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Abstract. There are two different notions for symbolic powers of ideals existing in the literature,
one defined in terms of associated primes, the other in terms of minimal primes. Elaborating on
an idea known to Eisenbud, Herzog, Hibi, Hoa, and Trung, we interpret both notions of symbolic
powers as suitable saturations of the ordinary powers. We prove a binomial expansion formula
for saturated powers of sums of ideals. This gives a uniform treatment to an array of existing
and new results on both notions of symbolic powers of such sums: binomial expansion formulas,
computations of depth and regularity, and criteria for the equality of ordinary and symbolic powers.

1. Introduction

Let k be a field, let A and B be Noetherian k-algebras such that R = A⊗kB is also Noetherian.
Let I ⊆ A and J ⊆ B be ideals, and let I + J ⊆ R denote the ideal IR + JR. The following
binomial expansion for the symbolic powers of (I + J) was given in [10]:

(I + J)(s) =
s∑

i=0

I(i)J (s−i).(1.1)

This binomial expansion has been well received and seen many applications (cf. [2, 6, 7, 15, 16, 17,
20, 22, 23, 24]).

In working with symbolic powers of ideals, it is often remarked that there are two different
notions for symbolic powers existing in the literature, both being much investigated. This has
led to many difficulties and sometimes confusions in using formula (1.1). For instance, incorrect
applications of (1.1) were used in [2, 10, 14] to study resurgence numbers, asymptotic resurgence
numbers, and Waldschmidt constants. The aim of this paper is to prove that the binomial expansion
(1.1) provided in [10] is in fact valid for both known definitions of symbolic powers, allowing more
applications and filling the gaps in [2, 10, 14]. Particularly, our work shows that the consequences
of formula (1.1) in [2, Lemmas 2.5, 3.3, and Theorem 2.7], [10, Corollary 3.8] and [14, Theorems
3.6 and 3.9] remain true as stated.

For an ideal I in an arbitrary commutative ring A and a positive integer s, the two existing
notions of the s-th symbolic power of I are given by

mI(s) =
⋂

p∈MinA(I)

(IsAp ∩A) and aI(s) =
⋂

p∈AssA(I)

(IsAp ∩A).

The difference between these notions lies in the set of associated primes over which the intersection
takes place. If I has no embedded associated primes, i.e., AssA(I) = MinA(I), then the two notions
are the same. This is the case for ideals of geometrical and combinatorial interest, including radical
ideals (squarefree monomial ideals and prime ideals in particular). In general, for ideals with
embedded associated primes, the two symbolic powers are different (Example 2.3). In existing
literature, there are no customarily distinctive notations for these notions of symbolic powers. In
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this paper, to distinguish the two, we shall use superscripts m and a as above. The binomial
expansion given in [10] was for mI(s), while for applications in [2, 10, 14] it was aI(s) that was
examined.

It turns out that both of these notions of symbolic powers fall under a more general umbrella,
namely, they both can be realized as the saturated powers of I with respect to appropriate ideals;
see Lemmas 2.1 and 2.2. We shall address this much more general notion of saturated powers.

Definition 1.1. Let I,K be ideals in a commutative ring A, and let s be a positive integer. The
s-th saturated power of I with respect to K is defined to be

I
(s)
K := Is : K∞ =

⋃
t≥1

(Is : Kt).

The fact that symbolic powers can be realized as saturation was known to several authors, for
example Herzog-Hoa-Trung [12, Section 2], Herzog-Hibi-Trung [11, Section 3] and Eisenbud [5,
Proposition 3.13] (if only in a disguised form). We also would like to note here that in [12] and [11],

the ideal I
(s)
K is called s-th K-symbolic power of I and s-th symbolic power of I with respect to K,

respectively. We illustrate the fertility of this idea in the present paper, and derive various results
for both notions of symbolic powers under a common framework. Our main result establishes
a binomial expansion of the form (1.1) for saturated powers of (I + J), where again A,B are
Noetherian k-algebras such that A ⊗k B is also Noetherian, and I ⊆ A and J ⊆ B are ideals.
Specifically, we prove the following theorem.

Theorem 3.7. Let I,K ⊆ A and J, L ⊆ B be ideals. Then, for any s ∈ N, we have

(I + J)
(s)
KL =

s∑
i=0

I
(i)
K J

(s−i)
L .(1.2)

A direct application of Theorem 3.7 particularly shows that the binomial expansion for symbolic
powers of (I +J) in (1.1) is valid for both the known notions, using minimal and associated primes,
of symbolic powers; see Theorem 4.1. Theorem 3.7 also allows us to derive formulas to compute the
depth and the regularity of saturated powers of I+J in terms of those of I and J ; see Theorem 4.4.
These formulas generalize those given in [10] and, at the same time, exhibit that the formulas in [10]
are valid for symbolic powers defined by all associated primes as well; see Corollary 4.6. Another
application of Theorem 3.7 is a criterion for the equality of ordinary and “associated” symbolic
powers of I + J (Corollary 4.2). There is an analogous result for “minimal” symbolic powers ([10,
Corollary 3.5]) whose proof cannot be adapted to handle “associated” symbolic powers.

Let Qs denote the right hand side of (1.2). To prove Theorem 3.7, we establish both containments

(I + J)
(s)
KL ⊇ Qs and (I + J)

(s)
KL ⊆ Qs. The first containment, namely, (I + J)

(s)
KL ⊇ Qs, is achieved

by directly showing that I
(i)
K J

(s−i)
L ⊆ (I + J)

(s)
KL for any 0 ≤ i ≤ s; see Proposition 3.1. The second

containment, namely, (I+J)
(s)
KL ⊆ Qs, on the other hand, is more involved and does not follow from

similar lines of arguments as those given in [10]. To derive at this later containment, we examine
colon ideals of the form (I + J)s : (KL)t and make use of the binomial expansion for the usual
power (I + J)s.

The paper is outlined as follows. In the next section, we collect some basic facts about saturated
powers and prove that, with respect to appropriate ideals, symbolic powers are saturated powers.
These are done in Lemmas 2.1 and 2.2. We also recall a few important results about associated
primes of powers of sums of ideals that will be used later. In Section 3, we prove our main result,
Theorem 3.7, establishing a binomial expansion for a general saturated power of (I + J). This
yields a criterion for the equality of ordinary and certain saturated powers of I + J ; see Theorem
3.9. In Section 4, we specify Theorem 3.7 to symbolic powers and show that the binomial expansion
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in (1.1) holds true for both definitions of symbolic powers. This is done in Theorem 4.1. We also
apply Theorem 3.7 to get formulas for the depth and regularity of saturated powers of (I + J).
This is done in Theorem 4.4.

Acknowledgments. The first named author acknowledges supports from Louisiana Board of Re-
gents and the Simons Foundation. The third named author thanks the Infosys foundation, and
Sciences and Engineering Research Board (PDF/2020/001436), India for the financial support.
The last named author (HDN) thanks the Vietnam Institute for Advanced Study in Mathematics
(VIASM) for its hospitality and generous support. HDN also acknowledges the financial sup-
port of the Vietnam Academy of Science and Technology (through grants CSCL01.01/22-23 and
NCXS02.01/22-23). Many of our examples are computed using Macaulay 2 [8] package.

2. Saturated and symbolic powers of ideals

For standard notations and terminology of commutative algebra, we refer the interested reader
to [3, 5]. The recent survey [4] discusses various topics on symbolic powers defined in terms of all
associated primes.

In this section, we collect basic properties of saturated powers of an ideal and show that its
symbolic powers are also saturated powers with respect to appropriate ideals. We also recall a
few results on associated primes of powers of sums of ideals that will be used in later sections.
Throughout this section, A will denote a Noetherian commutative ring.

We start by recalling from Definition 1.1 that for ideals I,K ⊆ A and a positive integer s, the
s-th saturated power of I with respect to K is given by

I
(s)
K = Is : K∞.

In other words, if Is =
⋂

p∈AssA(Is)Q(p) is an irredundant primary decomposition of Is, where Q(p)

is the p-primary component of Is, then

(2.1) I
(s)
K =

⋂
p∈AssA(Is), K 6⊆p

Q(p).

We proceed in showing that symbolic powers are indeed saturated powers, elaborating on an
idea known to Herzog-Hoa-Trung [12, Section 2], Herzog-Hibi-Trung [11, Section 3] and Eisenbud
[5, Proposition 3.13] (in an indirect form). For an ideal I ⊆ A, set Ass∗A(I) :=

⋃∞
n=1 AssA(In),

which is a finite set, by the proof of [21, Theorem 2.11]. Recall that

mI(s) =
⋂

p∈MinA(I)

(IsAp ∩A).

Note that
⋃

p∈MinA(I) p consists of zero-divisors of A/
√
I. By prime avoidance, it is easy to see that

for y 6∈
⋃

p∈MinA(I) p, we have

Is : y ⊆ mI(s).(2.2)

In what follows we employ the usual convention that an empty intersection of ideals in A is the
ring A.

Lemma 2.1 (“Minimal” symbolic powers as saturation, cf. [11, Section 3]). Let I ⊆ A be any
ideal and let s be a positive integer. Set

K =
⋂

p∈Ass∗A(I)\MinA(I)

p and Ks =
⋂

p∈AssA(Is)\MinA(I)

p.
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Let x ∈ K be any element that is regular on A/
√
I if Ass∗A(I) \MinA(I) 6= ∅, and x = 1 otherwise.

Then,
mI(s) = I

(s)
K = I

(s)
Ks

= I
(s)
(x).

In particular, given an arbitrary irredundant primary decomposition of Is, mI(s) is the intersection
of its components that are primary to elements of MinA(I).

Proof. Observe that (x) ⊆ K ⊆ Ks. Thus, I
(s)
Ks
⊆ I

(s)
K ⊆ I

(s)
(x). To establish the desired equality, it

suffices to show that
I
(s)
(x) ⊆

mI(s) ⊆ I
(s)
Ks

.

Let u ∈ I
(s)
(x) be any element. Then, for some positive integer t, we have that u ∈ Is : xt. This,

together with (2.2), implies that u ∈ mI(s) as xt /∈
⋃

p∈MinA(I) p. Therefore, I
(s)
(x) ⊆

mI(s).

Now, let v ∈ mI(s) \ Is be any element, if exists. By the definition of symbolic powers and the
prime avoidance, we have Is : v 6⊆

⋃
p∈MinA(I) p. This, since AssA(Is : v) ⊆ AssA(Is), implies that

AssA(Is : v) ⊆ {p
∣∣ p ∈ AssA(Is) \MinA(I)}.

Since (Is : v) is finitely generated, there exists a positive integer q such that (Is : v) contains(⋂
p∈AssA(Is:v) p

)q
. Thus,

Kq
s =

 ⋂
p∈AssA(Is)\MinA(I)

p

q

⊆

 ⋂
p∈AssA(Is:v)

p

q

⊆ Is : v.

This implies that v ∈ Is : K∞s . Hence, mI(s) ⊆ I
(s)
Ks

. The desired equality follow.

Finally, the last assertion follows from the established equality mI(s) = I
(s)
Ks

and Equation (2.1). �

Recall also that aI(s) =
⋂

p∈AssA(I)(I
sAp ∩ A). Note that

⋃
p∈AssA(I) p consists of zero-divisors of

A/I. Similar to the observation that led to (2.2), it can be seen that with this notion of symbolic
powers, for any y 6∈

⋃
p∈AssA(I) p, we have

Is : y ⊆ aI(s).(2.3)

Lemma 2.2 (“Associated” symbolic powers as saturation). Let I ⊆ A be any ideal and let s be a
positive integer. Set

K =
⋂

p∈Ass∗A(I)
grade(p,A/I)≥1

p and Ks =
⋂

p∈AssA(Is)
grade(p,A/I)≥1

p.

Let x ∈ K be any element that is regular on A/I if {p ∈ Ass∗A(I) | grade(p, A/I) ≥ 1} 6= ∅, and
x = 1 otherwise. Then,

aI(s) = I
(s)
K = I

(s)
Ks

= I
(s)
(x).

In particular, given an arbitrary irredundant primary decomposition of Is, aI(s) is the intersection
of its components that are primary to ideals p ∈ AssA(Is) such that grade(p, A/I) = 0, i.e., p is
contained in an element of AssA(I).

Proof. As in Lemma 2.1, it is easy to see that I
(s)
Ks
⊆ I

(s)
K ⊆ I

(s)
(x), and it suffices to prove the following

inclusions:
I
(s)
(x) ⊆

aI(s) ⊆ I
(s)
Ks

.

The first inclusion follows by (2.3) and exactly the same argument as in Lemma 2.1. The second
inclusion is also established by a similar line of arguments as that in Lemma 2.1. Specifically,
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consider any element v ∈ aI(s) \ Is if exists. Again, by the definition and prime avoidance, we have
Is : v 6⊆

⋃
p∈AssA(I) p. This, since AssA(Is : v) ⊆ AssA(Is), implies that

AssA(Is : v) ⊆ {p
∣∣ p ∈ AssA(Is) and grade(p, A/I) ≥ 1}.

The argument continues exactly line by line as that in Lemma 2.1, replacing the phrase “p ∈
AssA(Is) \MinA(I)” by “p ∈ AssA(Is) and grade(p, A/I) ≥ 1”.

Finally, the last assertion follows from the established equality aI(s) = I
(s)
Ks

and Equation (2.1). �

Example 2.3. Let I = (a2, ab) = (a)(a, b) ⊆ A = k[a, b]. Then, for s ∈ N, Is = (as)(a, b)s. This
implies that Ass∗A(I) = {(a), (a, b)} and MinA(I) = {(a)}. Particularly, we have

K = Ks = (a, b),

and x can be chosen to be x = b. Now,

I
(s)
K = I

(s)
Ks

= I
(s)
(b) = mI(s) = (as).

Since the set {p ∈ AssA(Is) and grade(p, A/I) ≥ 1} is empty, we see that aI(s) = Is for all s ≥ 1.
Hence, the two known definitions give different s-th symbolic powers of I for all s ≥ 1.

Example 2.4. Let I = (u5, u4v, uv4, v5, u3v3, u3v2w + u2v3z) ⊆ A = k[u, v, w, z]. Note that I is
primary to (u, v). Direct computation shows that

I2 = (u10, u9v, u8v2, u6v4, u5v5, u4v6, u2v8, uv9, v10, u7v3w, u3v7w, u7v3z, u3v7z),

and Is = (u, v)5s for s ≥ 3. Thus, Ass∗A(I) = {(u, v), (u, v, w, z)}. Particularly, K = (u, v, w, z) and
we can chose x = w. We also have K2 = K and Ks = (1) for s 6= 2. Therefore, for s ≥ 2,

I
(s)
K = I

(s)
Ks

= I
(s)
(x) = aIs = (u, v)5s.

We end the section by paving the way to the main result in Section 4, with Lemmas 2.8 and
2.9. For this, it is necessary to recall a few facts on associated primes of powers of sums, and the
behavior of grade with respect to certain tensor products.

Lemma 2.5. Let M and N be nonzero finitely generated modules over A and B, respectively.
Then,

AssR(M ⊗k N) =
⋃

p∈AssA(M)
q∈AssB(N)

MinR (p + q) , and

MinR(M ⊗k N) =
⋃

p∈MinA(M)
q∈MinB(N)

MinR (p + q) .

More precisely, P ∈ AssR(M ⊗k N) (respectively, MinR(M ⊗k N)) if and only if p := P ∩ A ∈
AssA(M) (respectively, MinA(M)), q := P ∩ B ∈ AssB(N) (respectively, MinB(N)), and P ∈
MinR (p + q) .

Proof. The assertion follows from [10, Theorem 2.5] and its proof. �
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Lemma 2.6. Let I and J be nonzero proper ideals of A and B, respectively. Then for any s ∈ N,
we have

s⋃
i=1

⋃
p∈AssA(Ii−1/Ii)

q∈AssB(Js−i/Js−i+1)

MinR(p + q) ⊆ AssR((I + J)s), and

AssR((I + J)s) ⊆
s⋃

i=1

⋃
p∈AssA(Ii)

q∈AssB(Js−i/Js−i+1)

MinR(p + q).

More precisely, if P ∈ AssR((I + J)s) and p := P ∩A, q := P ∩B, then there exists 1 ≤ i ≤ s such
that p ∈ AssA(Ii), q ∈ AssB(Js−i/Js−i+1), and P ∈ MinR(p + q).

Proof. The two containment are contained in [18, Theorem 4.1]. Moreover, the proof of [18, Theo-
rem 4.1] shows that

AssR((I + J)s) ⊆
s⋃

i=1

AssR
(
(A/Ii)⊗k (Js−i/Js−i+1)

)
.

Hence, the remaining assertion follows by using Lemma 2.5. �

Lemma 2.7. Let p ⊂ A, q ⊂ B be prime ideals. Let M,N be finitely generated modules over A,B,
respectively. Let P ∈ AssR(p + q) be a prime ideal of R. Then there is an equality

grade(P,M ⊗k N) = grade(p,M) + grade(q, N).

Proof. By Lemma 2.5, p = P ∩ A, q = P ∩ B. It is clear that (M ⊗k N)P = Mp ⊗Ap (A ⊗k N)P .
Since the map A→ R is flat, so is the map Ap → RP . Applying [9, Chap. IV, (6.3.1)], we have

depth(M ⊗k N)P = depthMp + depth k(p)⊗Ap (A⊗k N)P ,

where k(p) denotes the residue field of Ap. Since k(p) = (A/p)p, we have ((A/p) ⊗k N)P =
k(p)⊗Ap (A⊗k N)P . Therefore,

depth(M ⊗k N)P = depthMp + depth((A/p)⊗k N)P .

Since the map B → R is flat, by similar arguments

depth((A/p)⊗k N)P = depthNq + depth((A/p)⊗k (B/q))P .

Note that (A/p)⊗k (B/q) = R/(p+q). Hence depth((A/p)⊗k (B/q))P = depth(R/(p+q))P = 0,
as P ∈ AssR(p + q). From the above equalities we get depth(M ⊗k N)P = depthMp + depthNq,
namely grade(P,M ⊗k N) = grade(p,M) + grade(q, N). The proof is concluded. �

The next two results are useful to the proof of the main result in Section 4.

Lemma 2.8. Let I and J be nonzero proper ideals of A and B, respectively. Set

K =
⋂

p∈Ass∗A(I)\MinA(I)

p and L =
⋂

q∈Ass∗B(J)\MinB(J)

q.

Let s ∈ N and P ∈ AssR((I + J)s). Then P 6∈ MinR(I + J) if and only if KL ⊆ P . In particular,

(I + J)
(s)
KL = m(I + J)(s).
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Proof. Since P ∈ AssR((I + J)s), Lemma 2.6 implies the existence of 1 ≤ i ≤ s, p ∈ AssA(Ii), and
q ∈ AssB(Js−i/Js−i+1) ⊆ AssB(Js−i+1) such that P ∈ MinR(p+q). By Lemma 2.5, p = P ∩A, q =
P ∩ B. Moreover, P 6∈ MinR(I + J) if and only if either p /∈ MinA(I) or q /∈ MinB(J). Hence, if
P 6∈ MinR(I + J), then either K ⊆ p or L ⊆ q, and in both cases, KL ⊆ p + q ⊆ P .

Conversely, if KL ⊆ P , then without loss of generality, we may assume K ⊆ P . This implies
K ⊆ P ∩A = p. Hence K 6= (1) and p contains an element of Ass∗A(I) \MinA(I), so p /∈ MinA(I).
This yields P 6∈ MinR(I + J).

For the remaining assertion, fix an irredundant primary decomposition of (I + J)s. By Lemma

2.1, m(I + J)(s) is the intersection of components that are primary to ideals P ∈ MinR(I + J), i.e.,
by the first assertion, those P ∈ AssR((I + J)s) such that KL 6⊆ P . This, together with Equality
(2.1), gives the desired equality. �

The analog of Lemma 2.8 for symbolic powers defined in terms of associated primes is given in
the next lemma.

Lemma 2.9. Let I and J be nonzero proper ideals of A and B, respectively. Set

K =
⋂

p∈Ass∗A(I)
grade(p,A/I)≥1

p and L =
⋂

q∈Ass∗B(J)
grade(q,B/J)≥1

q.

Let s ∈ N and P ∈ AssR((I + J)s). Then grade(P,R/(I + J)) ≥ 1 if and only if KL ⊆ P . In
particular,

(I + J)
(s)
KL = a(I + J)(s).

Proof. Since P ∈ AssR((I + J)s), Lemma 2.6 implies the existence of 1 ≤ i ≤ s such that p ∈
AssA(Ii), q ∈ AssB(Js−i/Js−i+1) ⊆ AssB(Js−i+1), and P ∈ MinR(p + q). By Lemma 2.5, p =
P ∩A, q = P ∩B. By Lemma 2.7,

grade(P,R/(I + J)) = grade(p, A/I) + grade(q, B/J).

Hence if grade(P,R/(I + J)) ≥ 1, then either grade(p, A/I) ≥ 1 or grade(q, B/J) ≥ 1. Thus either
K ⊆ p or L ⊆ q, and in both cases, KL ⊆ p + q ⊆ P .

Conversely, if KL ⊆ P , then without loss of generality, we may assume K ⊆ P . This implies
K ⊆ P ∩A = p. Thus K 6= (1), and p contains a regular element on A/I, namely grade(p, A/I) ≥ 1.
This yields grade(P,R/(I + J)) ≥ 1.

For the remaining assertion, fix an irredundant primary decomposition of (I + J)s. By Lemma

2.2, a(I +J)(s) is the intersection of the components that are primary to ideals P ∈ AssR((I +J)s)
such that grade(P,R/(I + J)) = 0, i.e. by the first assertion, those P ∈ AssR((I + J)s) such that
KL 6⊆ P . This, together with Equality (2.1), gives the desired equality. �

3. Binomial expansion for saturated powers

In this section, we prove the main result of this paper which establishes a general binomial ex-
pansion for saturated powers of sums of ideals. Throughout this section, let A and B be Noetherian
k-algebras such that R = A⊗kB is also Noetherian. For ideals I ⊆ A and J ⊆ B, when the context
is clear we shall also use I and J to represent their extensions to R.

We begin by establishing one inclusion for the desired binomial expansion.

Proposition 3.1. Let I, K be ideals of A, and let J , L be ideals of B. Then,

s∑
i=0

I
(i)
K J

(s−i)
L ⊆ (I + J)

(s)
KL.
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Proof. Note that I ⊆ I + J and KL ⊆ K. Therefore, for each i ≥ 0,

(Ii :A K∞)R = Ii :R K∞ ⊆ (I + J)i :R (KL)∞.

Similarly, for each j ≥ 0, (J j :B L∞)R ⊆ (I + J)j :R (KL)∞. Consequently, for i, j ≥ 0,

I
(i)
K J

(j)
L ⊆

(
(I + J)i :R (KL)∞

) (
(I + J)j :R (KL)∞

)
⊆ (I + J)i+j :R (KL)∞.

Hence, the assertion follows. �

Before proving the reverse inclusion and thus establishing the desired binomial expansion, we
shall present a few useful lemmas.

Lemma 3.2. Let I ⊆ A and J ⊆ B be ideals. As ideals in R, we have IJ = I ∩ J.

Proof. The assertion is a known fact; see, for instance, [10, Lemma 3.1] (also see [13, Lemma 1.1]
for ideals in polynomial rings). �

Lemma 3.3. Let I,K ⊆ A and J ⊆ B be ideals. The following equality holds:

(I + J) ∩ (K + J) = (I ∩K) + J.

Proof. It suffices to prove that the left hand side is contained in the right hand side. Take x ∈
(I + J)∩ (K + J). Write x = x1 + y1 = x2 + y2, where x1 ∈ I, x2 ∈ K, y1, y2 ∈ J . Then, by Lemma
3.2, we have

x1 − x2 = y2 − y1 ∈ (I + K) ∩ J = (I + K)J.

Hence x1 − x2 = u − v, u ∈ IJ, v ∈ KJ . Thus x1 − u = x2 − v ∈ I ∩K, as x1, u ∈ I, x2, v ∈ K.
Finally x = x1 + y1 = (x1 − u) + (u + y1) ∈ I ∩K + IJ + J = (I ∩K) + J , as desired. �

Lemma 3.4. Let {Ii}i≥0 and {Jj}j≥0 be filtrations of ideals in A and B, respectively. Then for all
s ≥ 1, the following equality holds:

J1
⋂ (

s−2∑
i=0

IiJs−i + Is−1

)
=

s−1∑
i=0

IiJs−i.

Proof. Since {Jj}j≥0 is a filtration, the right hand side is contained in the left hand side. For the
reverse containment, consider any element x in the left hand side. Then, x ∈ J1 and x = x1 + y1,
where x1 ∈

∑s−2
i=0 IiJs−i ⊆ J1 and y1 ∈ Is−1. Therefore, thanks to Lemma 3.2, we have

x− x1 = y1 ∈ J1 ∩ Is−1 = J1Is−1.

Hence, x = x1 + y1 ∈
∑s−2

i=0 IiJs−i + J1Is−1 =
∑s−1

i=0 IiJs−i, as desired. �

Lemma 3.5. Let {Ii}i≥0 and {Ki}i≥0 be filtrations of ideals in A, and let {Jj}j≥0 be a filtration of
ideals in B. Assume, moreover, that I0 = K0 = A and J0 = B. Then, for all s ≥ 1, the following
equality holds: (

s∑
i=0

IiJs−i

) ⋂ (
s∑

i=0

KiJs−i

)
=

s∑
i=0

(Ii ∩Ki)Js−i.

Proof. We shall use induction on s ≥ 1. When s = 1, the desired statement is

(I1 + J1) ∩ (K1 + J1) = (I1 ∩K1) + J1,

which is true by Lemma 3.3. Assume that s ≥ 2. Clearly,

(3.1)

(
s∑

i=0

IiJs−i

) ⋂ (
s∑

i=0

KiJs−i

)
⊇

s∑
i=0

(Ii ∩Ki)Js−i.

8



For the reverse containment, consider any element x in the left hand side. Note that x ∈∑s
i=0 IiJs−i ⊆ Is + J1. Similarly, x ∈ Ks + J1. Thus, Lemma 3.3 yields

x ∈ (Is + J1) ∩ (Ks + J1) = (Is ∩Ks) + J1.

Write x = x1 +x2, where x1 ∈ Is ∩Ks and x2 ∈ J1. Then x−x1 = x2 ∈ J1. Since x1 ∈ Is, we have

x− x1 ∈
s∑

i=0

IiJs−i + Is ⊆
s−2∑
i=0

IiJs−i + Is−1.

Similarly, x− x1 ∈
∑s−2

i=0 KiJs−i + Ks−1.
Set Li = Ii ∩Ki for i ≥ 0. Take M0 = J0 and Mi = Ji+1 for all i ≥ 1. Observe that {Mj}j≥0 is

a filtration of ideals of B. Also, note that

s−2∑
i=0

IiJs−i + Is−1 =
s−1∑
i=0

IiMs−1−i and
s−2∑
i=0

KiJs−i + Ks−1 =
s−1∑
i=0

KiMs−1−i.

Thus, by the induction hypothesis,(
s−1∑
i=0

IiMs−1−i

) ⋂ (
s−1∑
i=0

KiMs−1−i

)
=

s−1∑
i=0

LiMs−1−i =
s−2∑
i=0

LiJs−i + Ls−1.

Furthermore, thanks to Lemma 3.4, we have

J1
⋂ (

s−2∑
i=0

LiJs−i + Ls−1

)
=

s−1∑
i=0

LiJs−i.

Therefore, x − x1 ∈
∑s−1

i=0 LiJs−i. It follows that x ∈
∑s

i=0 LiJs−i, as x1 ∈ Ls. In other words,
x is contained in the right hand side of (3.1). This completes the induction and the proof of the
lemma. �

Lemma 3.6. Let {Ii}i≥0 and {Jj}j≥0 be filtrations of ideals in A and B, respectively, with I0 = A
and J0 = B. Let a ∈ A be an element and let K ⊆ A be an ideal. Then,

(1)

(
s∑

i=t

IiJs−i

)
:R a ⊆ (It :A a)Js−t +

(
s∑

i=t+1

IiJs−i

)
:R a for any 0 ≤ t ≤ s− 1.

(2)

(
s∑

i=0

IiJs−i

)
:R K =

s∑
i=0

(Ii :A K) Js−i.

Proof. (1) Let x ∈ (
∑s

i=t IiJs−i) :R a be any element. Then, xa ∈ (
∑s

i=t IiJs−i) ⊆ It since {Ii}i≥0
is a filtration of ideals in R. Consequently, x ∈ It :R a = (It :A a)R.

Also, xa ∈ ItJs−t +
(∑s

i=t+1 IiJs−i
)
. Thus, there exists y ∈

∑s
i=t+1 IiJs−i such that xa −

y ∈ ItJs−t ⊆ Js−tR. Note that {Ii}i≥0 is a filtration, and so y ∈ It+1R. Therefore, xa − y ∈
((It :A a)a + It+1)R, which implies that

xa− y ∈ ((It :A a)a + It+1)R ∩ Js−tR

= ((It :A a)a + It+1) Js−t (by Lemma 3.2)

= (It :A a)aJs−t + It+1Js−t.

Next, choose z ∈ (It :A a)Js−t such that xa − y − za ∈ It+1Js−t ⊆ It+1Js−t−1, where the last
inclusion follows from the fact that {Jj}j≥0 is a filtration. In particular,

(x− z)a ∈ (y) + It+1Js−t−1 ⊆
s∑

i=t+1

IiJs−i.
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It follows that x ∈ (It :A a)Js−t +
(∑s

i=t+1 IiJs−i
)

:R a, as desired.
(2) Consider first the case where K = (a) is a principal ideal. By a recursive use of part (1), we

get (
s∑

i=t

IiJs−i

)
:R a ⊆

s∑
i=t

(Ii :A a) Js−i for 0 ≤ t ≤ s− 1.

The reverse containment follows from the fact that, for every 0 ≤ i ≤ s,

(Ii :A a)Js−i ⊆ (IiJs−i) :R a ⊆

(
s∑

i=0

IiJs−i

)
:R a.

Hence, the assertion holds when K is a principal ideal.
Consider the general case where K is an arbitrary ideal. Since A is Noetherian, K is finitely

generated, i.e., K = (a1, . . . , ad) for a1, . . . , ad ∈ A. Applying Lemma 3.5 and making use of the
case where K is principal, we obtain(

s∑
i=0

IiJs−i

)
:R K =

d⋂
t=1

(
s∑

i=0

IiJs−i :R at

)
=

d⋂
t=1

(
s∑

i=0

(Ii :A at)Js−i

)

=
s∑

i=0

(
d⋂

t=1

(Ii :A at)

)
Js−i =

s∑
i=0

(Ii :A K) Js−i.

The conclusion follows. �

Our main result, the binomial expansion for saturated powers of (I + J), is completed with the
final step in the following statement.

Theorem 3.7. Let I,K ⊆ A, and J, L ⊆ B be ideals. For any s ∈ N, we have

(I + J)
(s)
KL =

s∑
i=0

I
(i)
K J

(s−i)
L .

Proof. Since R is Noetherian, there exists a positive integer t such that (I + J)
(s)
KL = (I + J)s :R

(KL)t. By applying Lemma 3.6, we then obtain the following inclusion of ideals in R:

(I + J)s :R (KL)t = (I + J)s :R KtLt =
(
(I + J)s :R Kt

)
:R Lt

=

(
s∑

i=0

(
Ii :A Kt

)
Js−i

)
:R Lt =

s∑
i=0

(
Ii :A Kt

) (
Js−i :B Lt

)
⊆

s∑
i=0

I
(i)
K J

(s−i)
L .

This, together with the inclusion in Proposition 3.1, establishes the desired equality. �

As an immediate consequence of Theorem 3.7, we obtain the following corollary.

Corollary 3.8. Let I,K be ideals of A, and let J, L be ideals of B. If I
(i)
K = Ii and J

(i)
L = J i for

all i ≤ s, then (I + J)
(s)
KL = (I + J)s.

Proof. The assertion is straightforward from the binomial expansion of (I+J)
(s)
KL given in Theorem

3.7. �

The following result says that the converse of Corollary 3.8 also holds in the most relevant cases,
for example, when each of A and B is either a domain or a standard graded k-algebra, and I and
J are proper, non-nilpotent ideals. This result is a generalization of [10, Corollary 3.5].
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Theorem 3.9. Let I,K ⊆ A and J, L ⊆ B be ideals, and let s ∈ N. Assume that Is−1 6= Is and

Js−1 6= Js. Then, (I + J)
(s)
KL = (I + J)s implies that I

(i)
K = Ii and J

(i)
L = J i for all i ≤ s.

Proof. Since Is−1 6= Is and Js−1 6= Js, I ⊆ A and J ⊆ B are nonzero proper ideals. Since

(I + J)
(s)
KL = (I + J)s, we have AssR((I + J)

(s)
KL) = AssR((I + J)s). Therefore, KL 6⊆ P for any

P ∈ AssR((I + J)s). This implies that K,L 6⊆ P for any P ∈ AssR((I + J)s).
Fix 1 ≤ i ≤ s. Since Is−1 6= Is, it follows that Ii−1 6= Ii, and hence AssA(Ii−1/Ii) 6= ∅. Similarly

AssB(J j−1/J j) 6= ∅ for any 1 ≤ j ≤ s. Consider any p ∈ AssA(Ii−1/Ii). Observe that if K ⊆ p
then, for any q ∈ AssB(Js−i/Js−i+1), we have K ⊆ P for all P ∈ MinR(p + q). Moreover, by
Lemma 2.6, we have

s⋃
i=1

⋃
p∈AssA(Ii−1/Ii)

q∈AssB(Js−i/Js−i+1)

MinR(p + q) ⊆ AssR((I + J)s).

Thus, any such P is an element of AssR((I+J)s), and this yields a contradiction. Therefore, K 6⊆ p
for every p ∈ AssA(Ii−1/Ii). Since

AssA(A/Ii) ⊆
i⋃

j=1

AssA(Ij−1/Ij),

it follows that K 6⊆ p for any p ∈ AssA(A/Ii). We deduce by definition that I
(i)
K = Ii. Similarly,

we get J
(i)
L = J i for all 1 ≤ i ≤ s. The theorem is proved. �

Theorem 3.7 gives a formula for the saturated powers of (I + J) with respect to a product KL,
where K ⊆ A and L ⊆ B. The following question arises naturally: Let I and J be ideals in A and
B respectively. Let E be an ideal in R. Do there exist ideals K ⊆ A and L ⊆ B such that

(I + J)
(s)
E =

s∑
i=0

I
(i)
K J

(s−i)
L ?

This question has a negative answer in general, as the next example demonstrates.

Example 3.10. Take A = k[x, y], I = (x2, xy), B = k[z, t], J = (z2, zt). Take E = (x, y, z, t) in
R = A⊗k B = k[x, y, z, t]. Then (I + J) :R E∞ = (xz, x2, xy, z2, zt). This is because I + J admits
the following primary decomposition

I + J = (x, z) ∩ (x, z2, t) ∩ (x2, y, z) ∩ (x2, y, z2, t),

and E = (x, y, z, t) is contained in only the radical of the last of these primary ideals. Hence,

(I + J) :R E∞ = (x, z) ∩ (x, z2, t) ∩ (x2, y, z) = (xz, x2, xy, z2, zt).

On the other hand, assume that there exist ideals K and L in A and B, respectively, such that
(I + J) :R E∞ = (I :A K∞) + (J :B L∞). Observe that I = (x) ∩ (x2, y), so I :A K∞ can only be
either (x), (x2, xy) or (1).

Similarly J :B L∞ can only be either (z), (z2, zt) or (1). In any case, we cannot have (I :A
K∞) + (J :B L∞) being equal to (xz, x2, xy, z2, zt).

4. Binomial expansion for symbolic powers

In this section, we apply Theorem 3.7 to obtain the binomial expansion (1.1) for both known
notions of symbolic powers. We further derive formulas for the depth and regularity of saturated
powers of sums of ideals, generalizing those given in [10] for symbolic powers. Throughout this
section, A and B shall denote Noetherian k-algebras such that R = A⊗k B is also Noetherian.
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The following binomial expansion was given in [10] for symbolic powers defined using minimal
primes. We provide an alternative proof that, at the same time, works also for symbolic powers
defined using all associated primes.

Theorem 4.1. Let I ⊆ A and J ⊆ B be nonzero proper ideals. Then, for any s ∈ N, we have

(I + J)(s) =
s∑

i=0

I(i)J (s−i).(4.1)

Here, the equality is valid for both known definitions of symbolic powers.

Proof. We shall first establish the equality (4.1) for symbolic powers that are defined using the
associated primes, employing Lemma 2.9.

Set
K =

⋂
p∈Ass∗A(I)

grade(p,A/I)≥1

p and L =
⋂

q∈Ass∗B(J)
grade(q,B/J)≥1

q.

By applying Lemma 2.9, Theorem 3.7, and Lemma 2.2, we obtain

a(I + J)(s) = (I + J)
(s)
KL =

s∑
i=0

I
(i)
K J

(s−i)
L =

s∑
i=0

aI(i) aJ (s−i).

The proof for symbolic powers defined in terms of minimal primes is similar, employing Lemma
2.8, Theorem 3.7, and Lemma 2.1. This completes the proof of the theorem. �

As a consequence of Theorem 4.1, we obtain an analog of [10, Corollary 3.5] for symbolic powers
defined using all associated primes.

Corollary 4.2. Let I ⊆ A and J ⊆ B be ideals, and let s ≥ 1 be an integer. Assume that Is−1 6= Is

and Js−1 6= Js. If a(I + J)(s) = (I + J)s then aI(i) = Ii and aJ (i) = J i for all 1 ≤ i ≤ s.

Proof. The hypotheses imply that I ⊆ A, J ⊆ B are nonzero proper ideals. The assertion follows
from Theorems 3.9 and 4.1, and Lemma 2.9. �

The condition that Is−1 6= Is and Js−1 6= Js in Corollary 4.2 is necessary, as illustrated in the
following example.

Example 4.3. Let A = k[x]/(x − x2) and B = k[u, v, w, z]. Take I = (x) ⊆ A and J =

(u5, u4v, uv4, v5, u3v3, u3v2w + u2v3z) ⊆ B. Note that aI(n) = In = In+1 = (x) for all n ∈ N.
Also, J is a (u, v)-primary ideal of B. By Example 2.4,

J2 = (u10, u9v, u8v2, u6v4, u5v5, u4v6, u2v8, uv9, v10, u7v3w, u3v7w, u7v3z, u3v7z),

and Js = (u, v)5s for all s ≥ 3. Therefore, Ass∗B(J) = {(u, v), (u, v, w, z)}.
Take L = (u, v, w, z). Then, w ∈ L is a regular element over B/J . Therefore, by Lemma 2.2,

aJ (2) 6= J2 and aJ (3) = J3. However, a(I + J)(3) = (I + J)3 = (x) + J3, by Theorem 4.1.

We end the paper by using Theorem 3.7 to derive formulas for the depth and regularity of
saturated powers of (I + J), generalizing those given in [10] for symbolic powers m(I + J)(s) (and,

thus, exhibiting that those formulas hold for a(I + J)(s) as well). For simplicity of notations, set
[1, s] = {1, . . . , s}.

For the remaining results, let A = k[x1, . . . , xd] and B = k[y1, . . . , ye] be standard graded poly-
nomial rings over k. Let I ⊆ A and J ⊆ B be nonzero proper homogeneous ideals.

Theorem 4.4. Let K ⊆ A and L ⊆ B be homogeneous ideals. Assume that either of the following
conditions holds:

(i) chark = 0;
12



(ii) I,K, J, L are monomial ideals.

Then, for all s ≥ 1, there are equality

depth
R

(I + J)
(s)
KL

= min
i∈[1,s]

{
depth

A

I
(i)
K

+ depth
B

J
(s−i)
L

+ 1,depth
A

I
(i)
K

+ depth
B

J
(s+1−i)
L

}
,

reg
R

(I + J)
(s)
KL

= max
i∈[1,s]

{
reg

A

I
(i)
K

+ reg
B

J
(s−i)
L

+ 1, reg
A

I
(i)
K

+ reg
B

J
(s+1−i)
L

}
.

The key step in the proof of Theorem 4.4 is given by the following lemma.

Lemma 4.5. With the above notations, assume that either of the following conditions holds:

(i) chark = 0;
(ii) I,K are monomial ideals.

If char k = 0 then denote by ∂(I) =
(
∂(f)/∂xi

∣∣ f ∈ I, i = 1, . . . , d
)

the ideal generated by partial
derivatives of elements in I. If I is a monomial ideal then set

∂∗(I) =
(
f/xi

∣∣ f is a monomial in I, xi divides f
)
.

Let s ≥ 1 be an integer. Then the following statements hold.

(1) If char k = 0 then ∂(I
(s)
K ) ⊆ I

(s−1)
K . If I and K are monomial ideals, then so is I

(s)
K and

∂∗(I
(s)
K ) ⊆ I

(s−1)
K .

(2) In either case, for all s ≥ 1 and all i ∈ Z, the map TorAi (k, I(s)K )→ TorAi (k, I(s−1)K ) is zero.

Proof. (1) If char k = 0 then arguing as in the proof of [10, Proposition 5.5], where the key point

is the product rule for derivatives, we get ∂(I
(s)
K ) ⊆ I

(s−1)
K .

Assume that I and K are monomial ideals. Clearly I
(s)
K = Is : K∞ is a monomial ideal. Take a

monomial f ∈ ∂∗(I
(s)
K ), we show that f ∈ I

(s−1)
K . By the definition, fxi ∈ I

(s)
K for some 1 ≤ i ≤ d.

Thus for some m � 0, we have fxiK
m ⊆ Is. As f is a monomial and I,K are monomial ideals,

this implies

fKm ⊆ ∂∗(Is) ⊆ Is−1.

Hence f ∈ I
(s−1)
K , as claimed.

(2) The conclusion follows from the differential criteria for the vanishing of Tor maps given in
[1, Proposition 3.5] and [19, Proposition 4.4 and Lemma 4.2], and recorded in [10, Lemmas 5.4 and
5.9]. �

We are now ready to prove Theorem 4.4.

Proof of Theorem 4.4. The proof follows closely to the arguments for [10, Theorems 5.6 and 5.11].

Specifically, we consider the filtrations {I(i)K }i≥0 in A and {J (j)
L }j≥0 in B. By Lemma 4.5, these

filtrations are Tor-vanishing in the sense that TorAi (k, I(s)K )→ TorAi (k, I(s−1)K ) and TorBi (k, J (s)
L )→

TorBi (k, J (s−1)
L ) are zero maps for all i and all s ≥ 1.

On the other hand, by Theorem 3.7,

(I + J)
(s)
KL =

s∑
i=0

I
(i)
K J

(s−i)
L .
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Hence by [10, Theorem 5.3], the desired equality follow. Note that the original formulation of ibid.
yields formulas with slightly different index sets

depth
R

(I + J)
(s)
KL

= min
i∈[1,s−1]
j∈[1,s]

{
depth

A

I
(s−i)
K

+ depth
B

J
(i)
L

+ 1, depth
A

I
(s+1−j)
K

+ depth
B

J
(j)
L

}
,

reg
R

(I + J)
(s)
KL

= max
i∈[1,s−1]
j∈[1,s]

{
reg

A

I
(s−i)
K

+ reg
B

J
(i)
L

+ 1, reg
A

I
(s+1−j)
K

+ reg
B

J
(j)
L

}
,

whereas our formulas read

depth
R

(I + J)
(s)
KL

= min
i∈[1,s]

{
depth

A

I
(i)
K

+ depth
B

J
(s−i)
L

+ 1,depth
A

I
(i)
K

+ depth
B

J
(s+1−i)
L

}
,

reg
R

(I + J)
(s)
KL

= max
i∈[1,s]

{
reg

A

I
(i)
K

+ reg
B

J
(s−i)
L

+ 1, reg
A

I
(i)
K

+ reg
B

J
(s+1−i)
L

}
.

However, both of these formulations agree, thanks to the standard convention that depth 0 = +∞
and reg 0 = −∞. We leave the details to the interested reader. �

Theorem 4.4 gives the following analogs of [10, Theorems 5.6 and 5.11] for symbolic powers
defined using all associated primes.

Corollary 4.6. Keep the notations of Theorem 4.4. Assume that either of the following conditions
holds:

(i) chark = 0;
(ii) I, J are monomial ideals.

Then, for all s ≥ 1, there are equality

depth
R

a(I + J)(s)
= min

i∈[1,s]

{
depth

A
aI(i)

+ depth
B

aJ (s−i) + 1, depth
A

aI(i)
+ depth

B
aJ (s+1−i)

}
,

reg
R

a(I + J)(s)
= max

i∈[1,s]

{
reg

A
aI(i)

+ reg
B

aJ (s−i) + 1, reg
A

aI(i)
+ reg

B
aJ (s+1−i)

}
.

Proof. Observe that, by Lemma 2.2 and setting K =
⋂

p∈Ass∗A(I)

grade(p,A/I)≥1

p, we have

aI(s) = Is : K∞ for all s ≥ 1.

In particular, if I is homogeneous then so is K. If I is a monomial ideal then so are all the associated
primes of its powers and, hence, so is K.

The desired conclusions follows from combining Lemma 2.9 and Theorems 3.7 and 4.4. �
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[4] H. Dao, A. De Stefani, E. Grifo, C. Huneke, and L. Núñez-Betancourt, Symbolic powers of ideals. In Singularities

and Foliations. Geometry, Topology and Applications, 387–432, Springer Proc. Math. Stat., 222, Springer, Cham,
2018.

14



[5] D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Graduate Texts in Mathematics
150. Springer-Verlag, New York (1995).

[6] V. Ene and J. Herzog, On the symbolic powers of binomial edge ideals. In: Stamate D., Szemberg T. (eds)
Combinatorial Structures in Algebra and Geometry. NSA 2018. Springer Proceedings in Mathematics & Statistics,
vol 331. Springer, Cham. https://doi.org/10.1007/978-3-030-52111-0 4

[7] V. Ene, G. Rinaldo, and N. Terai, Licci binomial edge ideals. J. Combin. Theory Ser. A 175 (2020), 105278, 23
pp.

[8] D. Grayson and M. Stillman, Macaulay2, a software system for research in algebraic geometry. Available at
https://www.math.uiuc.edu/Macaulay2.
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