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Abstract. In this paper, we study rings having the property that every

finitely generated right ideal is automorphism-invariant. Such rings are called

right fa-rings. It is shown that a right fa-ring with finite Goldie dimension is

a direct sum of a semisimple artinian ring and a basic semiperfect ring. From

this, we obtain that if R is a right fa-ring with finite Goldie dimension such

that every minimal right ideal is a right annihilator and the right it’s socle is

essential in RR, R is also indecomposable (as ring), not simple with non-trivial

idempotents then R is QF. In this case, QF-rings are the same as q−, fq−,

a−, fa-rings. We also obtain a result of the automorphism-invariance of formal

matrix rings.

1. Introduction

Johnson and Wong [11] proved that a module M is invariant under any en-

domorphism of its injective envelope if and only if any homomorphism from a

submodule of M to M can be extended to an endomorphism of M. A module

satisfying one of these equivalent conditions is called a quasi-injective module.

Clearly any injective module is quasi-injective. A module M which is invariant

under automorphisms of it’s injective envelope has been called an automorphism-

invariant module. The class of these modules were investigated by many authors,

e.g., [1], [2], [6], [8], [14], [18], [20]. The generalizations of quasi-injectivity were

considered. Many results were obtained for a right q-ring (i.e., every right ideal is

quasi-injective) [9], [7], for a right a-ring (i.e., every right ideal is automorphism-

invariant) [12], for a right fq-ring (i.e., every finitely generated right ideal is

quasi-injective), for a right fa-ring (i.e., every finitely generated right ideal is

automorphism-invariant) [17]. In this paper, we continue consider the structure
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of a fa-ring with some addition conditions, for example, the finite Goldie di-

mension of the ring R, or R is semiperfect,.... Besides, we also consider the

automorphism-invariance of formal matrix rings.

Throughout this article all rings are associative rings with identity and all

modules are right unital unless stated otherwise. For a submodule N of M , we

use N ≤ M (N < M , resp.) to mean that N is a submodule of M (proper

submodule, resp.), and we write N ≤e M and N ≤⊕ M to indicate that N is

an essential submodule of M and N is a direct summand of M , respectively.

We denote by Soc(M) and E(M), the socle and the injective envelope of M ,

respectively. The Jacobson radical of a ring R is denoted by J(R) or J . A ring R

is called semiperfect in case R/J(R) is semisimple artinian and idempotents lift

modulo J(R). It is equivalent to every finitely generated right (left) R-module

has a projective cover. A module is called uniform if the intersection of any

two nonzero submodules is nonzero. A ring R is called I-finite if it contains no

infinite orthogonal family of idempotents. A ring R is said to have finite right

Goldie dimension if R does not contain an infinite direct sum of nonzero right

ideals. A ring R is called right pseudo-Frobenius (briefly, right PF) if R is right

self-injective, semiperfect and Soc(RR) ≤e RR. A ring R is local if R has a unique

maximal left (right) ideal. We call an idempotent e ∈ R local if eRe ∼= EndR(eR)

is a local ring. For any term not defined here the reader is referred to [3], [5], [13]

and [19].

Our paper will be structured as follows: In Section 1, we will give concepts,

some known results that are used or cited throughout in this paper. Section 2

deals with rings whose every finitely generated ideal is automorphism-invariant.

We have a right fa-ring with finite Goldie dimension is a direct sum of a semisim-

ple artinian ring and a basic semiperfect ring. Next, we consider the right fa-ring

with finite Goldie dimension such that every minimal right ideal is a right anni-

hilator and the right it’s socle is essential in RR. We obtain some properties of

the kind of these rings. From these, we have that for this ring and moreover it

is also indecomposable (as ring), not simple with non-trivial idempotents then it

is QF. In this case, QF-rings are the same as q−, fq−, a−, fa-rings. Section 3

discusses about the invariance of formal matrix rings. Let K =

(
R M

N S

)
and

(X, Y, f, g) be a right K-module, f̃ and g̃ be isomorphisms. Then (X, Y, f, g) is

an automorphism-invariant right K-module if and only if X is an automorphism-

invariant right R-module and Y is an automorphism-invariant right S-module.
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2. On fa-Rings with finite Goldie dimension

Recall that a ring R is a right fa-ring (fq-ring, resp.) if every finitely generated

right ideal of R is automorphism-invariant (quasi-injective, resp.).

Remark 1. Applying [12, Lemma 2.1] we deduce the following result:

LetR be commutative ring. thenR is a fa-ring if and only if it is an automorphism-

invariant ring.

Example 2. It is clear that a-rings are fa-rings. And we have the example of

a-rings but not self-injective. For example, consider the ring R consisting of all

eventually constant sequences of elements from F2. Clearly, R is a commutative

a-ring. But R is not self-injective. Thus, fa-rings are not fq-rings.

Example 3. The ring of linear transformations R := End(VD) of a vector space

V infinite-dimensional over a division ring D. It follows that R is not a right

a-ring. Because V is not finite dimensional. But R is a right fa-ring, since every

finitely generated ideal is a direct summand of R and R is right self-injective.

Let R be a semiperfect ring. Then, there exists a set of orthogonal local

idempotents {e1, e2, . . . , em} such that 1 = e1+e2+· · ·+em. We may assume that

{eiR/eiJ(R)| 1 ≤ i ≤ n} is a complete set of representatives of the isomorphism

classes of the simple right R-modules. In this case, {e1, e2, . . . , en} is called the

set of basic idempotents for R, and if e = e1 + e2 + · · ·+ en, the ring eRe is called

the basic ring of R. Note that eR ∼= fR if and only if eR/eJ(R) ∼= fR/fJ(R) for

idempotents e and f of R by Jacobson’s Lemma (see [16, Lemma B.12]). The ring

R is itself called a basic semiperfect ring if m = n, that is, if 1 = e1 +e2 + · · ·+en,

where the ei are a basic set of local idempotents.

Lemma 4. If R is a right automorphism-invariant I-finite ring, then R is a

semiperfect ring.

The following result is the main result of this section.

Theorem 5. Let R be a right fa-ring with finite Goldie dimension. Then R is a

direct sum of a semisimple artinian ring and a basic semiperfect ring.

Proof. By Lemma 4, R is a semiperfect ring, and so there exists a set of orthogonal

local idempotents {e1, e2, . . . , em} such that 1 = e1 + e2 + · · ·+ em. Suppose that

eiR 6∼= ejR for all i 6= j with i, j ∈ {1, 2, . . . ,m}. Then, we are done. Assume

that ei, for some i ∈ {1, 2, . . . ,m}, is a local idempotent of R such that there
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are direct summands isomorphic to eiR in each decomposition of RR as a direct

sum of indecomposable modules. Thus, there exists an idempotent e′ of R such

that eiR ∩ e′R = 0 and eiR ∼= e′R. It follows, from [17, Lemma 4.2], that eiR is

a semisimple module. On the other and, we have that eiR is an idecomposable

module and obtain that eiR is simple. Let eR be the direct sum of all copies of

eiR in the decomposition of R = e1R⊕ e2R⊕· · ·⊕ emR. Note that eR is a direct

summand of R. We can assume that e is an idempotent of R. Then, we have

a decomposition R = eR ⊕ (1 − e)R. Next, we show that eR and (1 − e)R are

ideals of R. In order to show this, it is necessary to prove that eR(1− e) = 0 and

(1− e)Re = 0.

Suppose (1 − e)Re 6= 0. Take (1 − e)te 6= 0 for some t ∈ R. Then there are

primitive idempotents ej and ek such that ejR ∼= eiR, ekR 6∼= eiR with j, k ∈
{1, 2, . . . ,m}, ej ∈ eR, ek ∈ (1 − e)R and ektej 6= 0. We consider the following

map α : ejR → ekR defined by α(ejr) = ektejr for all r ∈ R. One can check

that α is a nonzero homomorphism. Note that ejR is simple. Thus, α is a

monomorphism. On the other hand, we have a direct sum ejR⊕ ekR. Since R is

a right fa-ring, ejR ⊕ ekR is an automorphism-invariant module, and so ejR is

ekR-injective by [14, Theorem 5]. From this, it immediately follows that α splits.

We have that ekR is simple and obtain that ejR ∼= ekR, a contradiction. We

deduce that (1− e)Re = 0, and so eR is an ideal of R.

Similarly to the above proof, suppose that eR(1 − e) 6= 0. Call eu(1 − e) 6= 0

for some u ∈ R. Then there are primitive idempotents ep and eq of R such

that epR ∼= eiR, eqR 6∼= eiR with p, q ∈ {1, 2, . . . ,m}, ep ∈ eR, eq ∈ (1 − e)R

and epueq 6= 0. We consider the following map β : eqR → epR defined by

β(eqr) = epueqr for all r ∈ R. Then, β is a nonzero epimorphism by the simplicity

of epR. Since epR is projective, β splits. One can check that eqR ∼= epR. This is

a contradiction, and so eR(1− e) = 0. We deduce that (1− e)R is an ideal of R.

Thus, eR is a semisimple artinian ring and (1− e)R is a basic semiperfect ring.

�

Next, we give some properties of minimal right and left ideals of R. Moreover,

the self-injectivity of R is considered.

Lemma 6. Let R be a right automorphism-invariant ring and Soc(RR) ≤e RR

such that every minimal right ideal is a right annihilator.

(1) If xR is a minimal right ideal of R, then lRrR(x) = Rx and Rx is a

minimal left ideal of R.

(2) If Ry is a minimal left ideal of R then yR is a minimal right ideal of R

and lRrR(Ry) = Ry. In particular, Soc(RR) = Soc(RR) is denoted by S.
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(3) Soc(eR) and Soc(Re) are simple for all local idempotents e ∈ R.

(4) If R is I-finite then R is a right PF-ring.

Proof. (1) Assume that xR is a minimal right ideal of R. It is easy to see that

Rx ≤ lRrR(x). For the converse, let t ∈ lRrR(x) be a nonzero element. Then,

we have rR(x) ≤ rR(t), and so rR(x) = rR(t) by the maximality of rR(x). It

follows that Rx = Rt by [18, Lemma 1]. Then, t ∈ Rx and so lRrR(x) ≤ Rx or

lRrR(x) = Rx. On the other hand, for any nonzero element y in Rx, we have

rR(x) ≤ rR(y), and so rR(x) = rR(y) by the maximality of rR(x). It shows that

Rx = Ry is a minimal left ideal. We deduce that Rx is a minimal left ideal of R.

(2) Suppose that Ry is a minimal left ideal of R. Since Soc(RR) ≤e RR, yR

contains a minimal right ideal mR of R. Thus, lR(y) = lR(m). It follows that

y ∈ rRlR(y) = rRlR(m) = mR ≤ yR by our assumption, and so yR = mR. Thus,

yR is a minimal right ideal of R. The rest is followed by (1).

(3) Take kR a minimal right ideal of eR. Then, Rk is a minimal left ideal of

R. Therefore, lR(kR) ≥ R(1 − e) and lR(kR) = lR(k) ≥ J(R). It follows that

lR(kR) = J(R) + R(1 − e) because J(R) + R(1 − e) is the unique maximal left

ideal containing R(1− e). By our assumption we have

kR = rRlR(kR) = rR[J(R)+R(1−e)] = rR(J(R))∩eR = Soc(RR)∩eR = Soc(eR)

It shows that Soc(eR) is a minimal right ideal of R.

Similarly, we also have Soc(Re) is simple for all local idempotents e ∈ R.

(4) From the hypothesis, we have R is a semiperfect ring. We have a decom-

position R = e1R ⊕ e2R ⊕ · · · ⊕ emR. By (2), we have that eiR is uniform for

any i ∈ {1, 2, . . . ,m}, and so R is right self-injective by [14, Corollary 15]. We

deduce that R is a right PF-ring. �

Fact 7. All endomorphism rings of indecomposable automorphism-invariant mod-

ules are local rings.

Lemma 8. Let R be a right fa-ring with finite Goldie dimension, e be a primitive

idempotent of R. Then the following conditions are hold:

(1) If α : eR → R is a nonzero homomorphism with eR ∩ α(eR) = 0 then

α(eR) is a simple module.

(2) If (1− e)Re 6= 0 then eR(1− e) 6= 0.

Proof. (1) Note that eR is local. Then, α(eR) is indecomposable. Let U be

an arbitrary essential submodule of α(eR), then E(U) = E(α(eR)). Since R has

finite Goldie dimension, there exists a finitely generated right ideal I with I ≤e U .

It follows that I ≤e U ≤e α(eR), and so E(I) = E(U) = E(α(eR)). Since I ⊕ eR
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is a finitely generated right ideal of R, I ⊕ eR is automorphism-invariant. It

follows that I is eR−injective. On the other hand, there exists a homomorphism

ᾱ : E(eR)→ E(α(eR)) such that ᾱ|eR = α. We have that E(I) = E(α(eR)) and

I is eR−injective and obtain that ᾱ(eR) ≤ I ≤ U . It shows that α(eR) ≤ U . We

deduce that α(eR) = Soc(α(eR)), and so α(eR) is semisimple. We deduce that

α(eR) is simple.

(2) Assume that (1− e)Re 6= 0. Note that R is automorphism-invariant, eR is

(1− e)R-injective and (1− e)R is eR-injective. Call α : eR→ (1− e)R a nonzero

homomorphism. Now, we assume that eR(1− e) = 0. Then, eRe = eR is a local

ring with its unique maximal ideal eJ(R). If eJ(R) = 0 then eR is simple right

R-module and so α(eR) ∼= eR. It follows that α−1 : α(eR) → eR is extended to

a homomorphism from (1 − e)R to eR. It means that eR(1 − e) 6= 0. Now, if

eJ(R) is nonzero, then we get a nonzero element x in eJ(R). We have that eRe

is local and obtain that there exists an eRe-epimorphism β : xeR → eR/eJ(R).

On the other hand, we have eRe = eR and so β is an R-homomorphism. From

(1) it immediately infers that eR/eJ(R) ∼= α(eR) ≤ (1− e)R. Then, there exists

a nonzero homomorphism γ : eR/eJ(R)→ (1− e)R. It follows that composition

of β and γ is a nonzero homomorphism γ ◦ β : xeR→ (1− e)R. Again, (1− e)R
is eR-injective we have that there is a nonzero homomorphism θ : eR→ (1− e)R
such that θ is an extension of γ ◦ β. Moreover, we have xeR ≤ eJ(R) = Ker(θ)

(by (1)) which implies that (γ ◦ β)(xeR) = θ(xeR) = 0, a contradiction. Thus,

eR(1− e) 6= 0. �

Proposition 9. An indecomposable right fa-ring with finite Goldie dimension

such that every minimal right ideal is a right annihilator. Then the following

conditions are equivalent:

(1) R has essential right socle.

(2) Soc(RR) = Soc(RR).

Proof. (1)⇒ (2) by Lemma 6.

(2) ⇒ (1). Assume that Soc(RR) = Soc(RR). Since R is semiperfect, R =

e1R⊕ e2R⊕· · ·⊕ emR with a set of orthogonal local idempotents {e1, e2, . . . , em}
of R. Since R is an indecomposable ring, eiR(1 − ei) 6= 0 or (1 − ei)Rei 6= 0 for

all i ∈ {1, 2, . . . ,m}. Suppose that (1 − ei)Rei 6= 0. Then by Lemma 8 we have

eiR(1 − ei) 6= 0. We deduce that eiR(1 − ei) 6= 0 for all i ∈ {1, 2, . . . ,m}. Take

αi : (1 − ei)R → eiR a nonzero homomorphism. Then by Lemma 4.2 in [17],

Im(αi) is semisimple. It follows that Soc(eiR) 6= 0 for all i ∈ {1, 2, . . . ,m}.
For any i ∈ {1, 2, . . . ,m}, take kR a minimal right ideal of eiR. Then, Rk is

a minimal left ideal of R. Therefore, lR(kR) ≥ R(1 − ei) and lR(kR) = lR(k) ≥
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J(R). It follows that lR(kR) = J(R) +R(1− ei) because J(R) +R(1− ei) is the

unique maximal left ideal containing R(1− ei). By our assumption we have

kR = rRlR(kR) = rR[J(R)+R(1−ei)] = rR(J(R))∩eiR = Soc(RR)∩eiR = Soc(eiR)

It shows that Soc(eiR) is a minimal right ideal of R for all i ∈ {1, 2, . . . ,m}. It

follows that Soc(eiR) is essential in eiR. Thus, Soc(R) is essential in RR. �

In this section, we assume that R is a right fa-ring with finite Goldie

dimension such that every minimal right ideal is a right annihilator

and Soc(RR) is essential in RR. Moreover, R is semiperfect, and so there

exists a set of orthogonal local idempotents {e1, e2, . . . , em} of R such that 1 =

e1 + e2 + · · · + em. Call {e1, e2, . . . , en} a set of basic idempotents for R with

n ≤ m.

Lemma 10. If e and f are two orthogonal idempotents of R then eRf ⊆ Soc(RR).

Proof. Suppose that e and f are two orthogonal idempotents of R. Then, eR ∩
fR = 0. If eRf = 0, we are done. Otherwise, let exf be a nonzero arbitrary

element of eRf . We consider a nonzero homomorphism α : fR→ eR defined by

α(fr) = exfr for all r ∈ R. By [17, Lemma 4.2], we have that Im(α) = exfR is

semisimple. It follows that exf ∈ Soc(RR). We deduce that eRf ⊆ Soc(RR). �

Let R be a semiperfect ring with basic idempotents {e1, e2, . . . , en}. A permu-

tation σ of {1, 2, . . . , n} is called a Nakayama permutation for R if Soc(Reσ(i)) ∼=
Rei/J(R)ei and Soc(eiR) ∼= eσ(i)R/eσ(i)J(R) for each i = {1, 2, . . . , n}. A ring

R is called quasi-Frobenius (brief, QF) if R is one-sided artinian one-sided self-

injective, see [16]. It is well-known that every QF-ring has a Nakayama permu-

tation.

Lemma 11. Let R be an indecomposable ring with non-trivial idempotents. Then,

R has a Nakayama permutation σ of {1, 2, . . . , n}. In particular, σ(i) 6= i for all

i = 1, 2, . . . , n if R is not a simple ring.

Proof. By the hypothesis, R is indecomposable and so R is either semisimple

artinian or basic semiperfect by Theorem 5. If R is a semisimple artinian ring

then R has a Nakayama permutation. Now, we assume that R is not a simple

ring. It follows that R is a basic semiperfect ring.

For any i ∈ {1, 2, . . . , n}, from the simplicity of Soc(eiR), it infers that there

exists σ(i) ∈ {1, 2, . . . , n} such that Soc(eiR) ∼= eσ(i)R/eσ(i)J(R). This map σ

is a permutation of {1, 2, . . . , n} because σ(i) = σ(j) implies that Soc(eiR) ∼=
Soc(ejR). By the injectivity of eiR and ejR, we infer that eiR ∼= ejR, and so
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i = j (because the ei are basic). Let α : eσ(i)R/eσ(i)J(R) → Soc(eiR) be an

isomorphism and si = α(eσ(i) + eσ(i)J(R)). It follows that siR = Soc(eiR) is a

minimal right ideal of R. One can check that J(R) + R(1 − ei) ≤ lR(si). But

R/[J(R)+R(1−ei)] ∼= Rei/J(R)ei is simple, and so lR(si) = J(R)+R(1−ei). It

follows that Rsi ∼= Rei/J(R)ei. Now observe that si = sieσ(i) ∈ Soc(RR)eσ(i) =

Soc(Reσ(i)). We have, from Lemma 6, that Soc(Reσ(i)) is simple and obtain

that Soc(Reσ(i)) ∼= Rei/J(R)ei. Thus, R has a Nakayama permutation σ of

{1, 2, . . . , n}.
Next, we suppose that σ(i) = i for some i ∈ {1, 2, . . . , n} or Soc(eiR) ∼=

eiR/eiJ(R). Assume that eiR(1 − ei) 6= 0. Since R is a basic semiperfect ring,

there would exist j ∈ {1, 2, . . . , n} with j 6= i such that eiRej 6= 0. Then, there

exists a nonzero homomorphism β : ejR → eiR. By [12, Lemma 4.1] and eiR

is uniform, we infer that Im(β) is simple. It follows that Im(β) = Soc(eiR)

and Ker(β) is maximal in ejR. Then, Ker(β) = ejJ(R) which implies that

ejR/ejJ(R) ∼= Soc(eiR) ∼= eiR/eiJ(R). From this, it immediately infers that

eiR ∼= ejR, a contradiction. It is shown that eiR(1 − ei) = 0. Similarly, we

have (1 − ei)Rei = 0. In fact, if (1 − ei)Rei 6= 0, then ekRei 6= 0 for some

k ∈ {1, 2, . . . , n} with k 6= i. By the above similar proof, we infer that Soc(eiR) ∼=
eiR/eiJ(R) ∼= Soc(ekR). By the injectivivity of eiR and ekR, we have eiR ∼= ekR

which is impossible. It is shown that ei is central, a contradiction. We deduce

that σ(i) 6= i for all i = 1, 2, . . . , n.

�

Lemma 12. Let R be an indecomposable ring not simple with non-trivial idem-

potents. Then, eiRei is a division ring for any i ∈ {1, 2, . . . , n}.

Proof. By the hypothesis, R is a basic semiperfect ring and 1 = e1 + e2 + · · ·+ en.

For any i ∈ {1, 2, . . . , n}, there exists j 6= i with j ∈ {1, 2, . . . , n} such that

eiRej 6= 0 by Lemma 11. Suppose that eiR(1 − ei) = 0. Then, eiR(
n∑
k 6=i

ek) = 0

which implies that eiRej = 0, a contradiction. Thus, eiR(1 − ei) 6= 0. Next, we

show that eiJ(R)ei = 0. We have eiR(1 − ei) ⊂ Soc(eR) by Lemma 10, and so

eiR(1 − ei) = Soc(eiR)(1 − ei). Now, we show that eiJ(R)ei is a submodule of

eiR. Since R is right automorphism-invariant, J(R) = {a ∈ R : rR(a) ≤e RR}
by [8, Proposition 1] and so J(R) Soc(eiR) = 0. Now (eiJ(R)ei) Soc(eiR) =

eiJ(R) Soc(eiR) = 0 which implies (eiJ(R)ei)(eiR(1 − ei)) = 0. On the other

hand, we have

eiJ(R)eiR = eiJ(R)ei(Rei +R(1− ei)) = eiJ(R)eiRei ⊂ eiJ(R)ei.
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Hence eiJ(R)ei is an R-submodule of eiR. Since Soc(eiR) is simple, we have

eiJ(R)ei ∩ Soc(eiR) = 0 or Soc(eiR) ≤ eiJ(R)ei. Suppose Soc(eiR) ≤ eiJ(R)ei.

Then eiR(1 − ei) = Soc(eiR)(1 − ei) ≤ eiJ(R)ei(1 − ei) = 0, a contradiction. It

follows that eiJ(R)ei ∩ Soc(eiR) = 0. Thus eiJ(R)ei = 0 because Soc(eiR) is

essential in eiR. Note that eiRei ∼= End(eiR) is a local ring. We deduce that

eiRei is a division ring.

�

Theorem 13. If R is an indecomposable (as ring) ring not simple with non-trivial

idempotents, then R is a QF-ring.

Proof. By Lemma 6 and the hypothesis, R is a basic semiperfect right self-

injective ring and Soc(RR) is an artinian right R-module. We have a decom-

position R = e1R⊕ e2R⊕ · · · ⊕ enR. Then

R =
n∑
i=1

eiRei +
n∑
i 6=j

eiRej

Note that eiRej ⊆ Soc(RR) for all i 6= j by Lemma 10. We consider the following

mapping

φ : R/Soc(RR)→
n⊕
i=1

eiRei

via φ(
n∑
i=1

eiriei) + Soc(RR) =
n∑
i=1

eiriei We show that φ is an isomorphism. If

n∑
i=1

eiriei ∈ S, then eiriei ∈ eiSei for all i = 1, 2, . . . , n. Since eiJ(R) is the unique

maximal submodule of eiR, eiSoc(RR) ≤ eiJ(R), and so eiriei ∈ eiJ(R)ei. Note

that eiJ(R)ei = 0 by Lemma 12. It shows that φ is a mapping. One can check

that φ is a ring homomorphism. Moreover, φ is a bijection, and so φ is a ring

isomorphism. It shows that R/Soc(RR) is a semisimple artinian ring. We deduce

that R is a right artinian ring, and so R is QF. �

Corollary 14. Let R be an indecomposable (as ring) ring not simple with non-

trivial idempotents. Then, the following conditions are equivalent:

(1) R is a right q-ring.

(2) R is a right fq-ring.

(3) R is a right a-ring.

(4) R is a right fa-ring.

(5) eRf ⊆ Soc(RR) for each pair e, f of orthogonal idempotents of R.

(6) R is an QF -ring.
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Proof. (1)⇒ (2), (3); (2)⇒ (4) and (3)⇒ (4) are obvious.

(4)⇒ (5) by Lemma 10.

(5)⇒ (6). By Theorem 13, R is a basic semiperfect QF-ring.

(6)⇒ (1). Since R is QF, it follows that RR is injective cogenerator. Thus, R

is a right q-ring by [7, Theorem 2.9]. �

3. The automorphism-invariance of formal matrix rings

Let R and S be two rings and M be a R − S-bimodule and N be a S − R-

bimodule. Take the set of matrices

K =

(
R M

N S

)
=

{(
r m

n s

) ∣∣∣∣ r ∈ R, s ∈ S, m ∈M,n ∈ N
}

Assume that there exist an R-homomorphism ϕ : M ⊗S N → R and an S-

homomorphism ψ : N ⊗RM → S such that

ϕ(m⊗ n)m′ = mψ(n⊗m′), ψ(n⊗m)n′ = nϕ(m⊗ n′)

for all m,m′ ∈M and n, n′ ∈ N . For convenience in using notations, we can write

ϕ(m⊗n) := mn, ψ(n⊗m) := nm and MN := ϕ(M ⊗SN), NM := ψ(N ⊗RM).

Then, K is a ring with the addition and multiplication as follows:(
r m

n s

)
+

(
r′ m′

n′ s′

)
=

(
r + r′ m+m′

n+ n′ s+ s′

)
(
r m

n s

)(
r′ m′

n′ s′

)
=

(
rr′ +mn′ rm′ +ms′

nr′ + sn′ nm′ + ss′

)
The ring K is called a formal matrix ring or generalized matrix rings (see

[13] or [15]). It is well-known that the category of right K-module Mod-K is

equivalent to the category A(K) of objects (X, Y, f, g), where X is a right R-

module, Y is a right S-module, f : X ⊗R M → Y is an S-homomorphism and

g : Y ⊗S N → X is an R-homomorphism. The right K-module (X, Y, f, g) is

the additive group X ⊕ Y with right K-action given by

(x y)

(
r m

n s

)
= (xr + g(y ⊗ n), f(x⊗m) + ys)

such that the following diagrams are commutative
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X ⊗RM ⊗S N
f⊗1N //

1X⊗ϕ

��

Y ⊗S N
g // X

1X

��
X ⊗R R

µ // X

Y ⊗S N ⊗RM
g⊗1M //

1Y ⊗ψ

��

X ⊗RM
f // Y

1Y

��
Y ⊗S S

ν // Y

where µ : X ⊗R R→ X and ν : Y ⊗S S → Y are canonical isomorphisms.

Next, we consider homomorphisms of K-modules. Let (X1, Y1, f1, g1) and

(X2, Y2, f2, g2) be rightK-modules. A rightK-homomorphism ϕ : (X1, Y1, f1, g1)→
(X2, Y2, f2, g2) is a pair (ϕ1, ϕ2) where ϕ1 : X1 → X2 is an R-homomorphism

and ϕ2 : Y1 → Y2 is an S-homomorphism such that the following diagrams

are commutative

X1 ⊗RM
f1 //

ϕ1⊗1M

��

Y1

ϕ2

��
X2 ⊗RM

f2 // Y2

Y1 ⊗S N
g1 //

ϕ2⊗1N

��

X1

ϕ1

��
Y2 ⊗S N

g2 // X2

Note that a K-homomorphism ϕ = (ϕ1, ϕ2) : (X1, Y1, f1, g1) → (X2, Y2, f2, g2)

is a monomorphism (epimorphism, resp.) if and only if ϕ1 and ϕ2 are monomor-

phisms (epimorphisms, resp.).

A submodule of a rightK-module (X, Y, f, g) is a quadrupe (X0, Y0, f0, g0), where

X0 ≤ XR, Y0 ≤ YS such that the following diagrams are commutative.
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X0 ⊗RM
f0 //

ι1⊗1M

��

Y0

ι2

��
X ⊗RM

f // Y

Y0 ⊗S N
g0 //

ι2⊗1N

��

X0

ι1

��
Y ⊗S N

g // X

with ι1 : X0 → X, ι2 : Y0 → Y the inclusion maps. This is equivalent X0M ⊆ Y0
and Y0N ⊆ X0.

LetK =

(
R M

N S

)
andX be a rightR-module. Denote byH(X) = HomR(N,X).

We consider the following homomorphisms

uX : X ⊗RM −→ HomR(N,X)

x⊗m 7−→ u(x⊗m) : N → X

n 7→ u(x⊗m)(n) = x(mn)

and

vX : HomR(N,X)⊗S N −→ X

α⊗ n 7−→ α(n)

One can check that (X,H(X), uX , vX) is a right K-module. Similarly, we also

have that (H(Y ), Y, vY , uY ) is a right K-module for all right S-module Y with

H(Y ) = HomS(M,Y ) and vY : H(Y )⊗RM → Y and uY : Y ⊗S N → H(Y ).

Let (X, Y, f, g) be a rightK-module. Then, we have the followingR-homomorphism

f̃ : X −→ HomS(M,Y ) = H(Y )

x 7−→ f̃(x) : M → Y

m 7→ f̃(x)(m) = f(x⊗m)
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and S-homomorphism

g̃ : Y −→ HomS(N,X) = H(X)

y 7−→ g̃(y) : N → X

n 7→ g̃(y)(n) = g(y ⊗ n)

Theorem 15. Let K =

(
R M

N S

)
and (X, Y, f, g) be a right K-module. Assume

that f̃ and g̃ are isomorphisms. Then the following conditions are equivalent:

(1) (X, Y, f, g) is an automorphism-invariant right K-module.

(2) (a) X is an automorphism-invariant right R-module.

(b) Y is an automorphism-invariant right S-module.

Proof. (2) ⇒ (1). By Lemma 2.3 in [15], there exist isomorphisms µ̃ : E(X) →
HomS(M,E(Y )) and η̃ : E(Y ) → HomR(N,E(X) such that (E(X), E(Y ), µ, η)

is the injective envelope of (X, Y, f, g). Let ϕ = (ϕ1, ϕ2) be an automorphism

of (E(X), E(Y ), µ, η) then ϕ1 is an R-automorphism of E(X) and ϕ2 is an S-

automorphism of E(Y ). Since X is an automorphism-invariant right R-module

and Y is an automorphism-invariant right S-module, it follows that (X, Y, f, g)

is an automorphism-invariant right K-module.

(1) ⇒ (2) Assume that (X, Y, f, g) is an automorphism-invariant right K-

module. We show that X is an automorphism-invariant right R-module. To

prove this, firstly we show that (X, Y, f, g) ∼= (X,H(X), uX , vX). In fact that we

consider the mapping (1X , g̃) : (X, Y, f, g)→ (X,H(X), uX , vX).

Since (X, Y, f, g) is a right K-module, g ◦ (f ⊗ 1N) = µ ◦ (1X ⊗ ϕ), where

µ : X ⊗R R → X is the canonical isomorphism and ϕ : M ⊗S N → R is the

multipilication in K. Then, for all x ∈ X, m ∈M and n ∈M , we have

(g̃ ◦ f)(x⊗m)(n) = g(f(x⊗m)⊗ n) = µ(1X ⊗ ϕ)(x⊗m⊗ n) = x(mn)

and

uX(1X ⊗ 1M)(x⊗m)(n) = uX(x⊗m)(n) = x(mn)

It shows that g̃◦f = uX ◦(1X⊗1M) and so the following diagram is commutative.
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X ⊗RM
f //

1X⊗1M

��

Y

g̃

��
X ⊗RM

uX // H(X)

On the other hand, for all y ∈ Y and n ∈ N , we have

vX(g̃ ⊗ 1N)(y ⊗ n) = vX(g̃(y)⊗ n) = g̃(y)(n) = g(y ⊗ n) = 1Xg(y ⊗ n)

and so 1X ◦g = vX ◦(g̃⊗1N). It means that the following diagram is commutative.

Y ⊗S N
g //

g̃⊗1N

��

X

1X

��
H(X)⊗S N

vX // X

Thus, (1X , g̃) : (X, Y, f, g) → (X,H(X), uX , vX) is a K-homomorphism. By our

assumption, g̃ is an isomorphism, (1X , g̃) is an isomorphism. Then,

(X,H(X), uX , vX) is an automorphism-invariant right K-module.

Now, we show that X is an automorphism-invariant right R-module. Let α :

A → X be an R-monomorphism. Then, we have that (A,H(A), uA, vA) is a

submodule of (X,H(X), uX , vX). We consider the mapping β : H(A) → H(X)

via by the relation β(h)(n) = α(vA(h ⊗ n)). One can check that β is an S-

homomorphism. For all a ∈ A, m ∈M and n ∈M , we have

(β ◦uA)(a⊗m)(n) = α(vA(uA(a⊗m)⊗n)) = α(µ(1A⊗ϕ)(a⊗m⊗n)) = α(a)mn

and

uX(α⊗ 1M)(a⊗m)(n) = uX(α(a)⊗m)(n) = α(a)mn

It shows that β◦uA = uX ◦(α⊗1M) and so the following diagram is commutative.

A⊗RM
uA //

α⊗1M

��

H(A)

β

��
X ⊗RM

uX // H(X)
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On the other hand, for all h ∈ H(A) and n ∈ N , we have

vX(β ⊗ 1N)(h⊗ n) = vX(β(h)⊗ n) = β(h)(n) = αvA(h⊗ n)

and so α◦vA = vX◦(β⊗1N). It means that the following diagram is commutative.

H(A)⊗S N
vA //

β⊗1N

��

A

α

��
H(X)⊗S N

vX // X

Thus, (α, β) : (A,H(A), uA, vA) → (X,H(X), uX , vX) is a K-monomorphism.

Since (X,H(X), uX , vX) is an automorphism-invariant right K-module, there ex-

ists an endomorphism (γ, θ) of (X,H(X), uX , vX) such that (γ, θ) is an extension

of (α, β). Thus, γ : X → X is an extension of α. We deduce that X is an

automorphism-invariant right R-module.

Similarly, we also prove that Y is an automorphism-invariant right S-module.

�

By [13, Lemma 3.8.1] and Theorem 15, we have the following result:

Corollary 16. Let K =

(
R M

N S

)
and (X, Y, f, g) be a right K-module. Assume

that MN = R and NM = S. Then the following conditions are equivalent:

(1) (X, Y, f, g) is an automorphism-invariant right K-module.

(2) (a) X is an automorphism-invariant right R-module.

(b) Y is an automorphism-invariant right S-module.

Corollary 17. Let e be a non-zero idempotent of a ring R, K =

(
R Re

eR eRe

)
and (X, Y, f, g) be a right K-module. Assume that f̃ and g̃ are isomorphisms.

Then (X, Y, f, g) is an automorphism-invariant right K-module if and only if X is

an automorphism-invariant right R-module and Y is an automorphism-invariant

right eRe-module.

If e is an idempotent of a ring R such that ReR = R then R ≈ eRe. So in this

case, we have:

Corollary 18. Let e be an idempotent of a ring R such that ReR = R and

K =

(
R Re

eR eRe

)
. Assume that R is a right fa-ring and f̃ , g̃ are isomorphisms.

Then (eR,Re, f, g) is an automorphism-invariant right K-module.
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