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Data are vast, diverse, complex

(a) Observations of photon sources near the center of the Orion Nebula from the
Chandra X-ray Observatory (Jones et al, 2015)

(b) Trajectories of traffic primitives extracted from sensors-equipped vehicles driven
in and around Ann Arbor, Michigan (Guha et al, 2020)

(c) Latent topics extracted from text corpus
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From data to statistical models

each dot represents a data point (photon source, car’s signal, text doc)

we may assume

data ∼ i .i .d . P(x |θ)

• data are samples of a random variable X

• P is a probability distribution on some observable domain

• unknown θ parameterizes P
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Distances on space of distributions
All statistical learning algorithms involve making movements on some
(explicit or implicit) space of probability measures

• traditional notions of distance assume existence of density functions
(typically wrt Lebesgue measure on Euclidean domain, or counting
measure on discrete domain)

Standard distances in statistics, information theory, learning theory

• total variation: DTV (p, q) = 1
2

∫
|p(x)− q(x)|dµ

• Hellinger:

h(p, q) =
1√
2
‖√p −√q‖L2

• relative entropy (KL divergence):

K (p, q) =

∫
p(x) log(p(x)/q(x))dµ

• we also know
h2 ≤ DTV ≤

√
2h ≤

√
K .
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There may be some metric structure in the supports of P and Q, but
they may be disjoint
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Monge problem Find a map x 7→ T (x) s.t. if X ∼ P then
Y := T (X ) ∼ Q. That is, find T such that the pushforward measure
satisfies T#P = Q.

Kantorovich problem enlarges Monge’s into a solvable problem:
find a "stochastic map" , i.e., a coupling of P and Q that minimizes
expected cost of transportation
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Basic definition and facts

Let (X , µ) and (Y, ν) be two complete and separable metric probability
spaces. Let c : X × Y → R ∪ {+∞} be a non-negative
lower-semicontinuous cost function.

Lemma Let Π(µ, ν) be the space of all couplings of µ, ν, i.e., all joint
distributions on X × Y that admit marginal distributions µ and ν. Then
there exists a coupling µ ∈ Π(µ, ν) that minimizes the total cost

Eπc(X ,Y ) =

∫
c(x , y)dπ(x , y).
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Kantorovich duality

min
π∈Π(µ,ν)

∫
X×Y

c(x , y)dπ(x , y) =

max
(ψ,φ)∈L1(µ)×L1(ν):φ+ψ≤c

∫
ψ(x)dµ(x) + φ(y)dν(y).

(i) ≥ is trivial; = is due to convex optimization in Banach spaces

(ii) dual formulation allows precise characterization of the optimal π and
corresponding optimal φ, ψ: assume that the optimal cost is finite, then
the support of π satisfies ψ(x) + φ(y) = c(x , y) almost surely.

(iii) when c is continuous, then the support of π is c-cyclic monotone, i.e., the
set of pairs (xn, yn) such that

N∑
i=1

c(xi , yi ) ≤
N∑
i=1

c(xi , yi+1)

hold for all such pairs and all N (with the convention yN+1 = y1).
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Two useful properties

(I) Wasserstein metric: Let (X , d) be a Polish metric space, r ∈ [1,∞).
For any two pm’s µ, ν on X , the Wasserstein metric of order r is
given given by

Wr (µ, ν) =

(
inf

π∈Π(µ,ν)

∫
X
d(x , y)rdπ(x , y)

)1/r

= inf

{
[Ed(X ,Y )r ]1/r , X ∼ µ,Y ∼ ν

}
.

We can define properly distance metric on distribution of any "com-
plex" data populations, as long as we have a metric d on the data
instances available
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(II) Brenier-Rachev-Ruschendorf theorem: Let c(x , y) = ‖x − y‖2 in Rn.
µ and ν two pm’s with bounded second moments. If µ is absolute
continuous wrt the Lebesgue measure, then there is a unique
optimal coupling of π of x , y , under which y is uniquely determined
by x almost surely. In fact, for some lsc convex function ψ,

y ∈ ∂ψ(x) almost surely.

In other words, the Monge transport plan x 7→ T (x) = ∂ψ(x) exists, and the
optimal coupling π is characterized as the pushforward measure from the source
distribution µ:

ν = T#µ

π = (Id ,T )#µ.

See Villani (2008) and Ambrosio-Gigli-Savare (2005) for much recent
advances in analysis, PDEs, differential geometry associated with OT
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Implications to statistical learning/ inference

(1) we can define distance between any data populations, which inherit
the metric d of data instances

(2) if we know the source distribution for X ∼ µ, we can perhaps model
the target Y ∼ ν via a (optimal transport) map X 7→ Y = T (X ),
i.e., ν is a pushforward measure of µ by the map T :

ν = T#(µ)

• the question of "learning" a target distribution becomes the learning
of transport map T , e.g., Wasserstein-GAN (Arjovsky et al, 2017)

(3) while all this seems nice, optimal transport is only useful if the metric
on the data d is meaningful, and map T can be effectively learned
• we will illustrate this in the following "domain adaptation problem"
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Domain adaptation problems

1. If I learned to drive in Arizona, can I adapt my experience to driving
in California? Answer: yes.

How about driving in Hanoi?
• here, driving experience = samples of time series of driving

trajectories

2. If a robot knows how to pick up an object, how can it be taught to
bend and pick up efficiently?

General problem If we know/ can learn well distribution µ, how
can we adapt µ to learn another distribution ν
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Our approach: functional optimal transport

Main ideas: (Zhu, Guha, Do, Xu, Nguyen and Zhao, 2021)

• each data point is a realization of a random function

• given source and target distributions µ and ν on functions

• learn the transport map from space of compact linear operators

Pushing forward sampled paths for source to target distribution

Geodesic linking source distribution to target distribution



Data and distances Optimal transport Domain adaptation Distance of latent structures Quantifying abstract dependence

Learning OT map in function space

Let H1,H2 be Hilbert space of functions endowed with Borel probability
measures µ1 and µ2, resp.
Let BHS(H1,H2) be the space of Hilbert-Schmidt operators, i.e., a Hilbert
space of linear operators endowed with the scalar product

〈A,B〉HS =
∞∑
i=1

〈AUi ,BUi 〉H2

where (Ui )
∞
i=1’s form a complete orthonormal basis of H1.

Consider the optimization problem

inf
T∈BHS (H1,H2)

J(T ) := W 2
2 (T#µ, ν) + η‖T‖2HS (1)

η > 0 is a regularization parameter.



Data and distances Optimal transport Domain adaptation Distance of latent structures Quantifying abstract dependence

Lemma
Assume that µ and ν have bounded second moments:

Ef1∼µ‖f1‖2H1
<∞, Ef2∼ν‖f2‖2H2

<∞ (A.1)

then the objective (1) is a strictly convex function, which admits a
unique minimizer.
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In practice, given i.i.d. samples

f11, f12, . . . , f1n1 ∼ µ,

f21, f22, . . . , f2n2 ∼ ν,

the empirical version of our optimization problem becomes:

inf
T∈BHS

Ĵn(T ), Ĵn(T ) := W 2
2 (T#µ̂n1 , ν̂n2) + η‖T‖2HS , (2)

where µ̂n1 =
1

n1

∑n1

l=1 δf1l and ν̂n2 =
1

n2

∑n2

k=1 δf2k are the empirical

measures, and n = (n1, n2).

Moreover, restrict T to a K1 × K2 dimensional subspace of BHS
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Lemma
Under assumption (A.1), the following hold.

• For any fixed C0 > 0,

sup
‖T‖≤C0

|Ĵn(T )− J(T )| P−→ 0 (n→∞). (3)

• For any n,K , Ĵn has a unique minimizer T̂K ,n over BK . Moreover,

there exists a finite constant D such that P(supK ‖T̂K ,n‖ < D)→ 1
as n→∞.

It then follows that

Theorem
The minimizer of Eq. (2) for T̂K ,n ∈ BK is a consistent estimate for the

minimizer of Eq. (1). Specifically, T̂K ,n
P−→ T0 as K1,K2, n1, n2 →∞.
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Additional considerations

(i) in practice, sampled functions (f1l)
n1

l=1, (f2l)
n2

l=1 are observed only at a
finite number of design points d1, d2, resp.

(ii) the HS operator is approximated by dimension truncation (to spaces
of K1 × K2 matrices)

(iii) consistency theory can be extended under the regime that
n1, n2,K1,K2 →∞, and d →∞ suitably

• see the paper (Zhu et al, 2021) for details.
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FOT vs non-functional approaches

(a) data (b) GPOT (c) LSOT

(d) DSOT (e) FOT with diagonal Λ (f) FOT

Figure: Pushforward measures of functions obtained by various approaches on
mixtures of sinusoidal functions data
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FOT vs non-functional approaches: quantitative
comparison

Method 1 → 1 1→2 2→1 2→2 2→3
GPOT 17.560 12.895 15.263 61.561 39.159
LSOT 133.434 94.229 117.832 929.108 663.461
DSOT 6.871 13.226 9.679 46.521 41.009
FOT 2.873 11.982 3.316 44.071 32.547

Table: Quantitative comparison on the mixture of sinusoidal functions data.
The maps obtained by FOT method achieved the best performance under the
Wasserstein distance objective.
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Domain adaptation for robotic arm movements

(a) The arm of the Baxter
robot and the Sawyer
robot used in MIME
dataset and Roboturk
dataset. They share a
similar structure, 7 joints
and one end effector.

(b) Source motion: "Roboturk-bins-Bread" by Sawyer.

(c) Target motion: "MIME Picking (left-hand)" by Baxter.

(d) The pushforward motion of the transport map looks like
Baxter’s but inherits trait of Sawyer’s motions.
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Augmenting deep learning models

Semi-supervised learning
Time series motion prediction tasks with FOT augmentation
(use FOT to generate more samples in target domain for training with
deep learning predictive models)

Method LSTM ANP RANP MAML* TL* FOTLSTM FOTANP FOTRANP FOTMAML FOTTL

R1→M1 2.0217 1.3261 1.9874 0.0307 0.5743 0.0271 0.0963 0.0687 0.0165 0.0277
R1→M2 1.6821 1.0951 1.5681 0.0374 0.7083 0.0414 0.1642 0.1331 0.0191 0.0446
R2→M1 1.3963 0.6642 1.7256 0.0327 0.2491 0.0277 0.0951 0.0696 0.0202 0.0906
R2→M2 1.1952 0.6307 1.3659 0.0477 0.4020 0.0331 0.1620 0.1554 0.0167 0.0406

Table: MSE error results of different predictive models.
R1: Roboturk-bins-bread, R2: Roboturk-pegs-RoundNut, M1:MIME1-Pour-left,
M2: MIME12-Picking-left.
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Our story so far: using the pushforward map T to model a target
distribution via

ν = T#µ

in a complex data domains, but there are huge technical challenges, when

• incorporating domain knowledge of the support of ν, and T ,

• and when the interest is not data distribution but on distribution on
meaningful quantities related to it

This leads to optimal transport on distributions on the space of
quantities of interest. Thus, the starting point is with probability models
via latent random variables/structures.
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Let’s talk about latent structured models!
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Observations of the Orion constellation

ancient data an ancient model

Orion nebula X-ray data via Chandra observatory
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Consider a situation where the quantity of interest is not data
distribution itself: photon sources in the Orion Nebula

Assume the pixel locations are sample from a mixture distribution

X1, . . . ,Xn ∼
K∑
j=1

pj f (x |θj)

there are K photon sources; θj represents information about the arrival
time, location, energy level of photon source j
• pj : the probability that the photon comes from source j for certain type of stellar

and inter-galatic events of interest (exploded stars, star birth, etc)

• f is a probability kernel which captures distribution of observations (e.g., King
profile for the location observations)
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The mixture distribution used to describe the observed locations has very
little scientific meaning:

PG =
K∑
j=1

pj f (x |θj)

Of interest to astrophysicists and astronomers is the mixing measure

G =
K∑
j=1

pjδθj

Here, optimal transport continues to play a fundamental role in
characterizing the learning behavior of quantities of interest, where the
underlying metric structure of support is derived from the rich structure
of the probabilistic models
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Wasserstein metric on G

How to define a metric on the space of θ’s:

• suppose θ ∈ Rd , we may take d(θ, θ′) := ‖θ − θ′‖rr
• better yet, make use of Hellinger distance:

d(θ, θ′) := h(f (·|θ), f (·|θ′))

• this results in the following Wasserstein metric

W (G ,G ′) = inf
π∈Π(G ,G ′)

∫
d(θ, θ′)dπ

This is called "composite distance" in Nguyen (2013)
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Statistical learning methods
Statistical formulation: given X1, . . . ,Xn

i.i.d.∼ PG for some "truth"

G = G0 =
K0∑
j=1

p0
j δθ0

j

To learn G , we can either apply
• maximum likelihood estimate via the EM algorithm:

Ĝ := argmaxG

n∑
i=1

log pG (Xi )

• Bayesian method: place a prior distribution on G , and apply Bayes
formula to obtain the posterior dist. Π(G |X1, . . . ,Xn).

Theoretical questions: in what sense does the estimate Ĝ , or the
posterior distribution for G converge to the truth G0 in the Wasser-
stein space?

A key to these questions is the derivation of inverse bounds



Data and distances Optimal transport Domain adaptation Distance of latent structures Quantifying abstract dependence

Statistical learning methods
Statistical formulation: given X1, . . . ,Xn

i.i.d.∼ PG for some "truth"

G = G0 =
K0∑
j=1

p0
j δθ0

j

To learn G , we can either apply
• maximum likelihood estimate via the EM algorithm:

Ĝ := argmaxG

n∑
i=1

log pG (Xi )

• Bayesian method: place a prior distribution on G , and apply Bayes
formula to obtain the posterior dist. Π(G |X1, . . . ,Xn).

Theoretical questions: in what sense does the estimate Ĝ , or the
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A simpler problem: deconvolution problem
Example: we are interested in the distribution of signal θi ∈ Rd ,
i = 1, . . . , n, given i.i.d. noisy observations of the form

Xi = θi + εi ,

εi ∼ i.i.d. f , εi ⊥ θi .

Suppose that θi ∼ i.i.d. G0, then Xi ∼ i.i.d. f ∗ G0.

An inverse bound is an inequality of the type

W2(G0,G ) ≤ Φ(V (f ∗ G0, f ∗ G ))

where

• LHS is an optimal transport distance e.g., W1,W2, . . . on distribution of
the latent θ

• V is the total variation distance of data populations f ∗ G0 and f ∗ G
• Φ : [0,∞)→ [0,∞) is a strictly increasing function, Φ(0) = 0.
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why inverse bounds are important
• Inverse bounds are useful for deriving rates of convergence of the

latent θ distributions, once the convergence in distribution of data
population X has been established

• The opposite direction of the inverse bound is typically easy
• let (θ, θ0) be an optimal coupling of G and G0

• then (X ,X0) where X = θ + ε, X0 = θ0 + ε represent a coupling of
f ∗ G and f ∗ G0, so

W 2
2 (f ∗ G , f ∗ G0) ≤ E‖X − X0‖2 = W 2

2 (G ,G0).

• to obtain bound for V (f ∗ G , f ∗ G0), by an application of Jensen’s
inequality one gets

‖f ∗ G − f ∗ G0‖L1 ≤ Eθ,θ0‖f (· − θ)− f (· − θ0)‖L1

≤ CW1(G ,G0),

where C is an "integrated" Lipschitz constant of the density function
f (· − θ) wrt θ.

• similar upper bounds on any f -divergence using the same technique
(Nguyen, 2013)
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Inverse bounds for convolutional models X = θ + ε
• let f be a pdf on Rd that is symmetric around 0, and the Fourier

transform of f satisfies f̃ (ω) 6= 0 for all ω ∈ Rd .

• Borrowing from deconvolution literature (cf. Fan (1991)) say

• f is ordinary smooth with parameter β > 0 if∫
[−1/δ,1/δ]d

f̃ −2dω . (1/δ)2dβ as δ → 0,
• f is supersmooth with parameter β > 0 if∫

[−1/δ,1/δ]d
f̃ −2dω . exp(2dδ−β) as δ → 0.

• for any pair of G and G ′ whose support lie in a bounded subset of
Rd , then (Nguyen, 2013)
• if f is ordinary smooth, then for any m < 4/(4 + (2β + 1)d), for

some constant C(d , β,m),

W 2
2 (G ,G ′) ≤ C(d , β,m)V (f ∗ G , f ∗ G ′)m.

• if f is supersmooth, then there is C(d , β) > 0 such that

W 2
2 (G ,G ′) ≤ C(d , β)[− logV (f ∗ G , f ∗ G ′)]−2/β .
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Beyond convolutional model

• let kernel f be the Gaussian pdf on R: f (x |µ, ν).

• let G be a distribution on the bivariate parameter (µ, ν) ∈ R× R+.

• then the marginal distribution of the observed X is the mixture
distribution

X ∼ PG :=

∫
f (·|µ, ν)dG (µ, ν)

• Open question: obtain an inverse bound of the form

W2(G0,G ) ≤ Φ(V (PG0 ,PG ))

where the optimal transport distance is defined in a natural way for
the distribution on R× R+, under the metric, e.g.:

d((µ1, ν1), (µ2, ν2)) := |µ1 − µ2|+ |ν−1
1 − ν−1

2 |.
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Where are the "great" models in our time?

Gato: a "multi-modal, multi-task, multi-embodiment generalist agent"

"...Gato can sense and act with different embodiments across a wide
range of environments using a single neural network with the same set of
weights. (It) was trained on 604 distinct tasks..."

Deepmind’s publication "A Generalist Agent", 5/19/2022
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Nando de Freitas: "The Game is Over!" But is it?

We heard similar claims before: including but not restricted to neural
nets circa 1950s, 1980s (convolutional neural nets), 2010s (cnn on
steroid), 2020s (now with transformers)
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Despite truly impressive demos, AI models are still unreliable in domains
where reliability really matters!

These models don’t understand their domain, and neither do we
understand if and when they work! But we always try to make progress
at creating and (hopefully) understanding them.

"great models are temporary, mathematical principles are forever"

more to the point, I mean the mathematics which helps to justify the
presence of latent (hidden) variables, the mechanism for memory and attention, etc;
and the statistical/computational theory which helps to
explain and achieve the emergence of such representations
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From data assumptions to models of populations

de Finetti’s Theorem: If (Xj)
∞
j=1 is an infinite exchangeable se-

quence of random variables, i.e.,

(X1, . . . ,XN)
d
= (Xπ(1), . . . ,Xπ(N)) ∀N,∀π

then there exists a random probability P such that

X1,X2, . . . |P
i.i.d.∼ P

• Mixtures of product distributions for N-sequence X1, . . . ,XN :
conditionally given some θ, the Xj are i.i.d.

PG ,N(X1 ∈ A1, . . . ,XN ∈ AN) =

∫ N∏
n=1

Pθ(Xn ∈ An|θ)G (dθ)

• kernel Pθ known and uniquely parameterized by θ ∈ Θ
• G is de Finetti mixing measure on Θ;

G characterizes heterogeneity of underlying data population
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Compositional data structures

Data are often composed of a collection of dependent populations

• there are multiple hospitals, each hospital has many patients

• there are different animals, each animal carry a set of genes

• different countries, each of which is organized into regions, each of
which is organized into counties, with residents in each of them

• "activity recognition problem": a collection of computer users, each
user is associated with a collection of computer related activities
(organized by days), each day has a collection of activities (apps run)

• a collection of text corpora, each text corpus is a collection of
documents, each document is a collection of words

• a database of images divided by groups, each image is a collection of
image patches, each patch a collection of pixels or other specific
computer vision elements
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Exchangeable collection of data sets

Each data set modeled via a mixture model
=⇒ they are coupled to enable “borrowing of strength”

[courtesy M. Jordan’s slides]

This gives rise naturally to a hierarchical model
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A hierarchical model setting

m groups of data, each of which is given an n-sample

A key point here: DαG represents a distribution on the space of
distributions



Data and distances Optimal transport Domain adaptation Distance of latent structures Quantifying abstract dependence

Metrics on Bayesian hierarchies of distributions

Need a notion of distance between, say DαG and Dα′G ′

Recall: for G ,G ′ ∈ P(Θ), space of Borel probability measures on Θ,

Wr (G ,G
′) := inf

κ∈T (G ,G ′)

[ ∫
‖θ − θ′‖rdκ(θ, θ′)

]1/r

.

T (G ,G ′) is the space of all couplings of G ,G ′.

Distance between measures of measures in Bayesian hierarchy:
Let D,D′ ∈ P(P(Θ)) (the space of Borel probability measures on P(Θ)).
Define Wasserstein distance between D,D′

Wr (D,D′) := inf
K∈T (D,D′)

[ ∫
W r

r (G ,G ′) dK(G ,G ′)

]1/r

.

T (D,D′) is the space of all couplings of D,D′ ∈ P(P(Θ))
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A lemma and a "theorem"
(Nguyen, Bernoulli 2016)

Lemma
(a) Let G ,G ′ ∈ P(Θ), and D,D′ ∈ P(P(Θ)) such that

∫
PdD = G and∫

PdD′ = G ′. For r ≥ 1, if Wr (D,D′) is finite then

Wr (D,D′) ≥Wr (G ,G
′).

(b) If D = DαG and D′ = DαG ′ (same α), then

Wr (D,D′) = Wr (G ,G
′).

"Theorem"

• when the number of groups m increases and the sample size n
increases suitably, the posterior distribution of G contracts to true
G0 under the above Wasserstein metric

• individual group admits improved posterior contraction due to the
"borrowing of information" from other groups
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Setting and assumptions

Setting

• Let Θ be a bounded subset of Rd .

• True Dirichlet base measure G0 ∈ P(Θ) is atomic.

• Given m Dirichlet processes Q1, . . . ,Qm drawn from DαG , for
G = G0.

• For each process Qi there is an n-sample from the mixture dist Qi ∗ f



Data and distances Optimal transport Domain adaptation Distance of latent structures Quantifying abstract dependence

Setting and assumptions

Setting

• Let Θ be a bounded subset of Rd .

• True Dirichlet base measure G0 ∈ P(Θ) is atomic.

• Given m Dirichlet processes Q1, . . . ,Qm drawn from DαG , for
G = G0.

• For each process Qi there is an n-sample from the mixture dist Qi ∗ f



Data and distances Optimal transport Domain adaptation Distance of latent structures Quantifying abstract dependence

Assumptions

(A1) For some r ≥ 1,C1 > 0, h(f (·|θ), f (·|θ′)) ≤ C1‖θ − θ′‖r and
K (f (·|θ), f (·|θ′)) ≤ C1‖θ − θ′‖r ∀θ, θ′ ∈ Θ.

(A2) There holds M = supθ,θ′∈Θ χ(f (·|θ), f (·|θ′)) <∞.

(A3) G is endowed with Dirichlet prior DγH , where H ∈ P(Θ) is
non-atomic.
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Posterior concentration theorem (Nguyen, 2016)

As n→∞ and m→∞, the posterior distribution of Dirichlet base
measure G concentrates to G0 at the rate

εm,n �
(
n3d logm

m

)1/(2d+2)

+ A(δn).

δn → 0 is the demixing rate — the rate of estimating mixing measure Q
from an n-sample of a mixture density Q ∗ f (obtaining this rate is the
earlier focus)

function A depends on the geometric structure of the support of G0
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(ii) If f is supersmooth with parameter β, then it suffices to set

m

logm(log n)α∗(2d+2)/β
. n3d .

m

logm
.

In particular, if n satisfies n3d(log n)α
∗(2d+2)/β � m

log m , then we

obtain the concentration rate εm,n � (log n)−α
∗/β � (logm)−α

∗/β .

(iii) Requirements of the type n1(m) ≤ n ≤ n2(m) appear crucial in
deriving posterior concentration rates in hierarchical models. It is an
interesting open question to establish the concentration behavior (or
the lack thereof) for the full range of n.
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(i) if G0 has a finite and unknown number of support points on a
bounded subset of Rd , then

A(δn) � δα
∗/(α∗+1)

n .

where α∗ = infθ∈spt G0 αG0({θ}),

(ii) if G0 has infinite and supersparse support on Rd ,

A(δn) � exp−[log(1/δn)]1/(1∨γ0+γ1)

(iii) if G0 has infinite and ordinary sparse support on Rd ,

A(δn) � [log(1/δn)]−1/(γ0+γ1)

(iv) Finite admixtures: if G0 has k <∞ support points, k known,
then we obtain a parametric rate:

εm,n � [log(mn)/m]1/2 + [(log n)1/2/n1/4]α
∗
.
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Geometric sparsity of support

• Sparse covering number: covering ε-balls that are separated by O(ε)
in distance

• G0 is supersparse with non-negative parameters (γ0, γ1), if its
support admits sparse-covering number K (ε) . [log(1/ε)]γ0 , and the
measure on such covering balls is at least g(ε) & [log(1/ε)]−γ1 .
• let Θ = [0, 2], G0 is supported on S = {1/2k |k ∈ N, k ≥ 1} ∪ {0},

and G0({1/2k}) ∝ k−γ1 for any k ∈ N and some γ1 > 1; then G0 is a
supersparse measure with parameters γ0 = 1 and γ1.

• G0 is ordinary sparse with parameters (γ0, γ1) if K (ε) . (1/ε)γ0 , and
g(ε) & εγ1 .

• Ordinary sparse measures are studied in fractal geometry: γ0 is the
Hausdorff dimension of the support, while γ1 is the packing
dimension.
• if Θ = [0, 1], then the Hausdorff measure on the Cantor set is

ordinary sparse with γ0 = γ1 = log 2/ log 3.
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Summarizing (this section)

• Optimal transport provides the first (and only so far) posterior
contraction analysis of a hierarchical Bayesian model (Nguyen,
Bernoulli 2016)
• recent advances via harmonic analysis of mixture of product

distributions (Wei & Nguyen, Annals 2022)

• It also connects to a notion of barycenter among a collection of
measures (Agueh and Carlier, 2012), and gave rise to optimal
transport based multi-level clustering methods (Ho et al, ICML
2017, Huynh et al, JMLR 2021)

• Full treatment of inverse bound for this general hierarchy remains
elusive!
• but there have been promising recent contributions from Nhat Ho,

Aritra Guha, Yun Wei, Dat Do, Linh Do, Sunrit Chakraborty

• for more details see my second lecture at VIASM on Thursday



Data and distances Optimal transport Domain adaptation Distance of latent structures Quantifying abstract dependence

Outline

Data and distances

Optimal transport

Domain adaptation

Distance of latent structures
Inverse bounds

Quantifying abstract dependence



Data and distances Optimal transport Domain adaptation Distance of latent structures Quantifying abstract dependence

• Story so far: Optimal transport distance based inference on space of
distributions of data, space of distribution of quantities of interest,
distributions of distributions, and so on

• Other abstract notion of dependence can be quantified too:
• multivariate rank and quantiles
• independence
• exchangeability, partial exchangebility
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Multivariate ranking
Given data sample X1, . . . ,Xn ∈ Rd , how to rank them?

Define empirical measure µn =
∑n

i=1 δXi . Let νn be a discrete
approximation of Unif[0, 1]d (supported on a regular lattice). Then, the
empirical rank function F is one which solves

F = argminF

∫
‖x − F (x)‖2dµn

such that F#µn = νn. Deb and Sen (2019)
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Independence
Given obserrvations of two random variables X and Y on Polish spaces
X ,Y, resp. Are X and Y independent or not?

Let X ∼ µ; Y ∼ ν; and (X ,Y ) ∼ γ
• Shannon’s mutual information:

I (X ,Y ) = K (γ, µ⊗ ν) =
∫

log(dγ/d(µ⊗ ν))dγ provided
γ � µ⊗ ν (and I (X ,Y ) = +∞ otherwise).
Clearly I (X ,Y ) = 0 if and only if X and Y are independent.

• OT based dependence: (Nies et al, 2021; Wiesel, 2021)

τ(X ,Y ) := Tc(γ, µ⊗ ν) = inf
π∈Π(γ,µ⊗ν)

∫
c((x , y), (x ′, y ′))dπ

τY (X ,Y ) :=

∫
TcY (γx , ν)µ(dx)

where c , cY is some notion of cost on X × Y and Y, resp. γx
denotes the conditional distribution of Y given X = x under the
joint distribution γ (i.e., disintegration of γ wrt x)
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Example: ξ ∼ Unif[0, 1] and ζ = fn(ξ) ∈ Unif[0, 1] for zigzag functions fn
with n linear segments. n = 1 in (a), n = 8 in (b).

Note that I (ξ, ζ) =∞ in both cases for it fails to account for the metric
structure of the support.

Illustration of Nies et al (2021)
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Distance to exchangeability

Given two exchangeable populations

X1, . . . ,Xn|P1
iid∼ P1; Y1, . . . ,Yn|P1

iid∼ P2

Can we tell whether P1 ⊥ P2, or P1 = P2 (almost surely)?

Catalano et al (2021):

• assume (P1,P2) = (T (µ1),T (µ2)), where µ1
d
= µ2

• (µ1, µ2) random measures with joint independent increments
• T is a generic map (e.g., normalization, exponential, kernel mixtures)
• the above assumption covers a large range of model for two-sample

problems

• the problem can be formulated as measuring the distance between
complete random measures, which in turn boils down to the distance
of the corresponding Lévy measures



Data and distances Optimal transport Domain adaptation Distance of latent structures Quantifying abstract dependence

Summary

• OT is a useful device for quantifying the space of
distributions of data, distribution of latent quantities of interest,
distributions of distributions, abstract notions of dependence

• pushforward measures may be used as a useful way for
modeling distributions, or to characterize convergence behavior of
algorithms

• many open questions surrounding the mathematics behind the
presence of latent-variable representation of complex models, and
the statistical and computational theory for achieving and
explicating the emergence of such representation
• OT framework provides a promising approach



Data and distances Optimal transport Domain adaptation Distance of latent structures Quantifying abstract dependence

Selected References

• J. Zhu, A. Guha, D. Do, M. Xu, X. Nguyen and D. Zhao. Functional optimal transport: map
estimation and domain adaptation for functional data. arXiv:2102.03895.

• X. Nguyen. Convergence of latent mixing measures in finite and infinite mixture models. Annals
of Statistics, 2013.

• X. Nguyen. Borrowing strength in hierarchical Bayes: posterior concentration of the Dirichlet
base measure. Bernoulli, 2016.

• Y. Wei and X. Nguyen. Convergence of de Finetti’s mixing measures in latent structure models
for exchangeable sequences. arXiv:2004.05542. Annals of Statistics, to appear.

• D. Do, N. Ho and X. Nguyen. Beyond black box densities: parameter learning for the deviated
components. arXiv:2202.02651.


	Data and distances
	Optimal transport
	Domain adaptation
	Distance of latent structures
	Inverse bounds

	Quantifying abstract dependence

