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Abstract. Let M be a finitely generated module of dimention d over a Noether-
ian local ring (A,m) and I an m-primary ideal. Let be a pair of good I-filtrations
F and F′ of M . We show that the Hilbert coefficients ei(F) are bounded below
and above in terms of i, e0(F′), ..., ei(F′), and reduction numbers of F and F′, for
all i ≥ 1.

1. Introduction

Let A be a commutative Noetherian local ring with the maximal ideal m and
M be a finitely generated A-module of dimention d. Let I be an ideal of A; an
I-filtration F of M is a collection of submodules Fn such that

M = F0 ⊇ F1 ⊇ F2 ⊇ · · · ⊇ Fn ⊇ · · ·
with the property that IFn ⊆ Fn+1 for all n ≥ 0. In the present work we consider
only good I-filtrations of M : this means that IFn = Fn+1 for all sufficiently large n.

The Hilbert-Samuel function HF(n) = ℓ(M/Fn+1) agrees with the Hilbert-Samuel
polynomial PF(n) for n ≫ 0 and we may write

PF(n) = e0(F)
(
n+ d

d

)
− e1(F)

(
n+ d− 1

d− 1

)
+ · · ·+ (−1)ded(F).

The numbers e0(F), e1(F), ..., ed(F) are called the Hilbert coefficients of F.
The notation of Hilbert function is central in communication algebra and is be-

coming increasingly importan in algebraic geometry and in computational algebra.
Let be a good I-filtration F of M , the Hilbert-Samuel function and the Hilbert-
Samuel polynomial of F give a lot of information on M . Therefore, it is of interest
to examine properties of the Hilbert coefficients of F, see ([5, 6, 7, 8, 9, 11, 12, 13,
14, 16, 17, 18, 20]). For further applications, we need to consider another filtration
related to I of M . Given a pair of good I-filtrations F and F′ of M , we want to
compare F with F′. Atiyah-Macdnald ([1, Propsition 11.4]) and Brun-Hezog ([2,
Proposition 4.6.5]) showed that e0(F) = e0(F′). In some special cases, Rossi-Vall in
[15] gave alower bounds and upper bounds on e1(F) in terms of e0(F′), e1(F′), and
other invarians of M . How about the other coefficients? The main goal of this paper
is to show that |ei(F)| are bounded by a function depeding only i, e0(F′), ..., ei(F′),
and reduction numbers of F and F′, for all i ≥ 1 (see Theorem 3.3). These bounds
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are far from being sharp, but they have some interest because very little is known
about relationships between e0(F), ..., ed(F) and e0(F′), ..., ed(F′).

Our paper is outlined as follows. In the next section, we collect notations and
terminology used in the paper and start with a few preliminary results on bounding
the length of local homology modules (see Lemma 2.5 and Lemma 2.6). In Section
3, we give new bounds on the Castelnuovo-Mumford regularity reg(G(F)) of F (see
Theorem 3.2) and show that the Hilbert coefficients ei(F) are bounded below and
above in terms of i, e0(F′), ..., ei(F′), and reduction numbers of F and F′, for all i ≥ 1
(see Theorem 3.3).

2. Hilbert coefficients and local cohomomology modules

In this section, we recall notations and terminology used in the paper, and a
number of auxiliary results. Generally, we will follow standard texts in this research
area (cf. [3, 4, 15]).

Let R = ⊕n≥0Rn be a Noetherian standard graded ring over a local Artinian ring
(R0,m0) such that R0/m0 is an infinite field. Let E be a finitely generated graded
R-module of dimension d. We denote the Hilbert function ℓR0(Et) and the Hilbert
polynomial of E by hE(t) and pE(t), respectively. Writing pE(t) in the form:

pE(t) =
d−1∑
i=0

(−1)iei(E)

(
t+ d− 1− i

d− 1− i

)
,

we call the numbers ei(E) Hilbert coefficients of E.

Let H i
R+(E), for i ≥ 0, denote the i-th local cohomology module of E with respect

to R+. The Castelnuovo-Mumford regularity of E is defined by

reg(E) := max{i+ j|H i
R+(E)j ̸= 0, 0 ≤ i ≤ d}

and the Castelnuovo-Mumford regularity of E at and above level 1 is defined by

reg1(E) := max{i+ j|H i
R+(E)j ̸= 0, 0 < i ≤ d}.

From [19, Theorem 2], Dung-Hoa in [6] derived an explicit bound for reg1(E) in
terms of ei(E), 0 ≤ i ≤ d− 1 and the maximal generating degree of E.

∆′(E) = max{∆(E), 0}.

Lemma 2.1. ([6, Lemma 1.2]) Let E be a finitely generated graded R-module of
dimension d ≥ 1. Put

ξd−1(E) = max{e0(E), |e1(E)|, ..., |ed−1(E)|}.
Then we have

reg1(E) ≤ (ξd−1(E) + ∆′(E) + 1)d! − 2.

Our method in proving the main result is to pass to the associated grade modules,
so we shall recall this notation and some more definitions.

Let (A,m) be a Noetherian local ring with an infinite residue field K := A/m and
M a finitely generated A-module. (Although the assumption K being infinite is not
essential, because we can tensor A with K(t).) Given a proper ideal I. A chain of
submodules

F : M = F0 ⊇ F1 ⊇ F2 ⊇ · · · ⊇ Fn ⊇ · · ·
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is called an I-filtration of M if IFi ⊆ Fi+1 for all i, and a good I-filtration if IFi =
Fi+1 for all sufficiently large i. A module M with a filtration is called a filtered
module (see [3, III 2.1]). If N is a submodule of M , then the sequence {Fn +N/N}
is a good I-filtration of M/N and will be denoted by F/N .

Throughout the paper we always assume that I is an m-primary ideal and F is a
good I-filtration. The associated graded module to the filtration F is defined by

G(F) =
⊕
n≥0

Fn/Fn+1.

We also say that G(F) is the associated ring of the filtered module M . This is a
finitely generated graded module over the standard graded ring G := G(I, A) :=
⊕n≥0I

n/In+1 (see [3, Proposition III 3.3]). In particular, when F is the I-adic
filtration {InM}, G(F) is just the usual associated graded module G(I,M).

We call HF(n) = ℓ(M/Fn+1) the Hilbert-Samuel function of M w.r.t F. This func-
tion agrees with a polynomial - called the Hilbert-Samuel polynomial and denoted
by PF(n) - for n ≫ 0. If we write

PF(t) =
d∑

i=0

(−1)iei(F)
(
t+ d− i

d− i

)
,

then the integers ei(F) are called Hilbert coefficients of F (see [15, Section 1]). When
F = {InM}, HF(n) and PF(n) are usually denoted by HI,M(n) and PI,M(n), re-
spectively, and ei(F) = ei(I,M). Note that ei(F) = ei(G(F)) for 0 ≤ i ≤ d − 1.
Then

Lemma 2.2. ([1, Proposition 11.4] and [2, Proposition 4.6.5]) Let F and F′ be good
I-filtrations of M . Then we have

e0(G(F)) = e0(F) = e0(F′).

We call
r(F) = min{r ≥ 0 | Fn+1 = IFn for all n ≥ r}

the reduction number of F (w.r.t. I). When F = {InM}, r(F) = 0.

Denote the filtration F/H0
m(M) = F. Let

h0(M) = ℓ(H0
m(M)).

The relationship between reg(G(F)) and reg(G(F)) is given by the following lemma.

Lemma 2.3. ([5, Lemma 1.9]) reg(G(F)) ≤ max{reg(G(F)); r(F)}+ h0(M).

From now on, we will often use the following notation:

ξs(F) = max{e0(F), |e1(F)|, ..., |es(F)|},
where 0 ≤ s ≤ d. We see that

ξ0(F) ≤ ξ1(F) ≤ ... ≤ ξd(F) = ξ(F). (1)

Using the [15, Proposition 1.2 and Proposition 2.3] we get

Lemma 2.4. Let x1, ..., xd be an F-superficial sequence for I and M = M/H0
m(M).

Set Mi = M/(x1, ..., xi)M and Fi = F/(x1, ..., xi)M , where F0 = M , F0 = F,
0 ≤ i ≤ d− 1. Then we have

i) ξj(F) = ξj(F) for all j ≤ d− 1,

3



ii) ξj(F/x1M) = ξj(F) for all j ≤ d− 1,

iii) ξj(Fi) = ξj(F) for all j ≤ d− i− 1.

Proof. i) By [15, Proposition 2.3], ei(F) = ei(F), for all 0 ≤ i ≤ d − 1. Hence
ξj(F) = ξj(F) for all j ≤ d− 1.
ii) We have depth(M) > 0, by [15, Proposition 1.2],

ei(F/x1M) = ei(F), for all 0 ≤ i ≤ d− 1.

Therefor

ξj(F/x1M) = ξj(F), for all 0 ≤ j ≤ d− 1.

By i), we get ξj(F/x1M) = ξj(F) for all j ≤ d− 1.
iii) By [15, Proposition 1.2], dim(Mi−1) = d− i+ 1 and

ek(Fi) = ek(Fi−1/xiMi−1) = ek(Fi−1), for all 0 ≤ k ≤ d− i− 1.

Hence ek(Fi) = ek(F) for all 0 ≤ k ≤ d− i−1, 0 ≤ i ≤ d−1. Therefor ξj(Fi) = ξj(F)
for all j ≤ d− i− 1. □

We can improve the bounds in [6, Lemma 1.10 and Lemma 1.11]. In the following
results, we can replace reg(G(F)) by the Hilbert coefficents of F.

Lemma 2.5. Let F a good I-filtration of M and x1, x2, ..., xd be an F-superficial
sequence for I. Set Mi = M/(x1, ..., xi)M and Fi = F/(x1, ..., xi)M where F0 = M
and F0 = F. Then we have

h0(Mi) ≤
i∑

k=0

ξd−i+k(F)(ξd−i−1+k(F) + r(F) + 1)(d−i+k).(d−i+k)!,

for all 0 ≤ i ≤ d− 1.

Proof. i) By [5, Lemma 1.8] and Lemma 2.1, we have

reg(G(Fi)) = reg1(G(Fi)) ≤ (ξd−i−1(Fi) + r(Fi) + 1)(d−i)! − 2.

From Lemma 2.4 i) and iii) we get ξd−i−1(Fi) = ξd−i−1(Fi) = ξd−i−1(F) and r(Fi) ≤
r(F), therefore

reg(G(Fi)) ≤ (ξd−i−1(F) + r(F) + 1)(d−i)! − 2 =: mi.

For i = 0, by Lemma [6, Lemma 1.6], we have

h0(F0) = h0(M) ≤ PF(m0) ≤ ξd(F)
d∑

j=0

(
d+m0 − j

d− j

)

= ξd(F)
(
m0 + d+ 1

d

)
≤ ξd(F)(m0 + 2)d = ξd(F)(ξd−1(F) + r(F) + 1)d.d!.

For 0 < i ≤ d − 1, by [15, Proposition 1.2], we have ej(Fi) = ej(Fi−1) for all
0 ≤ j ≤ d− i− 1. Similarly, as in the proof of [6, Lemma 1.10] and Lemma 2.4 iii)
we have

|ed−i(Fi)| ≤ ξd−i(Fi−1) + h0(Mi−1) ≤ ξd−i(F) + h0(Mi−1).

4



It implies that

h0(Mi) ≤ ξd−i(F)
(
mi+d−i+1

d−i

)
− ξd−i(F) + |ed−i(Fi)|

≤ ξd−i(F)(mi + 2)d−i + h0(Mi−1)
≤ ξd−i(F)(ξd−i−1(F) + r(F) + 1)(d−i)(d−i)!+
+
∑i−1

k=0 ξd−i+1+k(F)(ξd−i+k(F) + r(F) + 1)(d−i+1+k).(d−i+1+k)! (by induction hypothesis)
=
∑i

k=0 ξd−i+k(F)(ξd−i+k−1(F) + r(F) + 1)(d−i+k).(d−i+k)!.

□

Lemma 2.6. Set B = ℓ(M/(x1, x2, ..., xd)M), where x1, x2, ..., xd be an F-superficial
sequence for I and put ξ−1 = 0. We have

B ≤
d∑

k=0

ξk(F)(ξk−1(F) + r(F) + 1)k.k!.

Proof. Take the proof of the [6, Lemma 1.11]. We have

B ≤ e0(F) + h0(Md−1). (2)

By Lemma 2.5, h0(Md−1) ≤ ∑d−1
k=0 ξ1+k(F)(ξk(F) + r(F) + 1)(1+k).(1+k)! . From this

estimation we immediately get

B ≤ e0(F) +
d−1∑
k=0

ξ1+k(F)(ξk(F) + r(F) + 1)(1+k)(1+k)!

= ξ0(F) +
d∑

k=1

ξk(F)(ξk−1(F) + r(F) + 1)k.k!

=
d∑

k=0

ξk(F)(ξk−1(F) + r(F) + 1)k.k!.

□

3. Main results

Throughout this section, F and F′ will be a pair of good I-filtrations of a finitely
generated module M over a local ring (A,m), where I is an m-primary ideal. The
aim of this section is to show that the Hilbert coefficients ei(F) are bounded below
and above in terms of e0(F′), ..., ei(F′), i, r(F), and r(F′), for all i ≥ 1.

In order to prove the main result of this paper, we need bound on the Castelnouvo-
Mumford regularity reg(G(F)) of F in terms of d, e0(F′), ..., ed(F′), r(F), and r(F′).

Lemma 3.1. ([5, Proof of Theorem 1.5]) Let dimM = d ≥ 2, x be an F-superficial
sequence for I. We have

reg1(G(F)/x∗G(F)) = reg1(G(F/xM)).

Theorem 3.2. Let F and F′ be are good I-filtrations of M with dim(M) = d ≥ 1

F : M = F0 ⊇ F1 ⊇ F2 ⊇ · · · ⊇ Fn ⊇ · · ·
F′ : M = F ′

0 ⊇ F ′
1 ⊇ F ′

2 ⊇ · · · ⊇ F ′
n ⊇ · · ·

Then

i) reg(G(F)) ≤ (ξ(F′) + r(F′) + 1)(ξ(F′) + r(F) + 1)− 2 if d = 1,

ii) reg(G(F)) ≤ (ξ(F′) + r(F′) + 1)6(ξ(F′) + r(F) + 1)− 3 if d = 2,
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iii) reg(G(F)) ≤ (ξ(F′) + r(F′) + 1)(d−1)(d+1)!−d(ξ(F′) + r(F) + 1)(d−1)! − d if d ≥ 3.

Proof. Let ξ := ξ(F′), r := r(F) and r′ := r(F′). We distinguish two cases
If d = 1, then M is a Cohen-Macaulay module. By [5, Lemma 1.8], [10, Lemma
2.2], Lemma 2.2, r(F) ≤ r and (1)

reg(G(F)) ≤ e0(G(F)) + r(F)− 1 ≤ e0(F′) + r − 1 ≤ ξ + r − 1.

Hence, by Lemma 2.3 and applying Lemma 2.5 to F′, we then obtain

reg(G(F)) ≤ max{reg(G(F)); r}+ h0(M)
≤ ξ + r − 1 + ξ(ξ + r′ + 1)
≤ ξ + r − 1 + ξ(ξ + r′) + (ξ + r′)
= (ξ + r) + (ξ + 1)(ξ + r′)− 1
≤ (ξ + r + 1) + (ξ + r + 1)(ξ + r′)− 2
≤ (ξ + r′ + 1)(ξ + r + 1)− 2.

If d ≥ 2, let x1, x2, ..., xd be an F-superficial sequence and F′-superficial sequence
for I. Put F = F/H0

m(M) and F′ = F′/H0
m(M). We have F/x1M and F′/x1M be

are good I-filtrations of M/x1M . Let m ≥ max{reg(G(F/x1M)), r}, by Lemma 3.1,
we have

reg1(G(F)/x∗
1G(F)) = reg1(G(F/x1M)) ≤ m.

Hence, by [10, Theorem 2.7],

reg1(G(F)) ≤ m+ PG(F)(m).

Since [5, Lemma 1.6] and [5, Lemma 1.7 (i)]

PG(F)(m) ≤ HI,M/x1M
(m)

≤
(
m+d−1
d−1

)
ℓ
((
M/x1M

)
/(x2, ..., xn)

(
M/x1M

))
≤ B

(
m+d−1
d−1

)
.

Therefor, by Lemma 2.3, we get

reg(G(F)) ≤ m+ h0(M) +B

(
m+ d− 1

d− 1

)
. (3)

If d = 2. Letm = (ξ+r′+1)(ξ+r+1)−2. Since (i) of the theorem, r(F′/x1F′) ≤ r′,
r(F/x1F) ≤ r and by Lemma 2.4 ii), we get

reg(G(F/x1M)) ≤ (ξ1(F′/x1M) + r(F′/x1M) + 1)(ξ1(F′/x1M) + r(F/x1M) + 1)− 2.
= (ξ1(F′) + r(F′/x1M) + 1)(ξ1(F′) + r(F/x1M) + 1)− 2.
≤ (ξ + r′ + 1)(ξ + r + 1)− 2 = m.

Hence, max{reg(G(F/x1M)), r} ≤ m. From (1), (3), and applying Lemma 2.5,
Lemma 2.6 to F′, we get

reg(G(F)) ≤ m+ h0(M) +B(m+ 1)
≤ (ξ + r′ + 1)(ξ + r + 1)− 1 + ξ(ξ + r′ + 1)4+
+[ξ + ξ(ξ + r′ + 1) + ξ(ξ + r′ + 1)4](ξ + r′ + 1)(ξ + r + 1)
≤ (ξ + r′ + 1)(ξ + r + 1) + ξ(ξ + r′ + 1)3(ξ + r′ + 1)(ξ + r + 1)+
+[ξ + ξ(ξ + r′ + 1)2 + ξ(ξ + r′ + 1)4](ξ + r′ + 1)(ξ + r + 1)− 3
≤ [1 + ξ + ξ(ξ + r′ + 1)2 + ξ(ξ + r′ + 1)3 + ξ(ξ + r′ + 1)4](ξ + r′ + 1)(ξ + r + 1)− 3
≤ (ξ + r′ + 1)5(ξ + r′ + 1)(ξ + r + 1)− 3
= (ξ + r′ + 1)6(ξ + r + 1)− 3.

If d ≥ 3. The case m = 0 is trivial. Then for all m > 0.
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By the induction hypothessis, r(F/x1M) ≤ r, r(F′/x1M) ≤ r′ and by Lemma 2.4
ii), we have

reg(G(F/xM)) ≤ (ξd−1(F′/x1M) + r(F′/x1M) + 1)(d−2)d!−d(ξd−1(F′/x1M) + r(F/x1M) + 1)(d−2)! − d+ 1
= (ξd−1(F′) + r(F′/x1M) + 1)(d−2)d!−d(ξd−1(F′) + r(F/x1M) + 1)(d−2)! − d+ 1
≤ (ξ + r′ + 1)(d−2)d!−d(ξ + r + 1)(d−2)! − d+ 1.

We can take

m = (ξ + r′ + 1)(d−2)d!−d(ξ + r + 1)(d−2)! − d+ 1.

From (3) and applying Lemma 2.5, Lemma 2.6 to F′, we get

reg(G(F)) ≤ m+ ξd(F′)(ξd−1(F′) + r′ + 1)d.d! +

d∑
k=0

ξk(F′)(ξk−1(F′) + r′ + 1)k.k!
(
m+ d− 1

d− 1

)

<

d∑
k=0

ξk(F′)(ξk−1(F′) + r′ + 1)k.k!(m+ 1)d−1 − 1

≤ (ξd(F′) + r′ + 1)d.d!+1(m+ 1)d−1 − 1

≤ (ξd(F′) + r′ + 1)d.d!+1
[
(ξ + r′ + 1)(d−2)d!−d(ξ + r + 1)(d−2)! − d

]d−1

− 1

≤ (ξ + r′ + 1)(d−1)(d+1)!−d(ξ + r + 1)(d−1)! − d.

□

Now we are going to prove the main result of this paper.

Theorem 3.3. Let F and F′ be good I-filtrations of M with dim(M) = d ≥ 1

F : M = F0 ⊇ F1 ⊇ F2 ⊇ · · · ⊇ Fn ⊇ · · ·

F′ : M = F ′
0 ⊇ F ′

1 ⊇ F ′
2 ⊇ · · · ⊇ F ′

n ⊇ · · ·
Then

i) |e1(F)| ≤ ξ1(F′)(ξ1(F′) + r(F′) + 1)2(ξ1(F′) + r(F) + 1);

ii) |e2(F)| ≤ ξ2(F′)(ξ2(F′) + r(F′) + 1)17(ξ2(F′) + r(F) + 1)2;

iii) |ei(F)| ≤ ξi(F′)(ξi(F′) + r(F′) + 1)(i
2−1)i!−i+1(ξi(F′) + r(F) + 1)i! if i ≥ 3.

Proof. i) By [5, (8)] we have

ℓ(M/Fm+1) =
d∑

i=0

(−1)iei(F)
(
m+ d− i

d− i

)
(4)

for any m ≥ reg(G(F)). For short we write ξi := ξi(F′), r := r(F), and r′ := r(F′).

Assume that d = 1. Putting m := (ξ1 + r′ + 1)(ξ1 + r+ 1)− 1, by Theorem 3.2 i)
and (4), we have

e1(F) = (m+ 1)e0(F)− ℓ(M/Fm+1) (5)

Since Fn = In−rFr for n ≥ r and Mr ̸= 0

ℓ(M/Fm+1) = ℓ(M/F(m+1−r)−r)
≥ ℓ(Fr(F)/IFr) + · · ·+ ℓ(Im−rFr/I

m−r+1Fr) ≥ m− r + 1.

By (5) and Lemma 2.2, this implies

e1 ≤ (ξ1 + r′ + 1)(ξ1 + r + 1)ξ0 − [(ξ1 + r′ + 1)(ξ1 + r + 1)− r + 1]
≤ ξ1(ξ1 + r′ + 1)2(ξ1 + r + 1).

7



By [5, Lemma 1.7 i)], Lemma 2.2 and Lemma 2.6

−e1(F) ≤ B(m+ 1)− (m+ 1)e0(F) = (B − ξ0)(m+ 1)
≤ ξ1(ξ1 + r′)(ξ1 + r′ + 1)(ξ1 + r + 1) = ξ1(ξ1 + r′ + 1)2(ξ1 + r + 1).

Hence

|e1(F)| ≤ ξ1(ξ1 + r′ + 1)2(ξ1 + r + 1).

Assume that d ≥ 2. Let x1, ..., xd be F-superficial sequence and F′-superficial sequence
for M and I. Put F = F/H0

m(M) and F′ = F′/H0
m(M). We have Fi = F/(x1, ..., xi)M ,

F′
i = F′/(x1, ..., xi)M be are good I-filtrations of Mi = M/(x1, ..., xi)M , and dimMi = i.

By [15, Proposition 1.2 and Prosition 2.3], we get

ei(F) = ei(Fd−i) for all i ≤ d− 1. (6)

By Theorem 3.2, reg(G(F)) ≤ m, (4), [5, Lemma 1.7 ii)] and [2, Corollary 4.7.11 a)], we
have

|ed(F)| =

∣∣∣∣ℓ(M/Fm+1)− e0(F)
(
m+ 2

2

)
+ ...+ ed−1(F)(m+ 1)

∣∣∣∣
≤ max

{
B

(
m+ d

d

)
, e0(F)

(
m+ d

d

)}
+

d−1∑
i=1

|ei(F)|
(
m+ d− i

d− i

)

≤ B(m+ d)d +

d−1∑
i=1

|ei(F)|
(
m+ d− i

d− i

)
(7)

If d = 2, by (6), e1(F) = e1(F1). Using the induction hypothessis, r(F1) ≤ r, r(F′
1) ≤ r′ and by

Lemma 2.4 ii), we have

|e1(F)| ≤ ξ1(F′
1)(ξ(F′

1) + r(F′
1) + 1)2(ξ(F′

1) + r(F1) + 1)
= ξ1(ξ1 + r′ + 1)2(ξ1 + r + 1).

By Lemma 2.6, Theorem 3.2 ii) and putting m = (ξ + r′ + 1)6(ξ + r+ 1)− 2 into (7), we
have

|e2(F)| ≤ B(m+ 2)2 + |e1(F)|(m+ 1)

≤ B
[
(ξ + r′ + 1)6(ξ + r + 1)

]2
+ ξ(ξ + r′ + 1)2(ξ + r + 1)(ξ + r′ + 1)6(ξ + r + 1)

≤ [ξ + ξ(ξ + r′ + 1)2 + ξ(ξ + r′ + 1)4]
[
(ξ + r′ + 1)6(ξ + r + 1)

]2
+

+ξ(ξ + r′ + 1)2(ξ + r + 1)(ξ + r′ + 1)6(ξ + r + 1)

≤ ξ[1 + (ξ + r′ + 1)2 + (ξ + r′ + 1)4 + 1]
[
(ξ + r′ + 1)6(ξ + r + 1)

]2
≤ (ξ + r′ + 1)5(ξ + r′ + 1)12(ξ + r + 1)2

≤ (ξ + r′ + 1)17(ξ + r + 1)2.

iv) Assume that d ≥ 3. Putting Using the induction hypothessis, r(Fi) ≤ r, r(F′
i) ≤ r′,

for all 1 ≤ i ≤ d− 1 and by Lemma 2.4 ii), we have

|e1(F)| = |e1(Fd−1)| ≤ (ξ1(F′
d−1) + r(F′

d−1) + 1)2(ξ1(F′
d−1) + r(Fd−1) + 1)

≤ (ξ1 + r′ + 1)2(ξ1 + r + 1). (8)

|e2(F)| = |e2(Fd−2)| ≤ ξ2(F′
d−2)(ξ2(F′

d−2) + r(F′
d−2) + 1)17(ξ2(F′

d−2) + r(Fd−2) + 1)2

≤ ξ2(ξ2 + r′ + 1)17(ξ2 + r + 1)2. (9)

|ei(F)| = |ei(Fd−i)| ≤ (ξi(F′
d−i) + r(F′

d−i) + 1)(i
2−1)i!−i+1(ξi(F′

d−i) + r(Fd−i) + 1)i!

≤ (ξi + r′ + 1)(i
2−1)i!−i+1(ξi + r + 1)i! if 3 ≤ i ≤ d− 1. (10)

To prove the inequallity for ed(F), we set

m = (ξ + r′ + 1)(d−2)(d+1)!−d(ξ + r + 1)(d−1)! − d.
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By (7), Theorem 3.2, reg(G(F)) ≤ m and (4), we have

|ed(F)| ≤ B(m+ d)d + |e1(F)|(m+ d− 1)d−1 +

d−1∑
i=2

|ei(F)|(m+ d− i)d−i

≤ Bmd + |e1(F)|md−1 +

d−1∑
i=2

|ei(F)|md−i

=

(
B +

|e1(F)|
m

+
|e2(F)|
m2

+

d−1∑
i=3

|ei(F)|
mi

)
md (11)

By (8)-(10), we get

|e1(F)|
m

≤ ξ1(F′)(ξ1(F′) + r′ + 1)2(ξ1(F′) + r + 1)

(ξ + r′ + 1)(d−2)(d+1)!−d(ξ + r(F) + 1)(d−1)!

≤ ξ(ξ + r′ + 1)2(ξ + r + 1)

(ξ + r′ + 1)(d−2)(d+1)!−d(ξ + r + 1)(d−1)!
≤ ξ

2
. (12)

|e2(F)|
m2

≤ ξ2(F′)(ξ2(F′) + r′ + 1)17(ξ2(F′) + r + 1)2[
(ξ + r′ + 1)(d−2)(d+1)!−d(ξ + r + 1)(d−1)!

]2
≤ ξ(ξ + r′ + 1)17(ξ + r + 1)2[

(ξ + r′ + 1)(d−2)(d+1)!−d(ξ + r + 1)(d−1)!
]2 <

ξ

22
. (13)

|ei(F)|
mi

≤ ξi(F′)(ξi + r′ + 1)(i
2−1)i!−i+1(ξi(F′) + r + 1)i![

(ξ + r′ + 1)(d−2)(d+1)!−d(ξ + r + 1)(d−1)!
]i

≤ ξ(ξ + r′ + 1)(i
2−1)i!−i+1(ξ + r + 1)i![

(ξ + r′ + 1)(d−2)(d+1)!−d(ξ + r + 1)(d−1)!
]i ≤ ξ

2i

if 3 ≤ i ≤ d− 1. (14)

From (11)-(14) and Lemma 2.6, we obtain

|ed(F)| ≤
[
B + ξ

(
1

2
+ ...+

1

2d−1

)]
md < (B + ξ)md

≤ ξ
[
1 + (ξ + r′ + 1) + (ξ + r′ + 1)2.2! + ..+ (ξ + r′ + 1)d.d! + 1

]
×

×
[
(ξ + r′ + 1)(d−2)(d+1)!−d(ξ + r + 1)(d−1)!

]d
≤ ξ(ξ + r′ + 1)d.d!+1(ξ + r′ + 1)d(d−2)(d+1)!−d2(ξ + r + 1)d!

≤ (ξ + r′ + 1)d(d−2)(d+1)!−d2+d.d!+1(ξ + r + 1)d!

≤ ξ(ξ + r′ + 1)(d
2−1)d!−d+1(ξ + r + 1)d!.

□

we immediately obtain the following consequence

Corollary 3.4. Let F be a good I-filtration of M with dim(M) = d ≥ 1. Then

i) |e1(F)| ≤ ξ1(I,M)(ξ1(I,M) + 1)2(ξ1(I,M) + r(F) + 1);

ii) |e2(F)| ≤ ξ2(I,M)(ξ2(I,M) + 1)17(ξ2(I,M) + r(F) + 1)2;

iii) |ei(F)| ≤ ξi(I,M)(ξi(I,M) + 1)(i
2−1)i!−i+1(ξi(I,M) + r(F) + 1)i! if i ≥ 3.

Proof. The reduction number of the I-adic filtration {InM} is 0. Therefore, applying
Theorem 3.3 to F′ = {InM}, we then obtain. □

Let x1, ..., xd be an F-superficial sequence for I and Q := (x1, ..., xd). It is not
difficult to prove that also the F is a good Q-filtration of M . Rossi-Valla in [15] gave

9



the following fitration

E : M = F0 ⊇ F1 ⊇ QF1 ⊇ Q2F1 ⊇ · · · ⊇ QnF1 ⊇ · · · .
This filtration is a good Q-filtration of M . As in consequence of the Theorem 3.3
we have a relationship between E and {QnM} as follows:

Corollary 3.5. Let x1, ..., xd be an F-superficial sequence for I and Q := (x1, ..., xd).
Then

i) |e1(E)| ≤ ξ1(Q,M)(ξ1(Q,M) + 1)2(ξ1(Q,M) + 2);

ii) |e2(E)| ≤ ξ2(Q,M)(ξ2(Q,M) + 1)17(ξ2(Q,M) + 2)2;

iii) |ei(E)| ≤ ξi(Q,M)(ξi(Q,M) + 1)(i
2−1)i!−i+1(ξi(Q,M) + 2)i! if i ≥ 3.

Proof. The reduction number of the good Q-filtration E is 1 and the reduction
number of Q-adic filtration {QnM} is 0. Therefore, applying Theorem 3.3 to F = E
and F′ = {QnM}, we then obtain. □

Remark 3.6. Let p be an integer such that IM ⊆ mpM . Rossi-Valla in [15, Propo-
sition 2.10 and Proposition 2.11] gave a sharp upper bounds for e1(F) in terms of
e0(Q,M), e1(Q,M), and p and a sharp lower bounds for e1(E) in terms of e0(Q,M),
e1(Q,M) and other invarians of M , respectively. The bounds of Corollary 3.4 and
Corollary 3.5 are far from being sharp, but they show that the Hilbert coefficients
ei(F) and ei(E) are bounded below and above in terms of e0(Q,M), ..., ei(Q,M), i,
and r(F) (only for ei(F)), for all i ≥ 1.

Acknowledgment: The paper was completed during the stay of the author at the
Vietnam Institute for Advanced Study in Mathematics.
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