Inference with Multi-Object Hidden Markov Models

Ba-Ngu Vo http://ba-ngu.vo-au.com **Dept. Electrical & Computer Engineering Curtin University Perth, Australia**

VIASM November 2022

Outline

Multi-Object Hidden Markov Model (HMM)
Stochastic Geometry
Inference for Multi-Object HMM
Generalized Labeled Multi-Bernoulli
Applications

Conclusions

Multi-Object Hidden Markov Model (HMM)

Hidden Markov Model (HMM) aka State Space Model of a Dynamical System

Multi-Object Hidden Markov Model (HMM)

What if the state & observation are not vectors but point patterns, i.e., finite sets?

Particles

Molecules

Cells

People

Orbital Debris

Astronomy

Multi-Object Hidden Markov Model (HMM)

Point patterns in data science

Multiple Instance (MI) Learning: Machine Learning for point patterns [Amores 13]

Bayesian:p(X | Data)Posterior PDFincludingfinite setsNon-Bayesian:p(Data | X)Data likelihood function

What's the big deal about working with sets?

Most widely adopted practice (in engineering/computer science):

$$\begin{cases} X = \{x_1, \dots, x_m\} & \longrightarrow & p(X) = p(x_1, \dots, x_m) \\ Finite Set & Probability Density Function (PDF) \end{cases}$$

What's the big deal about working with sets?

Apples land on the ground independently from each other

$$p(X) = p(x_1, ..., x_m) = \prod_{i=1}^m p_f(x_i)$$

- Daily landing patterns are independent from each other
- Novelty Detection: find unlikely daily landing patterns

What's the big deal about working with sets?

 p_f (PDF of landing positions learned from "normal" training data)

- Q: Which pattern is less likely? Ans: day 1 less likely than day 2.
- Change unit of measurement from m to cm and ...

 $p(x_1) = 0.002 > p(x_2, x_3) = 0.000036$

BN. Vo et. al. "Model-based learning for point pattern data" Pattern Recognition 84, 136-151, 2018

Multi-Object HMM: HMM where the state is a finite set - multi-object state

Model multi-object state as a random finite set (RFS) ...

- Needs: Markov transition density & observation likelihood for finite-set-valued state
- Can't treat a (random) finite set as if it were a (random) vector
- PDF of random finite set not the same as PDF of random vector
- Need PDFs (+ suitable notion of density & integration) for Random Finite Sets

- Mathematical tools for dealing with Random Sets
- Foundation (1960s-1970s): mostly due to independent work by Matheron and Kendall, both of whom gave credits to earlier work by Choquet

G. Matheron (1930-2000)

D. Kendall (1918-2007)

G. Choquet (1915-2006)

Multi-Object HMM: Finite-set-valued HMM

Inference for Multi-Object HMM: State Estimation on the space F(X) of finite sets of X

Fundamental difference from classical dynamical system:

- Random time-varying number of states and measurements
- False negatives, false positives, association uncertainty
- Much more challenging computationally!

R. Mahler, Statistical Multisource-Multitarget Information Fusion, Artech House, 2007.

R. Mahler, Advances in Statistical Multisource-Multitarget Information Fusion, Artech House, 2014.

A Standard Multi-Object HMM

State Estimation: estimate state trajectory

- Online Operation: need fixed complexity per time step to be useful in practice
- Filtering: $\widehat{x_0}, \dots, \widehat{x_k}$, suitable for online Kalman & particle filters
- Smoothing: $\widehat{x_{0:k}}$, not suitable for online Kalman & particle smoothers

S. Sarkka, Bayesian filtering and smoothing, Cambridge University Press, 2013

 $g_k(z_k | x_k) f_{k|k-1}(x_k | x_{k-1}) p_{0:k-1}(x_{0:k-1} | z_{1:k-1})$

smoothing-while-filtering Bayes smoother $\int g_k(z_k | x_k) f_{k|k-1}(x_k | x_{k-1}) p_{0:k-1}(x_{0:k-1} | z_{1:k-1}) dx_{0:k}$

 $g_k(z_k | x_k) p_{k|k-1}(x_k | z_{1:k-1})$

 $\int g_k(z_k | x_k) p_{k-1}(x_{k-1} | z_{1:k-1}) dx_k$

$$\cdots \longrightarrow p_{0:k-1}(x_{0:k-1}|z_{1:k-1}) \longrightarrow p_{0:k}(x_{0:k}|z_{1:k}) \longrightarrow \cdots$$

Complexity per time step increases with time - not suitable for online

Smooth over a fix-length moving window - fixed complexity per time step

 $\int p_{k-1}(x_{k-1}|z_{1:k-1}) f_{k|k-1}(x_k|x_{k-1}) dx_{k-1}$

Bayes filter

$$\cdots \longrightarrow p_{k-1}(x_{k-1} | z_{1:k-1}) \xrightarrow{\text{prediction}} p_{k|k-1}(x_k | z_{1:k-1}) \xrightarrow{\text{data-update}} p_k(x_k | z_{1:k}) \longrightarrow \cdots$$

Fixed complexity per time step - suitable for online, widely used

Labels provides multi-object trajectory estimate (even from a single scan)

- filtering with labeled multi-object states: $\hat{\mathbf{X}}_{0}, ..., \hat{\mathbf{X}}_{k}$
- smoothing with labeled multi-object states: $\widehat{\mathbf{X}}_{0:k}$

Labels provides multi-object trajectory estimate (even from a single scan)

- filtering with labeled multi-object states: $\mathbf{\hat{X}}_{0},...,\mathbf{\hat{X}}_{k}$
- smoothing with labeled multi-object states: $\widehat{\mathbf{X}}_{0:k}$

Labels admits closure under posterior truncation

multi-object likelihood

$$g_k(Z|\mathbf{X}) \propto \sum_{\theta} \left[\Psi_{Z,k}^{(\theta(\mathcal{L}(\cdot))}(\cdot) \right]^{\mathbf{X}}$$

Vo & Vo "Labeled RFSs and Multi-Object Conjugate Priors," IEEE Trans. SP, 61(13): 3460-3475, 2013

- Each term of the multi-object likelihood is symmetric
- Truncated labeled posterior/filtering density is a function of sets
- 2 birds with one stone: provides trajectories & closure under truncation

- **GLMB filter**: Multi-object Analogue of Kalman Smoother/Filter
- **Closure under Bayes recursion -** Analytic solutions to:
 - Multi-object Bayes Posterior Recursion (Smoothing-while-filtering)

 $\boldsymbol{\pi}_{0:k}(\mathbf{X}_{0:k}|Z_{1:k}) \propto g_k(Z_k|\mathbf{X}_k) \mathbf{f}_{k|k-1}(\mathbf{X}_k|\mathbf{X}_{k-1}) \boldsymbol{\pi}_{0:k-1}(\mathbf{X}_{0:k-1}|Z_{1:k-1})$

estimated labeled multi-object state history $\mathbf{X}_{0:k}$

Vo & Vo "A Multi-Scan Labeled RFS Model for Multi-object State Estimation," IEEE Trans. SP, 67(19):4948-4963, 2019

Multi-object Bayes Filtering Recursion

$$\pi_{k|k-1}(\mathbf{X}_k) = \int \mathbf{f}_{k|k-1}(\mathbf{X}_k|\mathbf{X}) \pi_{k-1}(\mathbf{X}) \delta \mathbf{X},$$
$$\pi_k(\mathbf{X}_k) = \frac{g_k(Z_k|\mathbf{X}_k) \pi_{k|k-1}(\mathbf{X}_k)}{\int g_k(Z_k|\mathbf{X}) \pi_{k|k-1}(\mathbf{X}) \delta \mathbf{X}},$$

estimated **labeled** multi-object states $\widehat{X}_{0},...,\widehat{X}_{k}$ forms a set of tracks Vo & Vo "Labeled RFSs and Multi-Object Conjugate Priors," IEEE Trans. SP, 61(13): 3460-3475, 2013

GLMB density - multi-object analogue of exponential mixture:

$$\begin{aligned} \boldsymbol{\pi}(\mathbf{X}) &= \Delta(\mathbf{X}) \sum_{\xi \in \Xi} w^{(\xi)}(\mathcal{L}(\mathbf{X})) \left[p^{(\xi)} \right]^{\mathbf{X}} \\ \delta_{|\mathbf{X}|}(|\mathcal{L}(\mathbf{X})|) & \text{labels of } \mathbf{X} \quad \prod_{\mathbf{x} \in \mathbf{X}} p^{(\xi)}(\mathbf{x}) \end{aligned}$$

distinct label indicator associations history multi-object exponential

Weight Normalization

$$\sum_{L \subseteq \mathbb{L}} \sum_{\xi \in \Xi} w^{(\xi)}(L) = 1 \qquad \int p^{(\xi)}(x,\ell) dx = 1$$

Cardinality Distribution & 1st moment

$$\rho(n) = \sum_{\xi \in \Xi} \sum_{L \subseteq \mathbb{L}} \delta_n(|L|) w^{(\xi)}(L) \qquad v(x,\ell) = \sum_{\xi \in \Xi} p^{(\xi)}(x,\ell) \sum_{L \subseteq \mathbb{L}} 1_L(\ell) w^{(\xi)}(L)$$

B.-T. Vo, et. al. "Labeled Random Finite Sets and Multi-Object Conjugate Priors," IEEE Trans. SP, 61(13): 3460-3475, 2013.

Labeled Multi-Object Density Approximations

Truncation of GLMB

- Any truncation of a GLMB is a GLMB closure under truncation
- L1-norm of truncation error can be computed analytically
- Minimum L1-norm truncation error: truncate smallest weights

Vo et. al. "Labeled RFS and the Bayes Multi-Target Tracking Filter," IEEE Trans. SP, 62(24):6554-6567, 2014

Approximation of GLMB by a 1-term GLMB (or LMB) with

Same PHD & same Cardinality distribution

Reuter et. al. "The labelled multi-Bernoulli filter," IEEE Trans. SP, 62(12):3246-3260, 2014

Approximation of labeled multi-object density by a GLMB with:

- Same PHD & same Cardinality distribution
- Minimal Kullback-Leibler divergence

Papi et. al., "GLMB approximation of Multi-object densities," IEEE Trans. SP, 63(20):5487-5497, 2015

- GLMB Filtering/Posterior sum grows in no. terms, requires reduction of terms
- Truncate terms with smallest weights \Rightarrow minimum L1-norm truncation error
- Implementation: How to truncate without exhaustive enumeration of the terms?

Filter implementation:

- K-shortest path prediction & ranked assignment update (cubic in no. detections)
- Gibbs sampling + Joint Prediction & Update (linear in no. detections)

Vo et. al. "Labeled RFS and the Bayes Multi-Target Tracking Filter," IEEE Trans. SP, 62(24):6554-6567, 2014. Vo et. al. "An Efficient Implementation of the GLMB Filter," IEEE Trans. SP, 65(8):1975-1987, 2017.

Multi-sensor filter implementation:

- Multi-dimensional assignment (NP-Hard): Gibbs sampling (linear in total no. of detections)
- Vo et. al. "Multi-sensor multi-object tracking with the GLMB filter," IEEE Trans. SP, 67 (23):5952-5967, 2019.

Smoother implementation:

- Multi-dimensional assignment (NP-Hard): Gibbs sampling (linear in total no. of time steps)
- On-line: smooth over fixed-length window and link trajectories with the same labels

Vo & Vo "A Multi-Scan Labeled RFS Model for Multi-object State Estimation," IEEE Trans. SP, 67(19):4948-4963, 2019

Computational Tractability?

estimated trajectories on a 64km by 32km area

M. Beard et. al. "A Solution for Large-scale Multi-object Tracking," IEEE Trans. SP, 68:2754–2769, 2020.

Computational Tractability?

Advanced algorithms: at best hundreds of objects/frame **Problem size** = no. objects or observations/frame

GLMB

- Over **1 million** objects per frame
- Peak cardinality: 1,217,531 objects/frame (at time 700)
- Peak object density: 520 km⁻²
- Duration 1000 instances ... ~ 1 billion data points
- OSPA⁽²⁾: metric for sets of tracks,
- Generalization of OSPA that accounts for:
 - Localization & Cardinality error;
 - Track fragmentation;
 - ID switches

Beard et. al. "A Solution for Large-scale MOT," IEEE Trans. SP, 68:2754–2769, 2020.

Smoother: posterior statistics example in cell-microscopy

- Duration 1000mins, sampling period △=10mins
- Clutter 0.3/scan,
- Detection probability 0.33 (very low)
- Observation noise sigma 0.3mm
- Dynamic noise sigma 0.01mm/∆²

Scenario:

- min 001: 4 cells appear, live for 100mins
- min 200: 4 cells appear, live for 200mins
- min 500: 4 cells appear, live for 400mins

Statistics on births/deaths, cell-life, migration pattern Time 200 mins Time 10 mins 0.5 -vel (mm/delta) 0.8 Card Dn of Birth el (mm/del 10-1 1 0.6 -0.5 -0.5 -0.5 0.5 10 12 0 -0.5 0 0 2 4 6 200 300 400 500 600 700 800 900 1000 x-vel (mm/delta) x-vel (mm/delta) Number of Trajectories Time (mins) Time 500 mins Time 900 mins 0.5 0 5 -vel (mm/delta) /-vel (mm/delta) of Death 0.15 0 0.1 50 0.05 -0.5 100 200 300 400 500 600 700 800 900 -0.5 0.5 -0.5 0.5 100 0 0 0 200 300 400 500 600 700 1000 Time (mins) x-vel (mm/delta) x-vel (mm/delta) Length of Trajectory (mins)

Vo & Vo "A Multi-Scan Labeled RFS Model for Multi-object State Estimation," IEEE Trans. SP, 67(19):4948-4963, 2019

Application: Cell-Microscopy

Cell Migration Analysos

4320 mins stem cell migration sequence, 1 image every 16 min

Kim et al. "A GLMB tracker for time lapse cell migration," ICCAIS'17, Thailand, 2017.

Application: Cell-Microscopy

Cell Migration Analysis

Provides more than just tracking results: Statistics from the posterior distribution of the cells:

Net migration Top –Bottom!

Time averaged intensity function in position space Mean number of cells per unit area

Application: Cell-Microscopy

Cell Migration Analysis

Provides more than just tracking results: Statistics from the posterior distribution of the cells:

Time averaged intensity function in velocity space

Interpretation: Velocity heatmap or concentration of cells at different velocities

Application: Multi-Sensor Fusion

- 3D (state + extent) tracking from multiple camera views
 - 4 Kinect sensors placed high up and facing inwards in each corner
 - YOLO detector produces 2D detections of bounding boxes in pixel space
 - Detections are noisy and subject to false positives/negatives

Ong et. al. "A Bayesian Filter for Multi-view 3D Multi-object Tracking with Occlusion Handling," IEEE Trans. PAMI, 2020.

Application: Multi-Sensor Fusion

Provides tracks in 3D instead of ground-plane tracks as in existing methods

		(CMC3 (M	aximun	n/Avei	rage 15	people)						
Detector and Tracker	IDF1 ↑	IDP↑	IDR ↑	MT ↑	$PT\downarrow$	ML↓	FP↓	FN↓	IDs ↓	FM ↓	MOTA ↑	MOTP ↑	$OSPA^{(2)}\downarrow$
YOLOv3+MV-GLMB-OC	70.7%	72.3%	69.1%	14	1	0	94	222	45	37	87.2%	52.8%	0.53
YOLOv3+MV-GLMB-OC*	60.8%	65.7%	56.6%	9	6	0	91	481	66	56	77.4%	46.4%	0.60
YOLOv3+MS-GLMB	41.4%	57.3%	32.4%	0	15	0	10	1239	64	60	53.5%	46.7%	0.76
Faster-RCNN(VGG16)+MV-GLMB-OC	63.7%	66.6%	61.1%	12	3	0	97	329	63	41	82.7%	52.8%	0.58
Faster-RCNN(VGG16)+MV-GLMB-OC*	57.3%	61.0%	54.0%	10	5	0	133	460	78	60	76.3%	47.9%	0.66
Faster-RCNN(VGG16)+MS-GLMB	45.7%	61.7%	36.3%	0	15	0	13	1175	61	67	55.8%	46.6%	0.75
	(CMC5 (Jun	nping and	I Falling	g, Max	imum/	Average	e 7 people	2)		() ()		ē.
Detector and Tracker	IDF1 ↑	IDP ↑	IDR ↑	MT 1	PT↓	ML↓	$FP\downarrow$	FN↓	$IDs \downarrow$	$FM\downarrow$	MOTA ↑	MOTP ↑	$OSPA^{(2)}\downarrow$
YOLOv3+MV-GLMB-OC	59.8%	61.0%	60.8%	3	4	0	404	951	67	54	60.6%	45.0%	0.65
YOLOv3+MV-GLMB-OC*	55.9%	54.9%	57.1%	3	3	1	689	1125	80	85	55.3%	43.4%	0.71
YOLOv3+MV-GLMB	49.5%	50.1%	45.0%	3	2	2	715	1750	94	91	49.3%	42.6%	0.78
Faster-RCNN(VGG16)+MV-GLMB-OC	58.1%	60.8%	59.4%	3	4	0	451	1008	72	57	59.9%	43.1%	0.66
Faster-RCNN(VGG16)+MV-GLMB-OC*	55.9%	53.6%	51.6%	3	3	1	569	1519	81	88	51.4%	42.7%	0.75
Faster-RCNN(VGG16)+MS-GLMB	48.8%	45.3%	41.7%	3	3	1	734	1493	96	98	43.3%	43.9%	0.81

No retraining when reconfiguring cameras

CLEAR MOT scores and OSPA⁽²⁾ 3D errors with 3D GIoU base-distance

Detectors (monocular): Faster-RCNN(VGG16) and YOLOv3

GLMB Filters: Standard Multi-Sensor (MS), Multi-View with Occlusion Model (MV)

Asterisk e.g. MV-GLMB-OC* indicates tracking while reconfiguring cameras

Ong et. al. "A Bayesian Filter for Multi-view 3D Multi-object Tracking with Occlusion Handling," IEEE Trans. PAMI, 2020.

Application: Autonomous Driving

Autonomous Driving: SLAM + multi-object filtering

Prototype system with E-Class Mercedes-Benz

H. Deusch et. al. "The Labeled Multi-Bernoulli SLAM filter," IEEE Signal Proc. Letters, 22(10), 2015.

Use drone to autonomously track and localize animals

How biologists track VHF-collared wildlife:

- Trek long distances with VHF radio receivers, directional antennas and battery packs
- Manually home in on radio collar signals from collared wildlife to find and locate them

Autonomous Drone:

- Pros: Low cost, reduces time and operating costs
- Cons: Introduce disturbances to wildlife

Need intelligent drones that can perform prescribed mission on their own

Team of agents to track and search for a time-varying number of mobile objects

Nguyen et al., "Multi-Objective Multi-Agent Planning for Jointly Discovering and Tracking Mobile Objects," AAAI-2020. Nguyen et al., "Multi-Objective Multi-Agent Planning for Discovering and Tracking Unknown and Varying Number of Mobile Objects," 2022 (arXiv:2203.04551)

Inspired by the multi-objective RFS control solution in [Zhu et. al. 2019]

Nguyen et al., "Multi-Objective Multi-Agent Planning for Jointly Discovering and Tracking Mobile Objects," AAAI-2020. Nguyen et al., "Multi-Objective Multi-Agent Planning for Discovering and Tracking Unknown and Varying Number of Mobile Objects," 2022 (arXiv:2203.04551)

Multi-objective strategies are more effective ...

Multi-objective strategies are more effective ...

Conclusions

Multi-Object HMM provides:

- insights into the foundations of applications involving multiple objects &
- efficient and scalable solutions not possible previously

Many interesting problems in

- Artificial intelligence, machine learning, data mining
- Communications, Astro-dynamics (Space Debris)
- Bio-medical research: cell microscopy, brain imaging ...

Preprints/latest works: http://ba-ngu.vo-au.com/publications.html Matlab code: http://ba-tuong.vo-au.com/codes.html

Thank You!