Chapter 1

Local setting for trace formulas

In this chapter we establish almost all needed local setting for Selberg trace formula and Kuznetsov trace formula for $G:=\mathrm{GL}_{2}(F)$ (where F is a local field) and their comparison.

Before go further, we need to fix some notation which we shall use in this chapter.

1.1 The p-adic case

In this section we work with a finite extension F of \mathbb{Q}_{p} where p is a certain odd prime number. The field F is then the field of fractions of a discrete valuation $\operatorname{ring} \mathcal{O}$. Let \mathfrak{p} be the maximal ideal of \mathcal{O} and $k=\mathcal{O} / \mathfrak{p}$ the residue field. Thus k is finite and of characteristic p. We shall denote the cardinality of k by q.

We choose one for all an uniformizer ϖ of \mathfrak{p}, that is, an element such that $\varpi \mathcal{O}=\mathfrak{p}$. Every element $x \in F^{\times}$can be written uniquely in the form

$$
x=u \varpi^{n}
$$

with $u \in \mathcal{O}^{\times}$and $n \in \mathbb{Z}$. (Note that the integer n does not depend on the choice of ϖ.) The integer number n is called the valuation of x over F and is denoted by $v_{F}(x)$ (we shall drop the subindex F when the field is clear). The absolute value $|\cdot|_{F}: F \rightarrow \mathbb{R}$ defined by

$$
|x|_{F}=q^{-v_{F}(x)}, \forall x \in F^{\times}, \text {and }|0|_{F}=0
$$

gives a metric on F. In the metric space topology, F is a complete, locally compact, totally disconnected (that is no nonempty subsets are connected except singleton sets), Hausdorff topological field.

The matrix ring $M_{2}(F) \simeq F^{4}$ of 2×2 matrices with entries in F carries the product topology, relative to which it is a locally compact, totally disconnected, Hausdorff topological ring. Since det : $M_{2}(F) \rightarrow F$ is a polynomial in the matrix entries, det is a continuous map. It implies that $\mathrm{GL}_{2}(F)=\operatorname{det}^{-1}\left(F^{\times}\right)\left(F^{\times}=F \backslash\{0\}\right.$ is an open subset of $\left.F\right)$ is an open subset of $M_{2}(F)$. We give $G=\mathrm{GL}_{2}(F)$ the topology it inherits as an open subset of $M_{2}(F)$. The inversion of matrices is continuous, so G is a locally compact, totally disconnected, Hausdorff topological group. In the terminology of [5] such a group is called an ℓ-group. From now on, we shall add ℓ-group beside G to indicate that a statement is true not only for $\mathrm{GL}_{2}(F)$ but also for any ℓ-group. The subgroups

$$
K_{0}=\mathrm{GL}_{2}(\mathcal{O}):=\left\{g \in M_{2}(\mathcal{O}) \|\left.\operatorname{det}(g)\right|_{F}=1\right\}, \quad K_{i}=1+\varpi^{i} M_{2}(\mathcal{O}), \forall i \geq 1
$$

are compact open, and give a fundamental system of open neighborhood of the identity in G.

1.1.1 Smooth representations of $\mathrm{GL}_{2}(F)$

A (continuous) representation (π, V) of an ℓ-group G consists of a topological \mathbb{C}-vector space V and a group homomorphism $\pi: G \rightarrow \mathrm{GL}(V)$ from G to the group of invertible linear operators on V such that for each $v \in V$, the map

$$
G \rightarrow V: g \mapsto \pi(g) v
$$

is continuous. The space V is called the representation space of G. We may refer to the representation as π (when V is clear from the context), or we may just say V (when the action π clear from the context). When V is equipped with the discrete topology, we obtain than a smooth representation of G. (Since the discrete topology on V is the finest topology on V, the smooth representation is continuous for any kind of topology on V.)

Lemma 1.1.1. Let (π, V) be a representation of an ℓ-group G. The following conditions are equivalents:

1. The representation (π, V) is smooth.
2. For each $v \in V$, the map $\varphi_{v}: G \rightarrow V: g \mapsto \pi(g) v$ is smooth, i.e locally constant.
3. For each $v \in V$, the set $\operatorname{Stab}_{G}(v):=\{g \in G \mid \pi(g) v=v\}$ is open in G.
4. For each $v \in V$, there exist an open compact subgroup K_{v} (depends on $v)$ of G such that $\pi\left(K_{v}\right) v=v$.

Proof. - (1) $\Leftrightarrow(2)$. Since V is equipped with the discrete topology, a function $\varphi_{v}: G \rightarrow V$ is smooth if and only if it is continuous.

- $(2) \Rightarrow(3)$. Since φ_{v} is locally constant, there exits an open neighborhood U of 1 (the unit element of G) such that $\pi(u) v=\pi(1) v=v$ for all $u \in U$. It implies that $U \subset \operatorname{Stab}_{G}(v)$. Let $g \in \operatorname{Stab}_{G}(v)$, we have $\pi(g u) v=\pi(g)(\pi(u) v)=\pi(g) v=v$ for all $u \in U$. Hence $g U$ is an open neighborhood of g and is contained in $\operatorname{Stab}_{G}(v)$. So the set $\operatorname{Stab}_{G}(v)$ is open.
- $(3) \Rightarrow(4)$. Since $1 \in \operatorname{Stab}_{G}(v)$, the set $\operatorname{Stab}_{G}(v)$ is an open neighborhood of 1 in G. Since G is an ℓ-group, there exist an open compact subgroup $K_{v} \subset \operatorname{Stab}_{G}(v)$. For example for $\mathrm{GL}_{2}(F)$, we choose i large enough such that $K_{v}:=K_{i}=1+\varpi^{i} M_{2}(\mathcal{O}) \subset \operatorname{Stab}_{G}(v)$. We have $\pi\left(K_{v}\right) v=v$.
- (4) $\Rightarrow(2)$. For all $g \in G, g K_{v}$ is an open neighborhood of g. Set $g^{\prime}=$ $g u \in g K_{v}$, we have $\varphi_{v}\left(g^{\prime}\right)=\pi(g u) v=\pi(g)(\pi(u) v)=\pi(g) v=\varphi_{v}(g)$. Hence, φ_{v} is locally constant.

Given a smooth representation (π, V) of an ℓ-group G, a subspace W of V is said to be G-invariant if for every $w \in W$ and every $g \in G$ we have $\pi(g) w \in W$.

If (π, V) and $\left(\pi^{\prime}, V^{\prime}\right)$ are two representations of an ℓ-group G then we denote by $\operatorname{Hom}_{G}\left(\pi, \pi^{\prime}\right)$ the space of all linear maps $f: V \rightarrow V^{\prime}$ such that $f(\pi(g) v)=\pi^{\prime}(g) f(v)$ for all $v \in V$ and all $g \in G$. We say that π and π^{\prime} are equivalent (or isomorphic) if $\operatorname{Hom}_{G}\left(\pi, \pi^{\prime}\right)$ contains an invertible element. In that case, we write $\pi \simeq \pi^{\prime}$.

For every representation V of an ℓ-group G, a vector $v \in V$ is a smooth vector if its stabilizer $\operatorname{Stab}_{G}(v)$ is open in G. We shall denote by $V^{\text {sm }}$ the G-invariant subspace consisting of smooth vectors of V. By Lemma 1.1.1, V^{sm} is a smooth representation of G.

Let (π, V) be a representation of G. We denote by V^{*} the space of all linear forms on V. For every $v^{*} \in V^{*}$ and $g \in G$, we define $\pi^{*}(g) v^{*} \in V^{*}$ by

$$
\left(\pi^{*}(g) v^{*}\right)(u)=v^{*}\left(\pi\left(g^{-1}\right) u\right), \quad \forall u \in V .
$$

Clearly, $\left(\pi^{*}, V^{*}\right)$ is a representation of G. The dual representation V^{*} might not be smooth even if V is smooth. Let $\widetilde{\pi}$ be the G-invariant subspace $\widetilde{V}=V^{*, \mathrm{sm}}$ of π^{*}. The representation $(\widetilde{\pi}, \widetilde{V})$ is called the contragredient of (π, V).

It doesn't like the representation theory of finite group; in general the representation $\widetilde{\pi}$ is not equivalent to π. However, we shall soon see that this phenomena is true when we add some more condition to π.

A smooth representation (π, V) of an ℓ-group G is said to be admissible if for every compact open subgroup K of G, the subspace $V^{K}:=\{v \in$ $V \mid \pi(K)(v)=v\}$ is finite dimensional. In the case $G=\mathrm{GL}_{2}(F)$, because $V^{g K g^{-1}}=\pi(g)\left(V^{K}\right)$ and all the maximal compact subgroups of $\mathrm{GL}_{2}(F)$ are conjugate to K_{0}, a smooth representation V is admissible if and only if V^{K} is finite dimensional for every open subgroup K of K_{0}.

Proposition 1.1.2. If a representation (π, V) of an ℓ-group G is admissible, then the representation $(\widetilde{\pi}, \widetilde{V})$ is also admissible. Futhermore, we have $\widetilde{\widetilde{\pi}} \simeq \pi$.

Proof. Let K be a compact open subgroup of G. Since $\operatorname{Stab}_{K}(v)=\operatorname{Stab}_{G}(v) \cap$ K is open in K, we can consider V as a smooth representation of compact group K. Set

$$
V(K)=\operatorname{Span}(\{\pi(g)(v)-v \mid g \in K, v \in V\})
$$

Observe that $V(K)$ and V^{K} are two K-invariant subspace of V. We make the following claim:

Claim: " $V=V^{K} \oplus V(K)$."
Assuming the claim for the time being we prove the proposition as follows. Let $\widetilde{v} \in \widetilde{V}^{K}$. By definition of \widetilde{V}^{K}, we have

$$
\widetilde{v}(\pi(g) u-u)=\widetilde{v}(\pi(g)(u))-\widetilde{v}(u)=\widetilde{\pi}\left(g^{-1}\right)(\widetilde{v})(u)-\widetilde{v}(u)=0
$$

for all $g \in K$ and $u \in V$. It implies that $\widetilde{v}_{\mid V(K)}=0$. Thus $\widetilde{v} \in\left(V^{K}\right)^{*}$. By the admissibility of V, we have $\operatorname{dim}_{\mathbb{C}}\left(\left(V^{K}\right)^{*}\right)=\operatorname{dim}_{\mathbb{C}}\left(V^{K}\right)<\infty$. Hence $\operatorname{dim}_{\mathbb{C}}\left(\widetilde{V}^{K}\right)<\infty$.

Now given $v^{*} \in\left(V^{K}\right)^{*}$, we extend \widetilde{v} to an element of V^{*} by letting \widetilde{v} equal to zero on $V(K)$. We shall prove that $\widetilde{v} \in \widetilde{V}^{K}$.

- Let $u \in V$. We have then $u=u^{K}+w$ where $u^{K} \in V^{K}$ and $w \in V(K)$. For all $g \in K$ we have

$$
\widetilde{\pi}(g)(\widetilde{v})(u)=\widetilde{v}\left(\pi\left(g^{-1}\right)\left(u^{K}+w\right)\right)=\widetilde{v}\left(u^{K}+\pi\left(g^{-1}\right)(w)\right)=\widetilde{v}\left(u^{K}\right)=\widetilde{v}(u) .
$$

Thus \widetilde{v} is invariant under the action of K.

- Assume that $g \in \operatorname{Stab}_{\pi^{*}}(\widetilde{v})$ (we use this notation to show that we are considering the action of G via π^{*}). Then $g K$ is an open neighborhood of g which is contained in $\operatorname{Stab}_{\pi^{*}}(\widetilde{v})$. It implies that $\operatorname{Stab}_{\pi^{*}}(\widetilde{v})$ is open.

We have shown that $(\widetilde{V})^{K}=\left(V^{K}\right)^{*}$. It implies that

$$
(\tilde{\widetilde{V}})^{K}=\left((\widetilde{V})^{K}\right)^{*}=\left(\left(V^{K}\right)^{*}\right)^{*} \simeq V^{K}
$$

For each $u \in V$, we consider the linear map $f_{u}: \widetilde{V} \rightarrow \mathbb{C}, \quad \widetilde{v} \mapsto \widetilde{v}(u)$. We have $\operatorname{Stab}_{\pi}(u) \subset \operatorname{Stab}_{(\tilde{\pi})^{*}}\left(f_{u}\right)$. Because $\operatorname{Stab}_{\pi}(u)$ is open in G (since (π, V) is a smooth representation), it contains an open compact subgroup H of G. Let $g \in \operatorname{Stab}_{(\widetilde{\pi})^{*}}\left(f_{u}\right)$. Since $g H$ is an open neighbourhood of g which is contained ${ }_{\sim}^{\text {in }} \operatorname{Stab}_{(\tilde{\pi})^{*}}\left(f_{u}\right)$, then $\operatorname{Stab}_{(\tilde{\pi})^{*}}\left(f_{u}\right)$ is open in G. Therefore f_{u} is an element of $\widetilde{\widetilde{V}}$.

We consider the natural map $\varphi: V \rightarrow \widetilde{\widetilde{V}}, \quad v \mapsto f_{v}$. As above $\varphi_{\mid V^{K}}$ is an isomorphism between V^{K} and $(\widetilde{\widetilde{V}})^{K}$ for any open compact subgroup K of G.

- Let f be any element of $\tilde{\widetilde{V}}$. Since $\operatorname{Stab}_{(\widetilde{\pi})^{*}}(f)$ is open in G, then there exists an open compact subgroup $H \subset \operatorname{Stab}_{(\tilde{\pi})^{*}}(f)$. It implies that $f \in(\widetilde{\widetilde{V}})^{H}$. Since $\varphi_{\mid V^{H}}$ is an isomorphism between V^{H} and $\widetilde{\widetilde{V}}^{H}$, there exist then $v \in V^{H} \subset V$ such that $\varphi(v)=f$. Hence φ is an epimorphism.
- Assume that $\varphi(v)=\varphi\left(v^{\prime}\right)$. Because $\operatorname{Stab}_{\pi}(v)$ and $\operatorname{Stab}_{\pi}\left(v^{\prime}\right)$ are two open subgroups of G, the subgroup $\operatorname{Stab}_{\pi}(v) \cap \operatorname{Stab}_{\pi}\left(v^{\prime}\right)$ is also open in G. There exists then an open compact subgroup $H \subset \operatorname{Stab}_{\pi}(v) \cap$ $\operatorname{Stab}_{\pi}\left(v^{\prime}\right)$. We have $v, v^{\prime} \in V^{H}$. Since $\varphi_{\mid V^{H}}$ is an isomorphism between V^{H} and $\widetilde{\widetilde{V}}^{H}$, we have $v=v^{\prime}$. Hence φ is injective.
- We have

$$
\widetilde{\widetilde{\pi}}(g)\left(f_{v}\right)(\widetilde{u})=f_{v}\left(\widetilde{\pi}\left(g^{-1}\right) \widetilde{u}\right)=\left(\widetilde{\pi}\left(g^{-1}\right) \widetilde{u}\right)(v)=\widetilde{u}(\pi(g) v)=f_{\pi(g) v}(\widetilde{u}) .
$$

It implies that $\varphi \circ \pi=\widetilde{\pi} \circ \varphi$.
In conclusion, φ is an isomorphism between two representations (π, V) and $(\widetilde{\widetilde{\pi}}, \widetilde{\widetilde{V}})$. In other word,

$$
\pi \simeq \widetilde{\pi}
$$

It suffices now to prove the claim. Let v be any vector of V. Because $\operatorname{Stab}_{K}(v)$ is open in K and K is compact and totally disconnected, the set $S:=K / \operatorname{Stab}_{K}(v)$ is finite. We have

$$
v=\frac{1}{\# S} \sum_{g \in S} \pi(g) v-\frac{1}{\# S} \sum_{g \in S}(\pi(g) v-v)
$$

It easy to check that in the right hand side, the first factor is a vector of V^{K} and the second one is a vector of $V(K)$. Hence $V=V^{K}+V(K)$.

Now we prove that $\sum_{g \in S} \pi(g) v=0$ if $v \in V(K)$. By definition of $V(K)$, it suffices to prove for $v=\pi\left(g_{0}\right) u-u$ for some $g_{0} \in K$ and $u \in V$. In fact, we have:

$$
\sum_{g \in S} \pi(g) v=\sum_{g \in S} \pi(g)\left(\pi\left(g_{0}\right) u-u\right)=\sum_{g \in S} \pi(g) v-\sum_{g \in S} \pi\left(g g_{0}\right) u=0 .
$$

The last equation is a consequence of the fact that $g g_{0}$ runs through all the equivalent classes of $K / \operatorname{Stab}_{K}(v)$. Therefore, if $v \in V^{K} \cap V(K)$, we have then

$$
v=\frac{1}{\# S} \sum_{g \in S} \pi(g) v=0
$$

Thus $V^{K} \cap V(K)=0$.
From the definition of a contragredient representation, it easy to check that the canonical non-degenerate bilinear form $\left\langle v, v^{*}\right\rangle=v^{*}(v)$ on $V \times \widetilde{V}$ satisfies

$$
\left\langle\pi(v), \widetilde{\pi}\left(v^{*}\right)\right\rangle=\left\langle v, v^{*}\right\rangle .
$$

A very natural question is that do a non-degenerate bilinear form invariant under the action of G defines a contragredient representation? The answer is yes in the case when π is admissible. More precisely, we have the following proposition.

Proposition 1.1.3. Let (π, V) be an admissible representation. Assume that there exists an another admissible represenation $\left(\pi^{\prime}, V^{\prime}\right)$ and a non-degenerate bilinear form $\phi: V \times V^{\prime} \rightarrow \mathbb{C}$ such that

$$
\phi\left(\pi(g)(v), \pi^{\prime}(g)\left(v^{\prime}\right)\right)=\phi\left(v, v^{\prime}\right)
$$

Then $\left(\pi^{\prime}, V^{\prime}\right) \simeq(\widetilde{\pi}, \widetilde{V})$.
Proof. Denote $\varphi\left(v^{\prime}\right)=\phi\left(., v^{\prime}\right) \in V^{*}$ for all $v^{\prime} \in V^{\prime}$. We have

$$
\begin{equation*}
\widetilde{\pi}(g)\left(\varphi\left(v^{\prime}\right)\right)(v)=\phi\left(v^{\prime}\right)\left(\pi\left(g^{-1} v\right)\right)=\phi\left(\pi\left(g^{-1}\right) v, v^{\prime}\right)=\phi\left(v, \pi^{\prime}(g) v^{\prime}\right) . \tag{1.1.1}
\end{equation*}
$$

Since ϕ is non-degenerate, then $\operatorname{Stab}_{\tilde{\pi}} \varphi\left(v^{\prime}\right)=\operatorname{Stab}_{\pi^{\prime}}\left(v^{\prime}\right)$. In other word, $\varphi\left(v^{\prime}\right)$ is a smooth vector in V^{*}.

We consider a homormorphism

$$
V^{\prime} \rightarrow \widetilde{V} \quad v^{\prime} \mapsto \varphi\left(v^{\prime}\right) .
$$

We now prove that this homomorphism is G-isomorphic.

- The identity (1.1.1) implies that

$$
\widetilde{\pi}(g)\left(\varphi\left(v^{\prime}\right)\right)=\varphi\left(\pi^{\prime}(g) v^{\prime}\right) \quad \forall g \in G, v^{\prime} \in V^{\prime}
$$

- Since ϕ is non-degenerate, $\varphi\left(v^{\prime}\right)=0$ if and only if $v=0$. Hence φ is injective.
- Let $\xi \in \widetilde{V}$. Take K be a compact subgroup contained in $\operatorname{Stab}_{\tilde{\pi}}(\xi)$. We have then $\xi \in \widetilde{V}^{K}$. By the admissibility of π, π^{\prime} and non-degenerateness of ϕ, we have $\operatorname{dim}_{\mathbb{C}}\left(V^{K}\right)=\operatorname{dim}_{\mathbb{C}}\left(\left(V^{\prime}\right)^{K}\right)<\infty_{\text {. }}$. Using the proof Proposition 1.1.2, we also have $\operatorname{dim}_{\mathbb{C}}\left(V^{K}\right)=\operatorname{dim}_{\mathbb{C}}\left(\tilde{V}^{K}\right)<\infty$. Thus $\varphi_{\mid\left(V^{\prime}\right)^{K}}$ is an isomorphism. In other word, there exists $\xi^{\prime} \in V^{\prime}$ such that $\varphi\left(\xi^{\prime}\right)=\xi$.

A smooth representation (π, V) of an ℓ-group G is said to be irreducible if the only G-invariant subspaces of V are 0 and V itself.

Lemma 1.1.4 (Schur's lemma). Let (π, V) be an irreducible admissible representation of an ℓ-group G. Then we have $\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{G}(\pi, \pi)\right)=1$.

Proof. Let $A \in \operatorname{Hom}_{G}(\pi, \pi)$. We take an arbitrary $v \in V$. Using Lemma 1.1.1, there exist an open compact subgroup K such that $v \in V^{K}$. By definition of A we have $\pi(g)(A u)=A(\pi(g) u)=A u$ for all $g \in K$ and all $u \in V^{K}$. Thus $A_{\mid V^{K}}$ is a linear homomorphism form V^{K} to itself. Moreover V^{K} is a finite dimensional space, since (π, V) is admissible. Thus, $A_{\left.\right|^{K}}$ is an automorphism of the finite dimensional space V^{K}. Let $\lambda \in \mathbb{C}$ be a proper value of A. Then there exist $v \neq 0$ such that $A v=\lambda . v$. Denote by $V^{\prime}:=\{v \in V \mid A v=\lambda . v\}$ the proper subspace w.r.t the proper value λ of V . It is easily seen that V^{\prime} is a G-invariant subspace of V. By the irreducibility of V, we have $V^{\prime}=V$. It follows that $A=\lambda \mathbf{1}_{V}$ (here $\mathbf{1}_{V}$ is the identity automorphism of V).

Corollary 1.1.5. Let $Z=\left\{g \in G \mid g^{\prime} \cdot g=g \cdot g^{\prime}, \forall g^{\prime} \in G\right\}$ be the center of G. If (π, V) is an irreducible admissible representation of an ℓ-group G, there exists then a quasicharacter (that is, a smooth one-dimensional representation) χ_{π} of Z such that $\pi(z)=\chi_{\pi}(z) . \mathbf{1}_{V}$ for all $z \in Z$. (This χ_{π} is called the central quasi-character of π.)

Proof. Let z be any element of Z. We have

$$
\pi(g) \pi(z)=\pi(g z)=\pi(z g)=\pi(z) \pi(g)
$$

for all $g \in G$. It implies that $\pi(z) \in \operatorname{Hom}_{G}(\pi, \pi)$. By the Schur's lemma, there exists $c_{z} \in \mathbb{C}$ such that $\pi(z)=c_{z} \cdot \mathbf{1}_{V}$. We denote by

$$
\chi_{\pi}: Z \rightarrow \mathbb{C}^{\times}, \quad z \mapsto c_{z}
$$

It is easy to check that χ_{π} is a group homormorphism and $\pi(z)=\chi_{\pi}(z) \cdot \mathbf{1}_{V}$. Finally, let v be a non-zero of V. By Lemma 1.1.1, there exists an open compact subgroup K of G such that $v \in V^{K}$. We have $v=\pi(z) v=\chi_{\pi}(z) v$ for all $z \in K \cap Z$. It implies that $\chi_{\pi}(z)=1$ for all $z \in K \cap Z$. Thus for all $c \in \mathbb{C}$ the map $Z \rightarrow \mathbb{C}: z \mapsto \chi_{\pi}(z) c$ is locally constant. By loc. cit., χ_{π} is a smooth representation of Z.

Lemma 1.1.6. Let (π, V) be an admissible representation of an ℓ-group G and $(\widetilde{\pi}, \widetilde{V})$ its contragredient. Then (π, V) is irreducible if and only if $(\widetilde{\pi}, \widetilde{V})$ is irreducible.

Proof. Assume that $0 \neq U$ is a G-invariant subspace of V. Let W be a subspace of V such that $V=U \oplus W$ (W does not need to be G-invariant). Each element $\lambda \in U^{*}$ can be extended to an element of V by letting $\lambda(w)=0$ for all $w \in W$. In this sense, we can view U^{*} as a G-invariant subspace of V^{*}. Then \widetilde{U} is a G-invariant subspace of \widetilde{V}. Moreover, by Proposition 1.1.2, $\widetilde{U} \neq 0$ (otherwise $0=\widetilde{\widetilde{U}} \simeq U$). Thus \widetilde{U} is a non-zero G-invariant subspace of \widetilde{V}. The lemma is a direct consequence of this argument and loc. cit.. For example, to prove that (π, V) is irreducible if $(\widetilde{\pi}, \widetilde{V})$ is irreducible, we do as follows.

Assume that (π, V) is reducible. There exists then a non-zero proper G-invariant subspace U of V. By irreducibility of \widetilde{V}, we have $\widetilde{U}=\widetilde{V}$. Now, using loc. cit., we have $U \simeq \widetilde{\widetilde{U}}=\widetilde{\widetilde{V}} \simeq V$ (contradictory).

One of the main goal of this chapter is to classify irreducible admissible representations of G. The finite dimensional admissible irreducible smooth representations of G are not very interesting. Each is a one dimensional space on which the element of G acts by scalar. This is the content of Proposition 1.1.8. The proof of this proposition requires the following lemma.

Lemma 1.1.7. The matrices $\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right)$ and $\left(\begin{array}{ll}1 & 0 \\ y & 1\end{array}\right)$ with $x, y \in F$ generate $\mathrm{SL}_{2}(F)$
Proof. Every $\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \in \mathrm{SL}_{2}(F)$ can be written in the following form

$$
\left(\begin{array}{cc}
a & b \\
0 & d
\end{array}\right)=\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right)\left(\begin{array}{cc}
1 & a^{-1} b \\
0 & 1
\end{array}\right)
$$

On other hand, if $c \neq 0$, we have

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
1 & c^{-1} a \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{cc}
-c & 0 \\
0 & -c^{-1}
\end{array}\right)\left(\begin{array}{cc}
1 & c^{-1} d \\
0 & 1
\end{array}\right) .
$$

Those identities imply that $\mathrm{SL}_{2}(F)$ is generated by $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ and the matrices $\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ y & 1\end{array}\right),\left(\begin{array}{cc}z & 0 \\ 0 & z^{-1}\end{array}\right)$, with $x, y \in F$ and $z \in F^{\times}$.

Moreover, we have

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)
$$

and

$$
\left(\begin{array}{cc}
z & 0 \\
0 & z^{-1}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
z^{-1}-1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
z-1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -z^{-1} \\
0 & 1
\end{array}\right)
$$

for all $z \in F^{\times}$. The proof of the lemma is a direct consequence of the above two identities.

Proposition 1.1.8. A finite admissible irreducible of G is one dimensional. Moreover, it is of the form $g \rightarrow \chi(\operatorname{det}(g))$ for some quasi-character χ of F^{\times}.

Proof. Let (π, V) be a finite dimensional irreducible admissible representation of V. Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a basis of V. By Lemma 1.1.1, for each $i \in\{1, \ldots, n\}$ there exists an open compact subgroup $K_{i} \subset G$ that stabilises v_{i}. We denote by K the intersection of K_{i}. Then K is an open compact subgroup of G and fixes V. So the kernel $H:=\operatorname{ker}(\pi)$ of the representation contains a compact open subgroup. In other word, H is a non-trivial open normal subgroup of G.

Now let $x \in F$ be arbitrary. We choose $b \in F$ such that $|b x|_{F}$ is sufficient small so that $\left(\begin{array}{cc}1 & b x \\ 0 & 1\end{array}\right) \in H$. Then

$$
\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
b & 0 \\
0 & 1
\end{array}\right)^{-1}\left(\begin{array}{cc}
1 & b x \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
b & 0 \\
0 & 1
\end{array}\right) \in H .
$$

Similarly, we also can show that $\left(\begin{array}{ll}1 & 0 \\ y & 1\end{array}\right) \in H$ for all $y \in F$. It immediately follows from Lemma 1.1.7 that $\mathrm{SL}_{2}(F) \subset H$. Note that $g g_{1} g^{-1} g_{1}^{-1} \in \mathrm{SL}_{2}(F)$ for all $g, g_{1} \in G$. Thus $\pi(g) \pi\left(g_{1}\right)=\pi\left(g_{1}\right) \pi(g)$ for all $g, g_{1} \in G$. It implies that $\pi(g) \in \operatorname{Hom}_{G}(\pi, \pi)$. By the Schur's lemma, there exists $\delta_{g} \in \mathbb{C}^{\times}$such that $\pi(g)=\delta_{g} \cdot \mathbf{1}_{V}$.

We consider the subspace $V_{1}:=\mathbb{C} v_{1}$ generated by the vector v_{1} of V. For any $g \in G, k \in \mathbb{C}$, we have $\pi(g)\left(k v_{1}\right)=k \delta_{g} v_{1} \in V_{1}$. It implies that V_{1} is a G-invariant subspace of V. By the irreducibility of V, we have $V=V_{1}$. We have shown that the dimension of V is one.

Now we consider $\pi: G \rightarrow \mathbb{C}^{\times}$being a smooth representation of G. We define an application $\chi: F^{\times} \rightarrow \mathbb{C}^{\times}$by

$$
\chi(z)=\pi\left(\left(\begin{array}{cc}
z & 0 \\
0 & 1
\end{array}\right)\right) .
$$

It is clear that χ is a quasi-character of F^{\times}and

$$
\pi(g)=\chi(\operatorname{det}(g)), \forall g \in G
$$

Corollary 1.1.9. Any quasi-character of G is of the form $\phi \circ$ det, for some quasi-character ϕ of F^{\times}.

1.1.2 Haar measures and the Hecke algebra

Let G be an ℓ-group. Let $C_{c}^{\infty}(G)$ be the space of functions $f: G \rightarrow \mathbb{C}$ which are locally constant and of compact support. The group G acts on $C_{c}^{\infty}(G)$ by left and right translation by the formulas

$$
\ell_{x} f(y)=f\left(x^{-1} y\right), \text { and } r_{x} f(y)=f(y x) .
$$

Local constancy and compactness of support of function in $C_{c}^{\infty}(G)$ imply that both of the G-representations $\left(C_{c}^{\infty}(G), \ell\right),\left(C_{c}^{\infty}(G), r\right)$ are smooth.

Definition 1.1.10. A left invariant distribution on G is a linear form ξ : $C_{c}^{\infty}(G) \rightarrow \mathbb{C}$ such that $\xi\left(\ell_{x} f\right)=\xi(f)$ for all $x \in G$ and $f \in C_{c}^{\infty}(G)$.

A left Haar distribution on G is a non-zero left invariant distribution ξ such that $\xi(f) \geq 0$ whenever $f \geq 0$.

We can also define a right invariant distribution (resp. right Haar distribution) similarly, using right translation r instead of left translation ℓ.

Proposition 1.1.11. There exists a left Haar distribution $I: C_{c}^{\infty}(G) \rightarrow \mathbb{C}$. Moreover, the space of left invariant distributions on G is one dimensional \mathbb{C}-vector space.
Proof. Let K be a compact open subgroup of G, we denote by $C_{c}^{\infty}(G)^{K}$ the space of functions in $C_{c}^{\infty}(G)$ that are right invariant under K. The $\left(C_{c}^{\infty}(G)^{K}, \ell\right)$ is then a smooth representation of G.
Lemma 1.1.12. Viewing \mathbb{C} as the trivial G-representation, we have

$$
\operatorname{dim}_{\mathbb{C}}\left(\operatorname{Hom}_{G}\left(C_{c}^{\infty}(G / K), \mathbb{C}\right)\right)=1
$$

There exists a non-zero element $I_{K} \in \operatorname{Hom}_{G}\left(C_{c}^{\infty}(G / K), \mathbb{C}\right)$ such that $I_{K}(f) \geq$ 0 whenever $f \geq 0$. If 1_{K} is the characteristic function of K, then $I_{K}\left(1_{K}\right)>0$.

Proof. The space $C_{c}^{\infty}(G / K)$ has a basis $1_{x K}$ consisting of characteristic function of right cosets $x K$. A linear form $\xi: C_{c}^{\infty}(G / K) \rightarrow \mathbb{C}$ is G-invariant if and only if $\xi\left(1_{x K}\right)=\xi\left(1_{K}\right)$ for all $x \in G$. In other words, the map $\operatorname{Hom}_{G}\left(C_{c}^{\infty}(G / K), \mathbb{C}\right) \rightarrow \mathbb{C}$ given by $\xi \mapsto \xi\left(1_{K}\right)$ is an isomorphism. In particular $\operatorname{Hom}_{G}\left(C_{c}^{\infty}(G / K), \mathbb{C}\right)$ is one dimensional.

The linear form $I_{K}: 1_{x K} \mapsto 1$ has the required properties.
We choose a descending sequence $\left\{K_{i}\right\}_{i \geq 1}$ of normal compact open subgroup K_{i} of G such that $\bigcap_{i} K_{i}=1$ (due to van Dantzig's lemma, there always exists this kind of sequence - in the case when $G=\mathrm{GL}_{2}(F)$ we can choose $K_{i}=1+\varpi^{i} M_{2}(\mathcal{O})$ for all $\left.i \geq 1\right)$. We have then:

$$
C_{c}^{\infty}(G)=\bigcup_{i \geq 1} C_{c}^{\infty}\left(G / K_{i}\right)
$$

For each $i \geq 1$, there is a unique left G-invariant linear form $I_{i}: C_{c}^{\infty}\left(G / K_{i}\right) \rightarrow$ \mathbb{C} which maps the characteristic function of K_{i} to $\left(\#\left(K_{1} / K_{i}\right)\right)^{-1}$. Since the restriction of I_{i+1} on $C_{c}^{\infty}\left(G / K_{i}\right)$ is I_{i}, the form $I: C_{c}^{\infty}(G) \rightarrow \mathbb{C}$ defined by $I(f)=I_{i}(f)$ whenever $f \in C_{c}^{\infty}\left(G / K_{i}\right)$ is well-defined. The statements of Proposition are immediate.

Proposition 1.1.13. content...
Let H be a closed subgroup of G with module δ_{H}. Let $\theta: H \rightarrow \mathbb{C}^{\times}$be a character of H. We consider the space $C_{c}^{\infty}(H \backslash G, \theta)=c-\operatorname{Ind}_{H}^{G} \theta$, i.e the space of functions $f: G \rightarrow \mathbb{C}$ which are G-smooth under right translation, compactly supported modulo H, and satisfy

$$
f(h g)=\theta(h) f(g), \quad h \in H, g \in G .
$$

Proposition 1.1.14. Let $\delta_{H \backslash G}(h)=\delta_{H}(h)^{-1} \delta_{G}(h), h \in H$. There exist a non-zero linear functional $I_{H \backslash G}: C_{c}^{\infty}\left(H \backslash G, \delta_{H \backslash G}\right) \rightarrow \mathbb{C}$ having the following two properties:
(1) $I_{H \backslash G}\left(r_{g}(f)\right)=I_{H \backslash G}(f)$, for all $f \in C_{c}^{\infty}\left(H \backslash G, \delta_{H \backslash G}\right)$ and all $g \in G$.
(2) If $g \in G$, K is a compact open subgroup of G, and $f \in C_{c}^{\infty}\left(H \backslash G, \delta_{H \backslash G}\right)^{K}$ is supported on the double coset $H g K$, then $I_{H \backslash G}$ is a positive multiple of $f(g)$.

Proof. Let μ_{G}, μ_{H} be left Haar measures on G, H respectively. For each $f \in C_{c}^{\infty}(G)$, we define $\tilde{f}: G \rightarrow \mathbb{C}$ by

$$
\tilde{f}(g):=\int_{H} \delta_{G}(h)^{-1} f(h g) d \mu_{H}(h) .
$$

By definition, we have

$$
\begin{aligned}
\tilde{f}\left(h_{1} g\right) & =\int_{H} \delta_{G}(h)^{-1} f\left(h h_{1} g\right) d \mu_{H}(h) \\
& =\delta_{H \backslash G}\left(h_{1}\right) \int_{H} \delta_{G}\left(h h_{1}\right)^{-1} f\left(h h_{1} g\right) \delta_{H}\left(h_{1}\right) d \mu_{H}(h) \\
& =\delta_{H \backslash G}\left(h_{1}\right) \int_{H} \delta_{G}\left(h h_{1}\right)^{-1} f\left(h h_{1} g\right) d \mu_{H}\left(h h_{1}\right) \\
& =\delta_{H \backslash G}\left(h_{1}\right) \tilde{f}(g)
\end{aligned}
$$

for all $h_{1} \in H$. Since the support of f is compact, the support of \tilde{f} is compact modulo H. If K is a compact open subgroup of G such that $f(g k)=f(g)$ for all $g \in G$ and $k \in K$, then $\tilde{f}(g k)=\tilde{f}(g)$ for all $g \in G$ and $k \in K$. Hence $\tilde{f} \in C_{c}^{\infty}(H \backslash G, \theta)$. Moreover, we have

$$
\begin{aligned}
r_{g_{1}}(\tilde{f})(g) & =\tilde{f}\left(g g_{1}\right)=\int_{H} \delta_{G}(h)^{-1} f\left(h g g_{1}\right) d \mu_{H}(h) \\
& =\widetilde{r_{g_{1}}(f)}(g) .
\end{aligned}
$$

It implies that the map $\left(C_{c}^{\infty}(G), r\right) \rightarrow\left(C_{c}^{\infty}\left(H \backslash G, \delta_{H \backslash G}\right), r\right)$ which sends f to \tilde{f} is a G-homomorphism.

This homomorphism satisfies

$$
\begin{aligned}
\widetilde{\ell_{h_{1}}(f)}(g) & =\int_{H} \delta_{G}(h)^{-1} f\left(h_{1}^{-1} h g\right) d \mu_{H}(h) \\
& =\delta_{G}\left(h_{1}\right)^{-1} \tilde{f}(g)
\end{aligned}
$$

for $h_{1} \in H$ and $f \in C_{c}^{\infty}(G)$. We now prove that it is surjective.
Let $\varphi \in C_{c}^{\infty}(H \backslash G, \theta)$. Then there exists a compact open subgroup K of G such that $\varphi \in C_{c}^{\infty}(H \backslash G, \theta)^{K}$ (the subspace of $C_{c}^{\infty}(H \backslash G, \theta)$ which is invariant under the action of K). Since φ has compact support modulo H, there exist $g_{1}, \ldots, g_{n} \in G / K$ such that $\varphi(g)=0$ if $g \notin \bigsqcup_{i=1}^{n} H g_{i} K$. We define a function $f: G \rightarrow \mathbb{C}$ as follows

$$
f\left(g_{i} k\right)=\operatorname{vol}\left(H \cap g_{i} K g_{i}^{-1}\right) \varphi\left(g_{i}\right)
$$

and $f(g)=0$ for $g \notin \bigsqcup_{i=1}^{n} g_{i} K$. By definition, $f \in C_{c}^{\infty}(G)$ and

$$
\begin{aligned}
\tilde{f}\left(h_{1} g_{i} k\right) & =\theta\left(h_{1}\right) \tilde{f}\left(g_{i} k\right)=\theta\left(h_{1}\right) \int_{H}\left(\theta \delta_{H}\right)(h)^{-1} f\left(h g_{i} k\right) d \mu_{H}(h) \\
& =\theta\left(h_{1}\right) \int_{H \cap g_{i} K g_{i}^{-1}}\left(\theta \delta_{H}\right)(h)^{-1} \operatorname{vol}\left(H \cap g_{i} K g_{i}^{-1}\right) \varphi\left(g_{i}\right) d \mu_{H}(h) .
\end{aligned}
$$

1.1.3 Parabolic induction and Jacquet module

One of the way to construct representations of G is to induce representations from smaller subgroups. In this section, we induce the representations of B which are trivial on its nilpotent subgroup N. Non-trivial characters on N (Whittaker functionals) are also interesting. They will be studied in Section 1.1.6.

Definition 1.1.15. Let (σ, W) be a smooth representation of T. We consider the space $\operatorname{Ind}_{B}^{G} W$ of smooth functions $f: G \rightarrow W$ which satisfy

$$
f\left(\left(\begin{array}{cc}
a_{1} & x \\
0 & a_{2}
\end{array}\right) g\right)=\left|\frac{a_{1}}{a_{2}}\right|^{1 / 2} \sigma\left(\left(\begin{array}{cc}
a_{1} & 0 \\
0 & a_{2}
\end{array}\right) g\right) f(g) .
$$

We define a homomorphism $\operatorname{Ind}_{B}^{G} \sigma: G \rightarrow \operatorname{Aut}_{\mathbb{C}}\left(\operatorname{Ind}_{B}^{G} W\right)$ by

$$
\operatorname{Ind}_{B}^{G} \sigma(g) f: x \mapsto f(x g), \quad x, g \in G .
$$

The pair $\left(\operatorname{Ind}_{B}^{G} \sigma, \operatorname{Ind}_{B}^{G} W\right)$ provides a smooth representation of G. It is called the (normalized) parabolic induction of σ.

Remark 1.1.16. (1) Due to Iwasawa decomposition $G=B K_{0}$, the subspace $c-\operatorname{Ind}_{B}^{G} \sigma$ of smooth functions $f \in \operatorname{Ind}_{B}^{G} \sigma$ which are compactly supported modulo B (this means that the image of the support of f in $B \backslash G$ is compact) is the whole space $\operatorname{Ind}_{B}^{G} \sigma$. In other word, $\operatorname{Ind}_{B}^{G} \sigma$ is also the compact induction of σ.
(2) Let $\chi=\chi_{1} \otimes \chi_{2}$ be a quasi-character of T. The representation $\operatorname{Ind}_{B}^{G} \chi$ is called the principal series representation of G.

Lemma 1.1.17. The principal series $\operatorname{Ind}_{B}^{G} \chi$ is admissible.
Proof. Let K be a compact open subgroup of G. We may assume that $K \subset K_{0}$ (since all the maximal compact subgroups of G are conjugate to K_{0}). Since $G=B K_{0}$ (Iwasawa decomposition) and K_{0} / K is finite, the set of double cosets $B \backslash G / K$ is also finite. By definition, a function $f \in \operatorname{Ind}_{B}^{G} \chi$ is defined uniquely by its image over the set of double cosets $B \backslash G / K$. Hence,

$$
\operatorname{dim}_{\mathbb{C}}\left(\left(\operatorname{Ind}_{B}^{G} \chi\right)^{K}\right)<\infty
$$

The character $\delta_{B}^{1 / 2}: \operatorname{diag}\left(a_{1}, a_{2}\right) \mapsto\left|\frac{a_{1}}{a_{2}}\right|^{1 / 2}$ was introduced so that $\operatorname{Ind}_{B}^{G} \chi$ preserves unitarity.

Proposition 1.1.18. If χ is unitary then $\operatorname{Ind}_{B}^{G} \chi$ has a natural G-invariant Hermitian inner product, defined by $\|f\|^{2}=\int_{K_{0}}|f(k)|^{2} d k$.
Definition 1.1.19. Let (V, π) be a smooth representation of G. Let

$$
V(N):=\operatorname{Span}(\{\pi(n) v-v \mid n \in N, v \in V\})
$$

This $V(N)$ is an N-invariant subspace of V. Let $V_{N}=V / V(N)$ the largest quotient of V on which N acts trivially. Because N is invariant under T, the V_{N} inherits a representation π_{N} of $B / N=T$ (can be also viewed as a representation of B which is trivial on N), which is smooth. The (normalized) Jacquet module $\operatorname{Jac}_{B}^{G} \pi$ or $\operatorname{Jac}_{B}^{G}(V)$ is the representation $\left(\pi_{N} \otimes \delta_{B}^{-1 / 2}, V_{N}\right)$ of B.

Theorem 1.1.20 (Frobenius reciprocity). For any smooth representation (π, V) (resp. $(\sigma, W))$ of G (resp. T) we have a natural isomorphism

$$
\operatorname{Hom}_{G}\left(\pi, \operatorname{Ind}_{B}^{G} \sigma\right) \simeq \operatorname{Hom}_{T}\left(\operatorname{Jac}_{B}^{G} \pi, \sigma\right)
$$

Corollary 1.1.21. Let (π, V) be an irreducible smooth representation of G. If $\operatorname{Jac}_{B}^{G}(V) \neq 0$ (equivalently, $V_{N} \neq 0$) then V is embeds in a principal series representation of G (i.e in a $\operatorname{Ind}_{B}^{G} \chi$ for some quasi-character χ of T).

Let w_{0} be the longest Weyl element of G, i.e

$$
w_{0}:=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

For each smooth representation σ of T, we define the representation $\sigma^{w_{0}}$: $t \mapsto \sigma\left(w_{0} t w_{0}^{-1}\right)$, and view it as a representation of B which is trivial on N.

Lemma 1.1.22 (Restriction-Induction Lemma). Let (σ, W) be a smooth representation of T. There is an exact sequence of representations of T :

$$
0 \rightarrow \delta_{B}^{-1 / 2} \otimes \sigma^{w_{0}} \rightarrow \mathrm{Jac}_{B}^{G} \operatorname{Ind}_{B}^{G} \sigma \xrightarrow{\alpha_{\sigma}} \delta_{B}^{1 / 2} \otimes \sigma \rightarrow 0
$$

where α_{σ} is the canonical T-map $\operatorname{Jac}_{B}^{G}\left(\operatorname{Ind}_{B}^{G}(W)\right) \rightarrow W$ defined by $f \mapsto f(1)$.
Theorem 1.1.23 (Irreducibility Criterion). Let $\chi=\chi_{1} \otimes \chi_{2}$ be a quasicharacter of T.
(1) The representation $\operatorname{Ind}_{B}^{G} \chi$ is irreducible unless $\chi_{1} \chi_{2}^{-1}=|.|^{ \pm 1}$.
(2) If $\chi_{1} \chi_{2}^{-1}=|$.$| then \operatorname{Ind}_{B}^{G} \chi$ contains an irreducible admissible G-subspace of codimension 1 .
(3) If $\chi_{1} \chi_{2}^{-1}=|.|^{-1}$ then $\operatorname{Ind}_{B}^{G} \chi$ contains a 1-dimensional G-subspace whose quotient is irreducible.

Theorem 1.1.24 (Classification theorem). Let π be an irreducible admissible representation of G. Then π is equivalent to one of the following disjoint types:
(1) the irreducible induced representations $\operatorname{Ind}_{B}^{G} \chi$, where $\chi \neq \phi \otimes \delta_{B}^{ \pm 1 / 2}$ for any quasi-character ϕ of F^{\times};
(2) the special representations $\chi \otimes \mathrm{St}_{G}$, where χ ranges over the quasicharacters of F^{\times};
(3) the cuspidal representations;
(4) the 1-dimensional representations $\chi \circ$ det, where χ ranges over the quasicharacters of F^{\times}.

Moreover

(a) in (1), we have $\operatorname{Ind}_{B}^{G} \chi \simeq \operatorname{Ind}_{B}^{G} \psi$ if and only if $\psi=\chi$ or χ^{ω};
(b) in (2), we have $\chi \otimes \mathrm{St}_{G} \simeq \chi^{\prime} \otimes \mathrm{St}_{G}$ if and only if $\chi=\chi^{\prime}$;
(c) in (4), we have we have $\chi \circ \operatorname{det} \simeq \chi^{\prime} \circ \operatorname{det}$ if and only if $\chi=\chi^{\prime}$.

1.1.4 Cuspidal representations

Let E / F be a separable quadratic extension of local field F. We fix a nontrivial additive character $\psi=\psi_{F}: F \rightarrow \mathbb{C}^{\times}$. Then $\psi_{E}=\psi_{F} \circ \operatorname{tr}_{E / F}$ is a non-trivial additive character of E. Let $C_{c}^{\infty}(E)$ be the space of complex valued smooth functions of compact support on E. Given $f \in C_{c}^{\infty}(E)$, define the Fourier transform $\hat{f} \in C_{c}^{\infty}(E)$ by

$$
\hat{f}(y)=\int_{E} f(x) \psi_{E}(x y) d x
$$

where $d x$ is the self-dual measure with respect to ψ_{E} on E (i.e $d x$ is the normalized Haar measure so that $\hat{\hat{f}}(x)=f(-x))$. Since $d x$ is self-dual, we have then the Fourier inversion formula

$$
f(x)=\int_{E} \hat{f}(y) \widetilde{\psi_{E}(x y)} d y .
$$

Lemma 1.1.25 (Weil constant). There exist a constant $\gamma\left(\psi_{F}, E\right)$ such that for every function $\phi \in C_{c}^{\infty}(E)$

$$
\int_{E}(\phi * f)(x) \psi_{E}(x y) d x=\gamma\left(\psi_{F}, E\right) f^{-1}(\iota(y)) \hat{f}(y) .
$$

1.1.5 Kloosterman integrals and Shalika germs

In this section, we shall prove the existence of Shalika germs for orbital (Kloosterman) integrals which are appeared in the geometric side of Kuznetsov trace formula for GL_{2}. The main reference for this subsection is $[10,12]$. (In these loc. cit. Jacquet and Ye proved the existence of Shalika germs for a more general orbital integrals which are appeared in the geometric side of Kuznetsov trace formula for GL_{r}).

For a convenience, we recall the definition of the orbital integral. Let G be the group GL_{2} viewed as an algebraic group over F. We often write G for $G(F)$. We denote by $C_{c}^{\infty}(G)$ the space of complex valued, locally constant functions of compact support on G. Let Z be the center of G. Let W be the Weyl group of G. Let T be the subgroup of diagonal matrices of G and N the subgroup of upper-triangular matrices with unit diagonal. We fix a nontrivial additive quasi-character ψ of F and define a character $\theta: N \rightarrow \mathbb{C}^{\times}$ by the formula

$$
\theta(u)=\psi\left(n_{1,2}\right),
$$

where $n=\left(\begin{array}{cc}1 & n_{1,2} \\ 0 & 1\end{array}\right)$.
The Kloosterman integrals of a function $f \in C_{c}^{\infty}(G)$ which we want to study are the functions:

$$
I(g, f)=\int f\left({ }^{t} n_{1} g n_{2}\right) \theta\left(n_{1} n_{2}\right) d n_{1} d n_{2}
$$

Here g is a relevant element, i.e g satisfies a condition that $\theta\left(n_{1} n_{2}\right)=1$ if ${ }^{t} n_{1} g n_{2}=g$. The integral is taken over the quotient of $N(F) \times N(F)$ by the subgroup N^{g} of elements $\left(n_{1}, n_{2}\right)$ of $N(F) \times N(F)$ satisfying ${ }^{t} n_{1} g n_{2}=g$.

Lemma 1.1.26. Let $N \times N$ operate on G by $\left(n_{1}, n_{2}\right) \cdot g={ }^{t} n_{1} g n_{2}$. Then any relevant orbit of $N \times N$ contains a unique representative of the form wt with $w \in R(G):=\left\{e:=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), w_{0}:=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right\}$ and

$$
t \in T_{w}:= \begin{cases}T & \text { if } w=e \\ Z & \text { if } w=w_{0}\end{cases}
$$

Suppose that $w \in R(G)$. Let M_{w} be the standard Levi subgroup such that w is the longest element of $M_{w} \cap W$. Let $P_{w}=M_{w} U_{w}$ be the standard parabolic subgroup which has Levi factor M_{w}. Set $V_{w}=N \cap M_{w}$. For every $t \in T_{w}$, (by an elementary matrix calculation) we have

$$
N^{w t}=N^{w}=\left\{\left(n_{1}, n_{2}\right) \in V_{w}^{2} \mid n_{2}=w^{t} n_{1}^{-1} w\right\}
$$

Lemma 1.1.27. Any point of the orbit of wt under the action of $N(F) \times$ $N(F)$ can be uniquely written in the following form

$$
\mu\left(u_{1}, v, u_{2}\right)=u_{1} w \mathbf{t} v u_{2}
$$

with $u_{i} \in U_{w}$ and $v \in V_{w}$.
Proof. Since $N \subset P_{w}$, by using the Levi decomposition for elements of N, we can rewrite any element of the orbit of $w t$ under the action of $N(F) \times N(F)$ as below:

$$
\begin{aligned}
{ }^{t} n_{1} w \mathbf{t} n_{2} & ={ }^{t} u_{1}{ }^{t} v_{1} w t v_{2} u_{2} \\
& \left.={ }^{t} u_{1}{ }^{t} v_{1} w t\left(w^{t} v_{1}^{-1} w\right)\right]\left[\left(w^{t} v_{1} w\right) v_{2}\right] u_{2} \\
& ={ }^{t} u_{1} w \mathbf{t} v u_{2} .
\end{aligned}
$$

Here $u_{i} \in U_{w}, v_{i} \in V_{w}, v \in V_{w}$ such that $v_{1} u_{1}=n_{1}, v_{2} u_{2}=n_{2}$ and $v=$ $\left(w^{t} v_{1} w\right) v_{2}$. The last identity follows $\left({ }^{t} v_{1}, w^{t} v_{1}^{-1} w\right) \in N^{w}$.

Suppose that ${ }^{t} u_{1} w t v u_{2}={ }^{t} u_{1}^{\prime} w \mathbf{t} v^{\prime} u_{2}^{\prime}$ with $u_{i}, u_{i}^{\prime} \in U_{w}$ and $v, v^{\prime} \in V_{w}$. We have then

$$
{ }^{t}\left(u_{1}^{-1} u_{1}^{\prime}\right) w t\left(v^{\prime} u_{2}^{\prime} u_{2}^{-1} v^{-1}\right)=w t .
$$

Hence, $v^{\prime} u_{2}^{\prime} u_{2}^{-1} v^{-1} \in V_{w}$ and ${ }^{t}\left(u_{1}^{-1} u_{1}^{\prime}\right) \in V_{w}$. It implies that $\left\{u_{2}^{\prime} u_{2}^{-1}, u_{1}^{-1} u_{1}^{\prime}\right\} \subset$ $U_{w} \cap V_{w}=\{e\}$. Thus $u_{i}=u_{i}^{\prime}$ for all $i \in\{1,2\}$. As a consequence, we have $v=v^{\prime}$.

Since the orbits of $N(F) \times N(F)$ are closed, the map μ is an isomorphism of $U_{w}(F) \times V_{w}(F) \times U_{w}(F)$ onto the orbit of $w t$. Recall that we let $d x$ be the self-dual Haar measure on F with respect to the fixed non-trivial additive character ψ. If α is a root let X_{α} be the corresponding root vector in the Lie algebra of N (entry at α is 1 , the other entries are 0). If U is a subgroup of N generated by a set of roots S (i.e $U=\left\{u=1+\sum_{\alpha \in S} x_{\alpha} X_{\alpha}\right\}$) we set $d u=\otimes_{\alpha \in S} d x_{\alpha}$. We take for invariant measure on the orbit of $w t$ the product measure $d u_{1} d v d u_{2}$. Thus

$$
\begin{equation*}
I(w t, f)=\int_{U_{w}(F) \times V_{w}(F) \times U_{w}(F)} f\left({ }^{t} u_{1} w t v u_{2}\right) \theta\left(u_{1} u_{2}\right) \theta(v) d u_{1} d v d u_{2} . \tag{1.1.2}
\end{equation*}
$$

Since the orbit is closed, for $f \in C_{c}^{\infty}(G)$, the integral on the right hand side has compact support. Thus the integral converges and define a smooth function on $T_{w}(F)$ which send $t \in T_{w}(F)$ to $I(w t, f)$.

We denote by $T_{w}^{w_{0}}:=\left\{t \in T_{w_{0}} \mid \operatorname{det}\left(w_{0} t\right)=\operatorname{det}(w)\right\}$ for each $w \in R(G)$. For instance, the set $T_{e}^{w_{0}}$ is the set of matrices of the form

$$
\left(\begin{array}{cc}
z & 0 \\
0 & -z^{-1}
\end{array}\right) .
$$

Theorem 1.1.28. There is a locally constant function $K_{e}^{w_{0}}$ on $T_{e}^{w_{0}}$ satisfying the following properties. For each function $f \in C_{c}^{\infty}(G)$, there is a function $\omega \in C_{c}^{\infty}\left(T_{e}\right)$ such that

$$
I(e t, f)=\omega(t)+\sum_{(b, c)} K_{e}^{w_{0}}(b) I\left(w_{0} c, f\right) .
$$

The sum is taken over the finite set

$$
\left\{(b, c) \in T_{e}^{w_{0}} \times T_{w_{0}} \mid b c=t\right\} .
$$

Proof. Let $G_{1}=\left\{g \in G \mid \operatorname{det}(g)=\operatorname{det}\left(w_{0}\right)\right\}$. We have $w_{0} T_{w_{0}} \cap G_{1}=w_{0} T_{w_{0}}^{w_{0}}$, a finite set. If $w_{0} t$ where $t \in T_{w_{0}}$ is in G_{1}, then the scalar matrix $t=\operatorname{diag}(z, z)$ verifies $z^{2}=1$. We can choose $f_{0} \in C_{c}^{\infty}(G)$ such that $I\left(w_{0}, f_{0}\right)=1$ and $I\left(w_{0} \operatorname{diag}(z, z), f_{0}\right)=0$ if $z \neq 1$ and z is a square-root of 1 in F. (For example, we can choose $f_{0}=\phi_{m}$ with m large enough as in Lemma 1.1.29 below.)

We define a function $K_{e}^{w_{0}}$ on $T_{e}^{w_{0}}$ by

$$
K_{e}^{w_{0}}(t)=I\left(e t, f_{0}\right)
$$

We define a function f_{1} on G by the formula

$$
f_{1}(g)=\sum_{\left(g_{1}, c\right)} f_{0}\left(g_{1}\right) I\left(w_{0} c, f\right)
$$

where the sum is over the finite set

$$
S_{g}:=\left\{\left(g_{1}, c\right) \in G_{1} \times T_{w_{0}} \mid g_{1} c=g\right\} .
$$

It is a smooth function on G.
For $t \in T_{e}$, we consider all possible decompositions

$$
{ }^{t} n_{1} e t n_{2}=g_{1} c
$$

with $g_{1} \in G_{1}$ and $c \in T_{w_{0}}$. Since c is in the centre of G, we can write

$$
g_{1}={ }^{t} n_{1} \text { etc }^{-1} n_{2}={ }^{t} n_{1} e^{e b n_{2}}
$$

where $b=t c^{-1} \in T_{e}^{w_{0}}$ (since $g_{1} \in G_{1}$). Thus

$$
f_{1}\left({ }^{t} n_{1} e t n_{2}\right)=\sum_{(b, c)} f_{0}\left({ }^{t} n_{1} e b n_{2}\right) I\left(w_{0} c, f\right)
$$

where the sum is over the finite set

$$
\left\{(b, c) \in T_{e}^{w_{0}} \times T_{w_{0}} \mid b c=t\right\} .
$$

Since c is in the centre of G, we have $N^{e t}=N^{e b}$. After integrating two side of above identity over the quotient of $N(F) \times N(F)$ by the subgroup $N^{e t}$, we obtain then

$$
I\left(e t, f_{1}\right)=\sum_{(b, c)} I\left(e b, f_{0}\right) I\left(w_{0} c, f\right)=\sum_{(b, c)} K_{e}^{w_{0}}(b) I\left(w_{0} c, f\right) .
$$

We define a function ω on T_{e} by the formula

$$
\omega(t)=I(e t, f)-I\left(e t, f_{1}\right)=I\left(e t, f-f_{1}\right) .
$$

It is a smooth function on T_{e} and we have

$$
I(e t, f)=\omega(t)+\sum_{(b, c)} K_{e}^{w_{0}}(b) I\left(w_{0} c, f\right) .
$$

Lemma 1.1.29. Let $t=\operatorname{diag}(z, z)$ with $z^{2}=1$ and ϕ_{m} a product of the characteristic function of the congruence group K_{m} and the scalar $\operatorname{vol}\left(\mathfrak{p}^{m}\right)^{-1}$. For m large enough, we have then

$$
I\left(w_{0} t, \phi_{m}\right)= \begin{cases}1, & \text { if } z=1 \\ 0, & \text { otherwise }\end{cases}
$$

Proof. Firstly, we calculate the integral $I\left(w_{0}, \phi\right)$. This integral has the form (cf. the formula (1.1.2))

$$
I\left(w_{0}, \phi\right)=\int_{F} \phi\left(w_{0}\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)\right) \psi(x) d x
$$

Now we take ϕ be a product of the characteristic function of $w_{0} K_{m}$ and the scalar $\operatorname{vol}\left(\mathfrak{p}^{m}\right)^{-1}$, this integral is equal to

$$
\operatorname{vol}\left(\mathfrak{p}^{m}\right)^{-1} \int_{\mathfrak{p}^{m}} \psi(x) d x
$$

For m large enough (for example m is larger then the level of ψ), we have $\psi(x)=1$. It implies that

$$
\int_{\mathfrak{p}^{m}} \psi(x) d x=\operatorname{vol}\left(\mathfrak{p}^{m}\right) .
$$

In consequence, the first assertion is proved.
Choosing m large enough such that $z \notin K_{m}$ for all z which satisfy $z^{2}=1$ and $z \neq 1$. We have then ${ }^{t} n_{1} w_{0} t n_{2} \notin w_{0} K_{m}$ for all $\left(n_{1}, n_{2}\right) \in N_{r}(F) \times N_{r}(F)$. The second assertion follows.

Proposition 1.1.30. The germ $K_{e}^{w_{0}}$ is given, for $|z|$ small enough, by

$$
K\left(\begin{array}{cc}
z & 0 \\
0 & -z^{-1}
\end{array}\right)=\left|\frac{1}{2 z}\right|^{1 / 2} \psi\left(\frac{2}{z}\right) \gamma\left(\frac{2}{z}, \psi\right) .
$$

Proof. Let $f=\phi_{m}$ as in Lemma 1.1.29. The relation defining germ $K_{e}^{w_{0}}$ reads

$$
\begin{equation*}
I\left(t, \phi_{m}\right)=\omega_{\phi(m)}(t)+\sum_{(b, c)} K_{e}^{w_{0}}(b) I\left(w_{0} c, \phi_{m}\right) . \tag{1.1.3}
\end{equation*}
$$

Since $\omega_{\phi_{m}}$ is of compact support, for $|z|$ small enough we have

$$
\omega_{\phi_{m}}\left(\begin{array}{cc}
z & 0 \\
0 & -z^{-1}
\end{array}\right)=0
$$

Substituting $t=\left(\begin{array}{cc}z & 0 \\ 0 & -z^{-1}\end{array}\right)$ with $|z|$ small enough to (1.1.3) and using Lemma 1.1.29, we have then

$$
\begin{aligned}
K_{e}^{w_{0}}\left(\begin{array}{cc}
z & 0 \\
0 & -z^{-1}
\end{array}\right) & =I\left(\left(\begin{array}{cc}
z & 0 \\
0 & -z^{-1}
\end{array}\right), \phi_{m}\right) \\
& =\int_{F \times F} \phi_{m}\left(\begin{array}{cc}
z & z x_{1} \\
z x_{2} & -z^{-1}+x_{1} x_{2} z
\end{array}\right) \psi\left(x_{1}+x_{2}\right) d x_{1} d x_{2}
\end{aligned}
$$

After changing x_{1} to x_{1} / z and x_{2} to x_{2} / z, the germ $K_{e}^{w_{0}}\left(\operatorname{diag}\left(z,-z^{-1}\right)\right)$ is equal to

$$
|z|^{-2} \int_{F \times F} \phi_{m}\left(\begin{array}{cc}
z & x_{1} \\
x_{2} & -z^{-1}+z^{-1} x_{1} x_{2}
\end{array}\right) \psi\left(\frac{x_{1}+x_{2}}{z}\right) d x_{1} d x_{2} .
$$

The integral is 0 unless $z \in \mathfrak{p}^{m}$. We can choose $|z|$ small enough such that $z \in \mathfrak{p}^{m}$. We see that then the integral is equal to

$$
|z|^{-2} \operatorname{vol}\left(\mathfrak{p}^{m}\right)^{-1} \int \psi\left(\frac{x_{1}+x_{2}}{z}\right) d x_{1} d x_{2}
$$

integrated over the domain defined by:

$$
x_{i} \equiv 1 \quad \bmod \mathfrak{p}^{m} \text { for } i=1,2,
$$

$$
x_{1} x_{2} \equiv 1 \quad \bmod z \mathfrak{p}^{m} .
$$

We change variables and set

$$
x_{2}=t x_{1}^{-1},
$$

where now the domain of integration is defined by:

$$
x_{1} \equiv 1 \quad \bmod \mathfrak{p}^{m}, t \equiv 1 \quad \bmod z \mathfrak{p}^{m} .
$$

(Since $z \in \mathfrak{p}^{m}$, the two conditions on x_{1} and t guarantee that $t / x_{1} \equiv 1$ $\bmod \mathfrak{p}^{m}$.) After integrating over t the integral becomes

$$
|z|^{-1} \int_{x_{1} \equiv 1 \bmod \mathfrak{p}^{m}} \psi\left(\frac{\phi}{z}\right) d x_{1},
$$

where the phase function ϕ is given by:

$$
\phi=x_{1}+\frac{1}{x_{1}} .
$$

We set $x_{1}=1+v$ with $v \in \mathfrak{p}^{m}$. The phase function takes the form

$$
\phi=1+v+\frac{1}{1+v} .
$$

The Taylor expansion of this function at the origin has the form

$$
2+v^{2}+\text { higher degree terms. }
$$

By the principle of the stationary phase there is a compact neighborhood Ω of 0 in F such that, for $|z|$ small enough, the integral is equal to

$$
|z|^{-1} \int_{\Omega} \psi\left(\frac{2+v^{2}}{z}\right) d v=\left|\frac{1}{2 z}\right|^{1 / 2} \psi\left(\frac{2}{z}\right) \gamma\left(\frac{2}{z}, \psi\right) .
$$

1.1.6 Kirillov models and Whittaker models

We fix a non-trivial character ψ of the additive group F. Let (π, V) is a representation of $G(F)$. Let $N=\left\{\left.n=\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right) \right\rvert\, x \in F\right\}, \psi$ defines a character ψ_{N} of N by

$$
\psi_{N}(n)=\psi\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)=\psi(x)
$$

Definition 1.1.31. - A Kirillov model for (π, V) is a sub- \mathbb{C}-vector space $\mathcal{K}(\pi, \psi)$ of the space of \mathbb{C}-valued on F^{\times}, and an action $\pi_{\mathfrak{k}}$ of $G(F)$ on $\mathcal{K}(\pi, \psi)$ with the property that

$$
\pi_{\mathfrak{k}}\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)(f)(x)=\psi(b x) f(a x) \quad \forall a, x \in F^{\times}, b \in F, f \in \mathcal{K}(\pi, \psi),
$$

such that the representation V and $\mathcal{K}(\pi, \psi)$ are isomorphic.

- A Whittaker model for (π, V) is a sub- \mathbb{C}-vector space $\mathcal{W}(\pi, \psi)$ of the space of locally constant \mathbb{C}-valued functions on G satisfying

$$
f\left(\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) g\right)=\psi(x) f(g), \quad \forall g \in G, x \in F
$$

and an action of $G(F)$ on $\mathcal{W}(\pi, \psi)$ defined by a right translation, i.e. $(g . f)\left(g^{\prime}\right)=f\left(g^{\prime} g\right)$ such that the representation V and $\mathcal{W}(\pi, \psi)$ are isomorphic.

Theorem 1.1.32 ([9, Theorem 1, p. 1.3]). If (π, V) is an irreducible admissible infinite-dimesional representation of $G(F)$ then (π, V) has a unique Kirillov model $\mathcal{K}(\pi, \psi)$. Furthermore, every $\kappa \in \mathcal{K}(\pi, \psi)$ is a locally constant function on F^{\times}and vanishes outside some compact subset of F. The space $C_{c}^{\infty}\left(F^{\times}\right)$of locally constant functions on F^{\times}with compact support is a subspace of finite codimension of $\mathcal{K}(\pi, \psi)$.

Proof. Assume that (π, V) has a Kirillov model $\mathcal{K}(\pi, \psi)$. Then the subspace \mathcal{K}_{0} of $\mathcal{K}(\pi, \psi)$ consisting of f such that $f(1)=0$ has codimension 1 .

Corollary 1.1.33. If (π, V) is an irreducible admissible infinite-dimesional representation of $G(F)$ then (π, V) has a unique Whittaker model.

Proof. Let $\mathcal{K}(\pi, \psi)$ be a Kirillov model for (π, V). For every $\kappa \in \mathcal{K}(\pi, \psi)$, we consider the function

$$
W_{\kappa}(g)=\pi_{\mathfrak{k}}(g)(\kappa)(e) .
$$

The vector space generated by $\left\{W_{\kappa} \mid \kappa \in \mathcal{K}(\pi, \psi)\right\}$ is a Whittaker model for (π, V).

Let $\mathcal{W}(\pi, \psi)$ be a Whittaker model for (π, V). The vector space generated by $\left\{\kappa_{W}(x)=W(\operatorname{diag}(x, 1)) \mid W \in \mathcal{W}(\pi, \psi)\right\}$ is a Kirillov model for (π, V).

Using the existence and uniqueness of the Kirillov model for irreducible admissible infinite-dimensional representation (cf. Theorem 1.1.32), we obtain then a proof for this corollary.

Definition 1.1.34. Let (π, V) be a representation of G. A ψ Whittaker functional on (π, V) is non-zero linear form $L: V \rightarrow \mathbb{C}$ such that

$$
L(\pi(n) v)=\psi(n) L(v)
$$

for all $n \in N$ and $v \in V$.
We have a relation between Whittaker functional and Whittaker model as follows: given a Whittaker model $\mathcal{W}(\pi, \psi)$ define L by $L(v)=W_{v}(e)$ where e is the neutral element of G, W_{v} is the image of v via the G-isomorphism $V \rightarrow \mathcal{W}(\pi, \psi)$, and given a Whittaker functional L define $\mathcal{W}(\pi, \psi)$ as the space of $W_{v}: G \rightarrow \mathbb{C}$ defined by $g \mapsto L(\pi(g) v)$ when v runs through V. In other word, we have that to give a Whittaker functional (up to scalar multiples) is to give a Whittaker model and vice-versa.

Let $w=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and $n(t)=\left(\begin{array}{cc}1 & t \\ 0 & 1\end{array}\right)$. Now let π be an irreducible admissible infinite-dimensional representation of $G(F)$ and $\mathcal{K}(\pi, \psi)$ its corresponding Kirillov model. Since $\mathcal{K}(\pi, \psi)$ is irreducible, it is generated by $\pi_{\mathfrak{k}}(g) C_{c}^{\infty}\left(F^{\times}\right)$. Moreover, $C_{c}^{\infty}\left(F^{\times}\right)$is stable under the action of Borel subgroup of G, and $\pi_{\mathfrak{k}}(n(t) w) \kappa-\pi_{\mathfrak{k}}(w) \kappa$ belongs to $C_{c}^{\infty}\left(F^{\times}\right)$for every $\kappa \in$ $\mathcal{K}(\pi, \psi)$ and every $t \in F$. Using Bruhat's decomposition, we obtain then

$$
\mathcal{K}(\pi, \psi)=C_{c}^{\infty}\left(F^{\times}\right)+\pi_{\mathfrak{k}}(w) C_{c}^{\infty}\left(F^{\times}\right) .
$$

Theorem 1.1.35 ([9, Theorem 2, p. 1.18]). Let (π, V) be an infinitedimensional irreducible admissible of $G(F)$. Then the contragredient $\widetilde{\pi}$ of π is equivalent to $\chi_{\pi}^{-1} \otimes \pi$, where χ_{π} is the central character of π, and the Kirillov space $\mathcal{K}\left(\widetilde{\pi}, \psi^{-1}\right)$ is the set of function $x \mapsto \chi_{\pi}(x)^{-1} \kappa(x)$ with $\kappa \in \mathcal{K}(\pi, \psi)$. Furthermore the invariant duality between $\mathcal{K}(\pi, \psi)$ and $\mathcal{K}\left(\widetilde{\pi}, \psi^{-1}\right)$ is given by the bilinear form $\langle\kappa, \eta\rangle$ such that

$$
\langle\kappa, \eta\rangle=\int \kappa_{1}(x) \eta(-x) d^{\times} x+\int \kappa_{2}(x) \widetilde{\pi}_{\mathfrak{k}}(w) \eta(-x) d^{\times} x
$$

if $\kappa=\kappa_{1}+\pi_{\mathfrak{k}}(w) \kappa_{2}$ with $\kappa_{1}, \kappa_{2} \in C_{c}^{\infty}\left(F^{\times}\right)$and $\eta \in \mathcal{K}\left(\widetilde{\pi}, \psi^{-1}\right)$.

1.1.7 Bessel distributions and Bessel functions

Let (π, V) be an infinite-dimensional irreducible admissible representation of G. Due to Corollary 1.1.33, there exists an unique (up to scalar multiples) ψ Whittaker functional $L: V \rightarrow \mathbb{C}$. Let \widetilde{L} be a ψ^{-1} Whittaker functional on the representation contragredient $(\widetilde{\pi}, \widetilde{V})$ to (π, V). It follows from Theorem 1.1.35, we normalize \widetilde{L} so that if $v \in V$ and $\widetilde{v} \in \widetilde{V}$ are such that either
$x \mapsto L(\pi(\operatorname{diag}(x, 1)) v)$ or $x \mapsto \widetilde{L}(\widetilde{\pi}(\operatorname{diag}(x, 1)) \widetilde{v})$ has compact support in F^{\times}then

$$
\widetilde{v}(v)=\langle v, \widetilde{v}\rangle=\int_{F^{\times}} L(\pi(\operatorname{diag}(x, 1)) v) \widetilde{L}(\widetilde{\pi}(\operatorname{diag}(x, 1)) \widetilde{v}) d^{\times} x
$$

(Note that $L(\pi(\operatorname{diag}(x, 1)) v) \in \mathcal{K}(\pi, \psi)$ and $\left.\widetilde{L}(\widetilde{\pi}(\operatorname{diag}(x, 1)) \widetilde{v}) \in \mathcal{K}\left(\widetilde{\pi}, \psi^{-1}\right)\right)$.
For $f \in C_{c}^{\infty}(G)$ we define the linear functional $\rho(f) \widetilde{L}: \widetilde{V} \rightarrow \mathbb{C}$ by

$$
\begin{equation*}
(\rho(f) \widetilde{L})(\widetilde{v})=\int_{G} f(g) \widetilde{L}\left(\widetilde{\pi}\left(g^{-1}\right) \widetilde{v}\right) d g, \quad \widetilde{v} \in \widetilde{V} \tag{1.1.4}
\end{equation*}
$$

It clear that $\rho(f) \widetilde{L} \in \widetilde{\widetilde{V}}$ (i.e a smooth linear functional). Using the canonical isomorphism $\widetilde{\pi} \simeq \pi$ (cf. Proposition 1.1.2), we can identify $\rho(f) \widetilde{L}$ with a vector $v_{f, \tilde{L}} \in V$.

Definition 1.1.36 (Bessel distribution). Let (π, V) be an infinite-dimensional irreducible admissible representation of G. The (Gelfand-Kazhdan) Bessel distribution of π is the distribution $J_{\pi}: C_{c}^{\infty}(G) \rightarrow \mathbb{C}$ defined by

$$
J_{\pi}(f)=L\left(v_{f, \tilde{L}}\right)
$$

Our main theorem in this section is the following:
Theorem 1.1.37. There exists a locally integrable function j_{π} on G such that

$$
J_{\pi}(f)=\int_{G} j_{\pi}(g) f(g) d g, \quad f \in C_{c}^{\infty}(G)
$$

The strategy to prove this Theorem is that:

- We firstly define the function j_{π} via the uniqueness of Whittaker model for π on the open Bruhat cell. (We follow the work of Soudry in [17]). This function is the Bessel function of π.
- We then prove that j_{π} is a locally integrable function and $J_{\pi}(f)=$ $\tilde{J}_{\pi}(f):=\int_{G} j_{\pi}(g) f(g) d g$ for all $f \in C_{c}^{\infty}(G)$. (We follow the work of Baruch in [1]).

Let N_{m} be the subgroup of N defined by

$$
N_{m}:=\left\{\left.\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)| | x \right\rvert\, \leq q^{m}\right\} .
$$

Let $\mathcal{W}(\pi, \psi)$ be the Whittaker model of (π, V). Let $W \in \mathcal{W}(\pi, \psi)$. We define $W_{m}: G \rightarrow \mathbb{C}$ by

$$
\begin{equation*}
W_{m}(g):=\int_{N_{m}} W(g n) \psi^{-1}(n) d n . \tag{1.1.5}
\end{equation*}
$$

Since W smooth and N_{m} compact, this function is well defined. We can easily verify that

$$
W_{m}(n g)=\psi(n) W_{m}(g), \quad \forall n \in N, g \in G .
$$

Lemma 1.1.38. We have $W_{m}(\operatorname{diag}(y, 1)) \in C_{c}^{\infty}\left(F^{\times}\right) \subset \mathcal{K}(\pi, \psi)$.
Proof. It easy to see that W_{m} is a smooth function.
We have

$$
W\left(\left(\begin{array}{ll}
y & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)\right)=W\left(\left(\begin{array}{cc}
1 & x y \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
y & 0 \\
0 & 1
\end{array}\right)\right)=\psi(x y) W\left(\begin{array}{ll}
y & 0 \\
0 & 1
\end{array}\right) .
$$

It implies that

$$
W_{m}(\operatorname{diag}(y, 1))=W(\operatorname{diag}(y, 1)) \cdot \int_{\varpi^{-m}} \neq \mathcal{O}(x y) d x .
$$

Since

$$
\int_{\varpi^{-m} \mathcal{O}} \psi(x y) d x= \begin{cases}q^{m} & \text { if }|y| \leq q^{-m-c} \\ 0 & \text { otherwise }\end{cases}
$$

where c is the conductor of ψ, W_{m} has a compact support.
As a consequence of Lemma 1.1.38, we have $W_{m} \in \mathcal{W}(\pi, \psi)$.
Lemma 1.1.39. If $g \in B w_{0} B$ then there exists $m_{0}=m_{0, g}$ such that $W_{m}(g)=$ $W_{m_{0}}(g)$ for all $m \geq m_{0}$.

Proof. We note that for any $W \in \mathcal{W}(\pi, \psi), W(\operatorname{diag}(y, 1)) \in \mathcal{K}(\pi, \psi)=$ $C_{c}^{\infty}\left(F^{\times}\right)+\pi_{\mathfrak{k}}(w) C_{c}^{\infty}\left(F^{\times}\right)$. Assume first that $W(\operatorname{diag}(y, 1)) \in C_{c}^{\infty}\left(F^{\times}\right)$, then for a fixed $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in B w_{0} B$ (i.e $\left.c \neq 0\right)$, the function $W\left(g\left(\begin{array}{ll}1 & z \\ 0 & 1\end{array}\right)\right)$ has a compact support in z. Indeed, let $|z|$ be so large that

$$
\pi\left(\begin{array}{cc}
1 & 0 \\
-\left(z+\frac{d}{c}\right)^{-1} & 1
\end{array}\right) W=W
$$

then

$$
\begin{aligned}
W\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
1 & z \\
0 & 1
\end{array}\right)\right) & =W\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
1 & z \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-\left(z+\frac{d}{c}\right)^{-1} & 1
\end{array}\right)\right) \\
& =W\left(\begin{array}{cc}
\frac{\operatorname{det}(g)}{c z+d} & a z+b \\
0 & c z+d
\end{array}\right) \\
& =\chi_{\pi}(c z+d) \psi\left(\frac{a z+b}{c z+d}\right) W\left(\begin{array}{cc}
\frac{\operatorname{det}(g)}{(c z+d)^{2}} & 0 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

By our assumption, there exist m_{0} (depending on g) such that

$$
W\left(\begin{array}{cc}
\frac{\operatorname{det}(g)}{(c z+d)^{2}} & 0 \\
0 & 1
\end{array}\right)=0
$$

if $|z| \geq q^{m_{0}}$. It implies that $W_{m}(g)=W_{m_{0}}(g)$ for all $m \geq m_{0}$.
Now let W be any function in $\mathcal{W}(\pi, \psi)$. Fix an integer $m_{1}>0$. Let $m \geq m_{1}$, and $g \in B w_{0} B$, we have

$$
W_{m}(g)=\int_{N_{m}} W_{m_{1}}(g n) \psi^{-1}(n) d n
$$

Using Lemma 1.1.38 and above argument, we obtain then a proof for this Lemma.

For $g \in B w_{0} B$, we define $L_{g}(W)=\lim _{m \rightarrow \infty} W_{m}(g)$. Due to Lemma 1.1.39, this limit converges. For each $v \in V$, assume that W_{v} is the image of v via the isomorphism $V \rightarrow \mathcal{W}(\pi, \psi)$. We abuse the notation of L_{g} to define a function from V to $\mathbb{C}: L_{g}(v):=L_{g}\left(W_{v}\right)$. It is easily to check that L_{g} is a Whittaker functional on (π, V). From the uniqueness of Whittaker functional, there exists a function $j_{\pi}: B w_{0} B \rightarrow \mathbb{C}$ independent of v, such that

$$
L_{g}(v)=j_{\pi}(g) W_{v}(e), \quad g \in B w_{0} B, v \in V
$$

Lemma 1.1.40. Assume that $g=n_{1} z \operatorname{diag}(x, 1) w_{0} n_{2} \in B w_{0} B$ with $n_{1}, n_{2} \in$ $N, z \in Z(G)$ and $x \in F^{\times}$. We have then

$$
j_{\pi}(g)=\psi\left(n_{1}\right) \psi\left(n_{2}\right) \chi_{\pi}(z) j_{\pi}\left(\operatorname{diag}(x, 1) w_{0}\right)
$$

Proof. By definition, we have

$$
\begin{aligned}
L_{g}(v) & =\lim _{m \rightarrow \infty} \int_{N_{m}} W_{v}(g n) \psi^{-1}(n) d n \\
& =\lim _{m \rightarrow \infty} \int_{N_{m}} W_{v}\left(n_{1} z \operatorname{diag}(x, 1) w_{0} n_{2} n\right) \psi^{-1}(n) d n \\
& =\lim _{m \rightarrow \infty} \int_{N_{m}} \psi\left(n_{2}\right) W_{v}\left(n_{1} z \operatorname{diag}(x, 1) w_{0} n_{2} n\right) \psi^{-1}\left(n_{2} n\right) d n \\
& =\lim _{m \rightarrow \infty} \int_{N_{m}} \psi\left(n_{2}\right) W_{v}\left(n_{1} z \operatorname{diag}(x, 1) w_{0} n\right) \psi^{-1}(n) d n \quad \text { (changing variable) } \\
& =\lim _{m \rightarrow \infty} \int_{N_{m}} \psi\left(n_{2}\right) \psi\left(n_{1}\right) W_{v}\left(\operatorname{diag}(x, 1) w_{0} n z\right) \psi^{-1}(n) d n \\
& =\lim _{m \rightarrow \infty} \int_{N_{m}} \psi\left(n_{2}\right) \psi\left(n_{1}\right) W_{\pi(z)(v)}\left(\operatorname{diag}(x, 1) w_{0} n\right) \psi^{-1}(n) d n \\
& =\lim _{m \rightarrow \infty} \int_{N_{m}} \psi\left(n_{2}\right) \psi\left(n_{1}\right) W_{\chi_{\pi}(z) \cdot v}\left(\operatorname{diag}(x, 1) w_{0} n\right) \psi^{-1}(n) d n \\
& =\lim _{m \rightarrow \infty} \int_{N_{m}} \psi\left(n_{1}\right) \psi\left(n_{2}\right) \chi_{\pi}(z) W_{v}\left(\operatorname{diag}(x, 1) w_{0} n\right) \psi^{-1}(n) d n \\
& =\psi\left(n_{1}\right) \psi\left(n_{2}\right) \chi_{\pi}(z) L_{\operatorname{diag}(x, 1) w_{0}(v)} \\
& =\psi\left(n_{1}\right) \psi\left(n_{2}\right) \chi_{\pi}(z) j_{\pi}\left(\operatorname{diag}(x, 1) w_{0}\right) W_{v}(e) .
\end{aligned}
$$

The last identity implies that $j_{\pi}(g)=\psi\left(n_{1}\right) \psi\left(n_{2}\right) \chi_{\pi}(z) j_{\pi}\left(\operatorname{diag}(x, 1) w_{0}\right)$.

Lemma 1.1.41. For $|x|$ large enough, we have then

$$
j_{\pi}\left(\operatorname{diag}(x, 1) w_{0}\right)=\int_{F^{\times}} I\left(\operatorname{diag}(z, x z), 1_{w_{0} K_{0}}\right) \chi_{\pi}(z)^{-1} d^{\times} z
$$

(Recall that $I(w t, f)$ is the orbital integral defined in Section 1.1.5.)

Proof. Let n_{0} be an arbitrary non-negative integer. Take $W=W_{0}$ in $\mathcal{W}(\pi, \psi)$ such that the function $W_{0}(\operatorname{diag}(x, 1))$ is the characteristic function of $1+$ $\varpi^{n_{0}} \mathcal{O}$.

Since W_{0} is smooth, there exists m such that if $|z| \geq q^{m}$ then

$$
\pi\left(\begin{array}{cc}
1 & 0 \\
-z^{-1} & 1
\end{array}\right)\left(W_{0}\right)=W_{0}
$$

and then

$$
\begin{aligned}
W_{0}\left(\left(\begin{array}{ll}
0 & x \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & z \\
0 & 1
\end{array}\right)\right) & =W_{0}\left(\left(\begin{array}{ll}
0 & x \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & z \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-z^{-1} & 1
\end{array}\right)\right) \\
& =W_{0}\left(\begin{array}{cc}
\frac{-x}{z} & x \\
0 & y
\end{array}\right)=W_{0}\left(z\left(\begin{array}{cc}
1 & \frac{x}{z} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\frac{-x}{z^{2}} & 0 \\
0 & 1
\end{array}\right)\right) \\
& =\chi_{\pi}(z) \psi\left(\frac{x}{z}\right) W_{0}\left(\begin{array}{cc}
\frac{-x}{z^{2}} & 0 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

It implies that

$$
\begin{aligned}
L_{\operatorname{diag}(x, 1) w_{0}}\left(W_{0}\right)= & \int_{|z| \leq q^{m}} W_{0}\left(\operatorname{diag}(x, 1) w_{0}\left(\begin{array}{cc}
1 & z \\
0 & 1
\end{array}\right)\right) \psi^{-1}(z) d z \\
& +\int_{|z|>q^{m}} \chi_{\pi}(z) \psi\left(\frac{x}{z}-z\right) W_{0}\left(\begin{array}{cc}
-x & 0 \\
z^{2} & 1
\end{array}\right) d z
\end{aligned}
$$

Let $C_{\pi, n_{0}}$ be such that

$$
W_{0}\left(\operatorname{diag}(x, 1) w_{0}\left(\begin{array}{ll}
1 & z \\
0 & 1
\end{array}\right)\right)=0
$$

for all $|z| \leq q^{m}$ and all $|x| \geq C_{\pi, n_{0}}$ and using $W_{0}(e)=1$ we obtain

$$
\begin{equation*}
j_{\pi}\left(\operatorname{diag}(x, 1) w_{0}\right)=L_{\operatorname{diag}(x, 1) w_{0}}\left(W_{0}\right)=\int_{x z^{-2}+1 \in \varpi^{n} \mathcal{O}} \chi_{\pi}(z) \psi\left(\frac{x}{z}-z\right) d z \tag{1.1.6}
\end{equation*}
$$

for all $|x| \geq C_{\pi, n_{0}}$.
On the other hand,

$$
I\left(\operatorname{diag}(z, z x), 1_{w_{0} K_{n_{0}}}\right)=\int 1_{w_{0} K_{n_{0}}}\left(\begin{array}{cc}
z & z x_{2} \\
z x_{1} & z x_{1} x_{2}+x z
\end{array}\right) \psi\left(x_{1}+x_{2}\right) d x_{1} d x_{2} .
$$

This is 0 unless $z \in \varpi^{n_{0}} \mathcal{O}=\mathfrak{p}^{n_{0}}$. We change x_{1} to x_{1} / z and x_{2} to x_{2} / z. We obtain then

$$
I\left(\operatorname{diag}(z, x z), 1_{w_{0} K_{n_{0}}}\right)=|z|^{-2} \int \psi\left(\frac{x_{1}+x_{2}}{z}\right) d x_{1} d x_{2}
$$

integrated over the domain defined by:

$$
\begin{gathered}
x_{i} \equiv 1 \quad \bmod \mathfrak{p}^{n_{0}} \quad \text { for } i=1,2, \\
x_{1} x_{2} \equiv-x z^{2} \quad \bmod z \mathfrak{p}^{n_{0}} .
\end{gathered}
$$

This domain is empty unless $-x z^{2} \equiv 1 \bmod \mathfrak{p}^{n_{0}}$. We change variables and set

$$
x_{2}=t x_{1}^{-1},
$$

where now the domain of integration is defined by:

$$
x_{1} \equiv 1 \quad \bmod \mathfrak{p}^{n_{0}}, t \equiv-x z^{2} \quad \bmod z \mathfrak{p}^{n_{0}} .
$$

Choose n_{0} large enough such that $\psi(u)=1$ for all $u \in \mathfrak{p}^{n_{0}}$, after integrating over t the integral becomes

$$
|z|^{-2} \operatorname{vol}\left(\mathfrak{p}^{n_{0}}\right) \int_{x_{1} \equiv 1} \bmod \mathfrak{p}^{n_{0}}<\left(\frac{\phi}{z}\right) d x_{1},
$$

where the phase function ϕ is given by:

$$
\phi=x_{1}+\frac{-x z^{2}}{x_{1}}
$$

We set $x_{1}=1+v$ with $v \in \mathfrak{p}^{n_{0}}$. The phase function takes the form

$$
\phi=1+v+\frac{-x z^{2}}{1+v} .
$$

The Taylor expansion of this function at the origin has the form

$$
\left(1-x z^{2}\right)+\left(1+x z^{2}\right) v-\left(x z^{2}\right) v^{2}+\text { higher degree terms. }
$$

By the principle of the stationary phase there is a compact neighborhood Ω of 0 in F such that, for $|z|$ small enough, the integral is equal to

$$
|z|^{-1} \int_{\Omega} \psi\left(\frac{2+v^{2}}{z}\right) d v=\left|\frac{1}{2 z}\right|^{1 / 2} \psi\left(\frac{2}{z}\right) \gamma\left(\frac{2}{z}, \psi\right) .
$$

We note that for $|x|>q^{\frac{n_{0}}{2}}$, the condition $-x z^{2} \equiv 1 \bmod \mathfrak{p}^{n_{0}}$ implies that $z \in \mathfrak{p}^{n_{0}}$. Hence

$$
\begin{equation*}
\int_{F^{\times}} I\left(\operatorname{diag}(z, x z), 1_{w_{0} K_{0}}\right) \chi_{\pi}(z)^{-1}=\int_{x z^{2}+1 \in \mathfrak{p}^{n_{0}}} \tag{1.1.7}
\end{equation*}
$$

Lemma 1.1.42. Let $W \in \mathcal{W}(\pi, \psi)$ be such that the function $W(\operatorname{diag}(x, 1))$ belongs to $C_{c}^{\infty}\left(F^{\times}\right)$. Then

$$
W(g)=\int_{F^{\times}} j_{\pi}\left(g \cdot \operatorname{diag}\left(x^{-1}, 1\right)\right) W(\operatorname{diag}(x, 1)) d^{\times} x
$$

for all $g \in B w_{0} B$.

Proof. We put

$$
\phi_{W, g}(z)=W\left(g\left(\begin{array}{ll}
1 & z \\
0 & 1
\end{array}\right)\right)
$$

then

$$
\widehat{\phi_{W, g}}(1)=\int_{F} \phi_{W, g}(z) \psi^{-1}(z) d z=L_{g}(W)=j_{\pi}(g) W(e) .
$$

We have

$$
\begin{aligned}
& \widehat{\phi_{W, g}}(y)=\int_{F} \phi_{W}(z) \psi^{-1}(y z) d z \\
& =\int_{F}|y|^{-1} \phi_{W, g}\left(y^{-1} z\right) \psi^{-1}(z) d z \quad \text { (changing variable) } \\
& =\int_{F}|y|^{-1} W\left(g\left(\begin{array}{cc}
1 & y^{-1} z \\
0 & 1
\end{array}\right)\right) \psi^{-1}(z) d z \\
& =\int_{F}|y|^{-1} W\left(g\left(\begin{array}{cc}
y^{-1} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & z \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
y & 0 \\
0 & 1
\end{array}\right)\right) \psi^{-1}(z) d z \\
& =|y|^{-1} \int_{F} \phi_{\pi\left(\begin{array}{ll}
y & 0 \\
0 & 1
\end{array}\right)(W), g\left(\begin{array}{cc}
y^{-1} & 0 \\
0 & 1
\end{array}\right)}(z) \psi^{-1}(z) d z
\end{aligned}
$$

$$
\begin{aligned}
& =|y|^{-1} j_{\pi}\left(g \cdot \operatorname{diag}\left(y^{-1}, 1\right)\right) \cdot \pi\left(\begin{array}{ll}
y & 0 \\
0 & 1
\end{array}\right)(W)(e) \\
& =|y|^{-1} j_{\pi}\left(g \cdot \operatorname{diag}\left(y^{-1}, 1\right)\right) W(\operatorname{diag}(y, 1))
\end{aligned}
$$

and hence

$$
\begin{aligned}
W(g) & =\phi_{W, g}(0)=\widehat{\widehat{\phi_{W, g}}}(0)=\int_{F} \widehat{\phi_{W, g}}(y) d y \\
& =\int_{F}|y|^{-1} j_{\pi}\left(g \cdot \operatorname{diag}\left(y^{-1}, 1\right)\right) W(\operatorname{diag}(y, 1)) d y \\
& =\int_{F^{\times}} j_{\pi}\left(g \cdot \operatorname{diag}\left(y^{-1}, 1\right)\right) W(\operatorname{diag}(y, 1)) d^{\times} y .
\end{aligned}
$$

Lemma 1.1.43. Let $\widetilde{W} \in \mathcal{W}\left(\widetilde{\pi}, \psi^{-1}\right)$ be such that the function $\widetilde{W}(\operatorname{diag}(x, 1))$ belongs to $C_{c}^{\infty}\left(F^{\times}\right)$. Then

$$
\widetilde{W}\left(g^{-1}\right)=\int_{F^{\times}} j_{\pi}(\operatorname{diag}(x, 1) g) \widetilde{W}(\operatorname{diag}(x, 1)) d^{\times} x
$$

for all $g \in B w_{0} B$.

Proof. We define W by

$$
W(g)=\widetilde{W}\left(w_{0} g^{*} w_{0}\right)
$$

where $g^{*}=\left(g^{t}\right)^{-1}$. Since $\widetilde{W} \in \mathcal{W}\left(\widetilde{\pi}, \psi^{-1}\right), W$ is a locally constant \mathbb{C}-valued function on G and

$$
\begin{aligned}
W\left(\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) g\right) & =\widetilde{W}\left(w_{0}\left(g^{t}\left(\begin{array}{ll}
1 & 0 \\
x & 1
\end{array}\right)\right)^{-1} w_{0}\right) \\
& =\widetilde{W}\left(\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)^{-1} w_{0}\left(g^{t}\right)^{-1} w_{0}\right) \\
& =\psi(x) \widetilde{W}\left(w_{0}\left(g^{t}\right)^{-1} w_{0}\right)=\psi(x) W(g)
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
W(\operatorname{diag}(x, 1)) & =\widetilde{W}\left(w_{0} \operatorname{diag}(x, 1)^{*} w_{0}\right)=\widetilde{W}\left(\operatorname{diag}\left(1, x^{-1}\right)\right) \\
& =\widetilde{W}\left(x \operatorname{diag}\left(1, x^{-1}\right)\right)=\chi_{\widetilde{\pi}}\left(x^{-1}\right) \widetilde{W}(\operatorname{diag}(x, 1)) \\
& =\chi_{\pi}(x) \widetilde{W}(\operatorname{diag}(x, 1))
\end{aligned}
$$

belongs to $C_{c}^{\infty}\left(F^{\times}\right) \subset \mathcal{K}(\pi, \psi)$. (Due to Theorem 1.1.35, we have $\chi_{\tilde{\pi}}(x)=$ $\chi_{\pi}(x)^{-1}$.) Hence W satisfies the condition of Lemma 1.1.42. By using Lemma 1.1.42 for W and $g=\operatorname{diag}(y, 1) w_{0}$, we have then

$$
\begin{align*}
\widetilde{W}\left(g^{-1}\right) & =\widetilde{W}\left(w_{0} \operatorname{diag}(y, 1)^{-1}\right)=W\left(w_{0}\left(g^{-1}\right)^{*} w_{0}\right)=W\left(\operatorname{diag}(y, 1) w_{0}\right) \\
& =\int_{F^{\times}} j_{\pi}\left(\operatorname{diag}(y, 1) w_{0} \operatorname{diag}\left(x^{-1}, 1\right)\right) W(\operatorname{diag}(x, 1)) d^{\times} x \\
& =\int_{F^{\times}} j_{\pi}\left(\operatorname{diag}(y, 1) w_{0} \operatorname{diag}\left(x^{-1}, 1\right)\right) \chi_{\pi}(x) \widetilde{W}(\operatorname{diag}(x, 1)) d^{\times} x \\
& =\int_{F^{\times}} j_{\pi}\left(x \operatorname{diag}(y, 1) w_{0} \operatorname{diag}\left(x^{-1}, 1\right) \widetilde{W}(\operatorname{diag}(x, 1)) d^{\times} x\right. \\
& =\int_{F^{\times}} j_{\pi}\left(\operatorname{diag}(x, 1) \operatorname{diag}(y, 1) w_{0}\right) \widetilde{W}(\operatorname{diag}(x, 1)) d^{\times} x \tag{1.1.8}
\end{align*}
$$

Now for $g=n_{1} z \operatorname{diag}(y, 1) w_{0} n_{2}$ we have

$$
\begin{aligned}
\widetilde{W}\left(g^{-1}\right) & =\widetilde{W}\left(n_{2}^{-1} z^{-1} w_{0} \operatorname{diag}(y, 1)^{-1} n_{1}^{-1}\right) \\
& =\psi^{-1}\left(n_{2}^{-1}\right) \chi_{\widetilde{\pi}}\left(z^{-1}\right) \widetilde{\pi}\left(n_{1}^{-1}\right) \widetilde{W}\left(w_{0} \operatorname{diag}(y, 1)^{-1}\right) \\
& =
\end{aligned}
$$

Corollary 1.1.44 (cf. [1, Corollary 4.2]). There exist constants $C=C_{\pi}$ and $D=D_{\pi}$ such that for $|x|>C$,

$$
\left|j_{\pi}\left(\operatorname{diag}(x, 1) w_{0}\right)\right| \leq D\left|\chi_{\pi}(x)\right|^{1 / 2}|x|^{1 / 4}
$$

Proof. We denote by ζ a square root of $\frac{-1}{x}$. Another square root of $\frac{-1}{x}$ is then $-\zeta$. Using germ expansion (cf. Theorem 1.1.28), for any $f \in C_{c}^{\infty}(G)$ and $z \in F^{\times}$we obtain then

$$
\begin{align*}
I(\operatorname{diag}(z, x z), f)=\omega_{f}(\operatorname{diag}(z, x z)) & +K_{e}^{w_{0}}\left(\begin{array}{cc}
\zeta & 0 \\
0 & -\zeta^{-1}
\end{array}\right) I\left(\frac{z}{\zeta} w_{0}, f\right) \\
& +K_{e}^{w_{0}}\left(\begin{array}{cc}
-\zeta & 0 \\
0 & \zeta^{-1}
\end{array}\right) I\left(\frac{-z}{\zeta} w_{0}, f\right) \tag{1.1.9}
\end{align*}
$$

Proposition 1.1.45 (cf. [1, Proposition 4.3]). Let $f \in C_{c}^{\infty}(G)$.
(a) There exists a positive constant $M=M_{f}$ such that for $|x|<M$ we have

$$
\int\left|f\left(n_{1} w_{0} \operatorname{diag}(x, 1) z n_{2}\right) \chi_{\pi}(z)\right| d^{\times} z=0
$$

(b) There exist positive constants $C=C_{f}$ and $D=D_{f}$ such that for $|x|>C$ we have

$$
\int\left|f\left(n_{1} w_{0} \operatorname{diag}(x, 1) z n_{2}\right) \chi_{\pi}(z)\right| d^{\times} z \leq D\left|\chi_{\pi}(x)\right|^{1 / 2}|x|^{1 / 2}
$$

Proof. We let

$$
\tilde{f}(g):=\int_{N Z}\left|f(n z g) \chi_{\pi}(z)\right| d n d^{\times} z .
$$

Since f is smooth and compactly supportted, \tilde{f} is well-defined. Moreover, \tilde{f} is smooth on the right (i.e there exists a compact open subgroup K of G such that $\tilde{f}(g k)=\tilde{f}(g)$ for all $g \in G)$, compactly supported modulo $N Z$
(a)

Theorem 1.1.46. The function j_{π} is locally integrable.
Proof of Theorem 1.1.37. We define the distribution on $C_{c}^{\infty}(G)$ to be

$$
\tilde{J}_{\pi}(f):=\int_{G} j_{\pi}(g) f(g), \quad f \in C_{c}^{\infty}(G) .
$$

By Theorem 1.1.46, \tilde{J}_{π} is well defined. We shall prove that $\tilde{J}_{\pi}=J_{\pi}$.

Let $f \in C_{c}^{\infty}(G)$. Since $\left(C_{c}^{\infty}(G), \ell\right)$ smooth, there exist an integer m such that $\ell_{\left(\begin{array}{cc}0 & 0 \\ 0 & 1\end{array}\right)} f=f$ for all $x \in K_{m}$. Let $\widetilde{v} \in \widetilde{V}$ be such that

$$
\widetilde{L}(\widetilde{\pi}(\operatorname{diag}(x, 1)) \widetilde{v})=q^{m} 1_{K_{m}}(x) \in C_{c}^{\infty}\left(F^{\times}\right)
$$

for all $x \in F^{\times}$. We have

$$
\begin{align*}
\tilde{J}_{\pi}(f) & =\int_{F^{\times}} \tilde{J}_{\pi}\left(\ell_{\left(\begin{array}{ll}
x & 0 \\
0
\end{array}\right)} f\right) \widetilde{L}(\widetilde{\pi}(\operatorname{diag}(x, 1)) \widetilde{v}) d^{\times} x \\
& =\int_{F^{\times}}\left(\int_{G} j_{\pi}(g) f\left(\operatorname{diag}\left(x^{-1}, 1\right) g\right) d g\right) \widetilde{L}(\widetilde{\pi}(\operatorname{diag}(x, 1)) \widetilde{v}) d^{\times} x \\
& =\int_{F^{\times}}\left(\int_{G} j_{\pi}(\operatorname{diag}(x, 1) g) f(g) d g\right) \widetilde{L}(\widetilde{\pi}(\operatorname{diag}(x, 1)) \widetilde{v}) d^{\times} x \\
& =\int_{G} f(g)\left(\int_{F^{\times}} j_{\pi}(\operatorname{diag}(x, 1) g) \widetilde{L}(\widetilde{\pi}(\operatorname{diag}(x, 1)) \widetilde{v}) d^{\times} x\right) d g \\
& =\int_{G} f(g) \widetilde{L}\left(\widetilde{\pi}\left(g^{-1}\right) \widetilde{v}\right) d g \quad(\text { cf. Lemma 1.1.43(1)) } \\
& =(\rho(f) \widetilde{L})(\widetilde{v}) \quad(\text { cf. }(1.1 .4)) . \tag{1.1.10}
\end{align*}
$$

In other hand, we have:

$$
\begin{align*}
J_{\pi}(f) & =\int_{F^{\times}} J_{\pi}\left(\ell_{\left(\begin{array}{ll}
x & 0 \\
0 & 1
\end{array}\right)} f\right) \widetilde{L}(\widetilde{\pi}(\operatorname{diag}(x, 1)) \widetilde{v}) d^{\times} x \\
& \left.=\int_{F^{\times}} L\left(\pi(\operatorname{diag}(x, 1)) v_{f, \widetilde{L}}\right) \widetilde{L}(\widetilde{\pi}(\operatorname{diag}(x, 1)) \widetilde{v}) d^{\times} x \quad \text { (by definition of } J_{\pi}\right) \\
& =\left\langle v_{f, \widetilde{L}}, \widetilde{v}\right\rangle \quad(\text { By the normalization of } \widetilde{L}) \\
& =(\rho(f) \widetilde{L})(\widetilde{v}) . \tag{1.1.11}
\end{align*}
$$

Combining (1.1.10) and (1.1.9), we obtain then

$$
J_{\pi}(f)=\tilde{J}_{\pi}(f)
$$

The rest of this section is devoted to calculate the Bessel function j_{π}.
Bessel functions for the principal series of G. (We will follow the work of Baruch and Mao in [2].) Now let π be the infinite dimensional irreducible component of $\operatorname{Ind}_{B}^{G} \chi$ where $\chi=\chi_{1} \otimes \chi_{2}$ and χ_{1}, χ_{2} are two multiplicative quasi-characters on F^{\times}.

For a smooth representation (π, V) of N, we denote by $V_{\psi}(N)$ the subspace generated by all vectors in V of the form

$$
\pi(n)(v)-\psi(n) v
$$

where $n \in N$ and $v \in V$. We set $V_{\psi, N}:=V / V_{\psi}(N)$. This space can be viewed as Jacquet space of the twisted N-representation $\psi^{-1} \otimes V$. The group N acts on $V_{\psi, N}$ by $\psi: \pi(n)(v)=\psi(n) v$.
Lemma 1.1.47. We have

$$
V_{\psi}(N)=\left\{v \in V \mid \int_{N_{m}} \pi(n)(v) \psi^{-1}(n) d n=0 \text { for some } m\right\}
$$

Proof. Let e_{m} be $\operatorname{vol}\left(N_{m}\right)^{-1}$ times the characteristic function of N_{m}. By definition we have

$$
\int_{N_{m}} \pi(n)(v) \psi^{-1}(n) d n=\int_{N} e_{m}(n) \pi(n)(v) \psi^{-1}(n) d n
$$

Let $v \in V, n \in N$. There exist some $m \in \mathbb{Z}$ such that $n \in N_{m}$. Because N_{m} is a group and $n \in N_{m}$, we have $e_{m}\left(n^{\prime} n^{-1}\right)=e_{m}\left(n^{\prime}\right)$ for all $n^{\prime} \in N$, so

$$
\begin{aligned}
\int_{N_{m}} \pi\left(n_{1}\right)(\pi(n)(v)) \psi^{-1}\left(n_{1}\right) d n_{1} & =\int_{N} e_{m}\left(n_{1}\right) \pi\left(n_{1}\right)(\pi(n)(v)) \psi^{-1}\left(n_{1}\right) d n_{1} \\
& =\int_{N} e_{m}\left(n_{2} n^{-1}\right) \pi\left(n_{2}\right)(v) \psi^{-1}\left(n_{2} n^{-1}\right) d n_{2} \\
& =\psi(n) \int_{N_{m}} \pi\left(n_{2}\right)(v) \psi^{-1}\left(n_{2}\right) d n_{2}
\end{aligned}
$$

This implies $\int_{N_{m}} \pi\left(n_{1}\right)(\pi(n)(v)-\psi(n) v) \psi^{-1}\left(n_{1}\right) d n_{1}=0$. Thus

$$
V_{\psi}(N) \subset\left\{v \in V \mid \int_{N_{m}} \pi(n)(v) \psi^{-1}(n) d n=0 \text { for some } m\right\}
$$

Suppose $v \in V$ and $\int_{N_{m}} \pi(n)(v) \psi^{-1}(n) d n=0$ for some m. Let $N_{m, v}=$ $\left\{n \in N_{m} \mid \pi(n) v=v\right\} \cap \operatorname{ker}(\psi)$. Then $N_{m, v}$ is an open subgroup of the compact group N_{m}. Thus $N_{m} / N_{m, v}$ is finite and

$$
\int_{N_{m}} \pi(n)(v) \psi^{-1}(n) d n=\left|N_{m} / N_{m, v}\right|^{-1} \sum_{k \in N_{m} / N_{m, v}} \pi(k)(v) \psi^{-1}(k)
$$

This implies

$$
\begin{aligned}
v & =v-\int_{N_{m}} \pi(n)(v) \psi^{-1}(n) d n \\
& =-\left|N_{m} / N_{m, v}\right|^{-1} \sum_{k \in N_{m} / N_{m, v}} \psi^{-1}(k)(\pi(k)(v)-\psi(k) v) .
\end{aligned}
$$

Proposition 1.1.48. The functor $V \rightarrow V_{\psi, N}$ (viewing as a functor in the category of N-modules) is exact.

Corollary 1.1.49. Let $f \in \operatorname{Ind}_{B}^{G} \chi$. We can then always write f as

$$
f=f^{\prime}+f^{\prime \prime}
$$

where f^{\prime} is in $V_{\psi}(N)$ and $f^{\prime \prime}$ has support in $B w_{0} N$.
Proof. Let V be subspace of $\operatorname{Ind}_{B}^{G} \chi$ contains all the functions have support in $B w_{0} N$. We have then the following exact sequence (of N-modules):

$$
0 \rightarrow V \rightarrow \operatorname{Ind}_{B}^{G} \chi \rightarrow \mathbb{C} \rightarrow 0
$$

Note that $\mathbb{C}_{\psi, N}=0$. Using Proposition 1.1.48, we obtain then $V_{\psi, N} \simeq$ $\left(\operatorname{Ind}_{B}^{G} \chi\right)_{\psi, N}$.
Corollary 1.1.50. Let $f \in \operatorname{Ind}_{B}^{G} \chi$. Then the integral

$$
L_{m}:=\int_{N_{m}} f\left(w_{0} n\right) \psi^{-1}(n) d n
$$

converges when m tends to ∞. Moreover $L=\lim _{m \rightarrow \infty} L_{m}$ is a Whittaker functional on $\operatorname{Ind}_{B}^{G} \chi$.

Proof. Denotes

$$
I_{m}:=\int_{N_{m}} f\left(w_{0} n\right) \psi^{-1}(n) d n .
$$

We shall prove that there exists m_{0} such that $I_{m}=I_{m_{0}}$ for all $m \geq m_{0}$.
Using Corollary 1.1.49, the function f can be written as

$$
f=f^{\prime}+f^{\prime \prime}
$$

where $f^{\prime} \in\left(\operatorname{Ind}_{B}^{G} \chi\right)_{\psi}(N)$ and $f^{\prime \prime}$ has support in $B w_{0} N$.
Due to Proposition 1.1.48, there exist $m_{1} \in \mathbb{Z}$ such that

$$
\int_{N_{m}} f^{\prime}\left(w_{0} n\right) \psi^{-1}(n) d n=0
$$

for all $m \geq m_{1}$.
Furthermore, the function $n \mapsto f^{\prime \prime}\left(w_{0} n\right)$ has a compact support in N. Indeed, let $|z|$ be so large that

$$
f^{\prime \prime}\left(\begin{array}{ll}
1 & 0 \\
\frac{1}{z} & 1
\end{array}\right)=f^{\prime \prime}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=0
$$

then

$$
\begin{aligned}
f^{\prime \prime}\left(w_{0}\left(\begin{array}{ll}
1 & z \\
0 & 1
\end{array}\right)\right) & =f^{\prime \prime}\left(\left(\begin{array}{cc}
\frac{-1}{z} & 1 \\
0 & z
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
\frac{1}{z} & 1
\end{array}\right)\right) \\
& =\chi_{1}\left(\frac{-1}{z}\right) \chi_{2}(z)\left|\frac{-1}{z^{2}}\right|^{\frac{1}{2}} f^{\prime \prime}\left(\begin{array}{cc}
1 & 0 \\
\frac{1}{z} & 1
\end{array}\right)=0 .
\end{aligned}
$$

It implies that there exists $m_{2} \in \mathbb{Z}$ such that

$$
\int_{N_{m}} f^{\prime \prime}\left(w_{0} n\right) \psi^{-1}(n) d n=\int_{N_{m}} f^{\prime \prime}\left(w_{0} n\right) \psi^{-1}(n) d n
$$

for all $m \geq m_{2}$.
Take $m_{0}=\max \left\{m_{1}, m_{2}\right\}$, we obtain then our claim.
The second assertion of this corollary is obvious.
We can now describe the Whittaker model associated to $\operatorname{Ind}_{B}^{G} \chi$. Let $f(g) \in \operatorname{Ind}_{B}^{G} \chi$. We define

$$
W_{f}(g)=L\left(r_{g}(f)\right)=\lim _{m \rightarrow \infty} \int_{N_{m}} f\left(w_{0} n g\right) \psi^{-1}(n) d n
$$

Since

$$
w_{0}\left(\begin{array}{ll}
1 & z \\
0 & 1
\end{array}\right) \operatorname{diag}(a, 1) w_{0}=\left(\begin{array}{cc}
-\frac{a}{z} & 1 \\
0 & z
\end{array}\right) w_{0}\left(\begin{array}{cc}
1 & \frac{a}{z} \\
0 & 1
\end{array}\right)
$$

we have

$$
W_{f_{m}}\left(\operatorname{diag}(a, 1) w_{0}\right)=\lim _{n \rightarrow \infty} \int_{\left|\frac{a}{z}\right| \leq q^{m}}^{|z| \leq q^{n}} \chi_{1}\left(-\frac{a}{z}\right) \chi_{2}(z)\left|\frac{a}{z^{2}}\right|^{\frac{1}{2}} \psi\left(\frac{a}{z}-z\right) d z
$$

Theorem 1.1.51. Let π be the infinite dimensional irreducible component of $\operatorname{Ind}_{B}^{G} \chi$. We have

$$
j_{\pi}(g)=\psi\left(n_{1} n_{2}\right) \chi_{1}(z) \chi_{2}(z) \int^{+,-} \chi_{1}\left(\frac{-a}{x}\right) \chi_{2}(x)\left|\frac{a}{x^{2}}\right|^{\frac{1}{2}} \psi\left(\frac{a}{x}-x\right) d x
$$

if $g=n_{1} z \operatorname{diag}(a, 1) w_{0} n_{2}$ with $n_{1}, n_{2} \in N, z \in Z(G)$ and $j_{\pi}(g)=0$ otherwise. Here

$$
\int^{+,-} \phi(x) d x=\lim _{m \rightarrow \infty} \int_{q^{-m} \leq|x| \leq q^{m}} \phi(x) d x
$$

if the limit exists.

Bessel functions for cuspidal representations of G. (We will follow the work of Baruch and Snitz in [4]). We have known that (for p is odd) all cuspidal representations are given by the construction of Jacquet and Langlands (cf. Section 1.1.4). For a convenience, we recall their construction. Let E be a quadratic extension of the p-adic field F. Let β be a quasicharacter of E^{\times}which does not factor through the norm, i.e there does not exist a quasi-character α of F^{\times}such that $\beta(z)=\alpha(N(z))$ for all $z \in E^{\times}$. Let τ be the non-trivial quadratic character defined on $F^{\times} / N\left(E^{\times}\right)$and extended to F^{\times}. Let $C_{c}^{\infty}(E)$ be the Schwartz space of locally constant and compactly supported functions on E. Let $S_{\beta}(E)$ be the subspace of functions $f \in$ $C_{c}^{\infty}(E)$ such that

$$
\begin{equation*}
f(x z)=\beta\left(z^{-1}\right) f(x) \tag{1.1.12}
\end{equation*}
$$

for all $z \in E^{1}:=\{z \in E \mid N(z)=1\}$. Let G_{+}be the subgroup of matrices in G whose determinant is a norm. Let $a \in F$ be a norm. Then there exists $z_{a} \in E$ such that $N\left(z_{a}\right)=a$. The group G_{+}acts on $S_{\beta}(E)$ as follows:

$$
\begin{align*}
(n(x) f)(y) & :=\psi\left(x y^{2}\right) f(y), \\
(\operatorname{diag}(a, 1) f)(y) & :=\left|z_{a}\right|_{E}^{1 / 2} \beta\left(z_{a}\right) f\left(y z_{a}\right), \tag{1.1.13}\\
\left(\operatorname{diag}\left(b, b^{-1}\right) f\right)(y) & :=\tau(b)|b|_{E}^{1 / 2} f(b y),
\end{align*}
$$

and

$$
(w f)(y):=\gamma(\psi, E) \hat{f}(\bar{y})
$$

where $\gamma(\psi, E)$ is the Weil constant defined in Lemma 1.1.25. We denote by r_{β} the cuspidal representation attached to β of G via the construction of Jacquet and Langlands. Then r_{β} is the representation of G induced from the above representation of G_{+}. In other word, the space of r_{β} is given by

$$
V_{r_{\beta}}:=\left\{\mathfrak{f}: G \rightarrow S_{\beta}(E) \mid \mathfrak{f}(h x)=h \mathfrak{f}(x), h \in G_{+}\right\},
$$

and G acts by right translation: $\left(r_{\beta}(g) \mathfrak{f}\right)(x)=\mathfrak{f}(x g)$.
Before stating our formula for Bessel functions for cuspidal representations of G, we need to fix some Haar measures. Let $d r$ be a self dual measure on F with respect to ψ. We let $d^{\times} r=d r /|r|_{F}$ be a multiplicative Haar measure on F^{\times}. Let $d z$ be an additive Haar measure on E. Let $\left\{\epsilon_{1}, \ldots, \epsilon_{\ell}\right\}$ be a set of representatives of $F^{\times} /\left(F^{\times}\right)^{2}$. Then, E^{\times}is the disjoint union of $E_{\epsilon_{i}}(i=1, \ldots, \ell)$, where

$$
E_{\epsilon_{i}}:=\left\{z \in E \mid \exists r_{z} \in K^{\times}, N(z)=r_{z}^{2} \epsilon_{i}\right\} .
$$

Note that $E_{\epsilon_{i}}$ is empty if ϵ_{i} is not a norm, and r_{z} is defined up to a sign. If $E_{\epsilon_{i}}$ is non-empty, we define a measure on $E_{\epsilon_{i}}$ to be the restriction of $d z$ to
the open sets $E_{\epsilon_{i}}$. Assume that ϵ_{i} is a norm and choose $z_{\epsilon_{i}} \in E$ such that $N\left(z_{\epsilon_{i}}\right)=\epsilon_{i}$. Then every element $z \in E_{\epsilon_{i}}$ can be written in the form (unique up to the sign of r_{z} and $\left.\alpha\right) z=z_{\epsilon_{i}} r_{z} \alpha$ with $\alpha \in E^{1}$. We define then a Haar measure $d \alpha$ on E^{1} such that

$$
d z=\left|z_{\epsilon_{i}}\right|_{E}\left|r_{z}\right|_{E}^{1 / 2} d r d \alpha
$$

It is easy to check that this measure does not depend on ϵ_{i}.
For $x \in K$, we define $E^{x}:=\{z \in E \mid N(z)=x\}$. It is easy to see that E^{x} is empty when x is not a norm. If E^{x} is non-empty, then $E^{x}=z E^{1}$, where z is any element satisfying $N(z)=x$. We define a measure $d_{x} \alpha$ on E^{x} by $d_{x} \alpha=|z|_{E}^{1 / 2} d \alpha$. It is clear that this measure does not depend on the choice of z.

Theorem 1.1.52. Let β be a quasi-character of E^{\times}which does not factor through the norm form E to F. Let r_{β} be the cuspidal representation of $\mathrm{GL}_{2}(F)$ attached to β. We have

$$
j_{r_{\beta}}(g)=\psi\left(n_{1} n_{2}\right) \beta(z) \gamma(\psi, E) \int_{E^{a}} \beta(\alpha) \psi(\operatorname{tr}(\alpha)) d_{a} \alpha
$$

if $g=n_{1} z \operatorname{diag}(a, 1) w n_{2}$ with $n_{1}, n_{2} \in N, z \in Z(G), a$ is a norm and $j_{\pi}(g)=$ 0 otherwise.

Proof. We consider a Whittaker functional $L: V_{r_{\beta}} \rightarrow \mathbb{C}$ defined by $L(\mathfrak{f}):=$ $\mathfrak{f}(I)(1)$, where I is unit matrix of G and 1 is the unit element of E. The corresponding Whittaker function is then $W_{\mathfrak{f}}(g):=L\left(r_{\beta}(g) \mathfrak{f}\right)$. Using the standard way, we obtain then the Kirillov functions

$$
\begin{equation*}
\phi_{\mathfrak{f}}(b):=W_{\mathfrak{f}}(\operatorname{diag}(b, 1))=L\left(r_{\beta}(\operatorname{diag}(b, 1)) \mathfrak{f}\right) . \tag{1.1.14}
\end{equation*}
$$

It follows from the definition that the mapping $\mathfrak{f} \rightarrow \phi_{\mathfrak{f}}$ is one to one and the space of all such function ϕ_{f} is $C_{c}^{\infty}\left(F^{\times}\right)$. Due to Lemma 1.1.42, the Bessel function $j_{r_{\beta}}$ can be calculated by calculating $\phi_{r_{\beta}(w) \mathfrak{f}}(b)=L\left(r_{\beta}(\operatorname{diag}(b, 1) w) \mathfrak{f}\right)$.

Since $\left\{\epsilon_{1}, \ldots, \epsilon_{\ell}\right\}$ is a set of representatives of $F^{\times} /\left(F^{\times}\right)^{2}$, there exist $r_{b} \in$ F^{\times}and $j \in\{1, \ldots, \ell\}$ such that $b=r_{b}^{2} \epsilon_{j}$. We can write then

$$
\operatorname{diag}(b, 1) w=\operatorname{diag}\left(r_{b}^{2}, 1\right) \operatorname{diag}\left(\epsilon_{j}, \epsilon_{j}\right) w \operatorname{diag}\left(\epsilon_{j}^{-1}, 1\right)
$$

and $\phi_{r_{\beta}(w) f}(b)$ becomes

$$
L\left(r_{\beta}\left(\operatorname{diag}\left(r_{b}^{2}, 1\right) \operatorname{diag}\left(\epsilon_{j}, \epsilon_{j}\right) w \operatorname{diag}\left(\epsilon_{j}^{-1}, 1\right)\right) \mathfrak{f}\right) .
$$

Now r_{b}^{2} is the norm of the element $r_{b} \in F$ viewed as a vector in E, and the scalar matrix $\operatorname{diag}\left(\epsilon_{j}, \epsilon_{j}\right)$ acts by the central character. So we get (cf. (1.1.12))

$$
\begin{aligned}
\phi_{r_{\beta}(w) \mathfrak{f}}(b) & =\left|r_{b}\right|_{E}^{1 / 2} \beta\left(r_{b}\right) \beta\left(\epsilon_{j}\right) \mathfrak{f}\left(w \operatorname{diag}\left(\epsilon_{j}^{-1}, 1\right)\right)\left(r_{b}\right) \\
& =\left|r_{b}\right|_{E}^{1 / 2} \beta\left(r_{b} \epsilon_{j}\right) \gamma(\psi, E) \widehat{\mathfrak{f}\left(\operatorname{diag}\left(\epsilon_{j}^{-1}, 1\right)\right)}\left(r_{b}\right) \\
& =\left|r_{b}\right|_{E}^{1 / 2} \beta\left(r_{b} \epsilon_{j}\right) \gamma(\psi, E) \int_{E} \mathfrak{f}\left(\operatorname{diag}\left(\epsilon_{j}^{-1}, 1\right)\right)(y) \psi\left(\operatorname{tr}\left(r_{b} y\right)\right) d y .
\end{aligned}
$$

Recall that E is the disjoint union of $E_{\epsilon_{i}}(i=1, \ldots, \ell)$. Therefore, the integral over E breaks up into a sum of integrals over the sets $E_{\epsilon_{i}}$, i.e,

$$
\begin{equation*}
\phi_{r_{\beta}(w) \mathfrak{f}}(b)=\sum_{i=1}^{\ell} I_{\epsilon_{i}}(b, \mathfrak{f}) \tag{1.1.15}
\end{equation*}
$$

where

$$
I_{\epsilon_{i}}(b, \mathfrak{f}):=\left.r_{b}\right|_{E} ^{1 / 2} \beta\left(r_{b} \epsilon_{j}\right) \gamma(\psi, E) \int_{E_{\epsilon_{i}}} \mathfrak{f}\left(\operatorname{diag}\left(\epsilon_{j}^{-1}, 1\right)\right)(y) \psi\left(\operatorname{tr}\left(r_{b} y\right)\right) d y .
$$

If $E_{\epsilon_{i}}=$ (is equivalent to that ϵ_{i} is not a norm), we set $I_{\epsilon_{i}}(b, \mathfrak{f})=0$. Recall that if $E_{\epsilon_{i}}$ is non-empty, then every element $y \in E_{\epsilon_{i}}$ can be written in the form $y=z_{\epsilon_{i}} r_{y} \alpha$ with $\alpha \in E^{1}, r_{y} \in F^{\times}$and $z_{\epsilon_{i}} \in E$ such that $N\left(z_{\epsilon_{i}}\right)=\epsilon_{i}$. So, $I_{\epsilon_{i}}$ can be written as a double integral

$$
\left|r_{b}\right|_{E}^{1 / 2} \beta\left(r_{b} \epsilon_{j}\right) \gamma \int_{F^{\times}} \int_{E^{1}} \mathfrak{f}\left(\operatorname{diag}\left(\epsilon_{j}^{-1}, 1\right)\right)\left(z_{\epsilon_{i}} r_{y} \alpha\right) \psi\left(\operatorname{tr}\left(r_{b} z_{\epsilon_{i}} r_{y} \alpha\right)\right) d \alpha\left|z_{\epsilon_{i}} r_{y}\right|_{E} d^{\times} r_{y}
$$

Using relation (1.1.11), $I_{\epsilon_{i}}$ is then
$\left|r_{b}\right|_{E}^{1 / 2} \beta\left(r_{b} \epsilon_{j}\right) \gamma \int_{F^{\times}} \mathfrak{f}\left(\operatorname{diag}\left(\epsilon_{j}^{-1}, 1\right)\right)\left(z_{\epsilon_{i}} r_{y}\right)\left|z_{\epsilon_{i}} r_{y}\right|_{E} \int_{E^{1}} \beta\left(\alpha^{-1}\right) \psi\left(\operatorname{tr}\left(r_{b} z_{\epsilon_{i}} r_{y} \alpha\right)\right) d \alpha d^{\times} r_{y}$.
Now using equations (1.1.13) and (1.1.12), we have

$$
\phi_{\mathrm{f}}\left(r_{y}^{2} \epsilon_{i} \epsilon_{j}^{-1}\right)=L\left(r_{\beta}\left(\operatorname{diag}\left(r_{y}^{2} \epsilon_{i} \epsilon_{j}^{-1}\right)\right) \mathfrak{f}\right)=\left|r_{y} z_{\epsilon_{i}}\right|_{E}^{1 / 2} \beta\left(r_{y} z_{\epsilon}\right) \mathfrak{f}\left(\operatorname{diag}\left(\epsilon_{j}^{-1}, 1\right)\right)\left(r_{y} z_{\epsilon_{i}}\right),
$$

so

$$
\begin{aligned}
& I_{\epsilon_{i}}(b, \mathfrak{f})=\left|r_{b}\right|_{E}^{1 / 2} \beta\left(r_{b} \epsilon_{j}\right) \gamma \int_{F^{\times}} \phi_{\mathfrak{f}}\left(r_{y}^{2} \epsilon_{i} \epsilon_{j}^{-1}\right)\left|z_{\epsilon_{i}} r_{y}\right|_{E}^{1 / 2} \beta\left(z_{\epsilon_{i}} r_{y}\right)^{-1} \times \\
& \int_{E^{1}} \beta\left(\alpha^{-1}\right) \psi\left(\operatorname{tr}\left(r_{b} z_{\epsilon_{i}} r_{y} \alpha\right)\right) d \alpha d^{\times} r_{y} .
\end{aligned}
$$

We define

$$
\begin{equation*}
J_{\epsilon_{i}}\left(b, \epsilon_{i} \epsilon_{j}^{-1} r_{y}^{2}\right)=\gamma\left|r_{b} z_{\epsilon_{i}} r_{y}\right|_{E}^{1 / 2} \beta\left(r_{b} \epsilon_{j} z_{\epsilon_{i}}^{-1} r_{y}^{-1}\right) \int_{E^{1}} \beta\left(\alpha^{-1}\right) \psi\left(\operatorname{tr}\left(r_{b} z_{\epsilon_{i}} r_{y} \alpha\right)\right) d \alpha \tag{1.1.16}
\end{equation*}
$$

if ϵ_{i} is a norm and $J\left(b, \epsilon_{i} \epsilon_{j}^{-1} r_{y}^{2}\right)=0$ otherwise. We have then

$$
I_{\epsilon_{i}}(b, \mathfrak{f})=\int_{F^{\times}} \phi_{\mathfrak{f}}\left(r_{y}^{2} \epsilon_{i} \epsilon_{j}^{-1}\right) J\left(b, \epsilon_{i} \epsilon_{j}^{-1} r_{y}^{2}\right) d^{\times} r_{y} .
$$

We change the variable of integration to $x=r_{y}^{2} \epsilon_{i} \epsilon_{j}^{-1}$ and integrate over the set $\epsilon_{i} \epsilon_{j}^{-1}\left(F^{\times}\right)^{2}$, and we get

$$
\begin{equation*}
I_{\epsilon_{i}}(b, \mathfrak{f})=\int_{\epsilon_{i} \epsilon_{j}^{-1}\left(F^{\times}\right)^{2}} J_{\epsilon_{i}}(b, x) \phi_{\mathfrak{f}}(x) d^{\times} x . \tag{1.1.17}
\end{equation*}
$$

For any $x \in F^{\times}$, there exists uniquely $i \in\{1, \ldots, \ell\}$ such that the square class of $b x$ is ϵ_{i}. Recall that $b=\epsilon_{j} r_{b}^{2}$. So there exist uniquely (up to a sign) $r_{y} \in K^{\times}$such that $x=\epsilon_{i} \epsilon_{j}^{-1} r_{y}^{2}$. We define

$$
J(b, x)=J_{\epsilon_{i}}\left(b, \epsilon_{i} \epsilon_{j}^{-1} r_{y}^{2}\right)
$$

Combining equations (1.1.14), (1.1.16) and definition of $J(b, x)$, we get

$$
\begin{equation*}
\phi_{r_{\beta}(w) \mathfrak{f}}(b)=\int_{F^{\times}} J(b, x) \phi_{\mathfrak{f}}(x) d^{\times} x . \tag{1.1.18}
\end{equation*}
$$

Let $z=r_{b} r_{y} z_{\epsilon_{i}} \alpha$. As α varies over E^{1}, z varies over $E^{b x}$. Recall that

$$
d z=\left|r_{b} r_{y} z_{\epsilon_{i}}\right|_{E}^{1 / 2} d \alpha
$$

so we can write J as (cf. equation (1.1.15))

$$
J(b, x)=\gamma \beta(b) \int_{E^{b x}} \beta\left(z^{-1}\right) \psi(\operatorname{tr}(z)) d z=\gamma \beta\left(x^{-1}\right) \int_{E^{b x}} \beta\left(b x z^{-1}\right) \psi(\operatorname{tr}(z)) d z
$$

Since $N(z)=z \bar{z}=b x$, we have $b x z^{-1}=z \bar{z} z^{-1}=\bar{z}$. Moreover $\operatorname{tr}(\bar{z})=\operatorname{tr}(z)$, so

$$
J(b, x)=\gamma \beta\left(x^{-1}\right) \int_{E^{b x}} \beta(z) \psi(\operatorname{tr}(z)) d z .
$$

Combine above equation with (1.1.17), we obtain then

$$
\phi_{r_{\beta}(w) \mathfrak{f}}(b)=\int_{F^{\times}} \phi_{\mathfrak{f}}(x) \beta\left(x^{-1}\right)\left[\gamma \int_{E^{b x}} \beta(z) \psi(\operatorname{tr}(z)) d z\right] d^{\times} x .
$$

It implies that $j_{r_{\beta}}(w)=$

1.1.8 Orbital integrals

We denote by G_{rs} the set of semi-simple regular elements of G, i.e the set of matrix has a separable characteristic polynomial. Let T^{\prime} be a maximal torus of G, we shall denote by $T_{G-\mathrm{reg}}^{\prime}=T^{\prime}-Z$ the subset of regular elements. (T^{\prime} can be a centralizer of an elliptic element which has an irreducible (in $F[X]$) characteristic polynomial or the "standard" split torus T.)

For $g \in G$ we denote $D(g)=4-\operatorname{det}(g)^{-1} \operatorname{tr}(g)^{2}$.
Proposition 1.1.53 (Orbital integrals). Let $\gamma \in G$ and $f \in C_{c}^{\infty}(G)$. Then $\int_{G_{\gamma} \backslash G} f\left(g^{-1} \gamma g\right) d \dot{g}$ where G_{γ} is the centralizer of $\gamma \in G$ converges absolutely. The integral

$$
O_{\gamma}(f):=\int_{G_{\gamma} \backslash G} f\left(g^{-1} \gamma g\right) d \dot{g}
$$

is called orbital integral of f at γ.
Proof. If γ is central, then $G_{\gamma}=G$. So the statement is trivial.
Now we look at the case when γ is a hyperbolic (or split) semi-simple regular element (which is conjugated to $\operatorname{diag}(x, y) \in T$ for $x \neq y$). We can assume that $\gamma \in T$, so that $G_{\gamma}=T$. Using Iwasawa decompostion $G=T \times N \times K_{0}$ we have

$$
O_{\gamma}(f)=\int_{N \times K_{0}} f\left(k^{-1} n^{-1} \gamma n k\right) d n d k .
$$

Denote $\gamma=\operatorname{diag}(x, y)$ and $n=\left(\begin{array}{ll}1 & u \\ 0 & 1\end{array}\right)$. Then $n^{-1} \gamma n=\gamma\left(\begin{array}{c}1 \\ 0\end{array}\left(\begin{array}{l}1-y / x) u\end{array}\right)\right.$ and we have

$$
\begin{align*}
O_{\gamma}(f) & =|1-y / x|^{-1} \int_{K_{0} \times N} f\left(k^{-1} \gamma n k\right) d k d n \\
& =|D(\gamma)|^{-1 / 2} \delta_{B}^{1 / 2}(\gamma) \int_{K_{0} \times N} f\left(k^{-1} \gamma n k\right) d k d n \tag{1.1.19}
\end{align*}
$$

Since $f \in C_{c}^{\infty}(G)$, there exists $K \subset K_{0}$ an open compact subgroup of G such that f is bi- K-invariant.

Theorem 1.1.54 (Germ expansion). Let γ be an elliptic element in G which is sufficiently close to e. Write E for the splitting field of the quadratic torus T^{\prime}-determined uniquely up to conjugation in G by γ. Then

$$
O_{\gamma}(f)=-\frac{2}{q-1} \operatorname{vol}\left(K_{0}\right) O_{e}(f)+\kappa_{T^{\prime}} c\left(T^{\prime}\right)|D(\gamma)|^{-1 / 2} O_{\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)}(f),
$$

where $\kappa_{T^{\prime}}=\left\{\begin{array}{ll}2 & \text { if } E / F \text { is ramified } \\ \frac{q+1}{q} & \text { if } E / F \text { is unramified, }\end{array}\right.$ and $c\left(T^{\prime}\right)=c(E)$ is the square root of the absolute value of a generator of the discriminant of the splitting field E over F.

Proof. First we need to describe γ A local field F has the form $\mathbb{F}_{q}((\varpi))$, power series in the variable ϖ over the field \mathbb{F}_{q} where q is a power of an odd prime number p. Its ring of integers $\mathcal{O}=\mathbb{F}_{q}[[\varpi]]$, has the maximal ideal $\varpi \mathcal{O}$, and group of units $\mathcal{O}^{\times}=\mathcal{O}-\varpi \mathcal{O}$.

The ramified quadratic separable extension of F are $E=F(r)$ where r is a root of x^{2}

Corollary 1.1.55. Let C be a compact subset of G / Z. Then there is $c=$ $c(C)>0$ such that

$$
O_{\gamma}\left(1_{C}\right) \leq c|D(\gamma)|^{-1 / 2} c(E)
$$

for every $\gamma \in G_{\mathrm{rs}}^{\mathrm{ell}}$ where 1_{C} is the characteristic function of C in G / Z and $E=F(\gamma)$.

Proof. Using Germ expansion (cf. Theorem 1.1.54) for $f=1_{C}$ and taking

$$
c=2\left|O_{\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)}\left(1_{C}\right)\right|
$$

we obtain then the Corollary.
Theorem 1.1.56 (Change of variable formula). Let $\phi: X \rightarrow Y$ be a morphism between p-adic manifolds of constant dimensions such that the differential of ϕ is everywhere invertible (in particular, $\operatorname{dim}(X)=\operatorname{dim}(Y)$). Assume that the fibers of ϕ have bounded cardinality, and denote $c_{\phi}: Y \rightarrow \mathbb{Z}_{\geq 0}$, $y \mapsto \#\left(\phi^{-1}(\{y\})\right)$. Then for any differential form ω on Y and any function $f: Y \rightarrow \mathbb{C}$ that is integrable with respect to $|\omega|$, we have

$$
\int_{X} f \circ \phi\left|\phi^{*} \omega\right|=\int_{Y} f c_{\phi}|\omega| .
$$

1.1.9 Harish-Chandra characters

Theorem 1.1.57. Let (π, V) be an irreducible representation of G. Then there is a unique smooth function $\Theta_{\pi}: G_{\mathrm{rs}} \rightarrow \mathbb{C}$ such that Θ_{π} is locally integrable on G, and for any $f \in \mathcal{H}(G)$ we have

$$
\operatorname{tr} \pi(f)=\int_{G} f(g) \Theta_{\pi}(g) d g
$$

Definition 1.1.58. Let (π, V) be a smooth representation of G. Assume that χ_{π} is its central quasi-character. We say that π is square-integrable (or part of the discrete series) if χ_{π} is unitary and for any $v \in V$ and $\widetilde{v} \in \widetilde{V}$,

$$
\int_{G / Z}|\langle\pi(g) v, \widetilde{v}\rangle|^{2} d g<+\infty
$$

We say that π is essentially square-integrable if there exists $s \in \mathbb{R}_{+}$ such that $|\operatorname{det}|^{s} \otimes \pi$ is square-integrable.

Lemma 1.1.59. Any irreducible square-integrable representation is unitarizable, i.e admits a G-invariant hermitian inner product. Moreover the G invariant hermitian inner product is unique up to \mathbb{R}_{+}.

Proof. Let (π, V) be an irreducible square-integrable representation of G with central character χ_{π}. We denote by $L^{2}\left(G, \chi_{\pi}\right)$ the space of measurable functions $G \rightarrow \mathbb{C}$ such that $f(z g)=\chi_{\pi}(z) f(g)$ for all $z \in Z, g \in G$ and $\int_{G / Z}|f(g)|^{2} d g<+\infty$. This space has a canonical Hermitian form

$$
H_{0}\left(f, f^{\prime}\right)=\int_{G / Z} f(g) \overline{f^{\prime}}(g) d g
$$

For each $\widetilde{v} \in \widetilde{V}-\{0\}$, the function $g \mapsto\langle\pi(g) v, \widetilde{v}\rangle$ is belong to $L^{2}\left(G, \chi_{\pi}\right)$ and the map $v \mapsto(g \mapsto\langle\pi(g) v, \widetilde{v}\rangle)$ gives a G-equivariant embedding of V into $L^{2}\left(G, \chi_{\pi}\right)$. Thus V admits a G-invariant hermitian inner product.

Let $H(.,$.$) be any G$-invariant hermitian inner form on V. We denote by \bar{V} the \mathbb{C}-vector space V but with the product $\mathbb{C} \times V \rightarrow V:(c, v) \mapsto \bar{c} v$. Then $H(.,$.$) is a G$-invariant non-degenerate bilinear form on $V \times \bar{V}$. Using Proposition 1.1.3, $H(.,$.$) can be see as a G$-isomorphism $\varphi_{H}: \bar{V} \rightarrow \widetilde{V}$. More precisely,

$$
H\left(v_{1}, v_{2}\right)=\left\langle v_{1}, \varphi_{H}\left(v_{2}\right)\right\rangle .
$$

Since \bar{V} is irreducible, by Schur's lemma, the G-invariant hermitian inner product is unique up to a scalar. Due to positive-definiteness of inner product, this scalar should be in \mathbb{R}_{+}.

Proposition 1.1.60 (Formal degree). Let (π, V) be an irreducible essentially square-integrable representation of G. Then for any $u, v \in V$ and $\widetilde{u}, \widetilde{v} \in \widetilde{V}$ the integral

$$
\int_{G / Z}\langle\pi(g) u, \widetilde{u}\rangle\langle v, \widetilde{\pi}(g) \widetilde{v}\rangle
$$

converges absolutely and there exists a unique $d_{\pi} \in \mathbb{R}_{+}$, called the formal degree of π such that

$$
\int_{G / Z}\langle\pi(g) u, \widetilde{u}\rangle\langle v, \widetilde{\pi}(g)\rangle=\frac{1}{d_{\pi}}\langle u, \widetilde{v}\rangle\langle v, \widetilde{u}\rangle
$$

Proof. Assume that χ_{π} is the central quasi-character of π. Since $\widetilde{\pi}$ is equivalent to $\chi_{\pi}^{-1} \otimes \pi$ (cf. Theorem 1.1.32), the absolute convergence of

$$
\int_{G / Z}\langle\pi(g) u, \widetilde{u}\rangle\langle v, \widetilde{\pi}(g) \widetilde{v}\rangle d g
$$

is equivalent to the absolute convergence of

$$
\int_{G / Z}\langle\pi(g) u, \widetilde{u}\rangle\langle\pi(g) v, \widetilde{v}\rangle \chi_{\pi}^{-1}(\operatorname{det}(g)) d g
$$

Moreover, since (π, V) is essentially square-integrable we have

$$
\begin{aligned}
\int_{G / Z}\left|\langle\pi(g) u, \widetilde{u}\rangle\langle\pi(g) v, \widetilde{v}\rangle \chi_{\pi}^{-1}(\operatorname{det}(g))\right| d g & \leq \frac{1}{2} \int_{G / Z}|\langle\pi(g) u, \widetilde{u}\rangle|^{2}+\left.\langle\pi(g) v, \widetilde{v}\rangle\right|^{2} d g \\
& <+\infty
\end{aligned}
$$

Now we fix $\widetilde{u} \in \widetilde{V}$ and $v \in V$, then the integral

$$
\int_{G / Z}\langle\pi(g) u, \widetilde{u}\rangle\langle v, \widetilde{\pi}(g) \widetilde{v}\rangle d g
$$

is a G-invariant non-degenerate bilinear form on $V \times \widetilde{V}$. Since \tilde{V} is irreducible (cf. 1.1.6), using Proposition 1.1.3 and Schur's lemma, it is a complex number times the canonical non-degenerate bilinear form on $V \times \widetilde{V}$. In other word, there exist a function $c_{\pi}: V \times \widetilde{V} \rightarrow \mathbb{C}$ such that

$$
\int_{G / Z}\langle\pi(g) u, \widetilde{u}\rangle\langle v, \widetilde{\pi}(g) \widetilde{v}\rangle d g=c_{\pi}(v, \widetilde{u})\langle u, \widetilde{v}\rangle \quad \forall(u, \widetilde{v}) \in V \times \widetilde{V}
$$

Fix $u \in V$ and $\widetilde{v} \in \widetilde{V}$. The integral

$$
\int_{G / Z}\langle\pi(g) u, \widetilde{u}\rangle\langle v, \widetilde{\pi}(g) \widetilde{v}\rangle d g
$$

is also a G-invariant non-degenerate bilinear form on $V \times \widetilde{V}$. It implies that $c_{\pi}(v, \widetilde{u})$ is a G-invariant non-degenerate bilinear form on $V \times \widetilde{V}$. Using Proposition 1.1.3 and Schur's lemma again, there exist $c_{\pi} \in \mathbb{C}$ such that

$$
c_{\pi}(v, \widetilde{u})=c_{\pi}\langle v, \widetilde{u}\rangle .
$$

Hence

$$
\begin{equation*}
\int_{G / Z}\langle\pi(g) u, \widetilde{u}\rangle\langle v, \widetilde{\pi}(g) \widetilde{v}\rangle d g=c_{\pi}\langle u, \widetilde{v}\rangle\langle v, \widetilde{u}\rangle . \tag{1.1.20}
\end{equation*}
$$

It remains to show that $c_{\pi} \in \mathbb{R}_{+}$. Up to twisting by a character, we can assume that π is square-integrable. Pick any G-invariant hermitian inner product $H(.,$.$) on V$, which is equivalent to an isomorphism $\varphi_{H}: \bar{V} \rightarrow \widetilde{V}$ (cf. proof of Lemma 1.1.59). Taking $\widetilde{u}=\varphi_{H}(v)$ and $\widetilde{v}=\varphi_{H}(u)$ for arbitrary $u, v \in V-\{0\}$, the LHS of (1.1.19) is equal to

$$
\int_{G / Z} H(\pi(g) u, v) H(v, \pi(g) u) d g=\int_{G / Z}|H(\pi(g) u, v)|^{2} d g
$$

which is non-negative and not identically vanishing, and the RHS of (1.1.19) is equal to $c_{\pi} H(u, u) H(v, v)$, therefore $c_{\pi} \in \mathbb{R}_{+}$.
Theorem 1.1.61 (Weyl integration formula). Fix a set \mathcal{T} of representatives of conjugacy classes of tori in $G(F)$. Let f be a measurable function on G. Then

$$
\int_{G} f(g) d g=\sum_{T^{\prime} \in \mathcal{T}} \frac{1}{2} \int_{T_{G-r e g}^{\prime}}|D(t)| O_{t}(f) d t
$$

if one side is absolutely convergent.
Proposition 1.1.62. Let $\chi: T \rightarrow \mathbb{C}^{\times}$be a quasicharacter of T, and consider $\pi=\operatorname{Ind}_{B}^{G} \chi$. Then Theorem 1.1.57 holds for π, and Θ_{π} is the unique G invariant function on $G_{r s}$ which vanishes identically on $G_{r s}^{\text {ell }}$ and such that for any $t \in T_{G-\text { reg }}$ we have

$$
\Theta_{\pi}(t)=|D(t)|^{-1 / 2}\left(\chi(t)+\chi^{w}(t)\right) .
$$

Proof. Due to the definition of $\operatorname{Ind}_{B}^{G} \chi$ and the Iwasawa decomposition, $\operatorname{Ind}_{B}^{G} \chi$ may be regarded as a space of function in $\phi \in C^{\infty}\left(K_{0}\right)$ which satisfies

$$
\phi(b k)=\delta_{B}^{1 / 2}(b) \chi(b) \phi(k)=\chi(b) \phi(k)
$$

for all $b \in B \cap K_{0}$ and $k \in K_{0}$. To evaluate $\operatorname{tr} \pi(f)$ we observe that if ϕ be a such function, $f \in \mathcal{H}(G)$ and $k_{1} \in K_{0}$, and using Iwasawa decomposition we have then

$$
\begin{aligned}
\pi(f)(\phi)\left(k_{1}\right) & =\int_{G} f(g) \phi\left(k_{1} g\right) d g=\int_{G} \phi(g) f\left(k_{1}^{-1} g\right) d g \\
& =\int_{K_{0} \times B} \phi\left(b k_{2}\right) f\left(k_{1}^{-1} b k_{2}\right) d k_{2} d b \\
& =\int_{K_{0}} \phi\left(k_{2}\right) \int_{B} \chi(b) \delta_{B}^{1 / 2}(b) f\left(k_{1}^{-1} b k_{2}\right) d b d k_{2} \\
& =\int_{K_{0}} \phi\left(k_{2}\right) \psi\left(k_{1}, k_{2}\right) d k_{2}
\end{aligned}
$$

where $\psi\left(k_{1}, k_{2}\right)=\int_{B} \mu(b) \delta_{B}^{1 / 2}(b) f\left(k_{1}^{-1} b k_{2}\right) d b$ is a smooth function on $K_{0} \times K_{0}$. We denote by $I(\psi)$ the integral operator on $C^{\infty}\left(K_{0}\right)$ defined by

$$
\phi \mapsto I(\psi)(\phi)(.)=\int_{K_{0}} \phi(k) \psi(., k) d k .
$$

Then $\pi(f)$ coincides with $I(\psi)$ on $\operatorname{Ind}_{B}^{G} \chi$. Moreover, we can easily check that $I(\psi)(\phi)$ belongs to $\operatorname{Ind}_{B}^{G} \chi$ for all $\phi \in C^{\infty}\left(K_{0}\right)$. (In fact, for $k_{1}, k_{2} \in K_{0}$ and $b_{1} \in B \cap K_{0}$ we have

$$
\begin{aligned}
\psi\left(b_{1} k_{1}, k_{2}\right) & =\int_{B} \chi(b) \delta_{B}^{1 / 2}(b) f\left(k_{1}^{-1} b_{1}^{-1} b k_{2}\right) d b \\
& =\int_{B} \chi\left(b_{1}\left(b_{1}^{-1} b\right)\right) \delta_{B}^{1 / 2}\left(b_{1}\left(b_{1}^{-1} b\right)\right) f\left(k_{1}^{-1}\left(b_{1}^{-1} b\right) k_{2}\right) d\left(b_{1}^{-1} b\right) \\
& \left.=\chi\left(b_{1}\right) \psi\left(k_{1}, k_{2}\right) .\right)
\end{aligned}
$$

Hence

$$
\operatorname{tr} \pi(f)=\operatorname{tr} I(\psi)=\int_{K_{0}} \psi(k, k) d k
$$

and so

$$
\begin{align*}
\operatorname{tr} \pi(f) & =\int_{K_{0}} \int_{B} \chi(b) \delta_{B}^{1 / 2}(b) f\left(k^{-1} b k\right) d b d k \\
& =\int_{K_{0}} \int_{T \times N} \chi(t) \delta_{B}^{1 / 2}(t) f\left(k^{-1} t n k\right) d t d n d k \\
& =\int_{T} \chi(t)|D(t)|^{1 / 2} O_{t}(f) d t \quad(\text { c.f. (1.1.18)) } \tag{1.1.21}
\end{align*}
$$

In other hand, using Weyl integration formula (c.f Theorem 1.1.61) and the definition of Θ_{π}, we have then

$$
\begin{align*}
\int_{G} f(g) \Theta_{\pi}(g) d g= & \frac{1}{2} \int_{T_{G-r e g}}|D(t)| \Theta_{\pi}(t) O_{t}(f) d t \\
= & \frac{1}{2} \int_{T_{G-r e g}}|D(t)|^{1 / 2}\left(\chi(t)+\chi^{w}(t)\right) O_{t}(f) d t \\
= & \frac{1}{2}\left[\int_{T}|D(t)|^{1 / 2} \chi(t) O_{t}(f) d t\right. \\
& \left.+\int_{T}\left|D\left(w_{0}^{-1} t w_{0}\right)\right|^{1 / 2} \chi\left(w_{0}^{-1} t w_{0}\right) O_{w_{0}^{-1} t w_{0}}(f) d\left(w_{0}^{-1} t w_{0}\right)\right] \\
= & \int_{T} \chi(t)|D(t)|^{1 / 2} O_{t}(f) d t . \tag{1.1.22}
\end{align*}
$$

Combining (1.1.20) and (1.1.21), we obtain then

$$
\operatorname{tr} \pi(f)=\int_{G} f(g) \Theta_{\pi}(g) d g
$$

with Θ_{π} is defined as in the Proposition.

Bibliography

[1] E. M. Baruch, On Bessel distribution for GL2 over p-adic field, Journal of number theory 67, 190-202 (1997).
[2] E. M. Baruch, Z. Mao, Bessel identities in the Waldspurger Correspondence over p-adic field, American Journal of Mathematics, vol. 125, No. 2 (2003), 225-288.
[3] E. M. Baruch, Z. Mao, Bessel identities in the Waldspurger Correspondence over the real numbers, Israel journal of Mathematics 145 (2005), 1-81.
[4] E. M. Baruch, K. Snitz, A note on Bessel functions for supercuspidal representations of GL(2) over a p-adic field, Algebra Colloquium 18 (spec 1) (2011) $733-738$.
[5] I. N. Bernstein, A. V. Zelevinsky, Representation theory of GL (n, F) where F is a non-Archimedean local field, Russian Math. Survey, 31:3 (1976), 1-68.
[6] C. J. Bushnell, G. Henniart, The local Langlands conjecture for GL(2), Grundlehren der mathematischen Wissenschaften 335, Springer, 2006.
[7] H. Jacquet, Kloosterman integrals for GL(2, $\mathbb{R})$, Pure and applied mathematics quarterly, volume 1 (2005), 257-289.
[8] I. M. Gelfand, D. Kazhdan, Representations of the group GL(n, K) where K is a local field, Lie Groups and Their Representations, Halsted, Newyork, (1975), 95-118.
[9] R. Godement, Notes on Jacquet-Langlands Theory, The Institute for Advanced Study (1970).
[10] H. Jacquet, Germs for Kloosterman integrals, a review, Contemporary Mathematics, vol. 664, (2016), 173-185.
[11] H. Jacquet, R. P.Langlands, Automorphic forms on GL(2), LNM 114, Springer, 1970.
[12] H. Jacquet, Y. Ye, Distinguished representations and quadratics base change for GL(3), Proc. AMS, vol 348, no. 3, (1996), 913-939.
[13] A. Knightly, C. Li, Traces of Hecke operator, Math. Sur. and Mono., vol 133, AMS (2006).
[14] R. P. Langlands, Base change for GL(2), Annals of Mathematics Study 96 (1980).
[15] B. C. Ngo, Harmonic analysis and representation theory of p-adic reductive groups, updated on 19th May 2016.
[16] A. J. Silberger, PGL_{2} over the p-adics: its representations, spherical functions, and Fourrier analysis, LNM 166, Springer, 1970.
[17] D. Soudry, The L and γ factors for generic representations of $\operatorname{GSp}(4, k) \times \operatorname{GL}(2, k)$ over a local non-archimedean field k, Duke Math. Journal 51, no. 2, (1984), 355-394.

