HILBERT COEFFICIENTS OF GOOD I-FILTRATIONS OF MODULES

LE XUAN DUNG
Faculty of Natural Sciences, Hong Duc University
No 565 Quang Trung, Dong Ve, Thanh Hoa, Vietnam
E-mail: lexuandung@hdu.edu.vn

Abstract

Let M be a finitely generated module of dimention d over a Noetherian local ring (A, \mathfrak{m}) and I an \mathfrak{m}-primary ideal. Let be a pair of good I-filtrations \mathbb{F} and \mathbb{F}^{\prime} of M. We show that the Hilbert coefficients $e_{i}(\mathbb{F})$ are bounded below and above in terms of $i, e_{0}\left(\mathbb{F}^{\prime}\right), \ldots, e_{i}\left(\mathbb{F}^{\prime}\right)$, and reduction numbers of \mathbb{F} and \mathbb{F}^{\prime}, for all $i \geq 1$.

1. Introduction

Let A be a commutative Noetherian local ring with the maximal ideal \mathfrak{m} and M be a finitely generated A-module of dimention d. Let I be an ideal of A; an I-filtration \mathbb{F} of M is a collection of submodules F_{n} such that

$$
M=F_{0} \supseteq F_{1} \supseteq F_{2} \supseteq \cdots \supseteq F_{n} \supseteq \cdots
$$

with the property that $I F_{n} \subseteq F_{n+1}$ for all $n \geq 0$. In the present work we consider only good I-filtrations of M : this means that $\bar{I} F_{n}=F_{n+1}$ for all sufficiently large n.

The Hilbert-Samuel function $H_{\mathbb{F}}(n)=\ell\left(M / F_{n+1}\right)$ agrees with the Hilbert-Samuel polynomial $P_{\mathbb{F}}(n)$ for $n \gg 0$ and we may write

$$
P_{\mathbb{F}}(n)=e_{0}(\mathbb{F})\binom{n+d}{d}-e_{1}(\mathbb{F})\binom{n+d-1}{d-1}+\cdots+(-1)^{d} e_{d}(\mathbb{F}) .
$$

The numbers $e_{0}(\mathbb{F}), e_{1}(\mathbb{F}), \ldots, e_{d}(\mathbb{F})$ are called the Hilbert coefficients of \mathbb{F}.
The notation of Hilbert function is central in communication algebra and is becoming increasingly importan in algebraic geometry and in computational algebra. Let be a good I-filtration \mathbb{F} of M, the Hilbert-Samuel function and the HilbertSamuel polynomial of \mathbb{F} give a lot of information on M. Therefore, it is of interest to examine properties of the Hilbert coefficients of \mathbb{F}, see ($[5,6,7,8,9,11,12,13$, $14,16,17,18,20]$). For further applications, we need to consider another filtration related to I of M. Given a pair of good I-filtrations \mathbb{F} and \mathbb{F}^{\prime} of M, we want to compare \mathbb{F} with \mathbb{F}^{\prime}. Atiyah-Macdnald ($[1$, Propsition 11.4]) and Brun-Hezog ([2, Proposition 4.6.5]) showed that $e_{0}(\mathbb{F})=e_{0}\left(\mathbb{F}^{\prime}\right)$. In some special cases, Rossi-Vall in [15] gave alower bounds and upper bounds on $e_{1}(\mathbb{F})$ in terms of $e_{0}\left(\mathbb{F}^{\prime}\right), e_{1}\left(\mathbb{F}^{\prime}\right)$, and other invarians of M. How about the other coefficients? The main goal of this paper is to show that $\left|e_{i}(\mathbb{F})\right|$ are bounded by a function depeding only $i, e_{0}\left(\mathbb{F}^{\prime}\right), \ldots, e_{i}\left(\mathbb{F}^{\prime}\right)$, and reduction numbers of \mathbb{F} and \mathbb{F}^{\prime}, for all $i \geq 1$ (see Theorem 3.3). These bounds

[^0]are far from being sharp, but they have some interest because very little is known about relationships between $e_{0}(\mathbb{F}), \ldots, e_{d}(\mathbb{F})$ and $e_{0}\left(\mathbb{F}^{\prime}\right), \ldots, e_{d}\left(\mathbb{F}^{\prime}\right)$.

Our paper is outlined as follows. In the next section, we collect notations and terminology used in the paper and start with a few preliminary results on bounding the length of local homology modules (see Lemma 2.5 and Lemma 2.6). In Section 3 , we give new bounds on the Castelnuovo-Mumford regularity $\operatorname{reg}(G(\mathbb{F}))$ of \mathbb{F} (see Theorem 3.2) and show that the Hilbert coefficients $e_{i}(\mathbb{F})$ are bounded below and above in terms of $i, e_{0}\left(\mathbb{F}^{\prime}\right), \ldots, e_{i}\left(\mathbb{F}^{\prime}\right)$, and reduction numbers of \mathbb{F} and \mathbb{F}^{\prime}, for all $i \geq 1$ (see Theorem 3.3).

2. Hilbert coefficients and local cohomomology modules

In this section, we recall notations and terminology used in the paper, and a number of auxiliary results. Generally, we will follow standard texts in this research area (cf. $[3,4,15]$).

Let $R=\oplus_{n \geq 0} R_{n}$ be a Noetherian standard graded ring over a local Artinian ring (R_{0}, \mathfrak{m}_{0}) such that R_{0} / \mathfrak{m}_{0} is an infinite field. Let E be a finitely generated graded R-module of dimension d. We denote the Hilbert function $\ell_{R_{0}}\left(E_{t}\right)$ and the Hilbert polynomial of E by $h_{E}(t)$ and $p_{E}(t)$, respectively. Writing $p_{E}(t)$ in the form:

$$
p_{E}(t)=\sum_{i=0}^{d-1}(-1)^{i} e_{i}(E)\binom{t+d-1-i}{d-1-i}
$$

we call the numbers $e_{i}(E)$ Hilbert coefficients of E.
Let $H_{R^{+}}^{i}(E)$, for $i \geq 0$, denote the i-th local cohomology module of E with respect to R^{+}. The Castelnuovo-Mumford regularity of E is defined by

$$
\operatorname{reg}(E):=\max \left\{i+j \mid H_{R^{+}}^{i}(E)_{j} \neq 0,0 \leq i \leq d\right\}
$$

and the Castelnuovo-Mumford regularity of E at and above level 1 is defined by

$$
\operatorname{reg}^{1}(E):=\max \left\{i+j \mid H_{R^{+}}^{i}(E)_{j} \neq 0,0<i \leq d\right\} .
$$

From [19, Theorem 2], Dung-Hoa in [6] derived an explicit bound for $\operatorname{reg}^{1}(E)$ in terms of $e_{i}(E), 0 \leq i \leq d-1$ and the maximal generating degree of E.

$$
\Delta^{\prime}(E)=\max \{\Delta(E), 0\} .
$$

Lemma 2.1. ([6, Lemma 1.2]) Let E be a finitely generated graded R-module of dimension $d \geq 1$. Put

$$
\xi_{d-1}(E)=\max \left\{e_{0}(E),\left|e_{1}(E)\right|, \ldots,\left|e_{d-1}(E)\right|\right\}
$$

Then we have

$$
\operatorname{reg}^{1}(E) \leq\left(\xi_{d-1}(E)+\Delta^{\prime}(E)+1\right)^{d!}-2
$$

Our method in proving the main result is to pass to the associated grade modules, so we shall recall this notation and some more definitions.

Let (A, \mathfrak{m}) be a Noetherian local ring with an infinite residue field $K:=A / \mathfrak{m}$ and M a finitely generated A-module. (Although the assumption K being infinite is not essential, because we can tensor A with $K(t)$.) Given a proper ideal I. A chain of submodules

$$
\mathbb{F}: M=F_{0} \supseteq F_{1} \supseteq F_{2} \supseteq \cdots \supseteq F_{n} \supseteq \cdots
$$

is called an I-filtration of M if $I F_{i} \subseteq F_{i+1}$ for all i, and a good I-filtration if $I F_{i}=$ F_{i+1} for all sufficiently large i. A module M with a filtration is called a filtered module (see [3, III 2.1]). If N is a submodule of M, then the sequence $\left\{F_{n}+N / N\right\}$ is a good I-filtration of M / N and will be denoted by \mathbb{F} / N.

Throughout the paper we always assume that I is an \mathfrak{m}-primary ideal and \mathbb{F} is a good I-filtration. The associated graded module to the filtration \mathbb{F} is defined by

$$
G(\mathbb{F})=\bigoplus_{n \geq 0} F_{n} / F_{n+1}
$$

We also say that $G(\mathbb{F})$ is the associated ring of the filtered module M. This is a finitely generated graded module over the standard graded ring $G:=G(I, A):=$ $\oplus_{n \geq 0} I^{n} / I^{n+1}$ (see [3, Proposition III 3.3]). In particular, when \mathbb{F} is the I-adic filtration $\left\{I^{n} M\right\}, G(\mathbb{F})$ is just the usual associated graded module $G(I, M)$.

We call $H_{\mathbb{F}}(n)=\ell\left(M / F_{n+1}\right)$ the Hilbert-Samuel function of M w.r.t \mathbb{F}. This function agrees with a polynomial - called the Hilbert-Samuel polynomial and denoted by $P_{\mathbb{F}}(n)$ - for $n \gg 0$. If we write

$$
P_{\mathbb{F}}(t)=\sum_{i=0}^{d}(-1)^{i} e_{i}(\mathbb{F})\binom{t+d-i}{d-i},
$$

then the integers $e_{i}(\mathbb{F})$ are called Hilbert coefficients of \mathbb{F} (see [15, Section 1]). When $\mathbb{F}=\left\{I^{n} M\right\}, H_{\mathbb{F}}(n)$ and $P_{\mathbb{F}}(n)$ are usually denoted by $H_{I, M}(n)$ and $P_{I, M}(n)$, respectively, and $e_{i}(\mathbb{F})=e_{i}(I, M)$. Note that $e_{i}(\mathbb{F})=e_{i}(G(\mathbb{F}))$ for $0 \leq i \leq d-1$. Then

Lemma 2.2. ([1, Proposition 11.4] and [2, Proposition 4.6.5]) Let \mathbb{F} and \mathbb{F}^{\prime} be good I-filtrations of M. Then we have

$$
e_{0}(G(\mathbb{F}))=e_{0}(\mathbb{F})=e_{0}\left(\mathbb{F}^{\prime}\right) .
$$

We call

$$
r(\mathbb{F})=\min \left\{r \geq 0 \mid F_{n+1}=I F_{n} \text { for all } n \geq r\right\}
$$

the reduction number of \mathbb{F} (w.r.t. I). When $\mathbb{F}=\left\{I^{n} M\right\}, r(\mathbb{F})=0$.
Denote the filtration $\mathbb{F} / H_{\mathfrak{m}}^{0}(M)=\overline{\mathbb{F}}$. Let

$$
h^{0}(M)=\ell\left(H_{\mathfrak{m}}^{0}(M)\right) .
$$

The relationship between $\operatorname{reg}(G(\mathbb{F}))$ and $\operatorname{reg}(G(\overline{\mathbb{F}}))$ is given by the following lemma.
Lemma 2.3. ([5, Lemma 1.9]) $\operatorname{reg}(G(\mathbb{F})) \leq \max \{\operatorname{reg}(G(\overline{\mathbb{F}})) ; r(\mathbb{F})\}+h^{0}(M)$.
From now on, we will often use the following notation:

$$
\xi_{s}(\mathbb{F})=\max \left\{e_{0}(\mathbb{F}),\left|e_{1}(\mathbb{F})\right|, \ldots,\left|e_{s}(\mathbb{F})\right|\right\}
$$

where $0 \leq s \leq d$. We see that

$$
\begin{equation*}
\xi_{0}(\mathbb{F}) \leq \xi_{1}(\mathbb{F}) \leq \ldots \leq \xi_{d}(\mathbb{F})=\xi(\mathbb{F}) \tag{1}
\end{equation*}
$$

Using the [15, Proposition 1.2 and Proposition 2.3] we get
Lemma 2.4. Let x_{1}, \ldots, x_{d} be an \mathbb{F}-superficial sequence for I and $\bar{M}=M / H_{m}^{0}(M)$. Set $M_{i}=M /\left(x_{1}, \ldots, x_{i}\right) M$ and $\mathbb{F}_{i}=\mathbb{F} /\left(x_{1}, \ldots, x_{i}\right) M$, where $F_{0}=M, \mathbb{F}_{0}=\mathbb{F}$, $0 \leq i \leq d-1$. Then we have
i) $\xi_{j}(\overline{\mathbb{F}})=\xi_{j}(\mathbb{F})$ for all $j \leq d-1$,
ii) $\xi_{j}\left(\overline{\mathbb{F}} / x_{1} \bar{M}\right)=\xi_{j}(\mathbb{F})$ for all $j \leq d-1$,
iii) $\xi_{j}\left(\mathbb{F}_{i}\right)=\xi_{j}(\mathbb{F})$ for all $j \leq d-i-1$.

Proof. i) By [15, Proposition 2.3], $e_{i}(\mathbb{F})=e_{i}(\overline{\mathbb{F}})$, for all $0 \leq i \leq d-1$. Hence $\xi_{j}(\overline{\mathbb{F}})=\xi_{j}(\mathbb{F})$ for all $j \leq d-1$.
ii) We have $\operatorname{depth}(\bar{M})>0$, by [15, Proposition 1.2],

$$
e_{i}\left(\overline{\mathbb{F}} / x_{1} \bar{M}\right)=e_{i}(\overline{\mathbb{F}}), \text { for all } 0 \leq i \leq d-1
$$

Therefor

$$
\xi_{j}\left(\overline{\mathbb{F}} / x_{1} \bar{M}\right)=\xi_{j}(\overline{\mathbb{F}}), \text { for all } 0 \leq j \leq d-1 .
$$

By i), we get $\xi_{j}\left(\overline{\mathbb{F}} / x_{1} \bar{M}\right)=\xi_{j}(\mathbb{F})$ for all $j \leq d-1$.
iii) By [15, Proposition 1.2], $\operatorname{dim}\left(M_{i-1}\right)=d-i+1$ and

$$
e_{k}\left(\mathbb{F}_{i}\right)=e_{k}\left(\mathbb{F}_{i-1} / x_{i} M_{i-1}\right)=e_{k}\left(\mathbb{F}_{i-1}\right), \text { for all } 0 \leq k \leq d-i-1 .
$$

Hence $e_{k}\left(\mathbb{F}_{i}\right)=e_{k}(\mathbb{F})$ for all $0 \leq k \leq d-i-1,0 \leq i \leq d-1$. Therefor $\xi_{j}\left(\mathbb{F}_{i}\right)=\xi_{j}(\mathbb{F})$ for all $j \leq d-i-1$.

We can improve the bounds in [6, Lemma 1.10 and Lemma 1.11]. In the following results, we can replace $\operatorname{reg}(G(\mathbb{F}))$ by the Hilbert coefficents of \mathbb{F}.

Lemma 2.5. Let \mathbb{F} a good I-filtration of M and $x_{1}, x_{2}, \ldots, x_{d}$ be an \mathbb{F}-superficial sequence for I. Set $M_{i}=M /\left(x_{1}, \ldots, x_{i}\right) M$ and $\mathbb{F}_{i}=\mathbb{F} /\left(x_{1}, \ldots, x_{i}\right) M$ where $F_{0}=M$ and $\mathbb{F}_{0}=\mathbb{F}$. Then we have

$$
h^{0}\left(M_{i}\right) \leq \sum_{k=0}^{i} \xi_{d-i+k}(\mathbb{F})\left(\xi_{d-i-1+k}(\mathbb{F})+r(\mathbb{F})+1\right)^{(d-i+k) \cdot(d-i+k)!}
$$

for all $0 \leq i \leq d-1$.
Proof. i) By [5, Lemma 1.8] and Lemma 2.1, we have

$$
\operatorname{reg}\left(G\left(\overline{\mathbb{F}_{i}}\right)\right)=\operatorname{reg}^{1}\left(G\left(\overline{\mathbb{F}_{i}}\right)\right) \leq\left(\xi_{d-i-1}\left(\overline{\mathbb{F}_{i}}\right)+r\left(\overline{\mathbb{F}_{i}}\right)+1\right)^{(d-i)!}-2 .
$$

From Lemma 2.4 i) and iii) we get $\xi_{d-i-1}\left(\overline{\mathbb{F}_{i}}\right)=\xi_{d-i-1}\left(\mathbb{F}_{i}\right)=\xi_{d-i-1}(\mathbb{F})$ and $r\left(\overline{\mathbb{F}_{i}}\right) \leq$ $r(\mathbb{F})$, therefore

$$
\operatorname{reg}\left(G\left(\overline{\mathbb{F}_{i}}\right)\right) \leq\left(\xi_{d-i-1}(\mathbb{F})+r(\mathbb{F})+1\right)^{(d-i)!}-2=: m_{i}
$$

For $i=0$, by Lemma [6, Lemma 1.6], we have

$$
\begin{aligned}
h^{0}\left(F_{0}\right) & =h^{0}(M) \leq P_{\mathbb{F}}\left(m_{0}\right) \leq \xi_{d}(\mathbb{F}) \sum_{j=0}^{d}\binom{d+m_{0}-j}{d-j} \\
& =\xi_{d}(\mathbb{F})\binom{m_{0}+d+1}{d} \leq \xi_{d}(\mathbb{F})\left(m_{0}+2\right)^{d}=\xi_{d}(\mathbb{F})\left(\xi_{d-1}(\mathbb{F})+r(\mathbb{F})+1\right)^{d . d!}
\end{aligned}
$$

For $0<i \leq d-1$, by [15, Proposition 1.2], we have $e_{j}\left(\mathbb{F}_{i}\right)=e_{j}\left(\mathbb{F}_{i-1}\right)$ for all $0 \leq j \leq d-i-1$. Similarly, as in the proof of [6, Lemma 1.10] and Lemma 2.4 iii) we have

$$
\left|e_{d-i}\left(\mathbb{F}_{i}\right)\right| \leq \xi_{d-i}\left(\mathbb{F}_{i-1}\right)+h^{0}\left(M_{i-1}\right) \leq \xi_{d-i}(\mathbb{F})+h^{0}\left(M_{i-1}\right)
$$

It implies that

$$
\begin{aligned}
h^{0}\left(M_{i}\right) & \leq \xi_{d-i}(\mathbb{F})\binom{m_{i}+d-i+1}{d-i}-\xi_{d-i}(\mathbb{F})+\left|e_{d-i}\left(\mathbb{F}_{i}\right)\right| \\
& \leq \xi_{d-i}(\mathbb{F})\left(m_{i}+2\right)^{d-i}+h^{0}\left(M_{i-1}\right) \\
& \leq \xi_{d-i}(\mathbb{F})\left(\xi_{d-i-1}(\mathbb{F})+r(\mathbb{F})+1\right)^{(d-i)(d-i)!}+ \\
& +\sum_{k=0}^{i-1} \xi_{d-i+1+k}(\mathbb{F})\left(\xi_{d-i+k}(\mathbb{F})+r(\mathbb{F})+1\right)^{(d-i+1+k) \cdot(d-i+1+k)!} \quad \text { (by induction hypothesis) } \\
& =\sum_{k=0}^{i} \xi_{d-i+k}(\mathbb{F})\left(\xi_{d-i+k-1}(\mathbb{F})+r(\mathbb{F})+1\right)^{(d-i+k) \cdot(d-i+k)!} .
\end{aligned}
$$

Lemma 2.6. Set $B=\ell\left(M /\left(x_{1}, x_{2}, \ldots, x_{d}\right) M\right)$, where $x_{1}, x_{2}, \ldots, x_{d}$ be an \mathbb{F}-superficial sequence for I and put $\xi_{-1}=0$. We have

$$
B \leq \sum_{k=0}^{d} \xi_{k}(\mathbb{F})\left(\xi_{k-1}(\mathbb{F})+r(\mathbb{F})+1\right)^{k . k!}
$$

Proof. Take the proof of the [6, Lemma 1.11]. We have

$$
\begin{equation*}
B \leq e_{0}(\mathbb{F})+h^{0}\left(M_{d-1}\right) . \tag{2}
\end{equation*}
$$

By Lemma 2.5, $h^{0}\left(M_{d-1}\right) \leq \sum_{k=0}^{d-1} \xi_{1+k}(\mathbb{F})\left(\xi_{k}(\mathbb{F})+r(\mathbb{F})+1\right)^{(1+k) \cdot(1+k)!}$. From this estimation we immediately get

$$
\begin{aligned}
B & \leq e_{0}(\mathbb{F})+\sum_{k=0}^{d-1} \xi_{1+k}(\mathbb{F})\left(\xi_{k}(\mathbb{F})+r(\mathbb{F})+1\right)^{(1+k)(1+k)!} \\
& =\xi_{0}(\mathbb{F})+\sum_{k=1}^{d} \xi_{k}(\mathbb{F})\left(\xi_{k-1}(\mathbb{F})+r(\mathbb{F})+1\right)^{k . k!} \\
& =\sum_{k=0}^{d} \xi_{k}(\mathbb{F})\left(\xi_{k-1}(\mathbb{F})+r(\mathbb{F})+1\right)^{k . k!}
\end{aligned}
$$

3. Main results

Throughout this section, \mathbb{F} and \mathbb{F}^{\prime} will be a pair of good I-filtrations of a finitely generated module M over a local ring (A, \mathfrak{m}), where I is an \mathfrak{m}-primary ideal. The aim of this section is to show that the Hilbert coefficients $e_{i}(\mathbb{F})$ are bounded below and above in terms of $e_{0}\left(\mathbb{F}^{\prime}\right), \ldots, e_{i}\left(\mathbb{F}^{\prime}\right), i, r(\mathbb{F})$, and $r\left(\mathbb{F}^{\prime}\right)$, for all $i \geq 1$.
In order to prove the main result of this paper, we need bound on the CastelnouvoMumford regularity $\operatorname{reg}(G(\mathbb{F}))$ of \mathbb{F} in terms of $d, e_{0}\left(\mathbb{F}^{\prime}\right), \ldots, e_{d}\left(\mathbb{F}^{\prime}\right), r(\mathbb{F})$, and $r\left(\mathbb{F}^{\prime}\right)$.

Lemma 3.1. ([5, Proof of Theorem 1.5]) Let $\operatorname{dim} M=d \geq 2, x$ be an \mathbb{F}-superficial sequence for I. We have

$$
\operatorname{reg}^{1}\left(G(\overline{\mathbb{F}}) / x^{*} G(\overline{\mathbb{F}})\right)=\operatorname{reg}^{1}(G(\overline{\mathbb{F}} / x \bar{M}))
$$

Theorem 3.2. Let \mathbb{F} and \mathbb{F}^{\prime} be are good I-filtrations of M with $\operatorname{dim}(M)=d \geq 1$

$$
\begin{aligned}
& \mathbb{F}: M=F_{0} \supseteq F_{1} \supseteq F_{2} \supseteq \cdots \supseteq F_{n} \supseteq \cdots \\
& \mathbb{F}^{\prime}: M=F_{0}^{\prime} \supseteq F_{1}^{\prime} \supseteq F_{2}^{\prime} \supseteq \cdots \supseteq F_{n}^{\prime} \supseteq \cdots
\end{aligned}
$$

Then
i) $\operatorname{reg}(G(\mathbb{F})) \leq\left(\xi\left(\mathbb{F}^{\prime}\right)+r\left(\mathbb{F}^{\prime}\right)+1\right)\left(\xi\left(\mathbb{F}^{\prime}\right)+r(\mathbb{F})+1\right)-2$ if $d=1$,
ii) $\operatorname{reg}(G(\mathbb{F})) \leq\left(\xi\left(\mathbb{F}^{\prime}\right)+r\left(\mathbb{F}^{\prime}\right)+1\right)^{6}\left(\xi\left(\mathbb{F}^{\prime}\right)+r(\mathbb{F})+1\right)-3$ if $d=2$,
iii) $\operatorname{reg}(G(\mathbb{F})) \leq\left(\xi\left(\mathbb{F}^{\prime}\right)+r\left(\mathbb{F}^{\prime}\right)+1\right)^{(d-1)(d+1)!-d}\left(\xi\left(\mathbb{F}^{\prime}\right)+r(\mathbb{F})+1\right)^{(d-1)!}-d$ if $d \geq 3$.

Proof. Let $\xi:=\xi\left(\mathbb{F}^{\prime}\right), r:=r(\mathbb{F})$ and $r^{\prime}:=r\left(\mathbb{F}^{\prime}\right)$. We distinguish two cases If $d=1$, then \bar{M} is a Cohen-Macaulay module. By [5, Lemma 1.8], [10, Lemma 2.2], Lemma 2.2, $r(\overline{\mathbb{F}}) \leq r$ and (1)

$$
\operatorname{reg}(G(\overline{\mathbb{F}})) \leq e_{0}(G(\overline{\mathbb{F}}))+r(\overline{\mathbb{F}})-1 \leq e_{0}\left(\mathbb{F}^{\prime}\right)+r-1 \leq \xi+r-1 .
$$

Hence, by Lemma 2.3 and applying Lemma 2.5 to \mathbb{F}^{\prime}, we then obtain

$$
\begin{aligned}
\operatorname{reg}(G(\mathbb{F})) & \leq \max \{\operatorname{reg}(G(\overline{\mathbb{F}})) ; r\}+h^{0}(M) \\
& \leq \xi+r-1+\xi\left(\xi+r^{\prime}+1\right) \\
& \leq \xi+r-1+\xi\left(\xi+r^{\prime}\right)+\left(\xi+r^{\prime}\right) \\
& =(\xi+r)+(\xi+1)\left(\xi+r^{\prime}\right)-1 \\
& \leq(\xi+r+1)+(\xi+r+1)\left(\xi+r^{\prime}\right)-2 \\
& \leq\left(\xi+r^{\prime}+1\right)(\xi+r+1)-2 .
\end{aligned}
$$

If $d \geq 2$, let $x_{1}, x_{2}, \ldots, x_{d}$ be an \mathbb{F}-superficial sequence and \mathbb{F}^{\prime}-superficial sequence for I. Put $\overline{\mathbb{F}}=\mathbb{F} / H_{m}^{0}(M)$ and $\overline{\mathbb{F}^{\prime}}=\mathbb{F}^{\prime} / H_{m}^{0}(M)$. We have $\overline{\mathbb{F}} / x_{1} \bar{M}$ and $\overline{\mathbb{F}^{\prime}} / x_{1} \bar{M}$ be are good I-filtrations of $\bar{M} / x_{1} \bar{M}$. Let $m \geq \max \left\{\operatorname{reg}\left(G\left(\overline{\mathbb{F}} / x_{1} \bar{M}\right)\right), r\right\}$, by Lemma 3.1, we have

$$
\operatorname{reg}^{1}\left(G(\overline{\mathbb{F}}) / x_{1}^{*} G(\overline{\mathbb{F}})\right)=\operatorname{reg}^{1}\left(G\left(\overline{\mathbb{F}} / x_{1} \bar{M}\right)\right) \leq m .
$$

Hence, by [10, Theorem 2.7],

$$
\operatorname{reg}^{1}(G(\overline{\mathbb{F}})) \leq m+P_{G(\overline{\mathbb{F}})}(m) .
$$

Since [5, Lemma 1.6] and [5, Lemma 1.7 (i)]

$$
\begin{aligned}
P_{G(\overline{\mathbb{F}})}(m) & \leq H_{I, \bar{M} / x_{1} \bar{M}}(m) \\
& \leq\binom{ m+d-1}{d-1} \ell\left(\left(\bar{M} / x_{1} \bar{M}\right) /\left(x_{2}, \ldots, x_{n}\right)\left(\bar{M} / x_{1} \bar{M}\right)\right) \leq B\binom{m+d-1}{d-1} .
\end{aligned}
$$

Therefor, by Lemma 2.3, we get

$$
\begin{equation*}
\operatorname{reg}(G(\mathbb{F})) \leq m+h^{0}(M)+B\binom{m+d-1}{d-1} \tag{3}
\end{equation*}
$$

If $d=2$. Let $m=\left(\xi+r^{\prime}+1\right)(\xi+r+1)-2$. Since (i) of the theorem, $r\left(\overline{\mathbb{F}^{\prime}} / x_{1} \overline{\mathbb{F}^{\prime}}\right) \leq r^{\prime}$, $r\left(\overline{\mathbb{F}} / x_{1} \overline{\mathbb{F}}\right) \leq r$ and by Lemma 2.4 ii$)$, we get

$$
\begin{aligned}
\operatorname{reg}\left(G\left(\overline{\mathbb{F}} / x_{1} \bar{M}\right)\right) & \leq\left(\xi_{1}\left(\overline{\mathbb{F}^{\prime}} / x_{1} \bar{M}\right)+r\left(\overline{\mathbb{F}^{\prime}} / x_{1} \bar{M}\right)+1\right)\left(\xi_{1}\left(\overline{\mathbb{F}^{\prime}} / x_{1} \bar{M}\right)+r\left(\overline{\mathbb{F}} / x_{1} \bar{M}\right)+1\right)-2 . \\
& =\left(\xi_{1}\left(\mathbb{F}^{\prime}\right)+r\left(\overline{\mathbb{F}^{\prime}} / x_{1} \bar{M}\right)+1\right)\left(\xi_{1}\left(\mathbb{F}^{\prime}\right)+r\left(\overline{\mathbb{F}} / x_{1} \bar{M}\right)+1\right)-2 . \\
& \leq\left(\xi+r^{\prime}+1\right)(\xi+r+1)-2=m .
\end{aligned}
$$

Hence, $\max \left\{\operatorname{reg}\left(G\left(\overline{\mathbb{F}} / x_{1} \bar{M}\right)\right), r\right\} \leq m$. From (1), (3), and applying Lemma 2.5, Lemma 2.6 to \mathbb{F}^{\prime}, we get

$$
\begin{aligned}
\operatorname{reg}(G(\mathbb{F})) & \leq m+h_{0}(M)+B(m+1) \\
& \leq\left(\xi+r^{\prime}+1\right)(\xi+r+1)-1+\xi\left(\xi+r^{\prime}+1\right)^{4}+ \\
& +\left[\xi+\xi\left(\xi+r^{\prime}+1\right)+\xi\left(\xi+r^{\prime}+1\right)^{4}\right]\left(\xi+r^{\prime}+1\right)(\xi+r+1) \\
& \leq\left(\xi+r^{\prime}+1\right)(\xi+r+1)+\xi\left(\xi+r^{\prime}+1\right)^{3}\left(\xi+r^{\prime}+1\right)(\xi+r+1)+ \\
& +\left[\xi+\xi\left(\xi+r^{\prime}+1\right)^{2}+\xi\left(\xi+r^{\prime}+1\right)^{4}\right]\left(\xi+r^{\prime}+1\right)(\xi+r+1)-3 \\
& \leq\left[1+\xi+\xi\left(\xi+r^{\prime}+1\right)^{2}+\xi\left(\xi+r^{\prime}+1\right)^{3}+\xi\left(\xi+r^{\prime}+1\right)^{4}\right]\left(\xi+r^{\prime}+1\right)(\xi+r+1)-3 \\
& \leq\left(\xi+r^{\prime}+1\right)^{5}\left(\xi+r^{\prime}+1\right)(\xi+r+1)-3 \\
& =\left(\xi+r^{\prime}+1\right)^{6}(\xi+r+1)-3 .
\end{aligned}
$$

If $d \geq 3$. The case $m=0$ is trivial. Then for all $m>0$.

By the induction hypothessis, $r\left(\overline{\mathbb{F}} / x_{1} \bar{M}\right) \leq r, r\left(\overline{\mathbb{F}^{\prime}} / x_{1} \bar{M}\right) \leq r^{\prime}$ and by Lemma 2.4 ii), we have

$$
\begin{aligned}
\operatorname{reg}(G(\overline{\mathbb{F}} / x \bar{M})) & \leq\left(\xi_{d-1}\left(\overline{\mathbb{F}^{\prime}} / x_{1} \bar{M}\right)+r\left(\overline{\mathbb{F}^{\prime}} / x_{1} \bar{M}\right)+1\right)^{(d-2) d!-d}\left(\xi_{d-1}\left(\overline{\mathbb{F}^{\prime}} / x_{1} \bar{M}\right)+r\left(\overline{\mathbb{F}} / x_{1} \bar{M}\right)+1\right)^{(d-2)!}-d+1 \\
& =\left(\xi_{d-1}\left(\mathbb{F}^{\prime}\right)+r\left(\overline{\mathbb{F}^{\prime}} / x_{1} \bar{M}\right)+1\right)^{(d-2))!-d}\left(\xi_{d-1}\left(\overline{\mathbb{F}^{\prime}}\right)+r\left(\overline{\mathbb{F}} / x_{1} \bar{M}\right)+1\right)^{(d-2)!}-d+1 \\
& \leq\left(\xi+r^{\prime}+1\right)^{(d-2) d!-d}(\xi+r+1)^{(d-2)!}-d+1 .
\end{aligned}
$$

We can take

$$
m=\left(\xi+r^{\prime}+1\right)^{(d-2) d!-d}(\xi+r+1)^{(d-2)!}-d+1
$$

From (3) and applying Lemma 2.5, Lemma 2.6 to \mathbb{F}^{\prime}, we get

$$
\begin{aligned}
\operatorname{reg}(G(\mathbb{F})) & \leq m+\xi_{d}\left(\mathbb{F}^{\prime}\right)\left(\xi_{d-1}\left(\mathbb{F}^{\prime}\right)+r^{\prime}+1\right)^{d . d!}+\sum_{k=0}^{d} \xi_{k}\left(\mathbb{F}^{\prime}\right)\left(\xi_{k-1}\left(\mathbb{F}^{\prime}\right)+r^{\prime}+1\right)^{k . k!}\binom{m+d-1}{d-1} \\
& <\sum_{k=0}^{d} \xi_{k}\left(\mathbb{F}^{\prime}\right)\left(\xi_{k-1}\left(\mathbb{F}^{\prime}\right)+r^{\prime}+1\right)^{k . k!}(m+1)^{d-1}-1 \\
& \leq\left(\xi_{d}\left(\mathbb{F}^{\prime}\right)+r^{\prime}+1\right)^{d . d!+1}(m+1)^{d-1}-1 \\
& \leq\left(\xi_{d}\left(\mathbb{F}^{\prime}\right)+r^{\prime}+1\right)^{d . d!+1}\left[\left(\xi+r^{\prime}+1\right)^{(d-2) d!-d}(\xi+r+1)^{(d-2)!}-d\right]^{d-1}-1 \\
& \leq\left(\xi+r^{\prime}+1\right)^{(d-1)(d+1)!-d}(\xi+r+1)^{(d-1)!}-d .
\end{aligned}
$$

Now we are going to prove the main result of this paper.
Theorem 3.3. Let \mathbb{F} and \mathbb{F}^{\prime} be good I-filtrations of M with $\operatorname{dim}(M)=d \geq 1$

$$
\begin{aligned}
& \mathbb{F}: M=F_{0} \supseteq F_{1} \supseteq F_{2} \supseteq \cdots \supseteq F_{n} \supseteq \cdots \\
& \mathbb{F}^{\prime}: M=F_{0}^{\prime} \supseteq F_{1}^{\prime} \supseteq F_{2}^{\prime} \supseteq \cdots \supseteq F_{n}^{\prime} \supseteq \cdots
\end{aligned}
$$

Then
i) $\left|e_{1}(\mathbb{F})\right| \leq \xi_{1}\left(\mathbb{F}^{\prime}\right)\left(\xi_{1}\left(\mathbb{F}^{\prime}\right)+r\left(\mathbb{F}^{\prime}\right)+1\right)^{2}\left(\xi_{1}\left(\mathbb{F}^{\prime}\right)+r(\mathbb{F})+1\right)$;
ii) $\left|e_{2}(\mathbb{F})\right| \leq \xi_{2}\left(\mathbb{F}^{\prime}\right)\left(\xi_{2}\left(\mathbb{F}^{\prime}\right)+r\left(\mathbb{F}^{\prime}\right)+1\right)^{17}\left(\xi_{2}\left(\mathbb{F}^{\prime}\right)+r(\mathbb{F})+1\right)^{2}$;
iii) $\left|e_{i}(\mathbb{F})\right| \leq \xi_{i}\left(\mathbb{F}^{\prime}\right)\left(\xi_{i}\left(\mathbb{F}^{\prime}\right)+r\left(\mathbb{F}^{\prime}\right)+1\right)^{\left(i^{2}-1\right) i!-i+1}\left(\xi_{i}\left(\mathbb{F}^{\prime}\right)+r(\mathbb{F})+1\right)^{i!}$ if $i \geq 3$.

Proof. i) By [5, (8)] we have

$$
\begin{equation*}
\ell\left(M / F_{m+1}\right)=\sum_{i=0}^{d}(-1)^{i} e_{i}(\mathbb{F})\binom{m+d-i}{d-i} \tag{4}
\end{equation*}
$$

for any $m \geq \operatorname{reg}(G(\mathbb{F}))$. For short we write $\xi_{i}:=\xi_{i}\left(\mathbb{F}^{\prime}\right), r:=r(\mathbb{F})$, and $r^{\prime}:=r\left(\mathbb{F}^{\prime}\right)$.
Assume that $d=1$. Putting $m:=\left(\xi_{1}+r^{\prime}+1\right)\left(\xi_{1}+r+1\right)-1$, by Theorem 3.2 i) and (4), we have

$$
\begin{equation*}
e_{1}(\mathbb{F})=(m+1) e_{0}(\mathbb{F})-\ell\left(M / F_{m+1}\right) \tag{5}
\end{equation*}
$$

Since $F_{n}=I^{n-r} F_{r}$ for $n \geq r$ and $M_{r} \neq 0$

$$
\begin{aligned}
\ell\left(M / F_{m+1}\right) & =\ell\left(M / F_{(m+1-r)-r}\right) \\
& \geq \ell\left(F_{r(\mathbb{F})} / I F_{r}\right)+\cdots+\ell\left(I^{m-r} F_{r} / I^{m-r+1} F_{r}\right) \geq m-r+1 .
\end{aligned}
$$

By (5) and Lemma 2.2, this implies

$$
\begin{aligned}
e_{1} & \leq\left(\xi_{1}+r^{\prime}+1\right)\left(\xi_{1}+r+1\right) \xi_{0}-\left[\left(\xi_{1}+r^{\prime}+1\right)\left(\xi_{1}+r+1\right)-r+1\right] \\
& \leq \xi_{1}\left(\xi_{1}+r^{\prime}+1\right)^{2}\left(\xi_{1}+r+1\right) .
\end{aligned}
$$

By [5, Lemma 1.7 i)], Lemma 2.2 and Lemma 2.6

$$
\begin{aligned}
-e_{1}(\mathbb{F}) & \leq B(m+1)-(m+1) e_{0}(\mathbb{F})=\left(B-\xi_{0}\right)(m+1) \\
& \leq \xi_{1}\left(\xi_{1}+r^{\prime}\right)\left(\xi_{1}+r^{\prime}+1\right)\left(\xi_{1}+r+1\right)=\xi_{1}\left(\xi_{1}+r^{\prime}+1\right)^{2}\left(\xi_{1}+r+1\right)
\end{aligned}
$$

Hence

$$
\left|e_{1}(\mathbb{F})\right| \leq \xi_{1}\left(\xi_{1}+r^{\prime}+1\right)^{2}\left(\xi_{1}+r+1\right)
$$

Assume that $d \geq 2$. Let x_{1}, \ldots, x_{d} be \mathbb{F}-superficial sequence and \mathbb{F}^{\prime}-superficial sequence for M and I. Put $\overline{\mathbb{F}}=\mathbb{F} / H_{m}^{0}(M)$ and $\overline{\mathbb{F}^{\prime}}=\mathbb{F}^{\prime} / H_{m}^{0}(M)$. We have $\mathbb{F}_{i}=\overline{\mathbb{F}} /\left(x_{1}, \ldots, x_{i}\right) \bar{M}$, $\mathbb{F}_{i}^{\prime}=\overline{\mathbb{F}^{\prime}} /\left(x_{1}, \ldots, x_{i}\right) \bar{M}$ be are good I-filtrations of $M_{i}=\bar{M} /\left(x_{1}, \ldots, x_{i}\right) \bar{M}$, and $\operatorname{dim} M_{i}=i$. By [15, Proposition 1.2 and Prosition 2.3], we get

$$
\begin{equation*}
e_{i}(\mathbb{F})=e_{i}\left(\mathbb{F}_{d-i}\right) \text { for all } i \leq d-1 \tag{6}
\end{equation*}
$$

By Theorem 3.2, $\operatorname{reg}(G(\mathbb{F})) \leq m,(4),[5$, Lemma 1.7 ii) $]$ and [2, Corollary 4.7.11 a)], we have

$$
\begin{align*}
\left|e_{d}(\mathbb{F})\right| & =\left|\ell\left(M / F_{m+1}\right)-e_{0}(\mathbb{F})\binom{m+2}{2}+\ldots+e_{d-1}(\mathbb{F})(m+1)\right| \\
& \leq \max \left\{B\binom{m+d}{d}, e_{0}(\mathbb{F})\binom{m+d}{d}\right\}+\sum_{i=1}^{d-1}\left|e_{i}(\mathbb{F})\right|\binom{m+d-i}{d-i} \\
& \leq B(m+d)^{d}+\sum_{i=1}^{d-1}\left|e_{i}(\mathbb{F})\right|\binom{m+d-i}{d-i} \tag{7}
\end{align*}
$$

If $d=2$, by $(6), e_{1}(\mathbb{F})=e_{1}\left(\mathbb{F}_{1}\right)$. Using the induction hypothessis, $r\left(\mathbb{F}_{1}\right) \leq r, r\left(\mathbb{F}_{1}^{\prime}\right) \leq r^{\prime}$ and by Lemma 2.4 ii), we have

$$
\begin{aligned}
\left|e_{1}(\mathbb{F})\right| & \leq \xi_{1}\left(\mathbb{F}_{1}^{\prime}\right)\left(\xi\left(\mathbb{F}_{1}^{\prime}\right)+r\left(\mathbb{F}_{1}^{\prime}\right)+1\right)^{2}\left(\xi\left(\mathbb{F}_{1}^{\prime}\right)+r\left(\mathbb{F}_{1}\right)+1\right) \\
& =\xi_{1}\left(\xi_{1}+r^{\prime}+1\right)^{2}\left(\xi_{1}+r+1\right) .
\end{aligned}
$$

By Lemma 2.6, Theorem 3.2 ii) and putting $m=\left(\xi+r^{\prime}+1\right)^{6}(\xi+r+1)-2$ into (7), we have

$$
\begin{aligned}
\left|e_{2}(\mathbb{F})\right| & \leq B(m+2)^{2}+\left|e_{1}(\mathbb{F})\right|(m+1) \\
& \leq B\left[\left(\xi+r^{\prime}+1\right)^{6}(\xi+r+1)\right]^{2}+\xi\left(\xi+r^{\prime}+1\right)^{2}(\xi+r+1)\left(\xi+r^{\prime}+1\right)^{6}(\xi+r+1) \\
& \leq\left[\xi+\xi\left(\xi+r^{\prime}+1\right)^{2}+\xi\left(\xi+r^{\prime}+1\right)^{4}\right]\left[\left(\xi+r^{\prime}+1\right)^{6}(\xi+r+1)\right]^{2}+ \\
& +\xi\left(\xi+r^{\prime}+1\right)^{2}(\xi+r+1)\left(\xi+r^{\prime}+1\right)^{6}(\xi+r+1) \\
& \leq \xi\left[1+\left(\xi+r^{\prime}+1\right)^{2}+\left(\xi+r^{\prime}+1\right)^{4}+1\right]\left[\left(\xi+r^{\prime}+1\right)^{6}(\xi+r+1)\right]^{2} \\
& \leq\left(\xi+r^{\prime}+1\right)^{5}\left(\xi+r^{\prime}+1\right)^{12}(\xi+r+1)^{2} \\
& \leq\left(\xi+r^{\prime}+1\right)^{17}(\xi+r+1)^{2} .
\end{aligned}
$$

iv) Assume that $d \geq 3$. Putting Using the induction hypothessis, $r\left(\mathbb{F}_{i}\right) \leq r, r\left(\mathbb{F}_{i}^{\prime}\right) \leq r^{\prime}$, for all $1 \leq i \leq d-1$ and by Lemma 2.4 ii), we have

$$
\begin{align*}
\left|e_{1}(\mathbb{F})\right| & =\left|e_{1}\left(\mathbb{F}_{d-1}\right)\right| \leq\left(\xi_{1}\left(\mathbb{F}_{d-1}^{\prime}\right)+r\left(\mathbb{F}_{d-1}^{\prime}\right)+1\right)^{2}\left(\xi_{1}\left(\mathbb{F}_{d-1}^{\prime}\right)+r\left(\mathbb{F}_{d-1}\right)+1\right) \\
& \leq\left(\xi_{1}+r^{\prime}+1\right)^{2}\left(\xi_{1}+r+1\right) \tag{8}\\
\left|e_{2}(\mathbb{F})\right| & =\left|e_{2}\left(\mathbb{F}_{d-2}\right)\right| \leq \xi_{2}\left(\mathbb{F}_{d-2}^{\prime}\right)\left(\xi_{2}\left(\mathbb{F}_{d-2}^{\prime}\right)+r\left(\mathbb{F}_{d-2}^{\prime}\right)+1\right)^{17}\left(\xi_{2}\left(\mathbb{F}_{d-2}^{\prime}\right)+r\left(\mathbb{F}_{d-2}\right)+1\right)^{2} \\
& \leq \xi_{2}\left(\xi_{2}+r^{\prime}+1\right)^{17}\left(\xi_{2}+r+1\right)^{2} . \tag{9}\\
\left|e_{i}(\mathbb{F})\right| & =\left|e_{i}\left(\mathbb{F}_{d-i}\right)\right| \leq\left(\xi_{i}\left(\mathbb{F}_{d-i}^{\prime}\right)+r\left(\mathbb{F}_{d-i}^{\prime}\right)+1\right)^{\left(i^{2}-1\right) i!-i+1}\left(\xi_{i}\left(\mathbb{F}_{d-i}^{\prime}\right)+r\left(\mathbb{F}_{d-i}\right)+1\right)^{i!} \\
& \leq\left(\xi_{i}+r^{\prime}+1\right)^{\left(i^{2}-1\right) i!-i+1}\left(\xi_{i}+r+1\right)^{i!} \text { if } 3 \leq i \leq d-1 . \tag{10}
\end{align*}
$$

To prove the inequallity for $e_{d}(\mathbb{F})$, we set

$$
m=\left(\xi+r^{\prime}+1\right)^{(d-2)(d+1)!-d}(\xi+r+1)^{(d-1)!}-d
$$

By (7), Theorem 3.2, $\operatorname{reg}(G(\mathbb{F})) \leq m$ and (4), we have

$$
\begin{align*}
\left|e_{d}(\mathbb{F})\right| & \leq B(m+d)^{d}+\left|e_{1}(\mathbb{F})\right|(m+d-1)^{d-1}+\sum_{i=2}^{d-1}\left|e_{i}(\mathbb{F})\right|(m+d-i)^{d-i} \\
& \leq B m^{d}+\left|e_{1}(\mathbb{F})\right| m^{d-1}+\sum_{i=2}^{d-1}\left|e_{i}(\mathbb{F})\right| m^{d-i} \\
& =\left(B+\frac{\left|e_{1}(\mathbb{F})\right|}{m}+\frac{\left|e_{2}(\mathbb{F})\right|}{m^{2}}+\sum_{i=3}^{d-1} \frac{\left|e_{i}(\mathbb{F})\right|}{m^{i}}\right) m^{d} \tag{11}
\end{align*}
$$

By (8)-(10), we get

$$
\begin{align*}
\frac{\left|e_{1}(\mathbb{F})\right|}{m} & \leq \frac{\xi_{1}\left(\mathbb{F}^{\prime}\right)\left(\xi_{1}\left(\mathbb{F}^{\prime}\right)+r^{\prime}+1\right)^{2}\left(\xi_{1}\left(\mathbb{F}^{\prime}\right)+r+1\right)}{\left(\xi+r^{\prime}+1\right)^{(d-2)(d+1)!-d}(\xi+r(\mathbb{F})+1)^{(d-1)!}} \\
& \leq \frac{\xi\left(\xi+r^{\prime}+1\right)^{2}(\xi+r+1)}{\left(\xi+r^{\prime}+1\right)^{(d-2)(d+1)!-d}(\xi+r+1)^{(d-1)!}} \leq \frac{\xi}{2} \tag{12}\\
\frac{\left|e_{2}(\mathbb{F})\right|}{m^{2}} & \leq \frac{\xi_{2}\left(\mathbb{F}^{\prime}\right)\left(\xi_{2}\left(\mathbb{F}^{\prime}\right)+r^{\prime}+1\right)^{17}\left(\xi_{2}\left(\mathbb{F}^{\prime}\right)+r+1\right)^{2}}{\left[\left(\xi+r^{\prime}+1\right)^{(d-2)(d+1)!-d}(\xi+r+1)^{(d-1)!}\right]^{2}} \\
& \leq \frac{\xi\left(\xi+r^{\prime}+1\right)^{17}(\xi+r+1)^{2}}{\left[\left(\xi+r^{\prime}+1\right)^{(d-2)(d+1)!-d}(\xi+r+1)^{(d-1)!}\right]^{2}}<\frac{\xi}{2^{2}} \tag{13}\\
\frac{\left|e_{i}(\mathbb{F})\right|}{m^{i}} & \leq \frac{\xi_{i}\left(\mathbb{F}^{\prime}\right)\left(\xi_{i}+r^{\prime}+1\right)^{\left(i^{2}-1\right) i!-i+1}\left(\xi_{i}\left(\mathbb{F}^{\prime}\right)+r+1\right)^{i!}}{\left[\left(\xi+r^{\prime}+1\right)^{(d-2)(d+1)!-d}(\xi+r+1)^{(d-1)!}\right]^{i}} \\
& \leq \frac{\xi\left(\xi+r^{\prime}+1\right)^{\left(i^{2}-1\right) i!-i+1}(\xi+r+1)^{i!}}{\left[\left(\xi+r^{\prime}+1\right)^{(d-2)(d+1)!-d}(\xi+r+1)^{(d-1)!}\right]^{i}} \leq \frac{\xi}{2^{i}} \tag{14}
\end{align*}
$$

From (11)-(14) and Lemma 2.6, we obtain

$$
\begin{aligned}
\left|e_{d}(\mathbb{F})\right| & \leq\left[B+\xi\left(\frac{1}{2}+\ldots+\frac{1}{2^{d-1}}\right)\right] m^{d}<(B+\xi) m^{d} \\
& \leq \xi\left[1+\left(\xi+r^{\prime}+1\right)+\left(\xi+r^{\prime}+1\right)^{2.2!}+. .+\left(\xi+r^{\prime}+1\right)^{d . d!}+1\right] \times \\
& \times\left[\left(\xi+r^{\prime}+1\right)^{(d-2)(d+1)!-d}(\xi+r+1)^{(d-1)!}\right]^{d} \\
& \leq \xi\left(\xi+r^{\prime}+1\right)^{d . d!+1}\left(\xi+r^{\prime}+1\right)^{d(d-2)(d+1)!-d^{2}}(\xi+r+1)^{d!} \\
& \leq\left(\xi+r^{\prime}+1\right)^{d(d-2)(d+1)!-d^{2}+d . d!+1}(\xi+r+1)^{d!} \\
& \leq \xi\left(\xi+r^{\prime}+1\right)^{\left(d^{2}-1\right) d!-d+1}(\xi+r+1)^{d!}
\end{aligned}
$$

we immediately obtain the following consequence
Corollary 3.4. Let \mathbb{F} be a good I-filtration of M with $\operatorname{dim}(M)=d \geq 1$. Then
i) $\left|e_{1}(\mathbb{F})\right| \leq \xi_{1}(I, M)\left(\xi_{1}(I, M)+1\right)^{2}\left(\xi_{1}(I, M)+r(\mathbb{F})+1\right)$;
ii) $\left|e_{2}(\mathbb{F})\right| \leq \xi_{2}(I, M)\left(\xi_{2}(I, M)+1\right)^{17}\left(\xi_{2}(I, M)+r(\mathbb{F})+1\right)^{2}$;
iii) $\left|e_{i}(\mathbb{F})\right| \leq \xi_{i}(I, M)\left(\xi_{i}(I, M)+1\right)^{\left(i^{2}-1\right) i!-i+1}\left(\xi_{i}(I, M)+r(\mathbb{F})+1\right)^{i!}$ if $i \geq 3$.

Proof. The reduction number of the I-adic filtration $\left\{I^{n} M\right\}$ is 0 . Therefore, applying Theorem 3.3 to $\mathbb{F}^{\prime}=\left\{I^{n} M\right\}$, we then obtain.

Let x_{1}, \ldots, x_{d} be an \mathbb{F}-superficial sequence for I and $Q:=\left(x_{1}, \ldots, x_{d}\right)$. It is not difficult to prove that also the \mathbb{F} is a good Q-filtration of M. Rossi-Valla in [15] gave
the following fitration

$$
\mathbb{E}: M=F_{0} \supseteq F_{1} \supseteq Q F_{1} \supseteq Q^{2} F_{1} \supseteq \cdots \supseteq Q^{n} F_{1} \supseteq \cdots .
$$

This filtration is a good Q-filtration of M. As in consequence of the Theorem 3.3 we have a relationship between \mathbb{E} and $\left\{Q^{n} M\right\}$ as follows:
Corollary 3.5. Let x_{1}, \ldots, x_{d} be an \mathbb{F}-superficial sequence for I and $Q:=\left(x_{1}, \ldots, x_{d}\right)$. Then
i) $\left|e_{1}(\mathbb{E})\right| \leq \xi_{1}(Q, M)\left(\xi_{1}(Q, M)+1\right)^{2}\left(\xi_{1}(Q, M)+2\right)$;
ii) $\left|e_{2}(\mathbb{E})\right| \leq \xi_{2}(Q, M)\left(\xi_{2}(Q, M)+1\right)^{17}\left(\xi_{2}(Q, M)+2\right)^{2}$;
iii) $\left|e_{i}(\mathbb{E})\right| \leq \xi_{i}(Q, M)\left(\xi_{i}(Q, M)+1\right)^{\left(i^{2}-1\right) i!-i+1}\left(\xi_{i}(Q, M)+2\right)^{i!}$ if $i \geq 3$.

Proof. The reduction number of the good Q-filtration \mathbb{E} is 1 and the reduction number of Q-adic filtration $\left\{Q^{n} M\right\}$ is 0 . Therefore, applying Theorem 3.3 to $\mathbb{F}=\mathbb{E}$ and $\mathbb{F}^{\prime}=\left\{Q^{n} M\right\}$, we then obtain.

Remark 3.6. Let p be an integer such that $I M \subseteq \mathfrak{m}^{p} M$. Rossi-Valla in [15, Proposition 2.10 and Proposition 2.11] gave a sharp upper bounds for $e_{1}(\mathbb{F})$ in terms of $e_{0}(Q, M), e_{1}(Q, M)$, and p and a sharp lower bounds for $e_{1}(\mathbb{E})$ in terms of $e_{0}(Q, M)$, $e_{1}(Q, M)$ and other invarians of M, respectively. The bounds of Corollary 3.4 and Corollary 3.5 are far from being sharp, but they show that the Hilbert coefficients $e_{i}(\mathbb{F})$ and $e_{i}(\mathbb{E})$ are bounded below and above in terms of $e_{0}(Q, M), \ldots, e_{i}(Q, M), i$, and $r(\mathbb{F})\left(\right.$ only for $\left.e_{i}(\mathbb{F})\right)$, for all $i \geq 1$.

Acknowledgment: The paper was completed during the stay of the author at the Vietnam Institute for Advanced Study in Mathematics.

References

[1] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra (Addison-Wesley, 1969).
[2] W. Bruns and J. Herzog, Cohen-Macaulay rings (Cambridge University, 1993).
[3] N. Bourbaki, Algebèbre commutative (Hermann, Paris, 1961-1965).
[4] M. P. Brodmann and R. Y. Sharp, Local cohomology: an algebraic introduction with geometric applications. Cambridge Studies in Advanced Mathematics, 136 (Cambridge University, 2012).
[5] L. X. Dung and L. T. Hoa, Castelnuovo-Mumford regularity of associated graded modules and fiber cones of filtered modules, Comm. Algebra 40 (2012), 404-422.
[6] L. X. Dung and L. T. Hoa, Dependence of Hilbert coefficients, Manuscripta math. 149 (2016), 235-249. Corrigendum, ArXiv 1706.08669.
[7] S. Goto and K. Ozeki, Uniform bounds for Hilbert coefficients of parameters, in "Commutative algebra and its connections to geometry", pp. 97118, Contemp. Math., 555, Amer. Math. Soc., Providence, RI, 2011.
[8] K. Hanumanthu and C. Huneke, Bounding the first Hilbert coefficient, Proc. Amer. Math. Soc. 140 (2012), 109-117
[9] D. Kirby and H. A. Mehran, A note on the coefficients of the Hilbert-Samuel polynomial for a Cohen-Macaulay module, J. London Math. Soc. (2) 25 (1982), 449-457.
[10] C. H. Linh, Upper bound for Castelnuovo-Mumford regularity of associated graded modules, Comm. Algebra. 33 (2005), 1817-1831.
[11] C. H. Linh, Castelnuovo-Mumford regularity and degree of nilpotency, Math. Proc. Cambridge Philos. Soc. 142 (2007), 429-437.
[12] M. Narita, A note on the coefficients of Hilbert characteristic functions in semi-regular local rings, Proc. Cambridge Philos. Soc. 59 (1963), 269-275.
[13] N. G. Northcott, A note on the coefficients of the abstract Hilbert function, J. London Math. Soc. (1), 35 (1960), 209-214.
[14] C. P. L. Rhodes, The Hilbert-Samuel polynomial in a filtered module, J. London Math. Soc. (1) 3 (1971), $73-85$.
[15] M. E. Rossi and G. Valla, Hilbert functions of filtered modules Lecture Notes of the Unione Matematica Italiana, 9. (Springer, Heidelberg, 2010)
[16] M. E. Rossi, N. V. Trung and G. Valla, Castelnuovo-Mumford regularity and extended degree, Trans. Amer. Math. Soc. 355 (2003), 1773-1786.
[17] V. Srinivas and V. Trivedi, A finiteness theorem for the Hilbert functions of complete intersection local rings, Math. Z. 225 (1997), 543-558.
[18] V. Srinivas and V. Trivedi, On the Hilbert function of a Cohen-Macaulay local ring, J. Algebraic Geom. 6 (1997), 733 - 751.
[19] V. Trivedi, Hilbert functions, Castelnuovo-Mumford regularity and uniform Artin-Rees numbers, Manuscripta Math. 94 (1997), 485-499.
[20] V. Trivedi, Finiteness of Hilbert functions for generalized Cohen-Macaulay modules. Comm. Algebra 29 (2001), 805-813.

[^0]: 2010 Mathematics Subject Classification: Primary 13D40, 13A30
 Key words and phrases: good filtration, associated graded module, Hilbert coefficients, Castelnuovo-Mumford regularity.

