) 

§ Bio-medical research: cell microscopy, brain imaging … 

Many interesting problems in


