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Multi-Object Hidden Markov Model (HMM)

Hidden Markov Model (HMM) aka State Space Model of a Dynamical System

observation space Z

Zy
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observation vector
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state transition
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» Control
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Multi-Object Hidden Markov Model (HMM)

P> What if the state & observation are not vectors but point patterns, i.e., finite sets?

Orbital Debris Astronomy
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Multi-Object Hidden Markov Model (HMM)

P Point patterns in data science
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" Multiple Instance (MI) Learning: Machine Learning for point patterns [Amores 13]




Stochastic Geometry

4 b

Bayesian: p(X|Data)  Posterior PDF

-----

ihcluding finite sets

Non-Bayesian: p(Data|X) Data likelihood function

P What’s the big deal about working with sets?

Most widely adopted practice (in engineering/computer science):

X =} 2 pO) =Pl ) )

Finite Set Probability Density Function (PDF)
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Stochastic Geometry

P What’s the big deal about working with sets?

Py (PDF of landing positions learned from “normal” training data)
1

-1 X1 0 Xm 1 Landing positions (meters)

" Apples land on the ground independently from each other
m

pC0 = pCry, ) = | | pre)

=i
" Daily landing patterns are independent from each other

" Novelty Detection: find unlikely daily landing patterns
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Stochastic Geometry

P What’s the big deal about working with sets?

Py (PDF of landing positions learned from “normal” training data)
1

O |

|0 6 1
Xgé 2‘:3 X1§ |
-1 -04 0.4 0.8 1 Landing positions (meters)
Day 1: x4 p(z1) = pe(z1) =8
Day 2: x;, x3 p(z2,23) = py (@) py(xs) = 0.36

= Q: Which pattern is less likely? Ans: day 1 less likely than day 2.

= Change unit of measurement from m to cm and ...
p(z1) = 0.002 > p(z2, xz3) = 0.000036

BN. Vo et. al. “Model-based learning for point pattern data” Pattern Recognition 84, 136-151, 2018
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Stochastic Geometry

P Multi-Object HMM: HMM where the state is a finite set - multi-object state

observations multi-object observation
* * ' 7 R
vy e e b I U i S
states 3 multi-object state

P> Model multi-object state as a random finite set (RFS) ...

" Needs: Markov transition density & observation likelihood for finite-set-valued state
® Can'’ttreat a (random) finite set as if it were a (random) vector
" PDF of random finite set not the same as PDF of random vector

" Need PDFs ( + suitable notion of density & integration) for Random Finite Sets
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Stochastic Geometry

» Mathematical tools for dealing with Random Sets

» Foundation (1960s-1970s): mostly due to independent work by Matheron
and Kendall, both of whom gave credits to earlier work by Choquet

G. Matheron (1930-2000) D. Kendall (1918-2007) G. Choquet (1915-2006)
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Stochastic Geometry

X

State space

Belief “distribution” of
B (T)=PEcT), TcX

Probability distribution of
Ps(7)=PZX e?),Tc AX)

Choquet
(1968)

Point Process Theory (1950-1960’s) Mahler’s Finite Set Statistics (1994)

Probability density of X
 HX) — [0,0)

Pﬂﬂ fﬁﬂﬂmﬁ3

Belief “density” of =
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Inference for Multi-Object HMM

P Multi-Object HMM: Finite-set-valued HMM

observations multi-object observation

e
we o W

states

P Inference for Multi-Object HMM: State Estimation on the space HX) of finite sets of X

P> Fundamental difference from classical dynamical system:
" Random time-varying number of states and measurements
" False negatives, false positives, association uncertainty

" Much more challenging computationally!

R. Mahler, Statistical Multisource-Multitarget Information Fusion, Artech House, 2007.
R. Mahler, Advances in Statistical Multisource-Multitarget Information Fusion, Artech House, 2014.
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Inference for Multi-Object HMM

A Standard Multi-Object HMM

state space observation space state space

Observation likelihood gl Z)X}) I State transition kernel Sipe1 (X [ X 1) I




Inference for Multi-Object HMM

Xo X1 Xz X3 X4 Xk
® ® | |
: ® | | i
6 | |
@ ® 5 ! state trajectory = history of states
M i
@ ® ® ® ® __________________ 1 xO:k:[xO 7“'7-xk]
0 1 2 3 4 k time

P State Estimation: estimate state trajectory

P> Online Operation: need fixed complexity per time step to be useful in practice
P> Filtering: %,..., X, suitable for online — Kalman & particle filters

P Smoothing: %, not suitable for online — Kalman & particle smoothers

S. Sarkka, Bayesian filtering and smoothing, Cambridge University Press, 2013




Inference for Multi-Object HMM

gzl xk)fk|k—1(xk| X-1) Po:k1 (Xo:k-1 [Z1:4-1)

smoothing-while-filtering J izl X1) Srp-1 O] Xp-1)Po:11 (Ko:4-1121:0-1) %04
Bayes smoother e e

v
— P0-k1X0:5-1 21:5-1) — Po-Xo:4l Z1:1) — J

P Complexity per time step increases with time - not suitable for online

P> Smooth over a fix-length moving window - fixed complexity per time step

ka 1(Xk1] Z1241) fk|k 1 (] xk 1) dx; gz xp) pk!k—l(xkl Z141)

: j Z e S dx
Bayes filter S U2

prediction data-update

o — DX 21 4) —— pk|k—1(xk| Z1g1) ——» pk(xkl Zyp) —>

B Fixed complexity per time step - suitable for online, widely used
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State space

Inference for Multi-Object HMM

Xk
® | multi-object state history
: Q@ & ®
® g
k Unlike standard HMM
Trajectory # State History
® multi-object trajectory
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Inference for Multi-Object HMM

P multi-object trajectory = history of labeled multi-object states

-------------------------------------------------

Xl X4 Xk m.ulti-object state augmented

® with distinct labels

@ 8 .
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@ ® | - ® B &

© R | g : labeled

»n Lo R ® & : trajectories
® @

0 1 2 3 4 k _ time

B Labels provides multi-object trajectory estimate (even from a single scan)
= filtering with labeled multi-object states: X,,..., X;

" smoothing with labeled multi-object states: ﬁk

—




Inference for Multi-Object HMM

P Labels provides multi-object trajectory estimate (even from a single scan)
= filtering with labeled multi-object states: X,,..., X;

= smoothing with labeled multi-object states: Xox

P> Labels admits closure under posterior truncation

X
O
multi-object likelihood gk(Z|X)°‘z Ve O |
7]

Vo & Vo "Labeled RFSs and Multi-Object Conjugate Priors," IEEE Trans. SP, 61(13): 3460-3475, 2013

= Each term of the multi-object likelihood is symmetric

" Truncated labeled posterior/filtering density is a function of sets

P> 2 birds with one stone: provides trajectories & closure under truncation
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Generalized Labeled Multi-Bernoulli (GLMB)

> GLMB filter: Multi-object Analogue of Kalman Smoother/Filter
P Closure under Bayes recursion - Analytic solutions to:

" Multi-object Bayes Posterior Recursion (Smoothing-while-filtering)
01 (Xo:k | Z1:1) ¢ gr (2| Xp ) B p—1( X | X —1)7m0:6—1( X0k =1 Z1:0-1) I

estimated labeled multi-object state history f(;k

Vo & Vo “A Multi-Scan Labeled RFS Model for Multi-object State Estimation,” IEEE Trans. SP, 67(19):4948-4963, 2019

" Multi-object Bayes Filtering Recursion

T k-1 (Xg) = /ﬁf|k—1(Xl~"X)7rk~l (X)X,

Ik (2 | X )7 =1 (X))
J G Rm A0 |

7711¢(X/\-‘) ==

estimated labeled multi-object states X,,...,X; forms a set of tracks
Vo & Vo "Labeled RFSs and Multi-Object Conjugate Priors," IEEE Trans. SP, 61(13): 3460-3475, 2013
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Generalized Labeled Multi-Bernoulli (GLMB)

P GLMB density - multi-object analogue of exponential mixture:

Sx|(1L£(X)) i labelsofX []PY(®)
E xeX
distinct label indicator associations history multi-object exponential

" Weight Normalization

YY) = 1 /p(@(r.g)dm _ 1

[ ol =

LCL £€2

® Cardinality Distribution & 15t moment

p(n) = Z Z n (|L))w'® (L) I gl = Zp(f)(:lf. () Z 1. (O)w'S(L) |

§eE LCL == LCL

B.-T. Vo, et. al. "Labeled Random Finite Sets and Multi-Object Conjugate Priors," IEEE Trans. SP, 61(13): 3460-3475, 2013
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Generalized Labeled Multi-Bernoulli (GLMB)

Labeled Multi-Object Density Approximations

P Truncation of GLMB

" Any truncation of a GLMB is a GLMB - closure under truncation
" L1-norm of truncation error can be computed analytically

"  Minimum L1-norm truncation error: truncate smallest weights
Vo et. al. "Labeled RFS and the Bayes Multi-Target Tracking Filter," IEEE Trans. SP, 62(24):6554-6567, 2014

P Approximation of GLMB by a 1-term GLMB (or LMB) with

" Same PHD & same Cardinality distribution
Reuter et. al. "The labelled multi-Bernoulli filter," IEEE Trans. SP, 62(12):3246-3260, 2014

P> Approximation of labeled multi-object density by a GLMB with: \'
" Same PHD & same Cardinality distribution

"  Minimal Kullback-Leibler divergence

Papi et. al., “GLMB approximation of Multi-object densities,” IEEE Trans. SP, 63(20):5487-5497, 2015
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Generalized Labeled Multi-Bernoulli (GLMB)

P> GLMB Filtering/Posterior sum grows in no. terms, requires reduction of terms
B Truncate terms with smallest weights = minimum L1-norm truncation error

P Implementation: How to truncate without exhaustive enumeration of the terms?

P Filter implementation:

®  K-shortest path prediction & ranked assignment update (cubic in no. detections)
=  Gibbs sampling + Joint Prediction & Update (linear in no. detections)

Vo et. al. "Labeled RFS and the Bayes Multi-Target Tracking Filter," IEEE Trans. SP, 62(24):6554-6567, 2014. | :
Vo et. al. “An Efficient Implementation of the GLMB Filter,” IEEE Trans. SP, 65(8):1975-1987, 2017. J

—_—

P Multi-sensor filter implementation:

= Multi-dimensional assignment (NP-Hard): Gibbs sampling (linear in total no. of detections)
Vo et. al. “Multi-sensor multi-object tracking with the GLMB filter,” IEEE Trans. SP, 67 (23):5952-5967, 2019.

P Smoother implementation:
= Multi-dimensional assignment (NP-Hard): Gibbs sampling (linear in total no. of time steps)

= On-line: smooth over fixed-length window and link trajectories with the same labels
Vo & Vo “A Multi-Scan Labeled RFS Model for Multi-object State Estimation,” IEEE Trans. SP, 67(19):4948-4963, 2019
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Generalized Labeled Multi-Bernoulli (GLMB)

P Computational Tractability?
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estimated trajectories on a 64km by 32km area

M. Beard et. al. "A Solution for Large-scale Multi-object Tracking," IEEE Trans. SP, 68:2754-2769, 2020.
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Generalized Labeled Multi-Bernoulli (GLMB)

= = =True

Estimated

0 100

200

300 400 500 600 700 800 900

1000

300 400 500 600 700 800 900
Time [5]

|——OSPA
|——ospPA'?)| |

1000
Time [s]

Computational Tractability?

Advanced algorithms: at best hundreds of

Problem size = no. objects or observa

GLMB .

= Over 1 million objects per frame
" Peak cardinality: 1,217,531 objects/frame (at time 700

= Peak object density: 520 km

" Duration 1000 instances ... ~ 1 billion data points

= OSPA®@): metric for sets of tracks,

" Generalization of OSPA that accounts for:
* Localization & Cardinality error;
* Track fragmentation;

* |ID switches
Beard et. al. "A Solution for Large-scale MOT," IEEE Trans. SP, 68:2754-2769, 2020.




Generalized Labeled Multi-Bernoulli (GLMB)

P> Smoother: posterior statistics example in cell-microscopy

® Duration 1000mins, sampling period A=10mins

® Clutter 0.3/scan, Scenario:

® Detection probability 0.33 (very low) " min 001: 4 cells appear, live for 100mins
® Observation noise sigma 0.3mm " min 200: 4 cells appear, live for 200mins
® Dynamic noise sigma 0.01mm/A? " min 500: 4 cells appear, live for 400mins

Statistics on births/deaths, cell-life, migration pattern

05 Time 10 mins Time 200 mins
s 5
11 10"

£ a8 = =
2 e F 1 e f ‘
= o ls < )
@ 510 B :E

=

'E = c 0
i @ 1p =3 E
a g = -
D 2 Z Z
] ] > >

o
8 s I

05

1é-D 200 300 4l’.J-:I 500 800 .“-50 Eﬁﬁ E'Lllﬂ 1000 a 2 4 & 3 05 0 0.5 05 0 0.5
Time (mins) Number of Traje ctnrlcs x-vel (mm/delta) x-vel (mm/delta)
Time 500 mins Time 900 mins

9 : ) B 0.5 0.5
2 2 —_ —
3 = {3 3
i} @ | @ o
[=] g 3z 2
k] = E E
= % 01 | g 0 g ©
a <] — =5
B B, | g 2
8 50 | £ =
o
= == = = = = = = = -4 H -0.5 0.5
100 200 300 400 500 600 7TOD B0O0 6500 1000

200 300 400 500 600 700 810 900 1000 05 0 05 05 0 05

Time (mins) Length of Trajectory (mins) x-vel (mm/delta) x-vel (mm/delta)

Vo & Vo “A Multi-Scan Labeled RFS Model for Multi-object State Estimation,” IEEE Trans. SP, 67(19):4948-4963, 2019
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Application: Cell-Microscopy

Cell Migration Analysos

" 4320 mins stem cell migration sequence, 1 image every 16 min

MHT (tree depth=5) [Chenouard et. al.13] GLMB filter: online & less parameters
3 > 2 P : Z\ ) r
1‘.."‘&/7 3/ (i 4 - /'_/'_,%q’ F“\" L 2ad <
' e N S
\ Sl N b \~}\ f ¢ =
< o A . [
i 08 e ; ///'/ ¢ L 5 /-' séf( b}
> A T / " N |
Jv’*“ E ’
N 11 \
/ :/v t\u
e =i 7
ol ; o
; ")‘/ } T N )Z’{ 7/
% X o
Y-S 3
2 n N :\I"S\’ TN /g‘i
. 3 {F,. /3}{:\«
e s LESNT A

Kim et al. "A GLMB tracker for time lapse cell migration," ICCAIS’17, Thailand, 2017.
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Application: Cell-Microscopy

Cell Migration Analysis

" Provides more than just tracking results: Statistics from the posterior distribution of the cells:

Net migration Top —Bottom!

Time averaged intensity function in position space .... Mean number of cells per unit area
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Application: Cell-Microscopy

Cell Migration Analysis

" Provides more than just tracking results: Statistics from the posterior distribution of the cells:

50
40 |
30 |
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10 |

Net migration Top —Bottom! |

H %—— X

O !

-10 |

-20 |

_30 !
-40

-50
-50 -40 -30 -20 -10 0 10 20 30 40 50

Time averaged intensity function in velocity space

Interpretation: Velocity heatmap or concentration of cells at different velocities




Application: Multi-Sensor Fusion

P 3D (state + extent) tracking from multiple camera views
® 4 Kinect sensors placed high up and facing inwards in each corner
" YOLO detector produces 2D detections of bounding boxes in pixel space

"  Detections are noisy and subject to false positives/negatives '

Ong et. al. “A Bayesian Filter for Multi-view 3D Multi-object Tracking with Occlusion Handling,” IEEE Trans. PAMI, 2020. -




Application: Multi-Sensor Fusion

P> Provides tracks in 3D instead of ground-plane tracks as in existing methods

P> No retraining when reconfiguring cameras

CMC3 (Maximum /Average 15 people)

CLEAR MOT scores and OSPA® 3D errors with 3D GloU base-distance
Detectors (monocular): Faster-RCNN(VGG16) and YOLOv3
GLMB Filters: Standard Multi-Sensor (MS), Multi-View with Occlusion Model (MV)

Asterisk e.g. MV-GLMB-OC* indicates tracking while reconfiguring cameras

Detector and Tracker IDFL 1 | 1DP T IDRT [MTT|PT LML | FI' ] N | IDs | FM | [MOTA 1|MOTP 1 || OSPA'™® |
YOLOvV3+MV-GLMB-OC 70.7% | 72.3% | 69.1% | 14 1 0 94 222 45 37 87.2% | 52.8% 0.53
YOLOv3+MV-GLMB-OC* 60.8% 65.7% | 56.6" 9 6 0 91 451 66 56 774% | 46.4% 0.60
YOLOv3+MS-GLMB 41.4% | 57.3% | 324% 0 15 0 10 1239 64 60 53.5% | 46.7% 0.76
Faster-RCNN(VGG16)+MV-GLMB-OC | 63.7% 66.6% 61.1% 12 3 0 97 329 63 41 82.7% 52.8% 0.58
Faster-RCNN(VGG16)+MV-GLMB-OC*| 57.3% | 61.0% | 54.0% | 10 5 0 133 460 78 60 76.3% | 47.9% 0.66
Faster-RUNN(VGG16)+MS-GLMB 45.7% | 61.7% | 36.3% 0 15 0 13 1175 61 67 558% | 46.6% 0.75

CMC5 (Jumping and Falling, Maximum/Average 7 people)

Detector and Tracker IDF1 1 1IDP 1 IDRt [MTH|PTL|MLL| FPL [ FN.] | IDs| FM | [MOTA 1[MOTP || OSPA® |
YOLOv3+MV-GLMB-OC 59.8"% 61.0% | 60.8% 3 L 0 404 951 67 54 60.6% 45.0% 0.65
YOLOv3+MV-GLMB-OC* 55.9% 54.9% | 57.1% 3 3 1 689 1125 80 85 55.3% 43.4% (.71
YOLOv3+MV-GLMB 49.5% | 50.1% | 45.0% 3 2 2 715 1750 94 91 493% | 42.6% 0.78
Faster-RCNN(VGG16)+MV-GLMB-OC 58.1% 60.8% 59.4% 3 4 0 451 1008 72 a7 59.9% 43.1% (.66
Faster-RCNN(VGG16)+MV-GLMB-OC* 55.9% 53.6% | 51.6% 3 3 1 569 1519 81 88 51.4% 42.7% (.75
Faster-RCNN(VGG16)+MS-GLMB 48.8% | 453% | 41.7% 3 3 1 734 1493 96 98 43.3% | 43.9% 0.81

Ong et. al. “A Bayesian Filter for Multi-view 3D Multi-object Tracking with Occlusion Handling,” IEEE Trans. PAMI, 2020.




Application: Autonomous Driving

Autonomous Driving: SLAM + multi-object filtering

Laserscanner Mitte Laserscanner finks

Prototype system with E-Class Mercedes-Benz

H. Deusch et. al. “The Labeled Multi-Bernoulli SLAM filter,” IEEE Signal Proc. Letters, 22(10), 2015.
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Application: Reinforcement Learning

Use drone to autonomously track and localize animals

How biologists track VHF-collared wildlife:
= Trek long distances with VHF radio receivers, directional antennas and battery packs )
= Manually home in on radio collar signals from collared wildlife to find and locate them




Application: Reinforcement Learning

Autonomous Drone:
= Pros: Low cost, reduces time and operating costs
= Cons: Introduce disturbances to wildlife

Tt ssrrasrrsaaasraassErssasessassEssaTaerrnnnnny AIdUPllOtMega
“MAVLink
....................... Protocol
.......... Kl oo 1 Sensor System
{ — = )
:\ i—- . 7 a0 Tracking & Planning
SNesmessssessesecscscnsceeseee s e e e annnnaes® 0 Software Algorithm :
Defined Radio Embedded

Compute Module

VHF Radio v | VHF Antenna |
Collared Tag

= Need intelligent drones that can perform prescribed mission on their own




Application: Reinforcement Learning

Team of agents to track and search for a time-varying number of mobile objects

P> Real-time operation
P> Limited FoVs
P> Competing Objectives 4

Y

P\

‘®

Explore

Nguyen et al., “Multi-Objective Multi-Agent Planning for Jointly Discovering and Tracking Mobile Objects,” AAAI-2020.

Nguyen et al., “Multi-Objective Multi-Agent Planning for Discovering and Tracking Unknown and Varying Number of Mobile Objects,” 2022
(arXiv:2203.04551)




Application: Reinforcement Learning

Planning Framework: Tracking Framework: ®1® ® ®
Multi-agent POMDP Multi-sensor GLMB ® g
to track multiple 2 ® W

objects with unknown . :
: Tracking two objects over

Multi-Objective Planning o measurement origins e

W for Tracking
Plannfng for Discovering Unexplored
Tr:ilckmg fmd e Framework: areas
Discovering for Discovering < Dynamic occupancy

grid to discover

undetected mobile
OijCtS Dynamic grid occupancy

Inspired by the multi-objective RFS control solution in [Zhu et. al. 2019]

Nguyen et al., “Multi-Objective Multi-Agent Planning for Jointly Discovering and Tracking Mobile Objects,” AAAI-2020.

Nguyen et al., “Multi-Objective Multi-Agent Planning for Discovering and Tracking Unknown and Varying Number of Mobile Objects,” 2022
(arXiv:2203.04551)




Application: Reinforcement Learning

Multi-objective strategies are more effective ...

Ry (racking ) Reward Rq lowr discovery) Reward R (onter multi-objective) Reward
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Application: Reinforcement Learning

Multi-objective strategies are more effective ...

Ry (racking ) Reward g lour discovery ) Reward Ry (oner mulii-ohjective) Beward
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Multi-Object HMM provides:
" insights into the foundations of applications involving multiple objects &

= efficient and scalable solutions not possible previously

Many interesting problems in

= Artificial intelligence, machine learning, data mining

= Communications, Astro-dynamics (Space Debris)

®  Bio-medical research: cell microscopy, brain imaging ...

Preprints/latest works: http://ba-ngu.vo-au.com/publications.html
Matlab code: http://ba-tuong.vo-au.com/codes.html

Thank You!
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