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Abstract. In this paper, we present results concerning the structure of the

ideals in the Leavitt path algebra of a (countable) directed graph with co-

efficients in an integral domain, such as, describing the set of generators for

an ideal; the necessary and sufficient conditions for an ideal to be prime; the

necessary and sufficient conditions for a Leavitt path algebra to be simple.

Besides, some other interesting properties of ideal structure in a Leavitt path

algebra are also mentioned.
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1. Introduction

The Leavitt path algebras LR(E) of the (directed) graph E with coefficients in

a unital commutative ring R was introduced in 2011 by M. Tomforde [10]. In [10]

the author defined basic ideals, and characterized graded basic ideals of LR(E) by

the saturated hereditary subsets of vertices in E in the case that E is a row-finite

graph. For non-row finite graphs, the set of admissible pairs in E are considered

instead of saturated hereditary subsets of E0. However, in this case, basic ideals of

LR(E) are too complicated. In 2015, H. Larki [6] overcame the above complexity

by introducing a new definition of basic ideals. In the case when E is row-finite,

this definition is equivalent to that in [10].

In this paper, based in the above results and the definition of basic ideals due to

H. Larki in [6] and the description of a set of generators for an ideal, the necessary

and sufficient conditions for the primeness of ideals, the existence of maximal ideals

in Leavitt path algebra with field coefficients (see [2,3,8]), we describe the set of

generators for an ideal, the necessary and sufficient conditions for an ideal to be
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prime; the necessary and sufficient conditions for LR(E) to be simple. Besides,

some other interesting properties of ideal structure on LR(E) are also mentioned.

The paper is organized as follows. We begin by Section 2 to provide some basic

facts about Leavitt path algebras. Most of our definitions in this section are from

[6,10]. For a countable directed graph E and a unital commutative ring R, an R-

algebra LR(E) is associated. These algebras are defined as the definition of graph

C∗-algebras C∗(E), and they have natural Z-grading. In Section 3, we study the

structure of generators for an ideal of LR(E) by replacing some results of K.M.

Rangaswamy in [9] on a field with either a unital commutative ring or an integral

domain. In Section 4, based on the results of K.M. Rangaswamy in [8] and H.

Larki in [6], we give the necessary and sufficient conditions for the primeness of

a (graded/non-graded) basic ideal in LR(E). In Section 5, based on the results

of S. Esin and M. Kanuni Er in [3], the necessary and sufficient conditions of the

existence of maximal basic ideal of LR(E) will be discussed.

2. Preliminaries and notation

Throughout this paper, a ring means a unital commutative ring and a graph

means a countable directed graph; all graded rings and modules are understood to

be Z-graded.
A (directed) graph E = (E0, E1, r, s) consists of a set E0 of verties, a set E1 of

edges, a source function s : E1 → E0, and a range function r : E1 → E0. We say

that E is countable if both E0 and E1 are countable. A vertex v ∈ E0 is called a

sink if s−1(v) = ∅, and an infinite emitter if |s−1(v)| = ∞. A vertex v which is

either a sink or an infinite emitter called a singular vertex, a vertex v which is not

a singular vertex called a regular vertex. If s−1(v) is a finite set for every v ∈ E0,

then E is called row-finite.

If e1, . . . , en are edges in E such that r(ei) = s(ei+1) for 1 ≤ i ≤ n − 1, then

p = e1 . . . en is called a path of length |p| = n with source s(p) = s(e1) and range

r(p) = r(en). Note that we consider the vertices in E0 to be paths of length zero.

Set of all finite paths in E is denoted by Path(E).

An edge e is called an exit for a path p = e1 . . . en if there exists 1 ≤ i ≤ n such

that e ̸= ei and s(e) = s(ei). If p is a path such that p ̸= v and s(p) = r(p) = v,

then p is called a closed path based at v. If p = e1 . . . en is a closed path such that

s(ej) ̸= s(ej) for every i ̸= j, then p is called a cycle. A graph without any cycles

is called acylic.
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Two cycles c and c′ are called to be equivalent, denoted by c ∼ c′, if c arises

from c′ by a cyclic permutation of the vertices and edges of c′, that means there

are paths p, q in Path(E) such that c = pq and c′ = qp.

We say that a graph E satisfies Condition (L) if every cycle in E has an exit, a

graph E satisfies Condition (K) if every vertex that is the base of a closed path c

is also the base of another closed path c′ different from c. A cycle c in a graph E is

called a cycle without (K) if no vertex on c is the base of another cycle c′ different

from c. We write u ≥ v if there exists a path p from vertex u to a vertex v (i.e.,

s(p) = u, r(p) = v). For any vertex v, we define T (v) := {w ∈ E0 : v ≥ w} and

M(v) := {w ∈ E0 : w ≥ v}. A subset M of E0 is called downward directed if it

satisfies the following (MT-3) property:

(MT-3) for any u, v ∈ M , there exists w ∈ M such that u ≥ w and v ≥ w.

A subset H of E0 is called hereditary if, whenever v ∈ H and w ∈ E0 satisfy

v ≥ w, then w ∈ H; a subset H of E0 is called saturated if, for any regular vertex

v ∈ E0, r(s−1(v)) ⊆ H implies v ∈ H. The set of all hereditary saturated subsets

of E0 is denoted by HE .

Let (E1)∗ denote the set of formal symbols {e∗ : e ∈ E1}. Then, the elements

of E1 are called read edges, and the elements of (E1)∗ are called ghost edges. For a

path p = e1 . . . en ∈ Path(E), we define the ghost path of p by p∗ := e∗n . . . e
∗
1. Note

that v∗ = v for all v ∈ E0.

Let E be a graph and R a ring. A Leavitt E-family is a set {v, e, e∗ : v ∈ E0, e ∈
E1} ⊆ R such that the following conditions are satisfied:

(A1) u v = δuvu for all u, v ∈ E0;

(A2) s(e)e = er(e) = e and r(e)e∗ = e∗s(e) = e∗ for all e ∈ E1;

(CK1) e∗f = δefr(e) for all e, f ∈ E1;

(CK2) v =
∑

e∈s−1(v)

ee∗ for every regular vertex v ∈ E0.

The Leavitt path algebra of E with coefficients in R, denoted by LR(E), is defined

as the universal R-algebra generated by a Leavitt E-family.

The universal property of LR(E) means that if A is an R-algebra and {av, be, be∗ :

v ∈ E0, e ∈ E1} is a Leavitt E-family in A, then there exists an R-algebra homo-

morphism ϕ : LR(E) → A such that ϕ(v) = av, ϕ(e) = be, ϕ(e
∗) = be∗ for all v ∈ E0

and e ∈ E1.

By [10, Proposition 3.4], we see that

LR(E) = spanR{pq∗ : p, q ∈ Path(E), r(p) = r(q)}

and λv ̸= 0 for all v ∈ E0 and λ ∈ R \ {0}. This implies that λpq∗ ̸= 0 for all

λ ∈ R \ {0} and p, q ∈ Path(E) with r(p) = r(q).



ON SOME IDEAL STRUCTURE OF LR(E) 37

By [10, Proposition 4.7], every Leavitt path algebra LR(E) is a Z-graded algebra

by setting

LR(E)n :=
{∑

i

λipiq
∗
i : λi ∈ R; pi, qi ∈ Path(E), and |pi| − |qi| = n for all i

}
.

An ideal I of LR(E) is said to be a graded ideal if I =
⊕
n∈Z

(I ∩ LR(E)n).

3. Generators of ideals of LR(E)

Definition 3.1. [6, Definition 3.5] Let E be a graph, R a unital commutative ring,

and I an ideal of LR(E).

i) The ideal I is called basic if λx ∈ I implies x ∈ I, where λ ∈ R \ {0}
and either x ∈ E0 or x is of the form v −

n∑
i=1

eie
∗
i for v ∈ E0 and ei ∈

s−1(v), (1 ≤ i ≤ n).

ii) The basic ideal I is called a maximal basic ideal of LR(E) if there are no

other basic ideals contained between I and LR(E).

Note that when E is a row-finite graph, the above definition of basic ideal is

equivalent to [10, Definition 7.2] (This is obtained by comparing [6, Theorem 3.10

(4)] with [10, Theorem 7.9 (1)]). Also, suppose that I is a basic ideal of a Leavitt

path algebra LR(E), and let H = I ∩ E0. If λvH ∈ I for some v ∈ BH and

λ ∈ R \ {0}, then we have vH ∈ I.

The generating set for any ideal I of a Leavitt path algebra with coefficients in

a field was described in [2, Theorem 2.1]. In the case of coefficients in a unital

commutative ring, we have the following result. The idea of the proof is the same

as in the proof of [2, Themrem 2.1]. However, we also restate it in a more logical

way.

Theorem 3.2. Let E be a countable graph, R a unital commutative ring, and I a

nonzero basic ideal of LR(E). Then, there exists a generating set for I consisting

of elements of the form (
λ1v +

n∑
i=2

λic
ri
)(

v −
∑
e∈S

ee∗
)
,

where v ∈ E0, λ1, . . . , λn ∈ R, r1, . . . , rn are positive integers, S is a finite set

(possibly empty), S ⊊ s−1(v), λ1 ̸= 0, and, whenever λi ̸= 0 for some 2 ≤ i ≤ n, c

is the unique cycle based at v.

Proof. Put vS := v −
∑
e∈S

ee∗ and let J the ideal of LR(E) generated by all the

elements of I which have the form described in the statement of the theorem, we

show that I = J .
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It is clear that J ⊆ I. Conversely, for any u ∈ I ∩E0, by choosing λ1 = 1, λi = 0

and S = ∅, we get u ∈ J . It follows that I ∩ E0 ⊆ J .

Case 1: There exists an element x of I \ J of the form

x =
(
λ1p1 + · · ·+ λnpn

)
.vS ,

where p1, . . . , pn ∈ Path(E), 0 ≤ l(p1) ≤ . . . ≤ l(pn) and n is minimal. Among all

such x, select one for which (l(p1), . . . , l(pn)) is smallest in the lexicographic order.

Then, λi ̸= 0 and r(pi) = v for all i, 1 ≤ i ≤ n. Let s(x) = {s(pi) | 1 ≤ i ≤ n}.
Then, wx ∈ I for any w ∈ s(x). But x =

∑
w∈s(x) wx and x /∈ J, it gives wx ̸∈ J for

some w ∈ s(x). By replacing x by wx if necessary, we may assume that s(pi) = w

for all i.

Subcase 1.1: l(p1) > 0.

Let pi = fi.qi, where fi ∈ E1 and qi ∈ Path(E), then

f∗
i x = (λ1fiq1 + λ2f

∗
i p2 + . . .+ λnf

∗
i pn)vS .

Note that f∗
i x ∈ I and f∗

i pj is either 0 or belongs to Path(E), so that f∗
i x ∈ J by

the minimality of the lengths of pi. It follows that fif
∗
i x ∈ J for any 1 ≤ i ≤ n.

Therefore

x =
∑
fi∈A

fif
∗
i x ∈ J, where A = {fi | f∗

i pi ̸= 0, 1 ≤ i ≤ n},

a contradiction.

Subcase 1.2: l(p1) = 0 and there exists f ∈ S such that f∗pi ̸= 0 for some 2 ≤ i ≤ n.

By l(p1) = 0, we get p1 = w = v and l(pi) > 0 for 2 ≤ i ≤ n. Since f ∈ S, we

get ff∗.vS = 0, so we have

ff∗x = ff∗.vS +
(
λ2ff

∗p2 + · · ·+ λnff
∗pn

)
.vS =

(
λ2ff

∗p2 + · · ·+ λnff
∗pn

)
.vS .

Note that ff∗x ∈ I and ff∗pi is either 0 or belongs to Path(E), so that ff∗x ∈ J

by the minimality of n. Furthermore, f∗pi ̸= 0 for some 2 ≤ i ≤ n yields that

ff∗pi = pi. Therefore

x− ff∗x =
(
λ1v +

∑
i;f∗pi=0

λipi
)
.vS ∈ J,

by the minimality of n. So we have x = ff∗xx+ (x− ff∗x) ∈ J , a contradiction.

Subcase 1.3: l(p1) = 0, e∗pi = 0 for all e ∈ S and 2 ≤ i ≤ n.
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Note that w = p1 = v, and x /∈ J , so we have n ≥ 2 and there are two closed

simple path c ̸= c′ based at v such that pi = cmi .c′.qi for some qi ∈ Path(E) and

for some i. Pick an integer m for which l(cm) > l(pn) and let y := (cm)∗.x.cm, we

get y ∈ I; and by e∗c = 0 for all e ∈ S, this yields that vS .c = c. Therefore

y = λ1v + λ2(c
m)∗.p2.c

m + · · ·+ (cm)∗.pn.c
m ∈ R[c],

where R[t] is the polynomial ring over commutative ring R. By c ̸= c′ and y ∈ I,

we get λ1v = (c′)∗.y.c′ ∈ I. Since I is a basic ideal of LR(E), it follows that v ∈ I.

But I ∩ E0 ⊆ J , so v ∈ J , so that x = vx ∈ J , a contradiction.

Case 2: There exists an element x of I \ J of the form

x =
(
λ1p1q

∗
1 + · · ·+ λnpnq

∗
n

)
.vS ,

where p1, q1, . . . , pn, qn ∈ Path(E), 0 ≤ l(q1) ≤ . . . ≤ l(qn) and n is minimal.

Among all such x, select one for which (l(q1), . . . , l(qn)) is smallest in the lexico-

graphic order.

Then, λi ̸= 0 for all i, 1 ≤ i ≤ n; s(p1) = . . . = s(pn); s(q1) = . . . = s(qn) = v.

Subcase 2.1: l(qi) ≥ 1 for all i, 1 ≤ i ≤ n.

Then, we can write qi = eiq
′
i, where ei ∈ E1, q′i ∈ Path(E).

If there exists an element ei ∈ S, then

q∗i .vS = q′i
∗
e∗i .vS = q′i

∗
(e∗i − e∗i ) = 0,

so we can remove λipiq
∗
i in the expression of x, we get a contradiction with the

minimality of n. Therefore ei ̸∈ S for all i, 1 ≤ i ≤ n.

For any f ∈ s−1(v) \ S, we have vS .f = f . Therefore

xf =
(
λ1p1q

∗
1 + · · ·+ λnpnq

∗
n

)
f =

∑
ei=f

λipiq
′
i
∗
.

But xf ∈ I, f = f.r(f) = f
(
r(f) −

∑
e∈Ø

ee∗
)
, and the above expression of xf is

equal to zero or is the form of l(q′i) < l(qi), so we have xf ∈ J . It follows that

xff∗ ∈ J for all f ∈ s−1(v) \ S.
On the other hand, for any f ∈ S,

vS .ff
∗ = ff∗ − ff∗ = 0,

so xff∗ = 0. Then

x = xv = x
(∑
f∈S

ff∗ +
∑

f∈s−1(v)\S

ff∗
)
=

∑
f∈s−1(v)\S

xff∗ ∈ F,
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a contradiction.

Subcase 2.2: l(qi) = 0 for some i, 1 ≤ i ≤ n.

Suppose that l(q1) = . . . = l(qk) = 0 and l(qi) > 0 for all i > k. Then,

x =
(
λ1p1 + · · ·+ λkpk + λk+1pk+1q

∗
k+1 + · · ·+ λnpnq

∗
n

)
.vS .

We write qi = eiq
′
i for k+1 ≤ i ≤ n and let T = {ek+1, . . . , en}. Then, T ⊆ s−1(v).

According to the minimality of n and according to the above case, we can assume

that T ∩ S = Ø and xf ∈ J for all f ∈ T . We have again that

q∗i

(
v −

∑
f∈T

ff∗
)
= q′i

∗
(e∗i − e∗i ) = 0.

Therefore,

x
(
v −

∑
f∈T

ff∗
)
= (λ1p1 + . . .+ λkpk)

(
v −

∑
f∈T

ff∗
)
.

The right side of the above equation has the same form as Case 1, so

x
(
v −

∑
f∈T

ff∗
)
∈ J.

Therefore,

x = x
(
v −

∑
f∈T

ff∗
)
+

∑
f∈T

(xf)f∗ ∈ J,

again a contradiction. □

For R is an integral domain and a graph E, the following proposition is an

extension of [9, Proposition 2] shows that nonzero basic ideals of LR(E) containing

no vertices are generated by a set of mutually orthogonal polynomials over cycles.

Proposition 3.3. Let E be a graph, R an integral domain, and N a nonzero basic

ideal of LR(E) which does not contain any vertices of E. Then, N is a nongraded

ideal and possesses a generating set of pair-wise mutually orthogonal generator of

the form

y = λu+

n∑
i=2

λic
ri ,

where λ, λi ∈ R, ri ∈ N, c is a unique cycle without exits based at a vertex u ∈ E0,

λ ̸= 0 and at least one λi ̸= 0.

Proof. Let H = N ∩ E0 and S = {v ∈ BH | vH ∈ N}. Since N does not contain

any vertices of E, H and S are both empty sets. If N is a graded ideal of LR(E),

then by [1, Theorem 2.4.8, p.42], N = I(H;S), must then be {0}, a contradiction.

Thus, N is a nongraded ideal.
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By Theorem 3.2, N is generated by elements of the form

y :=
(
λu+

n∑
i=2

λic
ri
)(

u−
∑
e∈S

ee∗
)
,

where c is a unique cycle without exits based at a vertex u ∈ E0, S ⊊ s−1(u), and

λ, λj ∈ R, with λ ̸= 0 and at least one λj ̸= 0. Since S ⊊ s−1(u), there is an

f ∈ s−1(u) \ S. Let w = r(f).

Suppose that f not be the initial edge of c. Then f∗c = 0, so λw = f∗yf ∈ N .

By N is a basic ideal of LR(E), it follows that w ∈ N ∩E0, a contradiction. Thus,

f is the initial edge of c. So, there exists a path α ∈ Path(E) such that c = fα.

Let c′ = αf , we obtain that c′ is a cycle based at w, and

f∗yf = λw +

n∑
i=2

λi(c
′)ri ∈ N.

Therefore,

c∗yc = α∗(f∗yf)α = λu+

n∑
i=2

λic
ri ∈ N.

If c has an exit at a vertex v ∈ E0, then there exist e1, e2 ∈ s−1(v) and α, β ∈
Path(E) such that e1 ̸= e2 and c = αe1β. Then, e

∗
2α

∗yαe2 = λr(e2) ∈ N. By N is

a basic ideal of LR(E), it follows that r(e2) ∈ N , a contradiction. Then, the cycle

c has no exit. In particular, |s−1(u)| = 1. Since S ⊊ s−1(u), this implies that S

must be the empty set. Thus,

y = λu+

n∑
i=2

λic
ri .

If there is another generator of N of the form y′ = λ′u +
n′∑
i=2

λ′
i(c

′)si with the

same vertex u, then, by the uniqueness of c, c′ = c and so

y′ = λ′u+

n′∑
i=2

λ′
ic

si .

For a given vertex u and the unique cycle c based at u, let d(x) ∈ R[x] be the

polynomial of the smallest degree with d(0) ̸= 0 and d(c) ∈ N (note that c0 = u).

By the Polynomial Pseudo-Division Theorem ([7, Theorem 1.3.6, p.19]), any other

polynomial f(x) ∈ R[x] satisfying f(0) ̸= 0 and f(c) ∈ N , there exist polynomials

g(x), r(x) ∈ R[x] such that

λf(x) = g(x).d(x) + r(x),

where deg(r) < deg(d) and λ ̸= 0 is a power of the leading coefficient of d(x). Then

r(c) = λf(c)− g(c)d(c) ∈ N.
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By the smallest degree of d, we have r(x) = 0. So all those generators f(c) of N

involving the same vertex u can be replaced by d(c). Moreover, if d1(c
′) is in the

other generating set for N such that c′ ∼ c and d1(x) ∈ R[x] be the polynomial of

the smallest degree with d1(0) ̸= 0 and d1(c
′) ∈ N , then there exist some paths p, q

such that c = pq, c′ = qp. Therefore, q∗d1(c
′)q = d1(c) and d1(c) belongs to ⟨d(c)⟩

by the minimality of d(x), so we can remove d1(c
′) from the generating set for N .

By replacing/removing the generators for N (when necessary), we can get the

set of generators for N of the form

yi = λiui +

ni∑
j=2

λijc
rij
i ,

where λi, λij ∈ R, ci is a unique cycle without exits based at a vertex ui ∈ E0,

ci ̸∼ ck for i ̸= k (and in particular, ui ̸= uk), and for each i, λi ̸= 0 and at least

one λij ̸= 0. Then clearly yiyk = 0 = ykyi for i ̸= k. The proof of the theorem is

now complete. □

Corollary 3.4. Let R be an integral domain and E a graph satisfies Condition

(L). If I is a nonzero basic ideal of LR(E), then I ∩ E0 ̸= ∅.

Proof. Since Condition (L) on a graph E requires that cycles in E have exits, the

result follows immediately from Proposition 3.3. □

The following theorem is an extension of [9, Theorem 4] in which R is an integral

domain.

Theorem 3.5. Let E be a graph, R an integral domain. If I is a non-zero basic

ideal of LR(E) with I ∩ E0 = H and S = {v ∈ BH | vH ∈ I}, then I is generated

by H ∪ SH ∪ Y , where Y is a set of mutually orthogonal elements of the form

λu+
n∑

j=2

λic
ri in which c is a unique cycle with no exits in E0 \H based at a vertex

u in E0 \H, λ, λi ∈ R with λ ̸= 0 and at least one λi ̸= 0.

Proof. Let J = I(H,S) be the ideal of LR(E) generated by H and SH := {vH |
v ∈ S}. Then, J ⊆ I. For J = I there is nothing to prove, so we may assume that

J ⊊ I. Identifying LR(E)/J with LR(E/(H,S)) via the isomorphism LR(E)/J ∼=
LR(E/(H,S)) (see [6, Theorem 3.10]), we note that the non-zero ideal I/J contains

no vertices of LR(E/(H,S)), so by Proposition 3.3, I/J is generated by mutually

orthogonal elements of the form y = λu +
n∑

j=2

λjc
rj , where c is a unique cycle

without exits based at a vertex u in (E/(H,S))0, and λ, λj ∈ R with λ ̸= 0 and at

least one λj ̸= 0. Observe that

(E/(H,S))0 = E0 \H ∪ {v′ | v ∈ BH \ S}
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and that the vertices v′ ∈ (E/(H,S))0 are all sinks, so both u and the vertices on

c all belong to E0 \ H. Therefore, the ideal I is generated by J and a set Y of

mutually orthogonal elements of the form y = λu +
n∑

j=2

λjc
rj , where c is a unique

cycle without exits in E0 \H, based at u ∈ E0 \H, and λ, λj ∈ R with λ ̸= 0 and

at least one λj ̸= 0. □

4. Prime ideals of LR(E)

Prime ideals of Leavitt path algebras with field coefficients were studied in [8]

and the characterization of both graded and nongraded prime ideals were given.

In the case of coefficients in a unital commutative ring, due to [8, Theorem 3.12],

we give the necessary and sufficient conditions for the primeness of a basic ideal of

LR(E) in both graded and nongraded cases.

For the case of a graded basic ideal, we first prove the following lemma.

Lemma 4.1. Let E be a graph, R a unital commutative ring. If P is an ideal of

LR(E), H = P ∩E0, S = {v ∈ BH | vH ∈ P}, then the ideal I(H,S) is the graded

basic ideal of LR(E) contains every other graded basic ideal of LR(E) inside P .

Proof. Suppose A is a graded basic ideal of LR(E). By [6, Theorem 3.10 (4)],

there is an admissible pair (H1, S1) such that A = I(H1, S1) and A ⊆ P. Then

A ∩ E0 ⊆ P ∩ E0 = H, so that H1 ⊆ H ⊆ I(H,S).

For v ∈ S1, we have v is a breaking vertex for H1, which means v ∈ BH1
, so we

have 0 < |s−1(v) ∩ r−1(E0 \H1)| < ∞. By re-indexing, we may then assume that

s−1(v) ∩ r−1(E0 \H1) = {e1, . . . , em, em+1, . . . , en},

where r(ei) /∈ H for i ≤ m, and r(ei) ∈ H for i > m. It follows that

vH1 = v −
n∑

i=1

eie
∗
i = vH −

n∑
j=m+1

ej .r(ej).e
∗
j , r(ej) ∈ H for all j > m.

If m = n then clearly vH1 = vH ∈ I(H,S); if m < n then by r(ej) ∈ H for

all j > m, we can get ej = ej .r(ej) ∈ I(H,S) for all j > m, we can also get

vH1 ∈ I(H,S). In both cases, we always have A ⊆ I(H,S). □

It is now the necessary and sufficient conditions for the primeness of a basic ideal

of LR(E) in the graded case.

Theorem 4.2. Let E be a graph, R a unital commutative ring, and P a basic ideal

of LR(E) with P ∩E0 = H. Then, P is a graded prime ideal of LR(E) if and only

if R is an integral domain and P satisfies one of the following conditions:

i) P = I(H,BH), and E0 \H is downward directed;
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ii) P = I(H,BH \ {u}) for some u ∈ BH and M(u) = E0 \H.

Proof. Let H = P ∩ E0, S = {w ∈ BH : wH ∈ P} and F = E/(H,S).

(⇒) Suppose P is a graded prime ideal of LR(E). Then by Lemma 4.1, P =

I(H,S). Therefore

LR(E)/P ∼= LR(E)/I(H,S) ∼= LR(F )

is a prime ring (By [6, Theorem 3.10 (3)]). Proposition 4.5 in [6] implies that R is

an integral domain and F 0 is downward directed.

Let Sink(F ) be the set of sinks in F . If |Sink(F )| ≥ 2, then there are u, v ∈
Sink(F ), u ̸= v. Since F 0 is downward directed, there exists y ∈ F 0 such that

u ≥ y and v ≥ y. Now, both u and v are sinks, so we have u = y and v = y. It

implies that u = v, a contradiction. Thus, |Sink(F )| ≤ 1.

If there exists v′ ∈ F 0 such that v′ ∈ BH \ S, then for all α ∈ F 1 satisfies

sF (α) ∈ E0, we have sF (α) ̸= v′. Hence v′ ∈ Sink(F ). Therefore BH \S ⊆ Sink(F ).

Thus |BH \ S| ≤ 1.

i) If BH \ S = ∅, then S = BH , so E0 \H = F 0. Therefore E0 \H is downward

directed;

ii) If BH \ S = {u}, then BH = S ∪ {u}, so u ∈ BH and F 0 = (E0 \H) ∪ {u′}.
Clearly, if v ∈ M(u) then v ≥ u and u ∈ BH , so v ̸∈ H, that is v ∈ E0 \ H.

Conversely, for all v ∈ E0 \ H, there exists y ∈ F 0 such that v ≥ y and u′ ≥ y.

By u′ ∈ Sink(F ), it implies y = u′, so there is a path p = p1 . . . pn ∈ Path(F )

such that sF (p) = v, rF (p) = u′. Since rF (pn) = u′, it follows that pn = e′n,

where rE(en) ∈ BH \ (BH \ {u}) = {u}, that is rE(en) = u. By rF (pn−1) =

sF (pn) ∈ E0 \H, we get pn−1 ∈ E0. By induction, we have p1 . . . pn−1 ∈ Path(E),

so (p1 . . . pn−1)en ∈ Path(E), that is v ≥E u. Therefore v ∈ M(u). Thus,

E0 \H = M(u).

(⇐) Since Lemma 4.1, in the both cases we always get P is a graded ideal.

i) If P = I(H,BH) then (E/(H,BH))0 = E0 \H, so (E/(H,BH))0 is downward

directed. Therefore

LR(E/(H;BH)) ∼= LR(E)/I(H;BH) = LR(E)/P

is a prime ring. It follows that P is a prime ideal.

ii) If P = I(H,BH \ {u}) then

(E/(H,BH \ {u}))0 = (E0 \H) ∪ {u′}.
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For all v ∈ (E/(H,BH \ {u′}))0, we have v = u′ or v ∈ E0 \ H = M(u), that is

v ≥E u, so there is a path p = p1 . . . pn ∈ Path(E) such that s(p) = v, r(p) = u. By

replacing the edge pn in E by the edge p′n in E/(H;S), we obtain

q := p1 . . . pn−1p
′
n ∈ Path(E/(H;S)) and rE/(H;S)(q) = u′.

It implies that v ≥ u′. Similarly, w ≥ u′. Therefore (E/(H;BH\{u}))0 is downward
directed. Thus

LR(E/(H;BH \ {u})) ∼= LR(E)/I(H;BH \ {u}) = LR(E)/P

is a prime ring. Therefore P is a prime ideal. □

Corollary 4.3. Let E be a graph and R a unital commutative ring. If P =

I(H,BH) is a maximal ideal of LR(E), then E0 \H is downward directed.

Proof. If P = I(H,BH) is a maximal ideal of LR(E), then P is a graded prime

ideal of LR(E). The result now follows from Theorem 4.2. □

Lemma 4.4. Let E be a graph, R a unital commutative ring, and P a prime basic

ideal of LR(E), H = P ∩ E0, S = {v ∈ BH : vH ∈ P}. Then the ideal I(H,S) is

also a prime basic ideal of LR(E).

Proof. Suppose that A,B are two graded basic ideals of LR(E) with AB ⊆
I(H,S). Since AB ⊆ P and P is prime, it follows that either A ⊆ P or B ⊆ P . By

Lemma 4.1, we obtain A ⊆ I(H,S) or B ⊆ I(H,S). Therefore I(H,S) is a prime

basic ideal of LR(E). □

Lemma 4.5. Let R be an integral domain, E a graph such that E0 is downward

directed. If N is a nonzero basic ideal of LR(E) which does not contain any vertices

of E, then there is a unique cycle c without exits in E and N is a non-graded

principal ideal generated by p(c), where p(x) ∈ R[x].

Proof. By Proposition 3.3, there is a cycle c without exits (based at a vertex

u ∈ E0) and a polynomial p(x) ∈ R[x] of the smallest degree such that

p(c) := λu+

n∑
i=2

λic
ri ∈ N.

Let y ∈ N , then there exists a cycle c′ without exits (based at w ∈ E0) such that

y = λ′w +

m∑
i=2

λ′
i(c

′)ri .
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Since E0 is downward directed, there is a vertex v ∈ E0 such that u ≥ v and w ≥ v.

By c and c′ have no exit, we obtain v ∈ c0 ∩ (c′)0, c = α.w.β, and c′ = β.u.α for

some α, β ∈ Path(E). Then,

β∗yβ = λ′u+

m∑
i=2

λ′
ic

ri ∈ N.

Let f(x) = λ′ +
m∑
i=2

λ′
ix

ri . By the Polynomial Pseudo-Division Theorem ([7, Theo-

rem 1.3.6, p.19]), there exist polynomials q(x), r(x) ∈ R[x] such that

δ.f(x) = p(x).q(x) + r(x),

where 0 ≤ deg r(x) < deg d(x) and δ ̸= 0 is a power of the leading coefficient of

p(x).

Then, r(c) = δ.f(c)− p(c)q(c) ∈ N . By the minimality of p(x), we get r(x) = 0.

It follows that

f(c) = p(c)q(c) ∈ ⟨p(c)⟩.

Therefore y = α∗.f(c).α ∈ ⟨p(c)⟩, we then conclude that N = ⟨p(c)⟩. □

Recall that a ring R is prime if the zero ideal {0} is a prime ideal in R. It

is known that a commutative ring is a prime ring if and only if it is an integral

domain. The following is the necessary and sufficient conditions for the primeness

of a basic ideal of LR(E) in the non-graded case.

Theorem 4.6. Let E be a graph, R a unital commutative ring, and P a basic ideal

of LR(E) with P ∩ E0 = H. Then, P is a non-graded prime ideal of LR(E) if

and only if R is an integral domain and P = I(H,BH) + ⟨f(c)⟩, where c is a cycle

without (K) in E based at a vertex v, M(v) = E0 \ H and f(x) is an irreducible

polynomial in R[x, x−1].

Proof. Let H = P ∩ E0, S = {w ∈ BH : wH ∈ P} and F = E/(H,S).

(⇒) Suppose P is a non-graded prime ideal of LR(E). Then by Lemma 4.1,

I(H,S) ⊊ P . Since [6, Theorem 3.10(3)], there is an R-isomophism

ϕ : LR(E)/I(H,S) → LR(F ).

Let N = ϕ(P/I(H,S)). By P is a prime basic ideal of LR(E), and by Lemma 4.4,

I(H,S) is a graded prime basic ideal of LR(E). Since LR(E)/I(H;S) ∼= LR(F ), it

follows that LR(F ) is a prime ring. By [6, Prop. 4.5], R is an integral domain and

F 0 is downward directed. By an argument analogous to the proof of Theorem 4.2,

we get S = BH or S = BH \ {u} for some u ∈ BH such that E0 \H = M(u).
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- If S = BH \ {u} and E0 \H = M(u) then F 0 = (E0 \H) ∪ {u′} and w ≥ u′

for all w ∈ F 0, where u′ = ϕ(uH + I(H,S)). Note that u ̸∈ S, so uH ̸∈ P , imply

u′ ̸∈ N . If there is v′ ∈ N ∩ F 0 then v′ ̸= u′, so we have v′ ∈ (N ∩E0) ∩ (E0 \H).

Therefore, there exists v ∈ (P ∩E0)∩ (E0 \H) such that v′ = ϕ(v+ I(H,S)). But

(P ∩E0) ∩ (E0 \H) = H ∩ (E0 \H) = ∅. It follows that v doesn’t exist, therefore

N contains no vertices of F . By Lemma 4.5, there is a cycle c without exits in

F , based at a vertex v ∈ F 0 such that N is the principal ideal generated by p(c),

where p(x) ∈ R[x]. But the cycle c without exits and w ≥ u′ for all w ∈ F 0, so we

get a contradiction. Therefore this case is impossible.

- If S = BH then F 0 = E0 \H, so we have

N ∩ F 0 = (N ∩ E0) ∩ (E0 \H) = H ∩ (E0 \H) = ∅.

By Lemma 4.5, there is a cycle c without exits in F , based at a vertex v ∈ F 0 such

that N is the principal ideal generated by p(c), where p(x) ∈ R[x]. Clearly, c is a

cycle without (K) and P = I(H,BH) + ⟨f(c)⟩. For w ∈ F 0, by v ∈ F 0 and F 0 is

downward directed, there is a vertex w1 ∈ F 0 such that w ≥ w1 and v ≥ w1. Since

the cycle c without exits and v is the base of c, we get v = w1, that is w ≥ v. It

follows that w ∈ M(v). Therefore M(v) = F 0. Since N is a prime ideal in LR(F ),

Proposition 10.2 in [5] now yields vNv is a prime ideal in vLR(F )v, generated by

vf(c)v = f(c). It is easy to see that vLR(F )v ∼= R[x, x−1] with the isomorphism θ

maps v to 1, c to x, and c∗ to x−1, it follows that θ maps f(c) to f(x). Since f(x)

is a generator of a prime ideal in the Euclidean domain R[x, x−1], f(x) must then

be an irreducible polynomial in R[x, x−1].

(⇐) Suppose R is an integral domain, and P = I(H,BH) + ⟨f(c)⟩, where

(a) c is a cycle without (K) in E based at a vertex v;

(b) M(v) = E0 \H; and

(c) f(x) is an irreducible polynomial in R[x, x−1].

Now hypothesis (b) implies F 0 = E0 \ H = M(v). Therefore F is downward

directed and contains the cycle c. As c is a cycle without (K) in E, the downward

directed property implies that c has no exit in the graph F . By [6, Theorem 3.10

(3)], there is an R-isomorphism

ϕ : LR(E)/I(H,S) → LR(F ).

Let N = ϕ(P/I(H,S)), then, by the hypothesis (c), the ideal N is generated by

f(c). Since vLR(F )v ∼= R[x, x−1] with the isomorphism θ maps v to 1, c to x, and

c∗ to x−1, it follows that θ maps f(c) to f(x). As the polynomial f(x) is irreducible

in R[x, x−1], the ideal vNv, being generated by vf(c)v = f(c) = θ−1(f(x)), is a
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maximal ideal of vLR(F )v. Now, if A,B are two ideals of LR(F ) such that AB ⊆ N ,

then vAv.vBv ⊆ vABv ⊆ vNv, so either vAv or vBv is included in vNv. Without

loss of generality, we can assume that vAv ⊆ vNv. If there is w ∈ vAv ∩ F 0, then

w ≥ v, imply that v ∈ A. But then vLR(F )v ⊆ A, and so vLR(F )v ⊆ vAv ⊆ vNv,

this fact contradicts the maximality of vNv in vLR(F )v. Thus vAv does not contain

any vertices of F , hence by Lemma 4.5, A will be generated by a polynomial q(c).

Since

q(c) = vq(c)v ∈ vAv ⊆ vNv ⊆ N,

we conclude that A ⊆ N . Thus N is a prime ideal of LR(F ). It follows that P is

a prime ideal of LR(E). Now, if P is a graded ideal, then by P ∩E0 = H, Lemma

4.1 yields P = I(H,BH), so we have N = 0, hence vNv must be 0. But vNv is

generated by f(c) ̸= 0, so we get a contradiction. Hence, P must be a non-graded

prime ideal of LR(E). □

Recall that the Leavitt path algebra LR(E) is called basically simple if the only

basic ideal of LR(E) are {0} and LR(E). In [10, Theorem 7.20], it is shown the

necessary and sufficient condition for the basically simplicity of LR(E) when E is

row-finite. For E is a countable graph, we have the following.

Theorem 4.7. Let E be a graph and R be a unital commutative ring. Then the

Leavitt path algebra LR(E) is basically simple if and only if E satisfies the following

conditions:

i) HE = {∅, E0};
ii) The graph E satisfies Condition (L);

iii) R is a field.

Proof. Suppose that LR(E) is basically simple. Then the only basic ideal of LR(E)

are {0} and LR(E), both of which are graded. By [6, Theorem 3.18] we have that

E satisfies Condition (K). It then follows from [6, Theorem 3.10 (4)] and the fact

that LR(E) is basically simple, that the only saturated hereditary subsets of E are

∅ and E0. Hence HE = {∅, E0} and the graph E satisfies Condition (L). Therefore,

it is suffices to show that R is a field.

Suppose J is a nonzero ideal of R. Then J.LR(E) is an ideal of LR(E), so either

LR(E).J = 0 or LR(E).J = LR(E).

If LR(E).J = 0, then for 0 ̸= λ ∈ J and v ∈ E0, λv ∈ LR(E).J = 0, imply λv = 0,

which contradicts Proposition 3.4 in [10]. Therefore LR(E).J = LR(E).

For λ ∈ R and v ∈ E0, we have λv ∈ LR(E) = J.LR(E), hence there are x ∈
LR(E) and λ′ ∈ J such that λv = λ′x. By [10, Proposition 4.7], x ∈ LR(E)0, that



ON SOME IDEAL STRUCTURE OF LR(E) 49

is x = λ1v, where λ1 ∈ R. It implies that (λ− λ′λ1)v = 0, so λ = λ′λ1 ∈ JR ⊆ J .

Thus R = J , hence R is a field.

The converse follows from ([1, Theorem 2.9.1, p.68]). □

5. Maximal basic ideals of LR(E)

Recall that any ideal in a unital ring is contained in a maximal ideal, hence

maximal ideals always exist. In [3], the author studied when maximal ideals exist

and also the conditions on the graph E and the field K for which every ideal of

LK(E) is contained in a maximal ideal. In this section, we discuss the necessary

and sufficient conditions of the existence of maximal basic ideal of LR(E).

We begin with the two following lemmas.

Lemma 5.1. Let R be an integral domain and E a graph. If H ∈ HE, then

I(H,BH) is a maximal ideal in LR(E) if and only if H is a maximal element in

HE and the quotient graph E/(H,BH) satisfies Condition (L).

Proof. Let F = E/(H,BH) and assume that I(H,BH) is a maximal ideal in

LR(E), then LR(E)/I(H,BH) ∼= LR(F ) is a simple ring. By Theorem 4.7, R is a

field, F satisfies Condition (L), and HF = {∅, F 0}. If H is not a maximal element

in HE , then there exists H ′ in HE such that H ⊊ H ′. Then I(H ′, BH′)/I(H,BH)

is a proper ideal of LR(E)/I(H,BH), which contradicts the simplicity of LR(F ).

Conversely, if H is a maximal element in HE such that F = E/(H,BH) satisfies

Condition (L), and there exists a proper ideal N of LR(E) containing I(H,BH),

then by [6, Theorem 3.10 (4)] there exists an admissible pair (H1, S1) such that

gr(N) = I(H1, S1), where H1 ∈ HE and S1 ⊆ BH1
. Hence,

I(H,BH) ⊆ gr(N) = I(H1, S1) ⊆ N.

By [1, Proposition 2.5.4, p.46], H ⊆ H1 and BH ⊆ S1 ∪ H1 ⊆ BH1
∪ H1. Since

H is maximal in HE , it follows that H = H1, and so BH ⊆ S1 ∪ H ⊆ BH ∪ H,

implies S1 = BH . Hence, I(H,BH) = gr(N). On the other hand, by Theorem 3.5,

N is generated by H ∪ SH ∪ Y , where Y is a set of mutually orthogonal elements

of the form λu +
n∑

i=2

λic
ri in which c is a unique cycle without exits in E0 \ H,

based at a vertex u in E0 \H, λ, λi ∈ R with λ ̸= 0 and at least one λi ̸= 0. As

F = E/(H,BH) satisfies Condition (L), Y = ∅, that is N = I(H,BH). Hence,

I(H,BH) is a maximal ideal in LR(E). □

Lemma 5.2. Let R be an integral domain, E a graph, and H a maximal element

in HE. Then E/(H,BH) not satisfying Condition (L) if and only if there is a

maximal non-graded basic ideal M containing I(H,BH) with H = M ∩ E0.
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Proof. Suppose H is a maximal element in HE and F := E/(H,BH) not satisfying

Condition (L). Then, there exists a cycle c without exits in F , based at u ∈ E0 \H.

Let N be an ideal of LR(E) generated by H ∪SH ∪Y , where Y is a set of mutually

orthogonal elements of the form λu +
n∑

i=2

λic
ri in which λ, λi ∈ R with λ ̸= 0 and

at least one λi ̸= 0. Then clearly N is a non-graded basic ideal of LR(E).

If M is a graded maximal basic ideal of LR(E) such that N ⊆ M , then there

exists an admissible pair (H ′, S′) such that M = I(H ′, S′). Since every maximal

ideal in a Leavitt path algebra is prime, M is a graded prime ideal. By Theorem

4.2, M = I(H ′, S′) with either S′ = BH′ and E0 \ H ′ is downward directed or

S′ = BH′ \ {u} with u ∈ BH′ such that M(u) = E0 \H ′. However, if the second

case happens, then M can not be a maximal ideal, as M ⊊ I(H ′, BH′). Thus

M = I(H ′, BH′). Now, by Lemma 5.1, H ′ is a maximal element in HE and

E \ (H ′, BH′) satisfies Condition (L). This contradicts the fact that H is a maximal

element in HE and I(H,BH) = gr(N) ⊆ N ⊊ I(H ′, BH′) = M . Thus, N is not

contained in a maximal graded basic ideal of LR(E).

If N is maximal, then the result will come out. If not, then there exists an ideal

N1 such that N0 := N ⊊ N1 ⊊ LR(E). Continuing in this manner, we obtain a

chain of proper ideals {Ni} with

N = N0 ⊊ N1 ⊊ . . . ⊊ Ni ⊊ Ni+1 ⊊ . . .

If the chain is finite, then we are done; otherwise, by I(H,BH) = gr(N) ⊆ gr(Ni)

for all i, and by H is maximal in HE , we conclude that gr(Ni) = I(H,BH) for all i

and Ni is generated by I(H,BI)∪⟨fi(c)⟩ for some polynomial fi(x) ∈ R[x]. By the

same argument of proving Theorem 4.6, this yields to a sequence of polynomials

fi(x) with f0(x) = f(x) and fi+1(x) | fi(x). As there are only finitely many factors

of λ +
n∑

i=2

λix
ri , the sequence stabilizes at an irreducible polynomial f(x) that

divides λ+
n∑

i=2

λix
ri . Hence the ideal generated by I(H,BH)∪ ⟨f(c)⟩ is a maximal

non-graded basic ideal.

Conversely, if M is a non-graded maximal basic ideal of LR(E), then by Theorem

4.6, M = I(H,BH) + ⟨f(c)⟩, where c is a cycle without (K), based at a vertex

u ∈ E0, M(u) = E0 \H and f(x) is an irreducible polynomial in R[x, x−1]. If there

exists an admissible pair (H ′, S′) such that

gr(M) = I(H,BH) ⊊ I(H ′, S′),

then H ⊊ H ′, hence there is a vertex v in H ′\H. Since v ∈ M(u), u ≥ v. It implies

that c and hence f(c) ∈ I(H ′, S′). By M is non-graded, M ⊊ I(H ′, S′). By the

maximality of M , we get I(H ′, S′) = LR(E). Thus, I(H,BH) is a maximal among
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the graded basic ideal of LR(E). Now, if H ⊆ H1 then I(H,BH) ⊆ I(H1, BH1
),

hence by the non-graded maximality of I(H,BH), we obtain I(H,BH) = I(H1, BH1
).

In particular, H = H1, it yields H is maximal in HE . Finally, by Lemma 5.1, it is

clear that E \ (H,BH) does not satisfy Condition (L). □

From Lemmas 5.1 and 5.2, we deduce that there is a maximal element in HE if

and only if there exists a maximal basic ideal in LR(E).

Theorem 5.3. Let R be an integral domain, E a graph. Then, LR(E) has a

maximal basic ideal if and only if HE has a maximal element.

Proof. Suppose LR(E) has a maximal basic ideal M . If M is a graded ideal then

the result will come from Lemma 5.1; otherwise, the result will come from Lemma

5.2.

Conversely, suppose HE has a maximal element H. If E \ (H,BH) satisfies

Condition (L) the result will come from Lemma 5.1; otherwise, the result will come

from Lemma 5.2. □

The following is the condition when every basic ideal of a Leavitt path algebra

with coefficients in a unital commutative ring is contained in a maximal ideal.

Theorem 5.4. Let R be an integral domain, E be a graph. Then the following are

equivalent:

i) For every element X ∈ HE there exists a maximal element Z in HE such

that X ⊆ Z.

ii) Every basic ideal in LR(E) is contained in a maximal basic ideal.

Proof. By Lemmas 5.1, 5.2 and a similar argument as in the proof [3, Theorem

3.5], we obtain the result. □

Let E be a graph and R a unital commutative ring. Recall that for any ideal N of

a graded ring LR(E), gr(N) denotes the largest graded ideal of LR(E) contained in

N . It was proved in Lemma 4.1 that gr(N) is the ideal generated by the admissible

pair (H,S), where H = N ∩ E0 and S = {v ∈ BH | vH ∈ N}. Note that if N is

a maximal basic ideal of LR(E) which is a graded ideal, then clearly N = gr(N)

is also maximal graded basic ideal of LR(E). We now discuss for a non-graded

maximal basic ideal of LR(E).

Now we prove that a unique maximal basic ideal in LR(E) has to be a graded

ideal.

Proposition 5.5. Let R be an integral domain and E a graph. If LR(E) has a

unique maximal basic ideal M , then M must be a graded ideal.
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Proof. Suppose M is a non-graded maximal basic ideal of LR(E). Then, M is

prime. Let H = M ∩E0, then by Theorem 4.6, M = I(H,BH) + ⟨p(c)⟩, where c is

a cycle without (K), based at a vertex u, M(u) = E0 \H and p(x) is an irreducible

polynomial in R[x, x−1]. If there exists an admissible pair (H ′, S′) such that

gr(M) = I(H,BH) ⊊ I(H ′, S′),

then H ⊊ H ′, hence there is a vertex v in H ′ \H. By v ∈ M(u), u ≥ v. It implies

that c and hence p(c) ∈ I(H ′, S′). By M is non-graded, M ⊊ I(H ′, S′). By the

maximality of M , we get I(H ′, S′) = LR(E). Thus, I(H,BH) is a maximal among

the graded basic ideal of LR(E). Let F = E \ (H,BH), then LR(E)/I(H,BH) ∼=
LR(F ) has no proper graded maximal basic ideal. So F 0 = E0 \H has no proper

nonempty hereditary saturated subsets and so no proper ideal of LR(F ) contains

any vertices. Moreover, since c is a cycle without exits based at u ∈ E0 \ H and

M(u) = E0 \H implies that c is the only cycle without exits in E0 \H. By Lemma

4.5, every proper ideal of LR(F ) has the form ⟨f(c)⟩, where f(x) ∈ R[x]. Therefore,

if q(x) ∈ R[x] is an irreducible polynomial different from p(x), then ⟨q(c)⟩ will be a

maximal basic ideal of LR(F ) different from ⟨p(c)⟩. Then N = I(H,BH) + ⟨q(c)⟩
is a maximal basic ideal of LR(E) not equal M , this contradicts the uniqueness of

M . Hence M must be a graded basic ideal of LR(E). □

Acknowledgements. The authors would like to thank the referee for the valu-

able suggestions and comments. This work was written while the first author was

working at the Vietnam Institute for Advanced Study in Mathematics (VIASM),

the author would like to thank the institute for providing a fruitful research envi-

ronment and working condition.

References

[1] G. Abrams, P. Ara and M. S. Molina, Leavitt Path Algebras, Lect. Notes in

Math., 2191, Springer, London, 2017.

[2] G. Abrams, J. P. Bell, P. Colak and K. M. Rangaswamy, Two-sided chain

conditions in Leavitt path algebras over arbitrary graphs, J. Algebra Appl.,

11(3) (2012), 1250044 (23 pp.).

[3] S. Esin and M. Kanuni Er, Existence of maximal ideals in Leavitt path algebras,

Turkish J. Math., 42 (2018), 2081-2090.

[4] P. Kanwar, M. Khatkar and R. K. Sharma, On Leavitt path algebras over

commutative rings, Int. Electron. J. Algebra, 26 (2019), 191-203.

[5] T. Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in

Mathematics, Springer-Verlag, New York, 1991.



ON SOME IDEAL STRUCTURE OF LR(E) 53

[6] H. Larki, Ideal structure of Leavitt path algebras with coefficients in a unital

commutative ring, Comm. Algebra, (43)12 (2015), 5031-5058.

[7] M. Mignotte and D. Stefanescu, Polynomials: An Algorithmic Approach,

Springer-Verlag, Singapore, 1999.

[8] K. M. Rangaswamy, The theory of prime ideals of Leavitt path algebras over

arbitrary graphs, J. Algebra, 375 (2013), 73-90.

[9] K. M. Rangaswamy, On generator of two-sided ideals of Leavitt path algebras

over arbitrary graphs, Comm. Algebra, 42 (2014), 2859-2868.

[10] M. Tomforde, Leavitt path algebras with coefficients in a commutative ring, J.

Pure Appl. Algebra, 215 (2011), 471-484.

Trinh Thanh Deo (Corresponding Author) and Vo Thanh Chi

Faculty of Mathematics and Computer Science

University of Science, Ho Chi Minh City, Vietnam

227 Nguyen Van Cu Str., Dist. 5, HCM City, Vietnam

and

Vietnam National University, Ho Chi Minh City, Vietnam

emails: ttdeo@hcmus.edu.vn (T. T. Deo)

vtc2809@gmail.com (V. T. Chi)


