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Oscar Garćıa-Prada ICMAT-CSIC, Madrid NAH theory and higher Teichmüller spaces



Surface group representations

S smooth closed orientable surface of genus g ≥ 2

π1(S) fundamental group of S

Decomposition of S as a 4g-gone with 2g identifications
leads to the presentation

π1(S) = 〈α1, β1, · · · , αg, βg | [α1, β1] · · · [αg, βg] = 1〉

where
[α, β] := αβα−1β−1

G semisimple (more generally, reductive) Lie group (real
or complex)

A representation of π1(S) in G is a homomorphism
ρ : π1(S)→ G
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Surface group representations

The set Hom(π1(S), G) can be identified with

{(A1, B1, · · · , Ag, Bg) ∈ G2g : [A1, B1] · · · [Ag, Bg] = 1}

This is an analytic subvariety of G2g (algebraic if G is
algebraic)

Interested in the set of equivalence classes of reps.: The
G-character variety of π1(S)

R(S,G) := Hom(π1(S), G)/G

where
(g · ρ)(γ) = gρ(γ)g−1, g ∈ G
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G abelian

[A,B] = 1 =⇒ Hom(π1(S), G) = G2g

G acts trivially on Hom(π1(S), G). Hence

R(S,G) = G2g

G = U(1) = {z ∈ C∗ : |z| = 1} (compact abelian)

R(S,U(1)) = U(1)2g 2g − dimensional torus

This is related to complex algebraic geometry
For this, we need a complex structure on S: For every
x ∈ S

J : TxS → TxS so that J2 = − Id

On a surface this is equivalent to having a conformal
structure (J is a rotation by π/2)
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Abel–Jacobi theory

X = (S, J) Riemann surface

Jacobian of X:

Jac(X) := {holomorphic line bundles on X topologically trivial}

L→ X holomorphic line bundle
On an open set U ⊂ X, L|U = U × C. For U, V ⊂ X open,
the transition functions U ∩ V → C∗ are holomorphic

Jac(X) is a principally polarized abelian variety
Torelli’s theorem: One can recover X from Jac(X)

Abel–Jacobi Theorem (19th century)

There is a diffeomorphism

R(S,U(1)) ∼= Jac(X).
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Abel–Jacobi theory

Some indications of the proof:

Let L be the trivial C∞ line bundle on X

{ρ : π1(X)→ U(1)} ←→ {U(1)− flat connections dA on L}

dA = d+A, A ∈ Ω1(X) (1-form on X)
Take

∂̄A := ∂̄ + α with α = A0,1 ∈ Ω0,1(X)

∂̄A defines a holomorphic structure on L and hence an
element in Jac(X)

To prove the converse, start with ∂̄L = ∂̄ + α with
α ∈ Ω0,1(X). To recover A:

Take A = α+ α∗h where h = eu is a metric on L

dA flat⇐⇒ dA = 0⇐⇒ ∆u = 0 Laplace equation
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G = C∗ (abelian complex group)

The character variety in this case is

R(S,C∗) = (C∗)2g complex torus

Abel–Jacobi–Hodge Theorem (1930s)

Let J be a complex structure on S and let X = (S, J) be the
corresponding Riemann surface. Then there is a diffeomorphism

R(S,C∗) ∼= T ∗ Jac(X)

T ∗ Jac(X) is the holomorphic cotangent bundle of Jac(X),
whose fibre at L ∈ Jac(X) is isomorphic to H0(X,K),
where K is the canonical line bundle of X.

The proof is along the same lines as the U(1) case, using
Hodge theory on the existence of harmonic forms
R(S,C∗) has a complex structure coming from C∗, while
T ∗ Jac(X) has a complex structure coming from X, and
this are not isomorphic: hyperkähler structure
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G = SU(2) (non abelian compact group)

Need rank 2 holomorphic vector bundles E → X:
E|U = U × C2, U ⊂ X open and holomorphic transition
functions U ∩ V → SL(2,C)

Λ2E ∼= OX trivial holomorphic line bundle degE = 0
(degree = first Chern class)

Not every such E arises from a representation
ρ : π1(S)→ SU(2). We need stability (in the sense of
Mumford) for E → X:
- E is stable if degL < 0 for every line subbundle L ⊂ E
- E is polystable if it is stable or E = L⊕ L−1 with
degL = 0.

Let M(X,SL(2,C)) be the moduli space of isomorphism
classes of polystable SL(2,C)-vector bundles on X. This is
a projective complex algebraic variety.
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Narasimhan–Seshadri Theorem

Narasimhan–Seshadri Theorem (1965)

There is a homeomorphism

R(S, SU(2)) ∼= M(X,SL(2,C))

Narasimhan–Seshadri proved the theorem actually for
SU(n), U(n) and PU(n)

Donaldson (1983) gave another proof using gauge theory
bulding upon work of Atiyah–Bott

The theorem was generalized to any connected compact Lie
group by Ramanathan (1975) who proved

R(S,G) ∼= M(X,GC),

where GC is the complexification of G, and M(X,GC) is the
moduli space of polystable principal GC-bundles over X.
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G = SL(2,C) (complex non abelian group)

Need Higgs bundles (Hitchin 1987): Pairs (E,ϕ)
E is a holomorphic SL(2,C)-vector bundle over X
ϕ : E → E ⊗K, with Tr(ϕ) = 0 (Higgs field)

- (E,ϕ) is stable if degL < 0 for every line subbundle
L ⊂ E such that ϕ(L) ⊂ L⊗K
- E is polystable if it is stable or
(E,ϕ) = (L,ψ)⊕ (L−1, ψ) with degL = 0.

Let M(X,SL(2,C)) be the moduli space of isomorphism
classes of polystable SL(2,C)-Higgs bundles on X. This is
a quasi-projective complex algebraic variety.

New phenomenon: Now, not every representation
ρ : π1(S)→ SL(2,C) is “good”. We need reductiveness.

ρ is reductive if it is irreducible or a direct sum of
irreducible representations (in this case, of two
1-dimensional representations)
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Non-abelian Hodge correspondence

Correct definition of the G-character variety:

R(S,G) := Hom(π1(S), G)reductive/G = Hom(π1(S), G)//G

Theorem (Hitchin 1987, Donaldson 1987)

There is a homeomorphism

R(S, SL(2,C)) ∼=M(X,SL(2,C)).

The proof is a combination of two existence theorems for
two systems of non-linear PDEs

Theorem (Simpson 1988, Corlette 1988)

Let G be a semisimple complex Lie group, and let M(X,G) be
the moduli space of G-Higgs bundles. Then there is a
homeomorphism

R(S,G) ∼=M(X,G).
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G = SL(2,R) (non-abelian, non-compact,
non-complex, real Lie group)

ρ : π1(S)→ SL(2,R) has a topological invariant (Euler
number) d(ρ) ∈ π1(SL(2,R)) ∼= π1(SO(2)) ∼= Z

Define

Rd := {ρ ∈ R(S, SL(2,R)) : with Euler number d}

Theorem (Milnor, 1958)

Rd is empty unless
|d| ≤ g − 1

Theorem (Goldman, 1988; Hitchin, 1987)

Rd is connected if |d| < g − 1

Rd has 22g connected components if |d| = g − 1
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Rd := {ρ ∈ R(S, SL(2,R)) : with Euler number d}

Theorem (Milnor, 1958)

Rd is empty unless
|d| ≤ g − 1

Theorem (Goldman, 1988; Hitchin, 1987)

Rd is connected if |d| < g − 1

Rd has 22g connected components if |d| = g − 1
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G = SL(2,R)

Goldman 1980: Any of the 22g connected components of
Rd for |d| = g − 1, consist of Fuchsian representations
(discrete and faithful) and, can be identified with T (S), the
Teichmüller space, parametrizing complex structures.

SL(2,R)-Higgs bundles (Hitchin 1987)(
E = L⊕ L−1, ϕ =

(
0 β
γ 0

))
Hitchin map:

h :M(X,SL(2,C))→ H0(X,K2)

(E,ϕ) 7→ det(ϕ)

Hitchin section: Let L = K1/2 (there are 22g choices).
Take E = L⊕ L−1. Let q ∈ H0(X,K2). Taking

ϕ =

(
0 −q
1 0

)
gives the 22g components identified to T (S)
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Oscar Garćıa-Prada ICMAT-CSIC, Madrid NAH theory and higher Teichmüller spaces



Non-abelian Hodge correspondence for real forms

Let G be a semisimple complex Lie group. A real subgroup
GR ⊂ G is a real form of G if GR = Gσ, the fixed point
subgroup of an antiholomorphic involution of G.
Example: SU(2) and SL(2,R) are real forms of SL(2,C)

Let GR ⊂ G be a real form. One can define GR-Higgs
bundles over X. These are pairs (E,ϕ):
- E is an principal H-bundle over X, where H is the
complexification of a maximal compact subgroup HR ⊂ GR
- ϕ is a section of E(m)⊗K, where E(m) is the vector
bundle associated to the isotropy representation of H
(g = h + m)

Non-abelian Hodge correspondence for a real form GR

Let M(X,GR) be the moduli space of GR-Higgs bundles. Then
there is a homeomorphism

R(S,GR) ∼=M(X,GR).
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Non-abelian Hodge correspondence for real forms

Again, the proof is a combination of two existence theorems
for non-linear PDEs (G–Gothen–Mundet and Corlette)

topological invariant of ρ : π1(S)→ GR given by
c(ρ) ∈ π1(GR) ∼= π1(HR). Define the subvariety

Rc(S,GR) := {ρ ∈ R(S,GR) : c(ρ) = c}

Topological invariant of (E,ϕ) is given by
c(E,ϕ) ∈ π1(H) ∼= π1(HR). Define the subvariety

Mc(X,G
R) := {(E,ϕ) ∈M(X,GR) : c(E,ϕ) = c}

Of course, the non-abelian Hodge correspondence restricts
to give a homeomorphism

Rc(S,GR) ∼=Mc(X,G
R)
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Oscar Garćıa-Prada ICMAT-CSIC, Madrid NAH theory and higher Teichmüller spaces



Existence of higher Teichmüller spaces?

Question: Are there other simple (higher rank) Lie groups
with similar features to those of SL(2,R)? More precisely,
simple groups for which the character variety has
connected components consisting entirely of discrete and
faithful representations? These components are referred as
higher (rank) Teichmüller spaces.

It is well-known that this cannot happen for compact or
complex groups

Two classes of (non-compact) real forms were first
identified:

1 Split real forms
2 Non-compact Hermitian real forms of tube type

We approach the problem from the point of view of Higgs
bundles
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GR split real form of G

Every semisimple complex Lie group has a split real form

Split real forms for the classical groups: SL(n,R), SO(p, p),
SO(p, p+ 1), Sp(2n,R)

Hitchin map: h :M(G)→ B(G) = ⊕H0(X,Kmi)
For example, for G = SL(n,C), h is obtained by evaluating
the coefficients of the charateristic polynomial at the Higgs
field.

This leads to the Hitchin fibration that has played a
major role in Ngô’s proof of the Fundamental Lemma.

Hitchin (1992) constructed a section of this map, and
proved that the image is a connected component of
M(GR) ∼= R(GR): Hitchin component.

Labourie (2006) introduced the theory of Anosov
representations, and using this proved that the Hitchin
component consists entirely of discrete and faithful
representations. So, it is a higher Teichmüller space
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GR Hermitian real form of G

The symmetric space GR/HR is a Kähler manifold
Example: SL(2,R)/ SO(2) real hyperbolic plane

Real forms of Hermitian type: SU(p, q), SO(2, n), SO∗(2n),
Sp(2n,R). A real form of E6 and E7

The torsion free part of π1(GR) is isomorphic to Z and
hence the natural invariant associated to a representation
and Higgs bundle in this case is an integer d : the Toledo
invariant

Milnor–Wood inequality:

|d| ≤ rank(GR/HR)(g − 1)

Proved for the classical groups by Domic–Toledo, Turaev,
Bradlow-G-Gothen and in general by
Burger–Iozzi–Wienhard and Biquard–G–Rubio.
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GR Hermitian real form of G

Consider maximal Toledo invariant:

Mmax(GR) :=Md(GR) for |d| = rank(GR/HR)(g − 1)

Tube type condition

SL(2,R)/SO(2) ∼= Poincaré disc ∼= upper half plane

For some Hermitian GR there is an “upper half plane”
realization:

GR/HR ∼= Tube over G′R/H
′
R (a non-compact symmetric space)

Example: GR = Sp(2n,R), Sp(2n,R)/U(n) is Siegel
upper half plane. Here G′R = GL(n,R), and H ′R = O(n)

Tube type: SU(p, p), SO(2, n), SO∗(4m), Sp(2n,R), real
form of E7
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GR Hermitian real form of G

Theorem (Cayley correspondence)

Let GR be of tube type and MK2(G′R) be the moduli space of
K2-twisted G′R-Higgs bundles. There is an isomorphism of
complex algebraic varieties

Mmax(GR) ∼=MK2(G′R)

Proved by the classical groups by Bradlow–G–Gothen and
G–Gothen–Mundet and in general by Biquard–G–Rubio
(2017)

This correspondence exhibits hidden topological
invariants

Burger–Iozzi–Labourie–Wienhard proved that if GR is of
tube type Rmax(GR) consists entirely of discrete and
faithful representations: higher Teichmüller spaces
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Higher Teichmüller spaces for other groups?

Some evidence for the family SO(p, q) came from the PhD
Thesis of Marta Aparicio (2009)

Indeed, in Aparicio–Bradlow–Collier–G–Gothen–Oliveira,
Invent. Math. (2019) a generalized Cayley
correspondence was given for M(SO(p, q)) exhibiting the
existence of special components for GR = SO(p, q).

More recently (2021), a full classification of real simple
groups GR for which there are higher Teichmüller spaces
has been given. Combination of two developments:

1 The notion of positivity for certain real groups introduced
by Guichard–Wienhard (2016), generalizing Lusztig’s total
positivity for split real forms. And the study of positive
representations (which, in particular are discrete and
faithful) by Guichard–Labourie–Wienhard (2021).

2 Notion of magical sl2-triples and the general Cayley
correspondence given by
Bradlow–Collier–G–Gothen–Oliveira (2021).
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More recently (2021), a full classification of real simple
groups GR for which there are higher Teichmüller spaces
has been given. Combination of two developments:

1 The notion of positivity for certain real groups introduced
by Guichard–Wienhard (2016), generalizing Lusztig’s total
positivity for split real forms. And the study of positive
representations (which, in particular are discrete and
faithful) by Guichard–Labourie–Wienhard (2021).

2 Notion of magical sl2-triples and the general Cayley
correspondence given by
Bradlow–Collier–G–Gothen–Oliveira (2021).
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General Cayley correspondence

The list of groups GR admitting a positive structure and
magical sl2-triples are the following:

1 Split real forms
2 Hermitian real forms of tube type
3 SO(p, q)
4 Quaternionic real forms of E6, E7, E8 and F4

General Cayley correspondence (BCGGO, 2021)

Let GR be as in the list. The magical sl2-triple defines integers
mi and a group G′R. Then there is a subvariety
C(GR) ⊂M(GR) defined as the image of a map

MKmc (G′R)×
⊕

i=1, i 6=c
H0(Kmi) ↪→M(GR)

which is an isomorphism onto its image, open and closed in
M(GR). Hence C(GR) is a union of connected components.
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Cayley components = Higher Teichmüller components

The connected components of C(GR) are called Cayley
components

Theorem (Guichard–Labourie–Wienhard, 2021)

Positive representations are Anosov (hence discrete and
faithful)

The set of positive representations is open in R(GR) (this
was known)

The set of positive representations is closed in
Rirreducible(GR) ⊂ R(GR)

In [BCGGO,2021] we prove that C(GR) contains positive
representations and that C(GR) ⊂ Rirreducible(GR). By the
openness ans closedness conditions of positive reps, C(GR)
consists entirely of positive representations. Hence

Cayley comp. = Higher Teichmüller comp.
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Oscar Garćıa-Prada ICMAT-CSIC, Madrid NAH theory and higher Teichmüller spaces


