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Statement of Revision

Robust stability for implicit dynamic equations
with causal operators on time scales

Nguyen Thu Ha

Journal Mathematics of Control, Signals, and Systems
Manuscript ID: #MCSS-D-22-00097

We are very grateful to the referees for evaluating our manuscript and for providing us
with precious comments and suggestions. In accordance with these comments and sugges-
tions, we have carefully revised the paper. All the issues raised in the reports have been
addressed.

In what follows, we detail the changes made with respect to the referees’ suggestions and
concerns. For convenience, the comments and suggestions of the referees are printed in blue,
whereas our statements of revision are printed in black.

Changes w.r.t. Comments and Suggestions of Reviewer 1

1. The paper is devoted to robust stability of implicit dynamic equations involving causal
operators on time scales. Using the projector-based analysis, solvability of initial value
problems is studied. Then, the preservation of stability under small nonlinear perturba-
tions is investigated. Finally, a Bohl-Perron type stability theorem for implicit dynamic
equations is proven. The results are extensions of some previous results for differential al-
gebraic equations (continuous time scale) and implicit difference equations (discrete time
scale). The new feature is the consideration of dynamic perturbations in term of causal
linear and nonlinear operators.

Thank you very much for your comments

2. This reviewer has two major comments:

� First, though the analysis on time scales indeed unifies the continuous and the dis-
crete time cases, researchers would be more interested in the most popular time
scales that arise in real-life applications, that is T = R or T = Z.
Thank you very much for your comments. In the revised version, we add to the
introduction section some comments on the history of this problem for the most
popular time scales T = R or T = Z. In the body of text, we give some remarks to
compare our obtained results with the previous one.

� Second, the presentation of the results is very poor. It it not easy to follow the
problem formulations as well as the main results. Furthermore, there are a plenty of
typos, notation and English mistakes. The paper should be rewritten and restruc-
tured so that the problems and the results are clearly stated.
Thank you very much for your comments. In the revised version, we try to improve
the presentation by formulating more clearly notions, definitions, theorems; making
smoother words and phrases... so that readers are easy to follow them. We try to
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correct typos, notations and English mistakes.
Moreover, we also restructure the paper at several places so that the results are
clearly presented.

� The author may split Section 3 into two sections: solvability analysis and robust
stability.
Thank a lot. We split Section 3 into the sections 3 and 4.

� The appendix should be removed or briefly presented in Sections 2 because it contains
only two known auxiliary results without proofs.
Yes, it is done. We remove the appendix to Section 2 (in revised version, it is
Subsection 2.3) as the referee suggests.

� Finally, in this reviewer’s opinion, a clear and concise presentation of results for
differential-algebraic equations would be of greater interest. Then, an extension to
dynamic equations on time scales seems to be straightforward.
Thank you very much for your comment. To illustrate its meaning and strength, in
the introduction of the revised version, we introduce briefly some results concerning
with the robust stability for implicit difference equations or differential–algebraic one.
Some our obtained results generalize one in implicit difference/differential equations
as we mentioned in the remarks 3.2; 4.6 and 5.5. However, in order to avoid the
complicated presentation, we are unable to compare all results.

Several typos and mistakes (but not all) are as follows:

3. Abstract, line 22: dynamical and dynamic are not the same.

Thank you very much, we have corrected all these mistakes.

4. Page 1, line 32, ”trivial cases ordinary differential/difference equations”: wrong English
usage; these cases are not trivial. 1

Thank a lot. We have rewritten it.

5. Page 1, lines 35-42: too long sentence;

Thank a lot. We have divided it into shorter sentences.

6. Page 1, line 41: dynamics and dynamic are not the same.

Thank you, that was a typo mistake. We corrected it by changing “dynamics” to “dy-
namic”.

7. Page 1, line 43: The abbreviation IDE should be explained at the first use.

Thank a lot. We have corrected it and have explained for the first use of the notion IDE
at the bottom of page 8.

8. Page 1, line 44: Another

Thank a lot. We have corrected it.
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9. Page 1, lines 51-55: This sentence should be rewritten because the English grammar is
not correct. Furthermore, ”the solution” (singular) means that the equation has a unique
solution.

Thank you for your comments. I we have corrected English grammar and have divided it
into shorter sentences. We also use “the solutions” instead of “the solution” at suitable
places.

10. Page 2, line 22: What does the author mean by “same gaps”?

Yes, thank you very much, this is a senseless phrase. We have rewritten this sentence as
follows: “Since the structure of points in time scales is rather divert and complicated, we
need using some new techniques to prove main results in the paper.”

11. Page 3, line 30: Check the right-hand side of the equation.
Yes, it is done. Further, we reformulate Theorem 2.2.

12. Page 4, Lemma 2.3: “see [13]” is misleading since the inequality in [13] is for the continuous
time scale, not for general time scales.

Thank a lot. In last version, we use Reference [13] ([14] in new version) where it is
concerned with the Pachpatte type inequality of continuous time. To prove this inequality
on time scale, it requires some long calculations that we do not want to present in this
paper. Therefore, in the revised version, we cite the Gronwall inequality on time scale in
[3].

13. Page 4, Lemma 2.4: Hardy’s inequality in [23] is on time scales?

Thank for your remark. On [23] (now it is Reference [24]) one deals with Hardy’s in-
equality in continuous time. Therefore, to make thing clearer, we add the phrase “The
following lemma deals with a version of Hardy inequality on time scales (see [24] for the
continuous time version)” before formulating Lemma 2.4.

14. Page 4, Lemma 2.4: true for any real f.

Thank you, that was a typo mistake. We have corrected it by changing into “true for any
real functions f”.

15. Page 5, line 11: a reference for Hölder inequality on time scales should be cited.
Yes, thank a lot. It is cited.

16. Page 5, line 24: a reference for Fubini inequality on time scales should be cited.
Yes, thank you. It is cited.

17. Page 8, line 28: Rn × Rn is not correct..
Yes, thank a lot. We have corrected as “valued in the set of n× n–matrices” .

18. Page 8, line 30: Notation Aσ should be explained.
Thank a lot. In the revised version, we add the phrase “For any function f defined on T,
we write fσ for f ◦ σ” to page 3 because this notation is used in some places.
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19. Page 8, line 44: What does “argue the ways” mean?

Thanks, that’s an incorrect use of the word. I changed it to “deal the way”

20. Page 9, line 46: Here and later the author uses Picard approximation to prove that an
integral equation has a unique solution. It is true, but only locally. In particular, if a
nonlinear term arises as in (3.18), it is not sure that the local solution can be extended
to the whole domain.

Yes, thank you very much for your comments.To avoid a complicated presentation, we
do not write in details the procedure of Picard approximation because it follows the well-
known steps and (3.7) is only a linear integral equation. Further, the linearity of this
integral equations ensures the global existence and uniqueness of the solution, which is
defined on Tt0 for the initial value problem.

For the non linear integral equation (4.6), we present in details the Picard approximation
(see Theorem 4.3), which confirms the existence and uniqueness of solution defined on
the whole domain.

21. Page 11, Definition 3.3: Why does “ω” come here.

Thank a lot, that was a typo mistake. We have corrected it by changing “ω” to “α”.

22. Page 11, line 38: “and or” is a typo.

Thank you very much. In the revised version, we rewrite this sentence.

23. Page 11, Theorem 3.4: This is a statement. Therefore, avoid “is called”.

Thank a lot, we have deleted the words “is called”.

24. Page 11, line 54: Let F be a causal nonlinear operator. An operator and a function are
different.

Thank you. We change to “causal nonlinear operator”.

25. Page 11, line 12: Better to say “locally Lipschitz with a function m”.

Yes, thank you very much for your suggestion. We use “locally Lipschitz with a function
m”. Moreover, we add “In case m is a constant function, we say simply that Γ is m-locally
Lipschitz continuous” for the convenience later.

26. Page 15, line 26: Gronwall-Bellman inequality on time-scales in Lemma 2.3.

Thank a lot. This is a mistake. The inequality stated in Lemma 2.3 is Pachpatte type
inequality. We have rewritten Lemma 2.3, where it is concerned with only Gronwall-
Bellman inequality on time-scales.

27. Page 15, line 32: Let Assumption 1 hold.

Thank you, we have changed it.

28. Page 15, line 58: What does γ-Lipschitz mean?

In the new version, we add the notion γ-Lipschitz continuous (see the response in the
item 25).
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29. Page 19, line 20: Actually E has three eigenvalues.

Yes, thank you very much, we have added another eigenvalue λ = 1 of the matrix E.

30. Page 19, line 51: What does k-Lipschitz mean?

In the new version, we add the notion γ-Lipschitz continuous (see the item 25).

31. Page 20, line 20: dynamic equation

Yes, thank a lot. It is a mistake. We have corrected it.

32. Page 20, line 23: dynamic equation

Yes, thank a lot. It is a mistake. We have corrected it.

33. Page 23, line 21: dynamic equations

Yes, thank a lot. It is a mistake. We have corrected it.

34. Page 25, lines 29-32: Better to avoid the itemize environment.

Yes, thank you. We have changed it. Further, on the pages 3-5 we use Case1,Case 2...
instead of using the bullets.

35. Page 28, line 8: The author

Yes, it is done.

36. Page 28, line 14: supporting her work

Thank you very much. In the revised version, we change this phrase.

37. References: please check carefully and write the author names with a consistency.

Yes, thank a lot. We had checked them and have written the author names with a
consistency.

In addition, we add a new reference [4] (for the Fubini Theorem on time scales) to the
References.

In conclusion, we are very grateful to the referee’s comments and suggestions. We try to
make revised manuscript smoother in English and to correct typo mistake, explaining the
meaning of every steps in the presentation in hoping that the revised version responds all
requirements of Referees.
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Changes w.r.t. Comments and Suggestions of Reviewer 2

1. The paper is devoted to the robust stability of implicit dynamic equations with causal
operators on time scale. In the first part, the author investigates the solvability of these
dynamic equations and then consider the preservation of stability under small perturba-
tions. In the second part, an Lp version of Bohl-Perron Principle for implicit dynamical
systems is studied. In my point of view, the main results are correct.

Thank you very much for your comments.

2. If Lemma 2.4 has been given in [23] then the author does not need to prove in the
manuscript.

Thank a lot for your comment. We need to prove this lemma because in [23] (in the
revised version, it is [24]) one deals with only the inequality of continuous time. In order
to avoid confusions, we add the phrase “The following lemma deals with a version of
Hardy inequality on time scales (see [24] for the continuous time version)”.

3. Some comparisons, corollaries of results on solvability and robust stabilty for the linear
implicit dynamic equations driven by a causal operator should be given to illustrate its
meaning and strength.

Thank you very much for your comment. To illustrate its meaning and strength, in the
introduction of the revised version, we introduce briefly some results concerning with the
robust stability for implicit difference equations or differential–algebraic one. Some our ob-
tained results generalize one in implicit difference/differential equations as we mentioned
in the remarks 3.2 and 4.6. However, in order to avoid the complicated presentation, we
are unable to compare all results.

4. Some comparisons, corollaries and example of Bohl-Perron theorem for the linear implicit
dynamic equations driven by a causal operator should be given to illustrate its meaning
and strength.

Thank you very much. We give the remark 5.5 to compare our obtained results Bohl-
Perron theorem for the linear implicit dynamic equations. However, in order to avoid the
complicated presentation, we are unable to compare every result.

5. Section Appendix is very short, it may move to Section Prelimilary

Yes, it is done. We remove the appendix to Section 2 (in revised version, it is Subsection
2.3) as the referee suggests.

In addition, we add a new reference [4] (for Fubini Theorem on time scales) to the
References.

In conclusion, we are very grateful to the referee’s comments and suggestions. We try to
make revised manuscript smoother in English and to correct typo mistake, explaining the
meaning of every steps in the presentation in hoping that the revised version responds all
requirements of Referees.
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ROBUST STABILITY FOR IMPLICIT DYNAMIC

EQUATIONS WITH CAUSAL OPERATORS ON TIME

SCALES

NGUYEN THU HA

Abstract. In this paper, we study the robust stability of implicit dy-
namic equations with causal operators on time scales. First, we inves-
tigate the solvability of these dynamic equations and then consider the
preservation of stability under small perturbations. An Lp version of
Bohl-Perron Principle for implicit dynamic equations is also studied.

1. Introduction

The theory of analysis on time scales was introduced in 1988 by Stefan
Hilger [17] in order to unify continuous and discrete calculus. Since then,
there have been many works investigating the analysis on time scales. These
works not only unify the cases of ordinary differential/difference equations
but also extend to more complicated time scales.

One of important problems in analysis on time scales is the investigation
of robust stability of dynamic equations. D. T. Son et al. in [13] consider
the exponential stability of linear time-invariant systems on time scales via
eigenvalues of matrices, Zhu et al. [26] consider the stability of delay dy-
namic systems. Du et al. in [11] and DaCunha J. in [8] study the robust
stability for dynamic equations under the view of stability radii or for de-
lay stochastic dynamic equations via Lyapunov functions. For differential
algebra-equations, in [1], T. Berger studies exponential stability and its ro-
bustness for time-varying linear index-1 A(t)ẋ(t) = B(t)x(t) + f(t) with
class of allowable perturbations f . N.T. Ha in [16] studies the preservation
of exponential stability of Volterra differential-algebra equation A(t)x′(t) =

B(t)x(t) + Σx(t) + f(t), t > t0 where Σx(t) =
∫ t
t0
K(t, s)x(s)ds is an in-

tegral operator. Mehrmann et al. in [23] analyse the stability of implicit
difference equations under restricted perturbations. Ha et al. in [15] deals
with the data dependence of exponential stability for linear implicit dynamic
equations of arbitrary index Anx

∆n(t) = Bnx(t). Some other works for the
robustness of stability of time-varying implicit differential equations can be
found in [5, 6, 10, 19, 20].

1991 Mathematics Subject Classification. 34D20, 34K20,39B82,45M10, 93D09.
Key words and phrases. Robust stability, Causal operator, Differential-algebraic equa-

tion, Input-output operator, Bohl-Perron theorem.
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2 NGUYEN THU HA

Another aspect to consider the stability of a system is the Bohl-Perron
type theorem. This problem considers the relationship between the Lya-
punov stability in initial values and the boundedness of input-output system.
The earliest work in this topic belongs to Perron [25](1930). He proved his
celebrated theorem which says that if the solutions of the linear differential
equation ẋ(t) + A(t)x(t) = f(t), t > 0 are “good” for every “rather good”
function f(·), then the solutions of the corresponding homogeneous equation
ẋ(t)+A(t)x(t) = 0, t > 0 are bounded or exponentially stable. The study of
Bohl-Perron theorem concerned with delay differential/difference equations
can be founded in [2, 9, 24, 25];

In this paper, we want to go further in studying robust stability and
Bohl-Perron theorem of so-called implicit dynamic equations on time scales.
More precisely, we deal with the robust stability of the linear dynamic equa-
tions where the leading term may be degenerate and the right hand term is
driven by a causal operator (or “aftereffect operators”, see [7]). This class
of dynamic equations is very important both in practice and theory because
it is generalised from differential/difference equations, integral equations,
delay or functional differential equations, which often are used to describe
mathematical models in economy, industry, eco-systems.

Since the structure of points on time scales is rather divert and com-
plicated, we need using some new techniques to prove main results in the
paper.

The paper is organised as follows. In next section, we introduce some
notions of analysis on time scales and prove the Hardy inequality. Section
3 is concerned with the solvability of implicit linear dynamic equations. In
Section 4, we studies the Lp–stability or the preservation of exponential
stability for implicit dynamic equation under small perturbation. Section 5
deals with the famous Bohl-Perron theorem for implicit dynamic equations.
We introduce some weighted spaces and show that the exponential stability
is equivalent to the fact that the solutions of these equations are elements
of such spaces.

2. Preliminary

2.1. Time scales. A time scale is an arbitrary, nonempty, closed subset
of the set of real numbers R equipped by the topology inherited from the
standard topology on R.

Consider a time scale T. We define the forward operator σ(t) = inf{s ∈
T : s > t} and graininess function µ(t) = σ(t) − t, t ∈ T; the backward
operator ρ(t) = sup{s ∈ T : s < t} and ν(t) = t − ρ(t). We supplement
sup ∅ = inf T, inf ∅ = supT.

For any x, y ∈ T, the addition (circle plus) ⊕ and subtraction (circle
minus) 	 of x, y are defined:

(1) x⊕ y := x+ y + µ(t)xy;
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ROBUST STABILITY FOR IMPLICIT DYNAMIC EQUATIONS 3

(2) x	 y :=
x− y

1 + µ(t)y
.

A point t ∈ T is said to be right-dense if σ(t) = t, right-scattered if
σ(t) > t, left-dense if ρ(t) = t, left-scattered if ρ(t) < t and isolated if t is
simultaneously right-scattered and left-scattered.

A function f : T → R is regulated if there exist the left-sided limit at
every left-dense point and right-sided limit at every right-dense point.

A regulated function f is called rd-continuous if it is continuous at every
right-dense point, and ld-continuous if it is continuous at every left-dense
point. It is easy to see that a function is continuous if and only if it is both
rd-continuous and ld-continuous. The set of rd-continuous functions defined
on the interval J ⊂ T, valued in X, will be denoted by Crd(J,X).

A function f : T → R is called regressive (resp., positively regressive)
if for every t ∈ T, we have 1 + µ(t)f(t) 6= 0 (resp., 1 + µ(t)f(t) > 0).
Denote by R = R(T,R) (resp., R+ = R+(T,R)) the set of (resp., positively
regressive) regressive functions, and CrdR(T,R) (resp., CrdR+(T,R)) the
set of rd-continuous (resp., positively regressive) regressive functions from
T to R. For any function f defined on T, we write fσ for f(σ).

Definition 2.1 (Delta Derivative). A function f : T → Rd is called delta
differentiable at t if there exists a vector f∆(t) such that for all ε > 0,

‖fσ(t)− f(s)− f∆(t)(σ(t)− s)‖ 6 ε|σ(t)− s|,

for all s ∈ (t − δ, t + δ) ∩ T and for some δ > 0. The vector f∆(t) is called
the delta derivative of f at t.

Theorem 2.2 ([3]). Let p be regressive and t0 ∈ T. Then, there exists a
unique solution of the initial value problem

y∆(t) = p(t)y(t), y(t0) = 1.

This solution, namely ep(t, t0), is called the exponential function (at t0) on
the time scales T.

The exponential functions in time scales have the following properties

(i) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s),

(ii)
ep(t,s)
eq(t,s)

= ep	q(t, s), in particular 1
ep(t,s) = e	p(t, s),

(iii) ep(t, s)ep(s, r) = ep(t, r),
(iv) ep(t, s)eq(t, s) = ep⊕q(t, s).

Let T be a time scale. For any a, b ∈ T, the notation [a, b] or (a, b) means
the segment on T, that is [a, b] = {t ∈ T : a 6 t 6 b} or (a, b) = {t ∈ T :
a < t < b} and Ta = {t > a : t ∈ T}. We can define a measure ∆T on
T by considering the Caratheodory construction of measures when we put
∆T[a, b) = b − a. The Lebesgue integral of a measurable function f with

respect to ∆T is denoted by
∫ b
a f(s)∆Ts or

∫ b
a f(s)∆s. For more details of

analysis on time scales we can refer to [3].

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



4 NGUYEN THU HA

In this paper, we suppose that the time scales T is unbounded above, i.e.,
supT =∞ and its graininess is bounded, i.e., µ∗ = sup{µ(t) : t ∈ T} <∞.

Let s, t ∈ T and Lp
(
[s, t];Rn

)
be the space of all p–integrable functions

f : [s, t]→ Rn equipped with the norm

‖f‖Lp([s,t];Rn) =

(∫ t

s
‖f(τ)‖p∆τ

) 1
p

.

Denote by Lloc
p (Tt0 ;Rn) the space of all f : Tt0 → Rn such that f

∣∣
[s,t]
∈

Lp
(
[s, t];Rn

)
for all t > s > t0 and by Cb(Tt0 ;Rn) the set of the continuous

functions, bounded on Tt0 , valued in Rn.
The truncated operators πk at k ∈ Tt0 and [ · ]k on Lloc

p

(
Tt0 ;Rn

)
are

defined by

πk(x)(t) =

{
x(t), if t ∈ [t0, k]

0, if t ∈ (k,∞),
and [x(t)]k =

{
0 if t ∈ [t0, k)

x(t) if t ∈ [k,∞).

for every x ∈ Lloc
p

(
Tt0 ;Rn

)
. It is clear that

πk + [ ]k = I.

Let

L = L
(
Lloc
p (Tt0 ;Rn), Lloc

p (Tt0 ;Rn)
)
,

be the space of the linear operators Σ from Lloc
p

(
Tt0 ;Rn

)
to Lloc

p

(
Tt0 ;Rn

)
such that πtΣπt maps continuously from Lp([t0, t];Rn) to Lp([t0, t];Rn).

Every element f ∈ Lp
(
[s, t];Rn

)
can be considered as an element f ∈

Lloc
p (Tt0 ;Rn) by putting f = πt[f ]s. Similarly, if f ∈ Lloc

p (Tt0 ;Rn), we can

restrict the definition domain of f to obtain an element f ∈ Lp
(
[s, t];Rn

)
.

In the following, we identify f and f if there is no confusion. Similarly, every
continuous operator Σ ∈ L

(
Lp([s, t];Rn), Lp([s, t];Rn)

)
can be considered as

Σ ∈ L
(
Lloc
p (Tt0 ;Rn), Lloc

p (Tt0 ;Rn)
)
,

by setting Σ(·) = πtΣπt[·]s.
An operator Σ ∈ L is said to be causal if for every t ∈ Tt0

πtΣπt = πtΣ. (2.1)

To simplify notations, in the following, we write Lp[s, t];C[s, t] for Lp([s, t];Rn),
Cb([s, t];Rn) respectively.

2.2. Some inequalities on time scales.

Lemma 2.3 (Gronwall inequality on time scales (see [3, Theorem 6.1])). Let
f(·), k(·) be two non negative continuous functions defined on Tt0. Assume
that f(t) satisfies the inequality

f(t) 6 f0 +

∫ t

t0

k(s)f(s)∆s, for all t ∈ Tt0 .

Then, the relation f(t) 6 f0ek(t, t0) holds for all t ∈ Tt0.
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The following lemma deals with a version of Hardy inequality on time
scales (see [24] for the continuous time version).

Lemma 2.4 (Hardy inequality on time scales). Let 1 6 p <∞, t0 ∈ T and
U(x), V (x) are positive functions. Then,[ ∫ ∞

t0

∣∣∣U(x)

∫ x

t0

f(t)∆t
∣∣∣p∆x] 1

p
6 p

1
p q

1
qB
[ ∫ ∞

t0

∣∣V (x)f(x)
∣∣p∆x] 1

p
(2.2)

is true for all real functions f , where

B = sup
r>0

[ ∫ ∞
r
|U(x)|p∆x

] 1
p
[ ∫ r

t0

|V (x)|−q∆x
] 1
q
,

and 1
p + 1

q = 1 (with the convention 0∞ =∞0 = 1).

Proof.
Case 1: 1 < p <∞.

Let h(x) =
∫ x
t0
V −q(t)∆t and g(x) = h(x)

1
pq . Using Hölder inequality (see

[3, Theorem 6.13]) gets∫ ∞
t0

∣∣∣U(x)

∫ x

t0

f(t)∆t
∣∣∣p∆x =

∫ ∞
t0

|U(x)|p
∣∣∣∣∫ x

t0

V (t)f(t)gσ(t)V −1(t)g−1
σ (t)∆t

∣∣∣∣p∆x
6
∫ ∞
t0

|U(x)|p
([∫ x

t0

V −q(t)g−qσ (t)∆t
] p
q

∫ x

t0

[V (t)f(t)gσ(t)]p∆t

)
∆x.

It follows from Fubini theorem (see [4, Theorem 2.15]) that

∞∫
t0

∣∣∣U(x)

∫ x

t0

f(t)∆t
∣∣∣p∆x

6
∫ ∞
t0

[V (t)f(t)gσ(t)]p

(∫ ∞
σ(t)
|U(x)|p

[ ∫ x

t0

V −q(s)g−qσ (s)∆s
] p
q
∆x

)
∆t

=

∫ ∞
t0

|V (t)f(t)|p|

(
|gσ(t)|p

∫ ∞
σ(t)
|U(x)|p

[ ∫ x

t0

V −q(s)g−qσ (s)∆s
] p
q
∆x

)
∆t.

Therefore, if x is right-dense then (gp(x))∆ = 1
qV
−q(x)g−q(x). In case x is

right-scattered, by using the finite-increments formula we have

(
gp(x)

)∆
=
(
h

1
q (x)

)∆
=
h

1
q (σ(x))− h

1
q (x)

µ(x)
=

[
h(x) + µ(x)V −q(x)

] 1
q − h

1
q (x)

µ(x)

>
1

q
V −q(x)

(∫ σ(x)

t0

V −q(s)∆s

)− 1
p

=
1

q
V −q(x)g−qσ (x),

which implies that

∫ x

t0

V −q(s)g−qσ (s)∆s = qgp(x) = q

(∫ x

t0

V −q(t)∆t

) 1
q

.
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6 NGUYEN THU HA

Further,∫ ∞
t0

∣∣∣U(x)

∫ x

t0

f(t)∆t
∣∣∣p∆x

6 q
p
q

∫ ∞
t0

|V (t)f(t)|p
(
gpσ(t)

∫ ∞
σ(t)
|U(x)|p

[∫ x

t0

V −q(s)∆s

] p

q2

∆x

)
∆t

6 q
p
qB

p
q

∫ ∞
t0

|V (t)f(t)|p
(
gpσ(t)

∫ ∞
σ(t)
|U(x)|p

(∫ ∞
x
|U(s)|p∆s

)− 1
q
∆x

)
∆t

6 q
p
qB

p
q

∫ ∞
t0

|V (t)f(t)|p
(
gσ(t)p

∫ ∞
σ(t)
|U(x)|pG(x)

− 1
q∆x

)
∆t,

where G(x) =
∫∞
x |U(s)|p∆s. When x is right-scattered, by using the finite-

increments formula again we have

(G
1
p (x))∆ =

G
1
p (σ(x))−G

1
p (x)

µ(x)
=
G

1
p
(
x+ µ(x)

)
−G

1
p (x)

µ(x)

=

[
G(x)− µ(x)Up(x)

] 1
p −G(x)

1
p

µ(x)
6 −1

p
U(x)pG(x)

− 1
q .

If x is right-dense then(
G

1
p (x)

)∆
= −1

p
U(x)pG

− 1
q (x).

Hence,

∫ ∞
σ(t)
|U(x)|pG−

1
q (x)∆x 6 p

(
Gσ(t)

) 1
p = p

(∫ ∞
σ(t)
|U(s)|p∆s

) 1
p
.

Summing up we have∫ ∞
t0

∣∣∣U(x)

∫ x

t0

f(t)∆t
∣∣∣p∆x 6 pq pqB p

q

∫ ∞
t0

∣∣V (t)f(t)
∣∣p(gσ(t)p

∫ ∞
σ(t)
|U(s)|p∆s

) 1
p
∆t.

Since gpσ(t)
(∫ ∞

σ(t)
|U(s)|p∆s

) 1
p

=
(∫ σ(t)

t0

V −q(s)∆s
) 1
q
(∫ ∞

σ(t)
|U(s)|p∆s

) 1
p
6 B,

∫ ∞
t0

∣∣∣U(x)

∫ x

t0

f(t)∆t
∣∣∣p∆x 6 q pq pBp

∫ ∞
t0

∣∣V (t)f(t)
∣∣p∆t.

This means that(∫ ∞
t0

∣∣∣U(x)

∫ x

t0

f(t)∆t
∣∣∣p∆x) 1

p

6 q
1
q p

1
pB

(∫ ∞
t0

∣∣V (t)f(t)
∣∣p∆t) 1

p

.

Case 2: When p = 1, (2.2) becomes∫ ∞
t0

∣∣∣U(x)

∫ x

t0

f(t)∆t
∣∣∣∆x 6 B ∫ ∞

t0

∣∣V (x)f(x)
∣∣∆x. (2.3)
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Using Fubini theorem gets∫ ∞
t0

∣∣∣U(x)

∫ x

t0

f(t)∆t
∣∣∣∆x =

∫ ∞
t0

(
|f(t)|

∫ ∞
σ(t)
|U(x)|∆x

)
∆t

=

∫ ∞
t0

(
|V (t)f(t)| 1

|V (t)|

∫ ∞
σ(t)
|U(x)|∆x

)
∆t

6
∫ ∞
t0

(
|V (t)f(t)| sup

06s6σ(t)

1

|V (s)|

∫ ∞
σ(s)
|U(x)|∆x

)
∆t 6 B

∫ ∞
t0

|V (t)f(t)|∆t.

Case 3: p =∞. It can be proved by a similar way. Lemma is proved. �

Remark 2.5. Let α(·) be an rd–continuous function defined on T satisfying

0 < α1 = min
t∈T

α(t) 6 max
t∈T

α(t) = α2 <∞.

Let U(t) = V (t) = e	α(t, t0). Then,

B = sup
r∈Tt0

[∫ ∞
r

(e	α(s, t0))p∆s
] 1
p
[∫ r

t0

(e	α(s, t0))−q∆s
] 1
q
6

1

ηα
, (2.4)

where ηα = α1
1+α2µ∗

. Moreover,[ ∫ ∞
t0

∣∣∣e	α(t, t0)

∫ t

t0

f(τ)∆τ
∣∣∣p∆t] 1

p
6
p

1
p q

1
q

ηα

[ ∫ ∞
t0

∣∣e	α(t, t0)f(t)
∣∣p∆t] 1

p
. (2.5)

Indeed, it is easy to prove that 1 6 (1+x)p−1
x 6 p for x ∈ [−1, 0). Since

−1 6 	α(s)µ(s) 6 0 for all s ∈ T,

	α(s)p 6
(1 +	α(s)µ(s))p − 1

µ(s)
6 	α(s) 6 − α1

1 + α2µ∗
= −ηα.

By definition when µ(s) > 0 we have

(ep	α(s, t0))∆ =

[
1 +	α(s)µ(s)

]p − 1

µ(s)
ep	α(s, t0) 6 −ηαep	α(s, t0).

If µ(s) = 0 then (ep	α(s, t0))∆ = 	α(s)pep	α(s, t0). Therefore

− ep	α(r, t0) =

∫ ∞
r

(ep	α(s, t0))∆∆s 6
∫ ∞
r
−ηαep	α(s, t0)∆s.

Thus, ∫ ∞
r

ep	α(s, t0)∆s 6
ep	α(r, t0)

ηα
. (2.6)

Now we recall the inequality −1 >

(
1+x
)−q
−1

x > −q for x ∈ [−1, 0), which
implies that

−	 α(s)q >

[
1 +	α(s)µ(s)

]−q − 1

µ(s)
> −	 α(s) >

α1

1 + α2µ∗
= ηα.
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8 NGUYEN THU HA

Therefore, when µ(s) > 0,

(e−q	α(s, t0))∆ =

[
1 +	α(t)µ(s)

]−q − 1

µ(s)
e−q	α(s, t0) > ηαe

−q
	α(s, t0).

If µ(s) = 0 we have (e−q	α(s, t0))∆ = −	 α(s)qe−q	α(s, t0), which implies that

e−q	α(r, t0)− 1 =

∫ r

t0

(e−q	α(s, t0))∆∆s > ηα

∫ r

t0

e−q	α(s, t0)∆s.

Thus,

∫ r

t0

e−q	α(s, t0)∆s 6
e−q	α(r, t0)− 1

ηα
6

e−q	α(r, t0)

ηα
. (2.7)

Combining (2.6) and (2.7) obtains

sup
r∈Tt0

[ ∫ ∞
r

ep	α(s, t0)∆s
] 1
p
[ ∫ r

t0

e−q	α(s, t0)∆s
] 1
q
6

1

ηα
.

This means B 6 1
ηα

and we obtain the estimation (2.5).

Lemma 2.6. Let U : X → Y , V : Y → X be the bounded linear operators
in Banach spaces X,Y . Then the operator I − UV is invertible if and only
if I − VU is invertible. Furthermore,

(I − VU)−1 = I + V(I − UV)−1U.

Proof. See [18]. �

2.3. Some surveys on linear algebra.

Lemma 2.7. Let A and B be given n× n– matrices, and Q be a projector

onto ker A, i.e., Q
2

= Q, im Q = ker A. Denote S = {x : Bx ∈ im Aσ}.
Let T be a continuous function defined on Ta, taking values in Gl(Rn) such
that T |ker Eσ is an isomorphism between ker Eσ and ker E. The following
assertions are equivalent

a) S ∩ ker A = {0}.
b) the matrix G = Aσ −BT Qσ is nonsingular.
c) Rn = S ⊕ ker A.

Proof. The proof of this lemma can be found in [22], Appendix 1, Lemma
A1, p.329. �

Lemma 2.8. A,B, Q,G mentioned in Lemma 2.7 and suppose that the
matrix G is nonsingular. Then, there hold the following relations:

a) P σ = G
−1
Aσ where P σ = I −Qσ.

b) −G−1
B TQσ = Qσ.

c) Q̂ := −TQσ G
−1
B, called canonical projector, is the projector onto

ker A along S.

d) TQσ G
−1

does not depend on the choice of T and Q.

Proof. The results in this lemma are proved in [22], p.319. �
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3. Solvability of implicit dynamic equations

Let A(·), B(·) be two continuous functions defined on Tt0 , valued in the
set of n × n–matrices (Rn×n for brief), f ∈ Llocp

(
Tt0 ;Rn

)
and Σ ∈ L be

a causal operator. Consider the linear implicit dynamic equations on time
scales (IDE for short)

Aσ(t)x∆(t) = B(t)x(t) +
(
Σx(·)

)
(t) + f(t), t ∈ Tt0 . (3.1)

To solve this equation, we suppose that ker A(·) is smooth in the sense
there exists a continuously ∆–differentiable projector Q(t) onto ker A(t),
i.e., Q is continuously differentiable and Q2 = Q, im Q(t) = ker A(t) for all
t ∈ Tt0 . By setting P = I −Q we can rewrite the equation (3.1) as

Aσ(t)
(
Px
)∆

(t) = B(t)x(t) +
(
Σx(·)

)
(t) + f(t), t ∈ Tt0 , (3.2)

where B := B +AσP
∆.

It is seen that the solution x(·) of the equation (3.2), if it exists, is not
necessarily differentiable but it is required that the component Px(·) is ∆–
differentiable almost everywhere on Tt0 .

Based on this remark, we deal with the way we solve the equations (3.1)
by splitting the solution in a ∆–differentiable component and an algebraic
relation. First, we introduce the so-called index-1 concept. Define the linear
operators

G := Aσ −BTQσ and Ĝ := Aσ −
(
B + Σ

)
TQσ =

(
I − ΣTQσG

−1
)
G.

It is clear that G ∈ Lloc∞
(
Tt0 ;Rn×n

)
, Ĝ ∈ L

(
Lloc(Tt0 ;Rn), Lloc(Tt0 ;Rn)

)
.

Definition 3.1. The IDE (3.1) is said to be index-1 if G(t) and Ĝ are
invertible for all t ∈ Tt0 .

Because G(t) is invertible for all t ∈ Tt0 , we see that Ĝ is invertible if and
only if I − ΣTQσG

−1 is invertible, which is equivalent to the invertibility
of H := I − TQσG−1Σ by Lemma 2.6.

In the following we assume that the equation (3.1) is index-1. Multiplying
both sides of (3.2) with PσG

−1, QσG
−1 and using Lemmas 2.7 and 2.8 we

get

u∆ =
(
P∆ + PσG

−1B
)
u+ PσG

−1Σx+ PσG
−1f, (3.3)

v = TQσG
−1Bu+ TQσG

−1Σ(u+ v) + TQσG
−1f, (3.4)

where u = Px, v = Qx.
Since H = I − TQσG

−1Σ is invertible and H−1TQσG
−1Σ = H−1 −

H−1(I − TQσG−1Σ) = H−1 − I, it follows from (3.4) that

v = H−1TQσG
−1
(
B + Σ

)
u+H−1TQσG

−1f

= −u+H−1P̂ u+H−1TQσG
−1f,
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where Q̂ = I − P̂ = −TQσG−1B is the canonical projection onto ker A (see
Lemma 2.8). Hence,

x = H−1P̂ u+H−1TQσG
−1f. (3.5)

Substituting this relation into (3.3) obtains

u∆ =
(
P∆ + PσG

−1B
)
u+ PσG

−1ΣH−1
(
P̂ u+TQσG

−1f
)

+PσG
−1f

=
(
P∆ + PσG

−1B
)
u+ PσG

−1ΣH−1P̂ u+ PσG
−1Sf, (3.6)

with S := I + ΣH−1TQσG
−1.

The equation (3.6) is called inherit dynamic equation of (3.2).
For any x0 ∈ Rn, there exists uniquely a solution u of (3.6) with the initial

condition u(t0) = P (t0)x0. Indeed, u is a solution of (3.6) if and only if

u(t) = u(t0) +

∫ t

t0

(
P∆ + PσG

−1B
)
u(s)∆s

+

∫ t

t0

(
PσG

−1ΣH−1P̂ u+ PσG
−1Sf(s)

)
∆s. (3.7)

We can use the Picard approximation to prove that that (3.7) has a unique
solution u(t), t ∈ Tt0 with the initial condition u(t0) = P (t0)x(t0).

Hence, we can get the solution x(·) of the dynamic equation (3.2) by the
formula (3.5).

Remark 1. As the argument mentioned above, the solution of (3.2) is
deduced from the solution of the inherit dynamic equation (3.6), which has
the initial condition u(t0) = P (t0)x0. Therefore, we can formulate the initial
condition of (3.2) as

P (t0)(x(t0)− x0) = 0,

but we do not require x(t0) = x0 as in ordinary dynamic equations.

Remark 3.2. If Σ = 0, we obtain the solvability of (3.2) in [12]. When

T = R and Σx(t) =
∫ t

0 H(t, s)x(s)ds is an integral operator, we obtain this
result in [16].

For the implicit dynamic equation (3.2) we can establish a so-called vari-
ation of constants formula. First, consider the homogeneous equation cor-
responding to (3.2)

Aσ(t)
(
Py
)∆

(t) = B(t)y(t) +
(
Σ[y(·)]s

)
(t), t > s. (3.8)

where s ∈ Tt0 .
Denote by y(t, s, y0), t > s, y0 ∈ Rn a unique solution of the homoge-

neous equation (3.8) with initial value condition P (s)(y(s)− y0) = 0. In the
following we write simply y(t, s) or y(t) for y(t, s, y0) if there is no confusion.

Let Φ(t, s), t > s > t0 be the Cauchy matrix generated by (3.8). It is
defined as the solution of the matrix dynamic equation

A(t)Φ∆(t, s) = B(t)Φ(t, s) + Σ
(
[Φ(·, s)]s

)
(t), (3.9)
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P (s)
(
Φ(s, s)− I

)
= 0, t > s.

Following (3.6), the inherit matrix equation of (3.9) has the form

Φ∆
0 (t, s) =

(
P∆ + PσG

−1B
)
Φ0(t, s) + PσG

−1ΣH−1
(
P̂ [Φ0(t, s)]s. (3.10)

This equation always exists a unique solution with the initial condition
Φ0(s, s) = I. Therefore, from (3.5) we see that

Φ(t, s) =
(
H−1P̂ [Φ0(·, s)]sP (s)

)
(t), t > s. (3.11)

The variation of constants formula for the solution of (3.2) now can be
formulated as

Theorem 3.3. The unique solution x(·) of the equation (3.2) with the initial
condition P (t0)(x(t0)− x0) = 0 can be expressed as

x(t) = Φ(t, t0)P (t0)x0 +

∫ t

t0

Φ(t, σ(τ))PσG
−1 (Sf) (τ)∆τ

+
(
H−1TQσG

−1f
)
(t), (3.12)

for all t ∈ Tt0.

Proof. First, we deal with the variation of constants formula for the solution
of (3.6). Let u(·) be the the solution of (3.6) with the initial condition
u(t0) = P (t0)x0, we show that

u(t) = Φ0(t, t0)P (t0)x0 +

∫ t

t0

Φ0(t, σ(τ))PσG
−1
(
Sf
)
(τ)∆τ. (3.13)

Indeed, differentiating both sides of (3.13) obtains

u∆(t) = Φ∆
0 (t, t0)P (t0)x0 +

∫ t

t0

Φ∆
0 (t, σ(τ))PσG

−1Sf(τ)∆τ +PσG
−1Sf(t)

=
[(
P∆ + PσG

−1B
)
Φ0(t, t0) + Σ∗P̂Φ0(t, t0)

]
P (t0)x0 + PσG

−1Sf(t)

+

∫ t

t0

[(
P∆+PσG

−1B
)
Φ0(t, σ(τ)) + Σ∗P̂ [Φ0(t, σ(·))]σ(τ)

]
PσG

−1Sf(τ)∆τ

=
(
P∆ + PσG

−1B
)[

Φ0(t, t0) +

∫ t

t0

Φ0(t, σ(τ))PσG
−1Sf(τ)∆τ

]
+ Σ∗

(
P̂
[
Φ0(t, t0)P (t0)x0 +

∫ t

t0

[Φ0(t, σ(·))]σ(τ)PσG
−1Sf(τ)∆τ

])
+ PσG

−1Sf(t) =
(
P∆ + PσG

−1B
)
u(t) + Σ∗P̂ u(t) + PσG

−1Sf(t).

where Σ∗ = PσG
−1ΣH−1.

This relation says that u(·) given by (3.13) is the solution of (3.6).

Next, we can act H−1P̂ to both sides of (3.13) and use the expression (3.5)
to see that the unique solution x(·) of (3.2) can be given by the variation of
constants formula (3.12). The proof is complete. �
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4. Robust stability of implicit dynamic equation under small
perturbation

We are now in position to consider the robust stability of (3.8) under
small perturbations.

Assumption 1. There exists a differentiable projector Q(·) onto ker A(·)
such that P = I −Q is bounded on Tt0 by constant K0.

Definition 4.1. The IDE (3.8) is said to be α-exponentially stable if there
exists positive numbers M,α such that

‖y(t, s, y0)‖ 6M ‖P (s)y0‖ e	α(t, s), t > s > t0.

Remark 2. There are some definitions of exponential stability for dynamic
equations on time scales. One can either use the exponential function
e−α(t−s) or e−α(t, s). All these definitions are equivalent. Here we use the
exponential function e	α(t, s) since we do not need to assume that −α ∈ R+.

It is known that under Assumption 1, the uniform stability (resp. expo-
nential stability) is equivalent to the boundedness (resp. exponential stabil-
ity) of the Cauchy matrix Φ. More precisely, we have

Theorem 4.2. The IDE (3.8) is α-exponentially stable if there exists pos-
itive numbers M,α such that

‖Φ(t, s)‖ 6Me	α(t, s), t > s > t0. (4.1)

From (3.11), it is seen that

P (t)Φ(t, s) = P (t)
(
H−1P̂ Φ0(·, s)P (s)

)
(t) = Φ0(t, s)P (s), t > s. (4.2)

Therefore, if the relation (4.1) and Assumption 1 hold then

‖Φ0(t, s)P (s)‖ = ‖P (t)Φ(t, s)‖ 6 K0Meαω(t, s), t > s. (4.3)

We are to consider the preservation of stability for (3.8) under small
perturbations.

Let F be a causal nonlinear operator from Lloc
p

(
Tt0 ;Rn

)
to Lloc

p

(
Tt0 ;Rn

)
,

i.e., the condition (2.1) for F is satisfied

πtFπt = πtF, for all t ∈ Tt0 .

Suppose further that F (θ) = θ, where θ(t) = 0, for all t ∈ Tt0 .
Consider the semi linear implicit dynamic equation with causal operators

Aσ(t)x∆(t) = B(t)x(t) + Σx(·)(t) + F
(
x(·)

)
(t), t ∈ Tt0 . (4.4)

Since F (θ) = θ, the equation (4.4) has the trivial solution x = θ.
In order to study the solvability of (4.4), we need some further assump-

tions on the operator F . A causal nonlinear operator Γ : Tt0×Lloc
p

(
Tt0 ;Rn

)
→

Lloc
p

(
Tt0 ;Rn

)
is called a locally Lipschitz with the function m if

• πtΓ(t, u) = πtΓ(t, πtu) for every u ∈ Lloc
p

(
Tt0 ;Rn

)
.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



ROBUST STABILITY FOR IMPLICIT DYNAMIC EQUATIONS 13

• there exists a positive continuous function m· such that

‖Γ(t, x)− Γ(t, y)‖Lp[t0,t]
6 mt‖x− y‖Lp[t0,t],

for all t ∈ Tt0 and x, y ∈ Lloc
p

(
Tt0 ;Rn

)
.

In case m is a constant function, we say simply that Γ is m-locally Lips-
chitz continuous.

Theorem 4.3. Suppose that

a. the function PσG
−1SF (x) is locally Lipschitz continuous in x with

the function k.
b. the function H−1TQσG

−1F (x) is γ–locally Lipschitz continuous in
x with γ < 1.

Then the equation (4.4) is solvable on Tt0. Moreover, for any T > 0, there
is a constant MT such that

‖x(·)‖Lp[t0,t]
6MT ‖P (t0)x0‖ , for all t0 6 t 6 T, (4.5)

where x(·) is the solution of (4.4) with the initial condition P (t0)(x(t0) −
x0) = 0.

Proof. Note that if x is the solution of the equation(4.4) then due to (3.12)
it can be expressed by

x(t) = Φ(t, t0)P (t0)x0 +

∫ t

t0

Φ(t, σ(ρ))PσG
−1SF (x(·))(ρ)∆ρ

+H−1TQσG
−1F (x)(t). (4.6)

To prove the solvability of the equation (4.4), we show that the integral
equation (4.6) has a unique solution on every interval [t0, T ] for fixed T > t0.
Construct by induction a sequence (xn)

x0(t) = P (t0)x0, t ∈ [t0, T ],

xn+1(t) = Φ(t, t0)P (t0)x0 +

∫ t

t0

Φ(t, σ(ρ))PσG
−1SF (xn)(ρ)∆ρ

+H−1TQσG
−1F

(
xn
)
(t), t ∈ [t0, T ], n > 1.

Denote NT = supt06s6t6T ‖Φ(t, s)‖. We choose two positive constants ξ1, ξ2

such that γ1 := ξ2γ < 1 and |x+ y|p 6 ξ1|x|p + ξ2|y|p, ∀ x, y ∈ R. It is seen
that∥∥xn+1−xn

∥∥p
Lp[t0,t]

6 ξ1

∫ t

t0

∥∥∥∥∫ s

t0

Φ(s, σ(ρ))PσG
−1S

(
F (xn)−F (xn−1)

)
(ρ)∆ρ

∥∥∥∥p∆s
+ ξ2

∥∥H−1TQσG
−1
(
F (xn)− F (xn−1)

)∥∥p
Lp[t0,t]

6 ξ1N
p
T

∫ t

t0

∥∥∥∥∫ s

t0

PσG
−1S

(
F (xn)−F (xn−1)

)
(ρ)∆ρ

∥∥∥∥p∆s+ξ2γ ‖xn − xn−1‖pLp[t0,t]

6 ξ1N
p
TT

p
q

∫ t

t0

∫ s

t0

∥∥PσG−1S
(
F (xn)−F (xn−1)

)
(ρ)
∥∥p∆ρ∆s+γp1‖xn − xn−1‖Lp[t0,t]
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6 ξ1N
p
TT

p
q

∫ t

t0

∥∥PσG−1S
(
F (xn)− F (xn−1)

)∥∥p
Lp[t0,s]

∆s+ γp1‖xn − xn−1‖pLp[t0,t]

6 ξ1N
p
TT

p
q kpT

∫ t

t0

‖xn − xn−1‖pLp[t0,s]
∆s+ γp1 ‖xn − xn−1‖pLp[t0,t]

= N

∫ t

t0

‖xn − xn−1‖pLp[t0,s]
∆s+ γp1 ‖xn − xn−1‖pLp[t0,t]

,

with N = ξ1N
p
TT

p
q . Hence, by induction we get

‖xn+1 − xn‖pLp[t0,T ] 6 ‖x1 − x0‖pLp[t0,t]

n∑
k=1

N
k
hk(t, t0)γ

p(n−k)
1 ,

where h0(t, s) = 1, hk+1(t, s) =
∫ t
s hk(τ, s)∆τ for all t ∈ [t0, T ]. Using the

inequality (see [21, Theorem 4.1])

hk(t, s) 6
(t− s)k

k!
6
T k

k!
,

gets

‖xn+1 − xn‖pLp[t0,T ] 6 ‖x1 − x0‖pLp[t0,T ]

n∑
k=1

N
kT k

k!
γ
p(n−k)
1 .

Hence, ‖xn+1(·)− xn(·)‖Lp[t0,T ] 6 ‖x1 − x0‖Lp[t0,T ]

n∑
k=1

(
NT

k!

) k
p

γn−k1 .

It note that
n∑
k=0

(
NT
k!

) k
p
γn−k1 is the general term of the product of two series

∞∑
n=0

γk1 and
∞∑
n=0

(
NT
k!

) k
p
. Therefore,

(
xn
)

a Cauchy sequence in Lp[t0, T ],

which converges in Lp[t0, T ] to a function x. By letting n→∞ in (4.8), we
obtain

x(t) = Φ(t, t0)P (t0)x0 +

∫ t

t0

Φ(t, σ(ρ))PσG
−1SF (x(·))(ρ)∆ρ

+H−1TQσG
−1F

(
x(·)

)
(t).

This means that x(·) is the solution of (4.4) with the initial condition
P (t0)(x(t0)− x0) = 0.

We prove (4.5). It is seen that

‖x‖Lp[t0,t] 6 ‖Φ(·, t0)P (t0)x0‖Lp[t0,t]
+
∥∥H−1TQσG

−1F
(
x(·)

)∥∥
Lp[t0,t]

+

∥∥∥∥∫ ·
t0

Φ(·, σ(ρ))PσG
−1SF (x(·))(ρ)∆ρ

∥∥∥∥
Lp[t0,t]

6 NTT
1/p ‖P (t0)x0‖+ γ‖x‖Lp[t0,t]

+
(∫ t

t0

∥∥∥∥∫ τ

t0

Φ(τ, σ(ρ))PσG
−1SF (x))(ρ)∆ρ

∥∥∥∥p ∆τ
)1/p

.
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Therefore,

‖x‖Lp[t0,t] 6
NT

1− γ

[
T

1
p ‖P (t0)x0‖+

(∫ t

t0

∥∥∥∥∫ τ

t0

PσG
−1SF (x))(ρ)∆ρ

∥∥∥∥p∆τ) 1
p

]
Hölder
6

NT

1− γ

[
T

1
p ‖P (t0)x0‖+

(∫ t

t0

τ
p
q
∥∥PσG−1SF (x)

∥∥p
Lp[t0,τ ]

∆τ
) 1
p

]
6
NTT

1
p

1− γ

[
‖P (t0)x0‖+

(∫ t

t0

kpτ ‖x‖
p
Lp[t0,τ ] ∆τ

) 1
p

]
.

By using the inequality Gronwall in Lemma 2.3, we have

‖x(·)‖Lp[t0,t] 6MT ‖P (t0)x0‖ , t ∈ [t0, T ],

for a certain MT > 0. The proof is complete. �

In the following, let Assumptions 1 hold.

Definition 4.4 (See [18]). The implicit dynamic equation (4.4) is said to
be Lp−stable if there exist constants M1,M2 > 0 such that

‖P (t)x(t; t0, x0)‖Rn 6M1 ‖P (t0)x0‖Rn , t ∈ Tt0 , (4.7)

‖x(·; t0, x0)‖Lp(Tt0 ) 6M2 ‖P (t0)x0‖Rn . (4.8)

Theorem 4.5. Assume that the IDE (3.8) is index-1, α–exponentially stable
and H−1TQσG

−1F is γ–locally Lipschitz continuous with γ < 1. Further,

(1) There exists a continuous function m : Tt0 → R+ such that∥∥PσG−1
[
SF (x)]t − PσG−1

[
SF (y)

]
t

∥∥
Lp[t0,T ]

6 mt‖x− y‖Lp[t0,T ], (4.9)

for t0 < t 6 T <∞ and x, y ∈ Lloc
p

(
Tt0 ;Rn

)
.

(2) There holds
lim sup
t→∞

mt <
1− γ
Nα

, (4.10)

where Nα = M(1+µ∗α)
ηα

p
1
p q

1
q with α,M to be defined in Theorem 4.2 and ηα

given in Remark 2.5.

Then, the solution of the perturbed dynamic equation (4.4) is Lp– stable.

Proof. By (4.9) and the γ–locally Lipschitz continuity of H−1TQσG
−1F (x)

in x with γ < 1, it is seen that for any x0 ∈ Rn, there exists a unique solution
x(·) of (4.4), defined on Tt0 , with the initial condition P (t0)(x(t0)−x0) = 0.
From (4.10), there is a ξ > t0 such that

mt <
1− γ
Nα

, for all t > ξ. (4.11)

Using (4.6) gets

x(t) = Γ0(t) +

∫ t

ξ
Φ(t, σ(ρ))PσG

−1
[
SF
(
x
)]
ξ
(ρ)∆ρ+H−1TQσG

−1F (x)(t),

(4.12)
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where

Γ0(t) = Φ(t, t0)P (t0)x0 +

∫ t

t0

Φ(t, σ(ρ))PσG
−1(πξSF (x))(ρ)∆ρ.

From the exponential stability of (3.8) and the inequality (2.6) it deduces∥∥Φ(·, t0)P (t0)x0

∥∥
Lp(Tt0 )

=
(∫ ∞

t0

‖Φ(t, t0)P (t0)x0‖p ∆t
) 1
p

6M‖P (t0)x0‖
(∫ ∞

t0

ep	α(t, t0)∆t
) 1
p
6Mη

− 1
p

α ‖P (t0)x0‖.

Further,∥∥∥∫ ·
t0

Φ(·,σ(ρ))PσG
−1(πξSF (x))(ρ)∆ρ

∥∥∥
Lp(Tt0 )

=

[∫ ∞
t0

(∫ t

t0

Φ(t, σ(ρ))PσG
−1(πξSF (x))(ρ)∆ρ

)p
∆t

] 1
p

6M

[∫ ∞
t0

(∫ t

t0

e	α(t, σ(ρ))
∥∥PσG−1(πξSF (x))(ρ)

∥∥∆ρ
)p

∆t

] 1
p

6M

[∫ ∞
t0

(
e	α(t, t0)

∫ t

t0

1 + αµ∗

e	α(ρ, t0)

∥∥PσG−1
(
πξSF (x)

)
(ρ)
∥∥∆ρ

)p
∆t

] 1
p

.

By using Hardy inequality in Lemma 2.4 with the weight functions U(t) =
V (t) = e	α(t, t0) we have∥∥∥∫ ·

t0

Φ(·, σ(ρ))PσG
−1
(
πξSF (x)

)
(ρ)∆ρ

∥∥∥
Lp(Tt0 )

6
M(1 + αµ∗)

ηα
p

1
p q

1
q

[ ∫ ξ

t0

∥∥PσG−1SF (x)(ρ)
∥∥p∆ρ] 1

p

= Nα

∥∥PσG−1SF (x)
∥∥
Lp[t0,ξ]

.

By virtue of the property (4.9) of PσG
−1
(
SF
)
(x), it is seen that∥∥∥∫ ·

t0

Φ(·, σ(ρ))PσG
−1
(
πξSF (x)

)
(ρ)∆ρ

∥∥∥
Lp(Tt0 )

6 mt0Nα ‖x(·)‖Lp[t0,ξ]
6 mt0MξNα‖P (t0)x0)‖. (4.13)

Thus,

‖Γ0(·)‖Lp(Tt0 ) 6 L1 ‖P (t0)x0‖ , (4.14)

where L1 = Mη
− 1
p

α +mt0MξNα and Mξ is defined in (4.5).
On the other hand, from (4.12) it follows that

‖x(·)‖Lp[ξ,t] 6 ‖Γ0(·)‖Lp[ξ,t] +
∥∥∥∫ ·

ξ
Φ(·, σ(ρ))PσG

−1
[
SF
(
x
)
]ξ(ρ)∆ρ

∥∥∥
Lp[ξ,t]

+ ‖H−1TQσG
−1F (x)(t)‖Lp[ξ,t] 6 ‖Γ0(·)‖Lp(Tt0 )
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+
∥∥∥∫ ·

ξ
Φ(·, σ(ρ))PσG

−1
[
SF
(
x
)
]ξ(ρ)∆ρ

∥∥∥
Lp[ξ,t]

+ γ‖x(·)‖Lp[ξ,t].

Similary as in (4.13), using the Hardy inequality comes to∥∥∥∫ ·
ξ

Φ(·, σ(ρ))PσG
−1
[
SF
(
x
)
]ξ(ρ)∆ρ

∥∥∥
Lp[ξ,t]

6 Nα

∥∥PσG−1[SF (x)]ξ
∥∥
Lp[ξ,t]

6 Nαmξ ‖x(·)‖Lp[ξ,t] . (4.15)

Combining (4.11), (4.14) and (4.15) yields

(1− γ −Nαmξ)‖x(·)‖Lp[ξ,t] 6 L1 ‖P (t0)x(t0)‖ .
Thus,

‖x(·)‖Lp[ξ,t] 6
L1

1− γ −Nαmξ
‖P (t0)x(t0)‖ , t ∈ Tt0 .

From this inequality it is seen that

‖x(·)‖Lp(Tt0 ) 6M2 ‖P (t0)x0‖Rn ,

where M2 = Mξ + L1
1−γ−Nαmξ . Thus, we get (4.8).

We now prove the boundedness of u = Px on Tt0 . Using Hölder inequality
and (2.7), (4.3) obtains

‖u(t)‖ =
∥∥∥Φ0(t, t0)P (t0)x0 +

∫ t

t0

Φ0(t, σ(ρ))PσG
−1SF (x)(ρ)∆ρ

∥∥∥
6MK0‖u(t0)‖+MK0

∫ t

t0

e	α(t, σ(ρ))
∥∥PσG−1SF (x)(ρ)

∥∥∆ρ

6MK0‖u(t0)‖+MK0

[∫ t

t0

eq	α(t, σ(ρ))∆ρ

] 1
q
[∫ t

t0

∥∥PσG−1SF (x)(ρ)
∥∥p∆ρ] 1

p

6MK0

[
‖u(t0)‖+mt0(1 + αµ∗)η

− 1
q

α ‖x(·)‖Lp(t0,t)

]
6M1‖u(t0)‖, (4.16)

for all t ∈ Tt0 , where M1 = MK0

[
1 + mt0M2(1 + αµ∗)η

− 1
q

α

]
. This means

that we have (4.7). The proof is complete. �

Remark 4.6. If Σ = 0, we obtain Theorem 3.3 in [12] from Theorem 4.5.

Example 4.7. Let

T =

∞⋃
n=0

[
3n

2
,
3n

2
+ 1

]
,

and q be a continuous function defined on T such that 0 6 q 6 1. We see
that µ(t) = 0 if t 6= 3n

2 + 1 and µ(3n
2 + 1) = 1

2 , for all n > 0. Consider the

implicit dynamic equation (3.1) with x = (x1, x2, x3)> and

A =

1 1 0
0 0 0
0 1 0

 , B =

−1 −1 1
1 0 1
1 −1 0

 , Σ =

0 0 0
0 0 −h(·)
0 0 0

 , (4.17)
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18 NGUYEN THU HA

where

h(y)(t) =

∫ t

t0

q(s)e−1	q(t, s)y(s)∆s, t > 0.

It is easy to see that the equation (4.17) is index-1 and

G−1A =

1 0 0
0 1 0
0 0 0

 , PG−1Σ =

0 0 h
0 0 0
0 0 0

 , QG−1Σ =

0 0 0
0 0 0
0 0 h

,
QG−1B =

 0 0 0
0 0 0
−1 0 −1

 , PG−1B =

−3 0 0
1 −1 0
0 0 0

 .

Further,

H(y1, y2, y3)(t) =
(
y1(t), y2(t), y3(t)− h(y3)(t)

)>
,

which follows that

H−1(y1, y2, y3)(t) =
(
y1(t), y2(t),−y3(t) + g(y3)(t)

)
,

where g(z) =
∫ t
t0
	q(s)e−1(t, s)z(s)∆s. Thus,

H−1QG−1 =

0 0 0
0 0 1
0 1− g 0

 , PG−1S =

1 −h(−1 + g)− 1 −1
0 0 1
0 0 0

 .

We prove that (3.8) is exponentially stable. Indeed, from (3.4) (with
f = 0) we gets

y3(t)−
∫ t

s
q(τ)e−1	q(t, τ)y3(τ)∆τ = −y1, t > s,

which implies

y3(t) = −y1(t) +

∫ t

s
	q(τ)e−1(t, τ)y1(τ)∆τ, t > s. (4.18)

Substituting it into the equation of (3.3) obtains{
y∆

1 (t) = −3y1(t) +
∫ t
s 	q(τ)e−1(t, τ)y1(τ)∆τ,

y∆
2 (t) = y1(t)− y2(t).

(4.19)

Put

z(t) =

∫ t

s
	q(τ)e−1(t, τ)y1(τ)∆τ,

we gety1

y2

z

∆

=

 −3 0 1
1 −1 0

	q(t).(1− µ(t)) 0 −1

y1

y2

z

 := D(t)

y1

y2

z

 .

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



ROBUST STABILITY FOR IMPLICIT DYNAMIC EQUATIONS 19

Denote

E =

 1 0 0.1
0 1 0

0.1 0 1.6

 and y = (y1, y2, z)
>.

The matrix E has three eigenvalues λ1 ≈ 1.62, λ2 = 1 and λ3 ≈ 0.98.
Consider the Lyapunov function V (y1, y2, z) = y2

1 + y2
2 + 0.2y1z + 1.6z2. By

direct calculation we have (see [8])

V ∆(y1, y2, z) = y>(D(t)E + ED>(t) + µ(t)D(t)ED>(t))y

< −0.49(y2
1 + y2

2 + z2) < −0.49

1.62
V (y1, y2, z).

Therefore, the dynamic equation (4.19) is α–exponentially stable with α ≈√
0.49
1.62 and M =

√
1

0.98 . Further, from (4.18) we see that

|y3(t)| 6 |y1(t)|+
∫ t

s
| 	 q(τ)e−1(t, τ)y1(τ)|∆τ

6Me	α(t, s) +M

∫ t

s
| 	 q(τ)|e−1(t, τ)e	α(τ, s)∆τ

6Me	α(t, s)
(

1 +

∫ t

s
| 	 q(τ)|e−1⊕α(t, τ)∆τ

)
.

Since 0 6 q 6 1 on T and α < 1,

M1 := M
(

1 + sup
t06s6t<∞

∫ t

s
| 	 q(τ)|e−1⊕α(t, τ)∆τ

)
<∞.

Hence,

‖y(t)‖ 6M1e	α(t, s) ‖P (s)y(s)‖ , t > s.
Thus, (3.8) is α–exponentially stable.

Let F : R3 → R3 be a k–Lipschitz function. Put C = p
1
p q

1
qB with B

given by (2.4). It is easy to see that H−1QG−1F is γ–Lipschitz continuous
with γ = k(C + 1) and PG−1SF satisfies (4.9) with m = k

(
3 + C(1 + C)

)
.

Therefore, if the real number k satisfies

k
(
3 + C(1 + C)

)
6

1− k(C + 1)

Nα
,

then (4.4) is Lp– stable by Theorem 4.5.

We now deal with the preservation the exponential stability under small
perturbation. For any λ ∈ R and t0 6 s < t 6 ∞, on the space Lp[s, t],
introduce a new norm ‖ · ‖Lλp [s,t] given by

‖z‖p
Lλp [s,t]

=

∫ t

s
‖eλ(τ, t0)z(τ)‖pdτ.
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20 NGUYEN THU HA

Denote by Lλp(Tt0) the subset of Lloc(Tt0) consisting of all continuous func-

tions z with ‖z‖Lλp (Tt0 ) < ∞ and by Bλ(Tt0) the subset z ∈ Lloc
p (Tt0) such

that supt∈Tt0 eλ(t, t0) ‖z(t)‖ <∞ with the norm ‖z‖ = supt∈Tt0 eλ(t, t0) ‖z(t)‖.
For s > t0, consider the semi linear implicit dynamic equation

Aσ(t)x∆(t) = B(t)x(t) + Σ[x(·)(t)]s + F
(
[x(·)]s

)
(t), t ∈ Ts. (4.20)

Definition 4.8. Let α > 0. The implicit dynamic equation of (4.20) is
called α–exponentially stable if there exists a positive constant K such that

‖x(t)‖ 6 Ke	α(t, s) ‖P (s)x(s)‖ , t > s,

for all solution x of (4.20).

Theorem 4.9. Suppose that the IDE (3.8) is index-1, α–exponentially stable
and there exists 0 < λ < α such that H−1TQσG

−1(x) is locally γ–Lipschitz
continuous in x with γ < 1 in norm ‖ · ‖Lλp [t0,t] and the conditions (4.9),

(4.10) are satisfied. Suppose further that for any s > t0, the function (I −
H−1QσG

−1F )−1 acts continuously from Bλ(Tt0) to Bλ(Tt0).
Then, the implicit dynamic equation (4.20) is exponentially stable.

Proof. Let x(t) be a solution of (4.20). For any t > s, by putting z(t) =
eλ(t, s)x(t) we obtain

Aσ(t)(Pz)∆(t) = Aσ(t)
(
eλ(σ(t), s)(Px)∆(t) + λeλ(t, s)Px(t)

)
= eλ(σ(t), s)

[
Bx+ Σ[x]s + F [x]s

]
(t) + λAσ(t)eλ(t, s)Px(t)

=
(
λAσ + (1 + λµ)B

)
(t)z(t) + Σ̃[z]s(t) + F̃ [z]s(t),

where

Σ̃[z(·)]s(t) = eλ(σ(t), s)Σ
(
e	λ(·, s)[z(·)]s

)
(t),

F̃ [z(·)]s(t) = eλ(σ(t), s)F
(
e	λ(·, s)[z(·)]s

)
(t).

(4.21)

Thus, z is the solution of the implicit dynamic equation

Aσ(t)(Pz)∆(t) =
(
λAσ + (1 + λµ)B

)
(t)z(t) + Σ̃[z]s(t) + F̃ [z]s(t). (4.22)

On the other hand,

G̃ = Aσ −
(
λAσ + (1 + λµ(t))B

)
TQσ = G− λµBTQσ

= G
(
I − λµG−1BTQσ

)
= G(I + λµQσ).

We see that (I + λµQσ)−1 =
(
P̂ + (1 + λµ)Qσ

)−1
= Pσ +

1

1 + λµ
Qσ, which

implies G̃ is invertible, and G̃−1 =
(
Pσ +

1

1 + λµ
Qσ
)
G−1. Furthermore,

PσG̃
−1 = PσG

−1; QσG̃
−1 =

1

1 + λµ
QσG

−1. (4.23)
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ROBUST STABILITY FOR IMPLICIT DYNAMIC EQUATIONS 21

Let H̃ = I − TQσG̃−1Σ̃. We have

H̃ = I − eλ(σ(·), s)TQσ
(
Pσ +

1

1 + λµ
Qσ
)
G−1Σe	λ(·, s)

= I + eλ(·, s)
(
H − I)e	λ(·, s) = eλ(·, s)He	λ(·, s).

Therefore, H̃ is invertible and for any z ∈ Llocp (Tt0),

H̃−1z = eλ(·, s)H−1e	λ(·, s)z. (4.24)

This means that the equation (4.22) is index-1. The homogeneous equation
corresponding to (4.22) is

Aσ(t)(Py)∆(t) =
(
λAσ + (1 + λµ)B

)
(t)y(t) + Σ̃[y]s(t). (4.25)

Assume that Ψ(t, s) is the Cauchy matrix of (4.25). It is clear that Ψ(t, s) =
eλ(t, s)Φ(t, s). Therefore, by the α–exponentially stable property of (3.8),
we have

‖Ψ(t, s)‖ 6Me	(α	λ)(t, s), t > s > t0.

Further, the variation of constant formula of solutions of (4.22) holds

z(t) = Ψ(t, s)P (s)z(s) +

∫ t

s
Ψ(t, σ(ρ))PσG̃

−1S̃F̃ [z(·)]s(τ)∆τ

+ H̃−1TQσG̃
−1F̃ [z(·)]s(t), t > s, (4.26)

where S̃ := I + Σ̃H̃−1TQσG̃
−1.

By the Lipschitz condition of H−1TQσG
−1F (·) in the norm ‖ · ‖Lλp [t0,t],

for all z1, z2 ∈ Llocp (Tt0), we have∥∥H̃−1TQσG̃
−1F̃ (z1)− H̃−1TQσG̃

−1F̃ (z2)
∥∥
Lp[t0,t]

=
∥∥eλ(·, s)H−1e	λ(·, s)TQσG−1eλ(·, s)

[
F (e	λ(·, s)z1)−F (e	λ(·, s)z2)

]∥∥
Lp[t0,t]

=
∥∥H−1TQσG

−1
[
F (e	λ(·, s)z1)− F (e	λ(·, s)z2)

]∥∥
Lλp [t0,t]

6 γ ‖z1 − z2‖Lp[t0,t]
.

In addition, by combining with (4.21), (4.23) and (4.24) we get

PσG̃
−1
[
S̃F̃ (z1)

]
t

= PσG
−1
[(
I + Σ̃H̃−1QσG̃

−1
)
eλ(σ(·), s)F

(
e	λ(·, s)z1

)]
t

= eλ(σ(t), s)PσG
−1
[(
I + ΣH−1QσG

−1
)
F
(
e	λ(·, s)z1

)]
t

=
(
1 + λµ

)
eλ(·, s)PσG−1[SF

(
e	λ(·, s)z1

)
]t.

Therefore, from (4.9), it yields∥∥∥PσG̃−1
[
S̃F̃
(
z1

)]
t
− PσG̃−1

[
S̃F̃
(
z2

)]
t

∥∥∥p
Lp[t0,T ]

=
∥∥∥(1 + λµ

)
eλ(·, s)PσG−1

[
S
(
F
(
e	λ(·, s)z1

)
− F

(
e	λ(·, s)z2

))]
t

∥∥∥p
Lp[t0,T ]

6
(
1 + λµ∗

) ∥∥∥PσG−1
[
S
(
F
(
e	λ(·, s)z1

)
− F

(
e	λ(·, s)z2

))]
t

∥∥∥p
Lλp [t0,T ]

6 mt

(
1 + λµ∗

)
‖z1 − z2‖Lp[t0,T ] ,
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22 NGUYEN THU HA

for all 0 6 t 6 T and z1, z2 ∈ Lloc
p (Tt0). In particular,∥∥PσG̃−1[S̃F̃ (z)]t
∥∥ 6 mt

(
1 + µ∗λ

)
‖z‖Lp[t0,T ] .

By virtue of these estimates, it is seen that all assumptions of Theorem 4.5
are satisfied, which implies there is L2 > 0 such that∥∥[z]s(·)

∥∥
Lp(Tt0 )

6 L2‖P (s)z(s)‖.

Let h(t) = Ψ(t, s)P (s)z(s) +
∫ t
s Ψ(t, σ(τ))PG̃−1S̃F̃ [z]s(τ)∆τ, t > s. Since

α− λ
1 + λµ∗

6 min
t∈T0

α	 λ(t) 6 max
t∈T0

α	 λ(t) 6 α− λ,

by the same way as in (4.16) we can use Hardy inequality to obtain

‖h(t)‖ 6
∥∥Ψ(t, s)P (s)z(s)

∥∥+
∥∥∥∫ t

s
Ψ(t, σ(τ))PG̃−1S̃F̃ [z]s(τ)∆τ

∥∥∥
6 MK0‖P (s)z(s)‖+MK0(1 + αµ∗)η

− 1
q

α	λ

∥∥∥PG̃−1S̃F̃ [z]s(·)
∥∥∥
Lp(t0,t)

6 MK0‖P (s)z(s)‖+MK0(1 + αµ∗)2η
− 1
q

α	λms ‖[z]s(·)‖Lp(t0,t)

6 MK0

[
1 + (1 + αµ∗)2η

− 1
q

α	λmt0L2

]
‖P (s)z(s)‖ := L3 ‖P (s)z(s)‖ .

This means that [h]s ∈ B0(Tt0). Moreover, from (4.26), it is clear that

h(t) = z(t)− H̃−1QσG̃
−1F̃ [z]s(t)

= z(t)− eλ(t, s)H−1QσG
−1F

(
e	λ(·, s)[z(·)]s

)
(t)

⇔ e	λ(t, s)h(t) = e	λ(t, s)z(t)−H−1QσG
−1F

(
e	λ(·, s)[z(·)]s

)
(t)

⇔ e	λ(t, s)h(t) = (I −H−1QσG
−1F )(e	λ(·, s)[z(·)]s)(t).

Since H−1QG−1F is γ–locally Lipschitz continuous with γ < 1 in ‖·‖Lλp [t0,t],

I −H−1QG−1F is invertible and

z(t) = eλ(t, s)
(
I −H−1QG−1F

)−1(
e	λ(·, s)[h]s(·)

)
(t).

On the other hand, [h]s ∈ B0(Tt0) implies that e	λ(·, s)[h]s ∈ Bλ(Tt0).
Therefore, by notting that (I − H−1QG−1F )−1 acts continuously from
Bλ(Tt0) to Bλ(Tt0), there exists C1 such that

sup
t>s
‖z(t)‖ = sup

t>s

∥∥∥eλ(t, s)
(
I −H−1QG−1F

)−1(
e	λ(·, s)[h]s(·)

)
(t)
∥∥∥

=
∥∥∥(I −H−1QG−1F

)−1(
e	λ(·, s)[h]s(·)

)∥∥∥
Bλ(Tt0 )

6 C1 ‖e	λ(·, s)[h]s(·)‖Bλ(Tt0 )

= C1 ‖h‖B0(Tt0 ) 6 C1L3‖P (s)z(s)‖ := K‖P (s)z(s)‖.

Thus,
‖x(t, s)‖ 6 Ke	λ(t, s)‖P (s)x(s)‖, t > s > t0.
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The proof is complete. �

5. Bohl-Perron type theorem

We now pass to the study of the Bohl-Perron’s Theorem for implicit dy-
namic equations with causal operators. That is, we investigate the relation
between the exponential stability of homogeneous equation (3.8) and the
boundedness of solutions of non homogeneous equation (3.2). We keep As-
sumption 1 to this section. For any β > 0, define the weight space

Lβp
(
t0
)

=

{
q ∈ Llocp (Tt0 ;Rn) :

∫∞
t0
epβ(t, t0)‖PσG−1Sq(t)‖p∆t <∞

and
∫∞
t0
epβ(t, t0)‖TQσG−1Sq(t)‖p∆t <∞

}
with the norm

‖q‖Lβp (t0)
=
(∫ ∞

t0

eβ(t, t0)
(
‖PσG−1Sq(t)‖p + ‖TQσG−1Sq(t)‖p

)
∆t
) 1
p
.

Lemma 5.1. Lβp (t0) is a Banach space.

Proof. We need only to prove the positive definiteness of the norm ‖.‖Lβp (t0)
.

By noting I+H−1TQσG
−1Σ = H−1, it follows that S := I+ΣH−1TQσG

−1

is invertible by Lemma 2.6. If q ∈ Lβp (t0) with ‖q‖Lβp (t0)
= 0 then

PσG
−1Sq(t) = 0 and TQσG

−1Sq(t) = 0,

for almost everywhere t ∈ Tt0 . Since G,T and S are invertible, q = 0. The
proof is complete. �

Denote also

Lβp
(
t0
)

=

{
y ∈ Llocp (Tt0 ;Rn) :

∫ ∞
t0

epβ(t, t0)‖y(t)‖p∆t <∞
}
.

Theorem 5.2. Suppose that β < α. If the system (3.8) is α-exponentially

stable, then for every f ∈ Lβp (t0), the solution of (3.2) with the initial

P (t0)x(t0) = 0 is in Lβp (t0).

Proof. Following (3.12), the solution of (3.2) with the initial P (t0)x(t0) = 0
is presented by

x(t) =

∫ t

t0

Φ(t, s)PσG
−1Sf(s) ∆s+H−1TQσG

−1f(t).

Further, from the exponential stability of (3.8) we have∥∥∥∫ ·
t0

Φ(·, s)PσG−1Sf(s) ∆s
∥∥∥
Lβp (t0)

=

(∫ ∞
t0

epβ(t, t0)
∥∥∥∫ t

t0

Φ(t, s)PσG
−1Sf(s) ∆s

∥∥∥p∆t) 1
p

= M

(∫ ∞
t0

[
eβ(t, t0)

∫ t

t0

e	α(t, s)
∥∥PσG−1Sf(s)

∥∥ ∆s
]p

∆t

) 1
p

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



24 NGUYEN THU HA

= M

(∫ ∞
t0

[
eβ	α(t, t0)

∫ t

t0

eα(s, t0)
∥∥PσG−1Sf(s)

∥∥ ∆s
]p

∆t

) 1
p

.

By using again Hardy inequality with U(t) = V (t) = eβ	α(t, t0) we obtain∥∥∥∥∫ ·
t0

Φ(·, s)PG−1Sf(s) ∆s

∥∥∥∥
Lβp (Tt0 )

6
Mp

1
p q

1
q

ηα	β

(∫ ∞
t0

epβ(s, t0)
∥∥PσG−1Sf(s)

∥∥p∆s) 1
p

<∞.

Moreover,

TQσG
−1S = TQσG

−1
(
I + ΣH−1TQσG

−1
)

= TQσG
−1 − (I − TQσG−1Σ)H−1TQσG

−1 +H−1TQσG
−1

= H−1TQσG
−1,

which implies that∥∥H−1TQσG
−1f

∥∥
Lβp (t0)

=
(∫ ∞

t0

epβ(t, t0)
∥∥TQσG−1Sf(t)

∥∥p∆t) 1
p
<∞.

Thus, x ∈ Lβp (t0). The proof is complete. �

To prove the inverse relation, consider the operator F defined by

Ff(t) =

∫ t

t0

Φ
(
t, σ(τ)

)
PσG

−1Sf(τ) ∆τ +
(
H−1TQσG

−1f
)
(t), (5.1)

with t ∈ Tt0 and f ∈ Lβp
(
t0
)
. By formula (3.12), it is seen that Ff(·) is the

solution of the dynamic equation (3.2) with the initial P (t0)x(t0) = 0.

Lemma 5.3. Let γ, β > 0 and suppose that the operator F acts Lγ1(t0) to

Lβp (t0). Then, F is continuous. This means that

‖F‖L := k <∞. (5.2)

Proof. By assumption, for any f ∈ Lγ1(t0), the solution x(t) associated to f

of (3.2) with the initial condition P (t0)x(t0) = 0 is in Lβp (t0). We define a
family of operators {Vt}t∈Tt0 as following:

Vt : Lγ1(t0) −→ Lβp (t0)

f 7−→ Vt(f) = πtF(f).

From the assumption of Lemma, we have

sup
t∈Tt0

‖Vtf‖Lβp (t0)
= sup

t∈Tt0

(∫ t

t0

epβ(τ, t0) ‖Ff(τ)‖p ∆τ
) 1
p

=
(∫ ∞

t0

epβ(t, t0) ‖Ff(t)‖p ∆t
) 1
p
<∞,

for any f ∈ Lγ1(t0). Using Uniform Boundedness Principle gets

‖F‖L = sup
t∈Tt0

‖Vt‖ := k <∞. (5.3)
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The proof Lemma 5.3 is complete. �

Theorem 5.4. Suppose that for γ < β, the following assumptions hold
1. The unique solution of the Cauchy problem (3.2) with the initial condi-

tion P (t0)x(t0) = 0, associated with every f ∈ Lγ1(t0) is in Lβp (t0).

2. The operator QH−1P̂ acts continuously on Bγ(Tt0 ,Rn).
3. The operator PσG

−1Σ, acting Llocp (Tt0) to Llocp (Tt0) and there exists a

positive number K1 such that for all z ∈ Lloc
p (Tt0) and t ∈ T0,

a.
∥∥∥e	ε(·, t0)PσG

−1ΣH−1P̂ z(·)
∥∥∥
Lβp [t0,t]

6 K1 ‖z(·)‖Lβp [t0,t]
, (5.4)

b. esssup
t∈Tt0

e	ε(t, t0)
∥∥(P∆ + PσG

−1B
)
(t)
∥∥ 6 K1, (5.5)

where β 	 γ 	 ε < 0.

Then, the index-1 IDE (3.8) is exponentially stable.

Proof. First, we know that Φ0(t, s), t > s > t0 is the solution of the inherit
dynamic equation (3.10). Then, it is rd–continuous in (t, s). Let s > t0, for
any h > s and v ∈ Rn, put

f(t) = e	γ(t, t0)Aσ(t)1[s,h](t)Pσ(s)v, t ∈ Tt0 .

It is clear that Sf = f , QσG
−1Sf = 0 and

‖f‖Lγ1 (t0) =

∫ ∞
t0

eγ(t, t0)
∥∥[e	γ(·, t0)PσG

−1SAσ(·)1[s,h](·)Pσ(s)v
]
(t)
∥∥∆t

=

∫ h

s
‖Pσ(t)Pσ(s)v‖∆t 6 (h− s)K0 ‖Pσ(s)v‖Rn .

This means that f ∈ Lγ1(t0). Let x(t) be the solution of (3.2) associated
to f with the initial condition P (t0)x(t0) = 0 and u(t) = P (t)x(t), t ∈ Tt0 .
Since f(t) = 0 for t0 6 t 6 s, it follows from (3.13) that

u(t) =

∫ t

s
Φ0(t, σ(τ))PσG

−1Sf(τ)∆τ = P (t)Ff(t),

for all t > s and u(t) = 0 for t0 6 t 6 s. Hence,

‖u(·)‖
Lβp (t0)

= ‖P (·)Ff(·)‖
Lβp (t0)

6 kK0‖f(·)‖Lγ1 (t0) 6 (h− s)kK2
0 ‖Pσ(s)v‖Rn .

On the other hand, by noting that

u(t) =

∫ h∧t

s
e	γ(τ, t0)Φ0(t, σ(τ))Pσ(τ)Pσ(s)v∆τ

we come to(∫ ∞
s

epβ(t, t0)
∥∥∥∫ h∧t

s
e	γ(τ, t0)Φ0(t, σ(τ))Pσ(τ)Pσ(s)v∆τ

∥∥∥p∆t) 1
p

6 k(h− s)K2
0 ‖Pσ(s)v‖ .
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Dividing both sides of this inequality by h− s and letting h→ σ(s) obtain(∫ ∞
s

epβ(t, t0) ‖Φ0(t, σ(s))Pσ(s)v‖p ∆t

) 1
p

6 kK2
0eγ(s, t0)‖Pσ(s)v‖,

for arbitrary s > t0. Hence, for arbitrary s > t0,(∫ ∞
s
epβ(t, t0) ‖Φ0(t, s)P (s)v‖p ∆t

) 1
p

6 kK2
0eγ(s, t0)‖P (s)v‖. (5.6)

Let s > t0, denote by y(·) the solution of the equation (3.8) with the
initial condition P (s)(y(s) − v) = 0. Put u = Py then y(t) = Φ(t, s)P (s)v
and u(·) = Φ0(·, s)P (s)v for t > s. We have the following estimates

+ From (5.6)

‖[u]s‖Lβp (t0)
= ‖[Φ0(·, s)P (s)v]s‖Lβp (t0)

=
(∫ ∞

s
epβ(t, t0) ‖Φ0(t, s)P (s)v‖p ∆t

) 1
p

6 kK2
0eγ(s, t0) ‖P (s)v‖ . (5.7)

+ By virtue of (3.6)∥∥e	ε(·, t0)[u]∆s
∥∥
Lβp (t0)

=
∥∥∥e	ε(·, t0)

[(
P∆+PσG

−1B
)
[u]s +PσG

−1ΣH−1P̂ [u]s

]∥∥∥
Lβp (t0)

.

Further,∥∥e	ε(·, t0)
(
P∆ + PσG

−1B
)
[u]s
∥∥
Lβp (t0)

=

(∫ ∞
s

epβ(t, t0)
∥∥e	ε(τ, t0)

(
P∆ + PσG

−1B
)
u(τ)

∥∥p ∆τ

) 1
p

6 K1

(∫ ∞
s

epβ(τ, t0) ‖u(τ)‖p dτ
) 1
p

6 kK2
0K1eγ(s, t0)‖P (s)v‖,

and∥∥∥(e	ε(·, t0)PσG
−1ΣH−1P̂ [u]s

∥∥∥
Lβp (t0)

6 K1 ‖[u(·)]s‖Lβp (t0)

= K1

(∫ ∞
s

∥∥∥epβ(τ, s)Φ0(τ, s)P (s)v(τ)
∥∥∥p ∆τ

) 1
p

6 kK2
0K1eγ(s, t0) ‖P (s)v‖ .

+ Thus, ∥∥e	ε(·, t0)[u]∆s
∥∥
Lβp (t0)

6 K2eγ(s, t0) ‖P (s)v‖ , (5.8)

where K2 = 2kK2
0K1.

On the other hand,∥∥u∆(t)
∥∥ =

∥∥∥∥lim
s→t

u(s)− u(σ(t))

s− σ(t)

∥∥∥∥ > ∣∣∣∣lims→t ‖u(s)‖ − ‖u(σ(t))‖
s− σ(t)

∣∣∣∣ =
∣∣∣‖u(t)‖∆

∣∣∣ .
By direct calculation, it yields

eγ(t, t0) ‖u(t)‖ = eγ(s, t0) ‖u(s)‖+

∫ t

s

(
eγ(τ, t0) ‖u(τ)‖

)∆
∆τ
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=eγ(s, t0) ‖u(s)‖+

∫ t

s

(
γeγ(τ, t0) ‖u(τ)‖+

∫ t

s
eγ(σ(τ), t0) ‖u(τ)‖∆

)
∆τ

6eγ(s, t0) ‖u(s)‖+ γ

∫ t

s
eγ(τ, t0) ‖u(τ)‖∆τ + (1 + γµ∗)

∫ t

s
eγ(τ, t0)

∥∥u∆(τ)
∥∥∆τ

=eγ(s, t0) ‖u(s)‖+ γ

∫ t

s
eγ	β(τ, t0) ‖eβ(τ, t0)u(τ)‖∆τ

+ (1 + γµ∗)

∫ t

s
eγ	β⊕ε(τ, t0)eβ(τ, t0)e	ε(τ, t0)

∥∥u∆(τ)
∥∥∆τ

6eγ(s, t0) ‖u(s)‖+ γ

(∫ ∞
s

eqγ	β(τ, t0)∆τ

) 1
q
(∫ ∞

s

∥∥eβ(τ, t0)u(τ)
∥∥p∆τ) 1

p

+ (1 + γµ∗)

(∫ ∞
s
eqγ	β⊕ε(τ, t0)∆τ

) 1
q
(∫ ∞

s
epβ(τ, t0)

∥∥e	ε(τ, t0)u∆(τ)
∥∥p ∆τ

) 1
p

.

Combining with (2.6), (5.7) and (5.8), we can find N1, N2 > 0, such that

eγ(t, t0) ‖u(t)‖ 6
(

1 + γN1kK
2
0 + (1 + γµ∗)N2K2

)
eγ(s, t0) ‖P (s)v‖

= K3eγ(s, t0) ‖u(s)‖ ,

where K3 = 1 + kγN1K
2
0 + (1 + γµ∗)N2K2. Thus

‖u(t)‖ 6 K3e	γ(t, s) ‖u(s)‖ , for all t > s. (5.9)

On the other hand, by assumption, the operator QH−1P̂ acts continuously

on Bγ(Tt0). Then, with v(t) = Qy(t) = QH−1P̂ [u(·)]s(t) we have

sup
t>s
‖eγ(t, s)v(t)‖ 6

∥∥QH−1P̂
∥∥ sup
t>s
‖eγ(t, s)u(t)‖ 6 K3

∥∥QH−1P̂
∥∥ ‖u(s)‖ .

Combining with (5.9) obtains

‖y(t)‖ 6 K4e	γ(t, s) ‖P (s)v‖ , for all t > s,

where K4 = K3

(
‖QH−1P̂‖+ 1

)
. The proof is complete. �

Remark 5.5. When T = R and Σx(t) =
∫ t

0 H(t, s)x(s)ds is an integral
operator, we see that Theorem 5.4 is generalized from Theorem 4.2 in [16].

Acknowledgments. The author would like to thank Vietnam Institute for
Advance Study in Mathematics (VIASM) for supporting and providing a
fruitful research environment and hospitality for her. This work was done
under the partial support of the Vietnam National Foundation for Science
and Technology Development (NAFOSTED) under grant number 101.03-
2021.29.

References

[1] T. Berger, Robustness of stability of time-varying index-1 DAEs, Math. Control Sig-
nals Syst., 26(2014), 403-433.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



28 NGUYEN THU HA

[2] E. Braverman; I. M. Karabash, Bohl-Perron-type stability theorems for linear differ-
ence equations with infinite delay, J. Difference Equ. Appl. 18 (2012), no. 5, 909-939.

[3] M. Bohner and A. Peterson, Dynamic equations on time scales: An Introduction with
Applications, Birkhäuser, Boston, 2001.
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