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Abstract

Big data and data lakes are gold mines for data scientists with tons
of applications to finance, medicine, economics, etc. But most of these
data are quite sensitive and cannot be widely distributed or even just
used without strong protection. One is thus facing the huge dilemma of
having to make the choice between highly valuable analytics and privacy
guarantees. More generally, individuals and companies are all outsourcing
their data. They are confronted to the same issue.

This survey will present some recent tools cryptography has devel-
oped to address this dilemma: Fully Homomorphic Encryption, Func-
tional Encryption, and Secure Multi-Party Computation allow to perform
computations on data, without revealing them. Applications then cover
outsourced computations, federated learning, private analytics, etc.

1 Introduction

1.1 The Context

For ease of use, many individuals migrated to the cloud to store and share their
photos, or any type of personal documents. For a rationalization of the costs,
companies also migrate their systems, with personal, financial and technical
data, towards the cloud. These data, but also the identities of those who access
them, as well as the queries asked, are sensitive information, which it would
be good to protect, because no one had access to them when they were stored
privately, on a local disk or a personal server. It is therefore of primary impor-
tance to protect not only the data, but also the accesses and the queries to the
outsourced storage.

In the solutions proposed by the cloud providers, an access control makes it
possible to identify the users, and a protected communication with TLS (Trans-
port Layer Security) guarantees the confidentiality of the communications be-
tween the customer and the server. The provider ensures encrypted storage of
the database, as well as strict application of access rights, once user authenti-
cation is done. Nevertheless, the provider sees everything in the clear, the data
to be stored in the database, as well as the identity of the clients, their queries,
and the answers. If there is no reason to doubt the good faith of the provider,
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no one is safe from errors or malicious behavior from internal or external ad-
versaries. Users, both private individuals and professionals, cannot take such a
risk on privacy for medical, economic, financial or technological data. This is
even more critical as an information leak can occur and only be detected much
later, once the damage is irreparable.

1.2 Overview

To ensure the same security properties as on local storage, the provider should
not have any information about the stored data, the users who connect, the
queries that are asked, and the computations that are performed. Of course,
the confidentiality of the data is essential, and it is in fact the first property to
be satisfied. It also seems to be the simplest one, since any encryption scheme
can make it. On the other hand, we must not loose all the useful functionalities
one can get on clear data, and in particular the queries, which can be simple
keyword searches or more complex computations, and the sharing:

• We will first deal with the encryption schemes that allow computations
without having to decrypt, with the famous Fully Homomorphic Encryp-
tion [Gen09], or FHE. This allows the outsourcing of any computations,
but does not allow sharing, since only the owner of the initial data can
recover the final result in clear;

• Broadcast encryption [FN94] allows confidential data to be broadcast to
several people by specifying the target set during encryption. The re-
cipients can be listed as either the authorized members or the excluded
members. Unfortunately, this does not allow any computations;

• Functional encryption has recently been proposed [BSW11]. With a func-
tional decryption key, a user can decrypt the result of the function eval-
uation, associated with the key, on clear messages, and only this result,
without having any information about the individual messages.

For the anonymity of the users, the best solution is not to require any au-
thentication. With a privacy-by-design, only the decryption keys (functional or
classical) allow a user to access the clear data. Eventually, the confidentiality of
queries or computations can be ensured by encrypting them (the queries or the
programs to be performed), if the encryption mechanism allows computations
on encrypted data. We are thus brought back to the above problem with FHE.

2 Homomorphic Encryption

Encryption schemes, whether symmetric (with a secret key to be able to en-
crypt) or asymmetric (with a public key), allow data to be stored, while keeping
it hidden from the eyes. Unfortunately, classical encryption techniques exclude
any manipulation of this data by the cloud provider. Indeed, an encryption
scheme is said to be “secure” if it guarantees semantic security (difficulty in
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distinguishing between an encryption of m0 from an encryption of m1) for at-
tackers who would have access to the decryption oracle [BDPR98] (as well as to
the encryption oracle in the case of symmetric encryption [BDJR97]), with of
course the constraint of not asking for the decryption of the challenge cipher-
text. Intuitively, this means that it is not possible to extract any exploitable
information about the plaintext when seeing the ciphertext. This also prevents
any adversary to derive from a ciphertext another ciphertext whose plaintexts
are related in a known way. These security notions are called indistinguishabil-
ity and non-malleability, under chosen-ciphertext attacks (and possibly chosen-
plaintext attacks). They are very strong and require complex mechanisms or
paddings, excluding any operation on the ciphertexts.

However, algebraic properties exist for some encryption schemes taken in
their basic form, which no longer satisfy these stronger security notions of se-
mantic security and non-malleability. Nevertheless, they allow some operations
on the messages, by manipulating only the ciphertexts. This is the case of the
RSA [RSA78] or the ElGamal [ElG85] encryption schemes, where the product of
two ciphertexts corresponds to the encryption of the product of the plaintexts:

RSA Encryption: c = E(m) = me mod n

c0 × c1 = me
0 ×me

1 = (m0m1)e mod n

= E(m0 ×m1)

ElGamal Encryption: (c, c′) = E(M, r) = (gr, yr ·M)

(c0, c
′
0)× (c1, c

′
1) = (gr0 , yr0M0)× (gr1 , yr1M1)

= (gr0+r1 , yr0+r1(M0 ×M1))

= E(M0 ×M1, r0 + r1).

The latter ElGamal encryption is, however, semantically secure with only the
knowledge of the public key y (without access to any additional oracle), under
the Decisional Diffie-Hellman [DH76] assumption. It can also be made addi-
tively homomorphic, by encrypting m as M = gm, which allows the sum of
the plaintexts to be obtained by a simple operation on the ciphertexts. This
additive homomorphism property has been exploited in electronic voting sys-
tems, but can only be used with small scalars, as extracting m from M = gm

requires a discrete logarithm computation, which is only possible from small
messages. There are other additively homomorphic encryption scheme: Pail-
lier [Pai99], that extends the Goldwasser-Micali encryption scheme [GM82] ini-
tially based on the quadratic residuosity, with modulo 2 operations, to the high
residuosity, with modulo N operations, with an RSA modulus N hard to fac-
tor; Castagnos-Laguillaumie [CL15], based on a DDH-like assumption on class
groups in imaginary quadratic fields.

2.1 More Operations on Ciphertexts

As just seen, there have been several additively homomorphic and multiplica-
tively homomorphic encryption schemes, for a long time. But none of them
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allows to apply the two internal laws of a ring, while remaining stable. Only
the BGN (Boneh-Goh-Nissim) [BGN05] encryption scheme allowed additions,
multiplication, and then additions again, but without allowing further multi-
plications, because the ciphertext is in another algebraic structure after mul-
tiplication. Similarly, the paper by Tomas Sander, Adam Young, and Moti
Yung [SYY99] proposed a variant of the above Goldwasser-Micali, to allow mul-
tiplication, but doubling the size of the cipher at each multiplication. Thus,
the number of multiplications was at most logarithmic to keep polynomial-size
ciphertexts.

Nevertheless, such an additively homomorphic encryption scheme in Z2 (al-
lowing XOR – Exclusive OR – between two bits) and multiplicatively homomor-
phic in Z2 (allowing AND between two bits) can evaluate any Boolean circuit
on the ciphertexts. But the above schemes have constraints on the depth of the
circuit: either very costly multiplications, or very limited.

In 2009, Craig Gentry [Gen09] presented the first construction guarantee-
ing stability, and thus an unlimited number of additions and multiplications:
this allows the evaluation of any circuit on encrypted inputs, with the result
encrypted under the same key. We name such a scheme a Fully Homomorphic
Encryption (FHE) scheme.

2.2 Fully Homomorphic Encryption

The main idea is based on bootstrapping. But before describing this idea, let us
consider the following simple secret-key encryption construction:

• the secret key, for both encryption and decryption, is an odd integer p =
2m + 1;

• the encryption of a bit b consists of c = q ·p+2 ·r+b, where q is a random
integer and r is chosen randomly in Zm ;

• the decryption of c is done in two steps: first, thanks to p, we find the
integer B = 2 · r + b by computing c mod p, while b is the parity bit of B.

We stress that c mod p is indeed B = 2 · r + b, as r < m and so B < p, which is
not impacted by the modular reduction. Let us now be given c0 = q0 ·p+2·r0+b0
and c1 = q1 · p + 2 · r1 + b1, encryptions of two bits b0 and b1:

c0 + c1 = (q0 + q1) · p + 2 · (r0 + r1) + (b0 + b1),

which is an encryption of b0 + b1 mod 2, with q = q0 + q1 and r = r0 + r1 +(b0 +
b1)/2, as long as the latter remains lower than m. Similarly,

c0 · c1 = (q0c1 + q1c0 − q0q1p) · p + 2 · (2r0r1 + r1b1 + r1b0) + b0b1,

is therefore an encryption of b0b1 mod 2, with q = q0c1 + q1c0 − q0q1p and
r = 2r0r1 + r1b1 + r1b0, provided that the latter remains less than m.

We call r the “noise” in the encryption of b, which masks a multiple q · p
of p. Security relies on the difficulty of finding p, the approximate GCD of
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all noisy qi · p. If the noise is too small, this problem is easy, if the noise is
too large (close to m), no homomorphic operation is possible. For well-chosen
parameters, a compromise can be found: security is ensured, and a large number
of homomorphic operations is possible. We will see below the necessary number
of such homomorphic operations on the basic system, to obtain a stable fully
homomorphic encryption scheme.

But first, with the secret key sk = p, it is possible to publish a list xi =
qi · p + 2 · ri, for i = 1, . . . , t, of 0-ciphertexts. Then, to encrypt a bit b, one
can just compute c =

∑
i∈A xi + 2 · r + b, where A is a random subset of

i = 1, . . . , t} and r is an additional noise. With a good choice of parameters, we
have a public-key encryption scheme, where pk = (xi)i, which allows a limited
number of additions and multiplications: on ci ciphertexts of bits bi, under the
public key pk, it is possible to evaluate the circuit C((bi)i) to obtain the result
encrypted under pk. The public encryption key pk hides the secret decryption
key sk = p, under the approximate GCD problem.

A problem arises when the “noise” r becomes too important (greater than
m) in a ciphertext c. Hence the idea of bootstrapping proposed by Craig Gen-
try [Gen09], on an encryption mechanism as above, but in ideal lattices, where
the noise grows linearly in the number of additions and exponentially in the
number of multiplications, as above: by publishing the encryption of the de-
cryption key sk (as a bitstring, and thus with multiple ciphertexts, as above)
under pk and using it to evaluate the circuit D(sk, c) that decrypts c under sk,
but in an encrypted way, under pk: one obtains the result b, encrypted under
pk. It is thus a new version of the ciphertext c, but with a lower noise. For this,
it is sufficient that the decryption circuit D does not perform more homomor-
phic operations than the encryption scheme tolerates, before being too noisy.
This has been shown to be possible, by choosing the parameters appropriately.
Therefore, by performing a bootstrapping after each homomorphic operation
(or after several), we end up with a ciphertext that contains an error similar to
a “clean” ciphertext, hence the unlimited stability of the system: any circuit
can then be evaluated.

However, without bootstrapping, depending on the chosen parameters, a cer-
tain number of operations are feasible before the noise destroys the information,
we talk about “somewhat homomorphic encryption”. This can be sufficient for
circuits of low complexity.

2.3 Fully Homomorphic Encryption Constructions

Quickly after Gentry’s first scheme, many improvements have been proposed,
on the LWE (Learning with Errors) problem, or on integers based on the ap-
proximate GCD (as above). But the error kept the same type of growth: lin-
ear in the number of additions and exponential in the number of multiplica-
tions. Let us informally illustrate this second-generation family with the FV
scheme [FV12]. It is based on the Ring-LWE assumption in the ring of polyno-
mials R =q Zq[X]/(Xn + 1), for secret polynomials e, s ∈ Rq with small coeffi-
cients and a public random polynomial a ∈ Rq, the public key is (a, p = a ·s+e).
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To encrypt a message, encoded as a polynomial m with coefficients smaller than
t (m can be seen in Rt), the ciphertext is (c = p · u + e1 + ∆ ·m, c′ = a · u + e2),
where ∆ = bq/tc, and u, e1, e2 are random polynomials with small coefficients.
As above with the approximate GCD illustration:

c− c′ · s = ∆ ·m + e · u− e2 · s + e1 = ∆ ·m + v

with v the noise polynomial, that is small, with appropriate distributions for
the “small” coefficients. This encryption scheme is clearly additively homomor-
phic, with additive noise. Additional information allows multiplicative property,
where noise also grows multiplicatively.

In 2013, Craig Gentry, Amit Sahai, and Brent Waters [GSW13] proposed
a completely new construction that exploits approximate eigenvectors: given a
secret vector ~s ∈ Zn

q , an encryption of m ∈ Zq is a matrix C such that ~s is
“almost” an eigenvector of C, with m as an eigenvalue, so C × ~s = m × ~s + ~e:
Given two ciphertexts C0 ×~s = m0 ×~s+~e0 and C1 ×~s = m1 ×~s+~e1, one can
note that (C0 + C1)× ~s = (m0 + m1)× ~s + (~e0 + ~e1), as well as :

C0C1×~s = C0(m1×~s+~e1) = m1C0×~s+C0×~e1 = m0m1×~s+m1~e0+C0×~e1.

In the case of addition, the noise grows linearly. In the case of multiplication,
if we limit to messages in Z2, by controlling the norm of the matrices which
constitute the ciphertexts, the noise can grow linearly too, but in an unbalanced
way, becoming at most ~e0 + C0 × ~e1. Thus, in the case of a “fresh” ciphertext
with a low noise, it is better to put it on the right in the multiplication.

This construction can also be transposed to public keys, as well as to poly-
nomial rings, as in [KGV14], allowing an efficient implementation. The combi-
nation of several encryption modes has thereafter led to very efficient construc-
tions [CGGI16, CGGI17]: TFHE allows very fast bootstrapping.

2.4 Hybrid Method

There is still an issue with the amount of information to be transmitted, be-
cause all the data must be sent encrypted under this homomorphic encryption
mechanism, in order to allow the evaluation of a function. And these ciphertexts
under FHE have a huge expansion factor (several thousand times larger).

Thus, the idea of bootstrapping can be used again: the data is encrypted
under a key k of a symmetric encryption scheme E, and only the secret key
k is encrypted under the public key pk of the fully homomorphic encryption
scheme. It is then possible to evaluate the circuit D(k, c) which decrypts c
under k, in order to obtain the plaintext b, encrypted under pk, that is to say
under the FHE scheme. Then, no expansion factor appears here during the
communication, since the symmetric encryption does not increase the size. We
then talk about the hybrid method, which combines a symmetric encryption
scheme and a public-key FHE scheme.

To allow good efficiency, for symmetric encryption, one can use block ci-
phers or stream ciphers well-suited for homomorphic encryption, with a low
multiplicative depth [ARS+15, MJSC16].
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2.5 Circuit Privacy

In addition to data confidentiality, the evaluated function may itself have an
economic value and involve sensitive parameters. Thus, it may be important
to hide all the intermediate steps performed by the homomorphic computation
on the ciphertexts. While the final plaintext exclusively matches the result of
the expected computation, and is independent of the intermediate steps, the
ciphertext may contain additional randomness or noise that depend on these
intermediate steps and may reveal critical information about the way the func-
tion has been evaluated. With an additional randomization step, it is possible to
erase all information about the way the computation was performed [BdMW16].

3 Broadcast Encryption

Fully homomorphic encryption allows to externalize computations, but as any
classical encryption scheme (whether with secret or public keys) targets a specific
receiver: the one who has the decryption key. Of course, it is always possible
to encrypt under multiple keys in order to target multiple recipients. But there
remains the doubt that they do not all have the same message, and in any case,
the size of the ciphertext is linear in the target set, which can be prohibitive in
the case it is very large.

Broadcast encryption [FN94] makes it possible to target a set of individual
recipients to efficiently share a message, and in particular with a ciphertext-size
that is sub-linear in the size of the target set, or even constant.

3.1 Various Families of Broadcast Encryption

The aim of broadcast encryption is to send compact ciphertexts, regardless of the
number of recipients. For this, two families of mechanisms have been proposed,
depending on the number of recipients vs. the number of members registered in
the system: either few people are concerned by the message, or few people are
excluded. The main issue is to resist to a collusion of users: several members
(explicitly or implicitly) excluded from the target set should not be able, by
gathering their secrets, to obtain information about the broadcast message.

Of course, the most simple solution consists in encrypting a session key for
each authorized member, and then the message under this session key. This
solution is then linear in the target set. When almost all the users should
receive the message, we instead use revocation schemes, as one would prefer
the ciphertext size to depend on the number of revoked users. Combinatorial
mechanisms try to cover the target set with multiple subsets, so that each
authorized user is part of at least one subset and then, as above, the session
key is encrypted under a key associated to each subset. The fewer subsets are
required to cover the target, the more compact is the ciphertext. The most
famous mechanism is NNL (Naor-Naor-Lotspiech) [NNL01] whose ciphertext
size is linear in the number of revoked members. It relies on a binary tree
structure to define the list of possible subsets.
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Some algebraic approaches exploit mathematical properties that make the
session key available to the authorized members only. The most famous solution
uses polynomial interpolation in the exponents [NP01]: a master secret is shared
among all the members, using the polynomial t-threshold secret sharing [Sha79];
this master secret is derived multiplicatively in the exponent to generate the
session key, and in normal use t − 1 derived shares are provided. Each user,
with his own secret can generate the last required share to recover the session
key. In order to revoke users (up to t− 1), their derived shares are provided in
the ciphertext, they thus cannot obtain t shares to reconstruct the session key.
But then, ciphertexts are linear in the maximal number of revoked users.

Dan Boneh, Craig Gentry and Brent Waters [BGW05] proposed the first
construction that provides a constant-size ciphertext, independently of the size
of the target set, at the cost of linear public parameters in the number of mem-
bers registered in the system and the use of pairings on elliptic curves.

3.2 Traitor Tracing

One of the key applications of broadcast encryption is Pay TV. Of course, the
primary security goal is to prevent non-legitimate users from accessing the con-
tent, but registered users with access right must also be deterred from forwarding
the content via another communication channel, in particular by giving their
key material or by contributing to a pirate decoder with their secrets. This is
the purpose of “traitor tracing”: if a user with legitimate access, or even sev-
eral users (called “traitors”), collude with their secrets to allow non-legitimate
user to get access to the content of the encrypted stream (providing a “pirate
decoder”), one wishes to be able to identify the traitors.

Any revocation mechanism as above allows some kind of tracing, as by revok-
ing users, we can eventually exclude all the traitors to make the pirate decoder
useless. However, it might require an exponential number of trials, the pirate
decoder can stop working to avoid tracing, etc. One thus expects efficient and
undetectable on-line tracing. Some relaxed definitions exist, such as blackbox
tracing, where one has blackbox access to a resettable pirate decoder, and white-
bax tracing, where one even has access to the code.

The first classical approach dates back from 1994 [CFN94], and uses codes
with Identifiable Parent Property, later relaxed with binary collusion-secure
codes [BS95]. Each user owns a list of secret keys according to a specific code-
word. Any collusion of users, with multiple keys, will “virtually” derive multiple
words, but the properties of theses codes allow to recover at least one parent of a
derived word. The tracing procedure thus consists in learning a word associated
to the pirate decoder, which can be extracted, bit-by-bit, by submitting specific
ciphertexts. Tracing is thus linear in the length of the codewords (which is cubic
in the number of users, or quadratic in the maximal size of the collusion [Tar03]).
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4 Functional Encryption

On the one hand, fully homomorphic encryption allows to perform computations
on the ciphertexts, but does not allow to control distribution of the computations
nor the privacy of any data, since anyone able to decrypt the final result is able
to decrypt the input ciphertexts. On the other hand, broadcast encryption
allows to control the recipients, but does not allow computations.

Functional encryption [BSW11] provides the essential building block: it al-
lows a fine-tuned control of the revealed information, restricted according to the
key owned by the user and the constraints chosen by the data owner: security-
by-design. Of course, the key may allow full decryption only under certain
access conditions (identity-based encryption [BF01], attribute-based encryp-
tion [GPSW06], etc.), but may also restrict decryption to some aggregations
or specific computations on the data.

Informally, functional decryption keys dkf are generated, for specific func-
tions f . Then on any ciphertext c of some data x, the key dkf will provide
f(x) but no other information about x. Thus, the function f can test for spe-
cific recipient identity or attributes, before returning or not the clear x, which
leads to a simple access control (IBE or ABE). But the function f can also
do more complex computations, and in particular give access only to specific
aggregations, depending on the recipients (the owned key).

4.1 Data Aggregation

The main property of functional encryption is exactly that it makes it possible
to provide only partial information on the plaintext data, for example an aver-
age, an aggregation or any kind of statistics, without ever revealing additional
information.

But contrary to FHE which returns the computation in an encrypted form
and thus requires to possess the decryption key which allows not only to get the
result in clear but also the initial data in clear, the functional decryption key
performs the computation and provides the result in clear, from the encrypted
inputs. And the key does not allow to decrypt the initial data.

We can therefore think to an encrypted database where each user has access
to partial or aggregated information according to his functional decryption key.
Although it has been shown possible (under very strong assumptions) to gener-
ate keys to evaluate any circuit on encrypted data [GGH+13], the first effective
construction has been provided for the family of inner products, or weighted
means [ABDP15].

4.2 Inner-Product Functional Encryption

This is definitely a classical use-case: a database contains numerical values vi,j ,
and the data owner wishes to limit only to some aggregations in the form of
linear combinations, i.e. weighted means of each line i, ri =

∑
j ajvi,j = ~a · ~vi,

depending on the recipients. Thus, for each vector of weights ~a, a functional
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decryption key can be generated, allowing the decryption providing the aggre-
gation ri on each row i, and nothing more on the values (~vi)i.

The intuition for a construction of a functional encryption scheme for the
inner-product class of functions in Zp is as follows: the secret key is a random
vector ~s in Zn

p , while the functional decryption key associated to a vector ~y is
dk~y = ~s · ~y. To encrypt a vector ~x in Zn

p , one chooses a random scalar r in Zp

and defines the ciphertext as C = (c0 = r,~c = ~x + r · ~s). One can note that
~c · ~y = ~x · ~y + r · ~s · ~y = ~x · ~y + c0 · dk~y. Hence, using the functional decryption
key dk~y:

~x · ~y = ~c · ~y − c0 · dk~y.

Of course, this one-time pad approach is not secure, as the same scalar r is
used to mask multiple components. But this is the idea behind the construction
in [ABDP15], that uses the Diffie-Hellman property and the randomness-reuse
of the ElGamal encryption scheme [ElG84, Kur02]. More constructions have
thereafter been proposed in [ALS16], still for the inner-product family from
any additively homomorphic encryption scheme. It can then be applied with
Paillier [Pai99], based on the integer factoring, and Regev [Reg05], based on
lattice problems.

4.3 More Functions and Properties

As these constructions are based on additively homomorphic encryption schemes,
they focus on linear computations. Whereas they are sufficient for a large class
of statistics, and allow data classification with the SVM (Support Vector Ma-
chine) technique, such linear models are not very efficient, and switching to
quadratic computations allows richer statistics, such as the variance, but also
more efficient learning models, with non-linear activation functions in neural
networks [RPB+19].

But one can all remark that most of these constructions explicitly need
to include the function f in the functional decryption key for processing the
decryption, whereas this function might be sensible. In order to keep it secret,
one defines the notion of function hiding. Such a function-hiding functional
encryption for inner product has been described in [BJK15].

5 Multi-Client Functional Encryption

Early constructions required that the entire database be generated by the same
person at the same time. In particular, for the inner-product family, each vec-
tor must be encrypted at the same time by the same entity, as each coordinate
exploits the same random randomness r. This limits the interest of aggrega-
tions, which could involve data from different sources or at various time slots.
Functional encryption with multiple entries or multiple clients has been pro-
posed [GGG+14], thus allowing entries encrypted independently, either by the
same user or even by different clients.
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Such a multi-client functional encryption for inner-product has been pro-
posed in [CDG+18]: it allows various clients, that can even be competitors, to
independently encrypt their own input xt,i, for a specific time-period t, so that
when, and only when, all the clients have contributed for that time-period t, the
owner of the functional decryption key dk~y for the vector ~y can obtain the result
~xt · ~y. Hence, multiple aggregations can be provided, without any interaction.

In [CDSG+20] we even pushed further the security-by-design, by suppressing
any authority: the clients must all agree and contribute to generate a decryption
functional key.

But again, efficient solutions only target inner-product families. More recent
work addressed quadratic functions between two clients [dPP22] and the com-
bination between ABE and Inner-Product families [NPP22], in order to address
revocation for either specific users or specific functions.

Conclusion

Several techniques exist for protecting data privacy, with efficient and secure
encryption schemes, and even post-quantum security. However, the current evo-
lution with cloud-based storage, outsourced computation, and any on-demand
online service requires more properties to remain usable.

We focused in this overview on non-interactive solutions, where the data
owner can send or store the information in an encrypted way, and the recipient
can operate on his own to access the final expected result, with many kinds of
restrictions, by-design.

When interactions are possible, secure multi-party computation [Yao82] is
also a generic approach that can always be exploited, but at a higher commu-
nication cost: all the parties can interactively compute f(x1, . . . , xn) on their
individual private inputs xi, for any public function f . And there is the partic-
ular case where only two parties are involved, which is well-suited for machine
learning applications and even federated learning [WTB+21, RTPB22].
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