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Abstract

In this paper, we consider the non-linear general p-Laplacian equation Dp; f uþ F ðuÞ
¼ 0 for a smooth function F on smooth metric measure spaces. Assume that a Sobolev

inequality holds true on M and an integral Ricci curvature is small, we first prove a

local gradient estimate for the equation. Then, as its applications, we prove several

Liouville type results on manifolds with lower bounds of Ricci curvature. We also

derive new local gradient estimates provided that the integral Ricci curvature is small

enough.

Introduction

It is well-known that gradient estimates are an important tool in geometric
analysis and have been used, among other things, to derive Liouville theorems
and Harnack inequalities for positive solutions to a variety of nonlinear equations
on Riemannian manifolds. Historically, the local Cheng-Yau gradient estimate
asserts that if M is an n-dimensional complete Riemannian manifold with Ricb
�ðn� 1Þk for some kb 0 and u : Bðo;RÞ � M ! R harmonic and positive then
there is a constant cn depending only on n such that

sup
Bðo;R=2Þ

j‘uj
u

a cn
1þ

ffiffiffi
k

p
R

R
:ð1Þ

Here Bðo;RÞ stands for the geodesic ball centered at a fixed point o A M. Later,
Cheng-Yau’s gradient estimate has been extended and generalized by many math-
ematicians. To describe recent results, let us recall some notations. The triple
ðMn; g; e�f dmÞ is called a smooth metric measure space if ðM; gÞ is a Rieman-
nian manifold, f is a smooth function on M and dm is the volume element
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induced by the metric g. On M, we consider the di¤erential operator Df , which
is called f -Laplacian and given by

Df � :¼ D � � h‘f ;‘ � i:

It is symmetric with respect to the measure e�f dm. That is,ð
M

h‘j;‘cie�f dm ¼ �
ð
M

ðDf jÞce�f dm;

for any j;c A Cy
0 ðMÞ. Smooth metric measure spaces are also called manifolds

with density. By m-dimensional Bakry-Émery Ricci tensor we mean

Ricmf ¼ RicþHess f � ‘f n‘f

m� n
;

for m > n. The tensor Ricnf is only defined when f is constant. In this case,
this tensor is referred as y-Barky-Émery tensor

Ricf ¼ RicþHess f :

In a variational point of view, the weighted p-Laplacian, p > 1 is a natural gen-
eralization of Df and is defined by

Dp; f u :¼ e f divðe�f j‘ujp�2‘uÞ

for u A W
1;p
loc ðMÞ. In [8], Dung and Dat considered FðuÞ ¼ lup�1 and studied

gradient estimates for weighted p-eigenfunctions of Dp; f . If FðuÞ ¼ cus, (2) is a
Lichnerowicz type equation. In [38], the authors proved local gradient estimates
for positive solutions to this equation, and as applications, they gave a corre-
sponding Liouville property and Harnack inequality. Then, Wang [28] estimated
eigenvalues of the weighted p-Laplacian. Wang, Yang, and Chen [32] estab-
lished gradient estimates and entropy formulae for weighted p-heat equations.
Later, Dung and Sung [10] investigated some Liouville properties for weighted
p-harmonic l-forms on smooth metric measure spaces with Sobolev and Poincaré
inequalities. For the general setting on metric spaces, recently in [3], the authors
considered under which geometric conditions on the underlying metric measure
space the finite-energy Liouville theorem holds for p-harmonic functions and
quasiminimizers. For further discussion about this topic, we refer the reader to
[3, 14, 17, 19, 20, 25, 31, 32] and the references therein.

In another direction, gradient estimates have been successfully generalized on
manifolds with integral Ricci curvature condition. Before stating results, let us
fix some notations. For each x A M, denote by rðxÞ the smallest eigenvalue for
the m-dimensional Bakry-Émery Ricci tensor Ricmf : TxM ! TxM, and for any
fixed number K , let

ðRicmf Þ
K
� ðxÞ ¼ ððn� 1ÞK � rðxÞÞþ ¼ maxf0; ðn� 1ÞK � rðxÞg;
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the amount of m-dimensional Bakry-Émery Ricci curvature lying below ðn� 1ÞK .
Let

kRicK�kq; r ¼ sup
x AM

ð
Bðx; rÞ

ððRicmf Þ
K
� Þ

q
dvol

 !1=q
:

Then kRicK�kq; r measures the amount of m-dimensional Bakry-Émery Ricci cur-
vature lying below a given bound, in this case, ðn� 1ÞK , in the Lq sense. It is

easy to see that kRicK�kq; r ¼ 0 if and only if RicM b ðn� 1ÞK . We also often
work with the following scale invariant curvature quantity (with K ¼ 0)

kðx; q; rÞ ¼ r2
þ
Bðx; rÞ

rq
�

 !1=q
; kðq; rÞ ¼ sup

x AM
kðx; q; rÞ;

where the notation þ
Bðx; rÞ

ð�Þ :¼ 1

jBðx; rÞj

ð
Bðx; rÞ

ð�Þ

represents the average integral on Bðx; rÞ and jBðx; rÞj stands for the volume of
Bðx; rÞ. We should note that the integral curvature bound is a natural, and much
weaker than lower bound Ricci curvature condition. It has a close relationship
aspects of topology and geometry of manifolds, we refer the reader to [2, 12, 23,
24] and the references therein. Recently, integral Ricci curvature conditions are
used to give gradient estimates of positive solutions to heat equations. In par-
ticular, in [27], Rose investigated heat kernel upper bound on Riemannian mani-
folds with locally uniform Ricci curvature integral bounds. In [21], Olivé used
the integral Ricci curvature to show a Li-Yau gradient estimate on a compact
Riemannian manifolds with Neumann boundary condition. It is worth to men-
tion that Li-Yau gradient estimates for linear heat equation on complete non-
compact manifolds were obtained by Zhang and Zhu in [36, 37]. Later, these
results were generalizied by Wang in [30] to non-linear heat equation. More-
over, inspired by a method in [8], Wang derived a gradient estimate of Hamilton
type for a non-linear heat equation in [29].

Motivated by Liouville results for p-Laplacian obtained by Zhao and Yang
in [38], by Hou in [15], our aim is to give local gradient estimates for positive
solutions of the following equation

Dp; f uþ F ðuÞ ¼ 0ð2Þ

on non-compact smooth metric measure space. Throughout this paper, we
assume that F is a di¤erentiable function, FðuÞb 0 when ub 0. Let hðvÞ ¼
ðp� 1Þp�1

e�vF ðev=ðp�1ÞÞ, we assume further that h 0ðvÞa a :¼ aðpÞ for some con-
stant ab 0, where a ¼ 0 if p0 2. We say that a weighted Sobolev inequality
holds true on M if there exist positive constants C1, C2, C3, depending only
on m, such that for every ball B0ðRÞ � M, every function f A Cy

0 ðB0ðRÞÞ we
have
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ð
B0ðRÞ

jfj2m=ðm�2Þ
e�f dm

 !ðm�2Þ=m

ð3Þ

aC1e
C2ð1þ

ffiffiffi
K

p
RÞV�C3

ð
B0ðRÞ

ðR2j‘fj2 þ f2Þe�f dm;

where V is volume of the geodesic ball B0ðRÞ.
The main result of this paper can be stated as follows.

Theorem 0.1. Let ðM; g; e�f dmÞ be a smooth metric space admitting a
Sobolev inequality (3). Assume that u is a positive solution of (2) on the geodesic
ball B0ðRÞ � M and FðuÞb 0 when ub 0, h 0ðvÞa a ¼ aðpÞ for some constant

ab 0, where a ¼ aðpÞ ¼ 0 if p0 2. For any h > 0, q >
n

2
, there exists b > 0 such

that if kRicK�kq; r a
1

bR2
and kðq; 1Þa 1

b
then there exists a constant Cp;m;V which

depends only on p, m and V and such that

j‘uj
u

aCp;m;V
1þ

ffiffiffiffi
K

p
R

R
þ h;ð4Þ

on the geodesic ball B0
R

2

� �
. However, if kRicK�kq; r ¼ 0 then

j‘uj
u

aCp;m
1þ

ffiffiffiffi
K

p
R

R
;ð5Þ

on the geodesic ball B0
R

2

� �
, and Cðp;mÞ depends only on p and m.

Note that the condition kRicK�kp; r ¼ 0 is equivalent to Ricmf b ðn� 1ÞK . In

this case, we do not need to require any bound for kðq; 1Þ. Moreover, a Sobolev
inequality also holds true on M.

Lemma 0.2 (see [8, 38]). Let ðM; g; e�f dmÞ be a smooth metric measure
space of dimension n. Assume that Ricmf b�ðm� 1ÞK where K is a non-negative
constant, m > nb 2. Then, there exists a constant C, depending only on m, such
that for every ball B0ðRÞ � M, every function f A Cy

0 ðB0ðRÞÞ we haveð
B0ðRÞ

jfj2m=ðm�2Þ
e�f dm

 !ðm�2Þ=m

a eCð1þ
ffiffiffi
K

p
RÞV�2=m

ð
B0ðRÞ

ðR2j‘fj2 þ f2Þe�f dm;

where V is geodesic ball volume B0ðRÞ.

Now, combining Theorem 0.1 and Lemma 0.2, we derive some applications
of Theorem 0.1. Note that when FðuÞ ¼ cus, for some cb 0 and 0a sa p� 1,
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p > 1, we have that hðvÞ ¼ cðp� 1Þp�1
eðs=ðp�1Þ�1Þv. Hence

h 0ðvÞ ¼ cðp� 1Þp�1 s

p� 1
� 1

� �
eðs=ðp�1Þ�1Þv

a 0:

Therefore, for K ¼ 0, letting R tend to infinity in (5), we obtain the following
corollary.

Corollary 0.3. Let ðM; g; e�f dmÞ be a smooth metric space with Ricmf b 0.
If u is a positive solution to equation Dp; f uþ cus ¼ 0 and is defined globally on the
space then u must be constant.

This corollary is a refinement of a result by Zhao and Yang in [38]. In fact,
in Theorem 1.1 in [38], the authors proved that

j‘uj
u

a
ð1þ

ffiffiffiffi
K

p
RÞ3=4

R

if Ric f
m b�ðn� 1ÞK , Kb 0. However, the above estimate should be corrected

as (5).
We now consider the Allen-Cahn equation. This equation has its origin in

the gradient theory of phase transitions [1], and the intricate connection to the
minimal surface theory, for example, see [5, 22, 26]. Our gradient estimate can
be stated as follows.

Corollary 0.4. Let ðM; g; e�f dmÞ be a smooth metric measure space with
Ricmf b�ðm� 1ÞK , K is a non-negative constant. If u is a solution of the
equation

Dp; f uþ uð1� u2Þ ¼ 0; pb 2;

satisfying 0 < ua 1 on the ball B0ðRÞ � M then

j‘uj
u

aCp;m
1þ

ffiffiffiffi
K

p
R

R

on the ball B0
R

2

� �
, where Cp;m is a constant depending only on p and m. In

particular, when K ¼ 0, if 0 < ua 1 in M, then u1 1 on M.

Note that for p ¼ 2, this kind of Liouville type theorem was verified by S. B.
Hou in [15]. This corollary can be considered as a generalization of those in [15]
in the non-linear setting. It is also worth to emphasize that the above gradient
is new, even for p ¼ 2.

The second application is a new gradient estimate for the Fisher-KPP
equation.
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Corollary 0.5. Let ðM; g; e�f dmÞ be a smooth metric space with Ricmf b

�ðm� 1ÞK , constant Kb 0. If u is a positive solution of the equation

Dp; f uþ cuð1� uÞ ¼ 0; pb 2; c > 0;

on the geodesic ball B0ðRÞ � M, ua 1 in M then

j‘uj
u

aCp;m
1þ

ffiffiffiffi
K

p
R

R

on the geodesic ball B0
R

2

� �
, with Cp;m only depends on p and m. When K ¼ 0

then u1 1 on M.

The equation in Corollary 0.5 was proposed by Fisher in 1937 to describe
the propagation of an evolutionarily advantageous gene in a population [11], and
was also independently described in a seminal paper by Kolmogorov, Petrovskii,
and Piskunov [16]. In [4], the authors derived di¤erential Harnack estimates for
positive solutions of this equation.

The third application is the below Liouville result.

Corollary 0.6. Let ðM; g; e�f dmÞ be a smooth metric space with Ricmf b

�ðm� 1ÞK , Kb 0. If ub 1 is a solution of the equation

Df uþ au log u ¼ 0; ab 0;ð6Þ

on the geodesic ball B0ðRÞ � M, then

j‘uj
u

aCp;m
1þ

ffiffiffiffi
K

p
R

R

on the geodesic ball B0
R

2

� �
, with Cp;m only depends on p and m. When K ¼ 0

and ub 1 in M then u1 1 in M.

Note that equation (14) originated from gradient Ricci solitons. We refer
the reader to [18] for further explanation (see also [7, 35]). It is worth to men-
tion that in [9, 34], the authors showed that there does not exist positive solution
satisfying 0 < ua c < 1 for some c A R.

The paper has three sections. Beside this section, we prove Theorem 0.1
in the Section 2. As its applications, we derive proof of corollaries in the Sec-
tion 3 and point our some local gradient estimate under integral Ricci curvature
condition.

1. Gradient estimate with a Sobolev inequality and integral Ricci bounds

Since the equation (2) can be either degenerate or singular in the set
f‘u ¼ 0g, the elliptic regular theory may not be applied. It is well known
that the best regular properties of the solution of this kind of equations is C1;a,
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for some 0 < a < 1. As in [38] (see also [13, 31]), using an e-regularization
technique by replacing the linearized operator Lf (see below definition) with
its approximate, we can assume that u is smooth. Therefore, in order to avoid
tedious presentation, throughout this paper, for simplicity, we assume that u is a
positive C2-solution of (2). Put

v ¼ ðp� 1Þ log u; w ¼ j‘vj2:

To prove Theorem 0.1, we need to use the following operator.

Definition 1.1 ([33, 31]). Linearization operator of the weighted
p-Laplacian corresponding with u A C2ðMÞ such that ‘u0 0 is defined as follows

Lf ðcÞ ¼ e f divðe�f j‘ujp�2
Að‘cÞÞ;

where c is a smooth function on M and A is a tensor defined by

A ¼ Idþ ðp� 2Þ‘un‘u

j‘uj2
:

Lemma 1.2 ([33]). Let ðM; g; e�f dmÞ be a smooth metric space and function
u A C3ðMÞ. Then, if j‘uj0 0, then

Lf ðj‘ujpÞ ¼ pj‘uj2p�4ðjHess uj2A þRicf ð‘u;‘uÞÞ þ pj‘ujp�2h‘u;‘Dp; f ui;

where jHess uj2A ¼ AikA jluijukl and A is defined as above.

To estimate the Hessian term, we need the following lemma.

Lemma 1.3. For v ¼ ðp� 1Þ log u;w ¼ j‘vj2, and

a ¼ min

(
2ðp� 1Þ;mðp� 1Þ2

m� 1

)
;

let

hðvÞ ¼ ðp� 1Þp�1
e�vFðev=ðp�1ÞÞ;

then we have

jHess vj2A b
a

4

j‘wj2

w
þ w2

m� 1
ð1þ hw�p=2Þ2

þ p� 1

m� 1
ð1þ hw�p=2Þh‘v;‘wi� ð f1v1Þ2

m� n
:

Proof. Substituting v into the equation (2), we obtain

0 ¼ Dp; f uþ F ðuÞ ¼ e f divðe�f j‘ev=ðp�1Þjp�2‘ev=ðp�1ÞÞ þ Fðev=ðp�1ÞÞ

¼ ðp� 1Þ1�p
evðj‘vjp þ Dp; f vÞ þ Fðev=ðp�1ÞÞ:
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Hence

Dp; f v ¼ �ðp� 1Þp�1
e�vF ðev=ðp�1ÞÞ � j‘vjp ¼ �hðvÞ � wp=2:ð1Þ

By the definition of the weighted p-Laplacian, this implies

wðp�2Þ=2Df vþ
p� 2

2
h‘w;‘viwðp�4Þ=2 ¼ �h� wp=2:ð2Þ

We need to estimate jHess vj2A at points where w > 0. Choose a local orthogonal
basis feign

i¼1 near a given point such that ‘v ¼ j‘vje1. We use ‘eiw ¼ wi, i ¼
1; . . . ; n then w ¼ v21 , w1 ¼ 2vi1vi ¼ 2v11v1, when jb 2, wj ¼ 2vj1v1. Therefore,

2vj1 ¼
wj

w1=2
, h‘f ;‘vi ¼ f1v1. Hence (2) leads to

Xn
j¼2

vjj ¼ �hw1�p=2 � p

2
� 1

� �
w1v1

w
� v11 þ f1v1 � wð3Þ

¼ �hw1�p=2 � ðp� 1Þv11 þ f1v1 � w:

From the definition of matrix A, we have

jHess vj2A ¼ jHess vj2 þ ðp� 2Þ2

4w2
h‘v;‘wi2 þ p� 2

2w
j‘wj2:

Using the Cauchy-Schwarz inequality, we obtain

jHess vj2A ¼
Xn
i;k¼1

vij þ ðp� 2Þ2v211 þ 2ðp� 2Þ
Xn
k¼1

v21k

¼ ðp� 1Þ2v211 þ 2ðp� 1Þ
Xn
k¼2

v21k þ
Xn
i;k¼2

v2ik

b ðp� 1Þ2v211 þ 2ðp� 1Þ
Xn
k¼2

v21k þ
1

n� 1

Xn
j¼2

vjj

 !2
:

Substituting (3) into the above inequality, we have

jHess vj2A b ðp� 1Þ2v211 þ 2ðp� 1Þ
Xn
k¼2

v21k

þ 1

n� 1
ð�hw1�p=2 � ðp� 1Þv11 þ f1v1 � wÞ2:

Using inequality ðx� yÞ2 b x2

1þ d
� y2

d
for x ¼ hw1�p=2 þ wþ ðp� 1Þv11,

y ¼ f1v11, we have
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1

n� 1
ð�hw1�p=2 � ðp� 1Þv11 þ f1v1 � wÞ2

b
ðhw1�p=2 þ wÞ2 þ 2ðp� 1Þv11ðhw1�p=2 þ wÞ

m� 1
þ ðp� 1Þ2

m� 1
v211 �

ð f1v1Þ2

m� n
:

Denoting a ¼ min 2ðp� 1Þ;mðp� 1Þ2

m� 1

( )
, we obtain

jHess vj2A b a
Xn
k¼1

v21k þ
1

m� 1
ðhw1�p=2 þ wÞ2

þ 2ðp� 1Þv11
m� 1

ðhw1�p=2 þ wÞ � ð f1v1Þ2

m� n
:

Observe that

2wv11 ¼ h‘v;‘wi;
Xn
j¼1

v21j ¼
1

4

j‘wj2

w
:

Substituting these identities into the above inequality, we have

jHess vj2A b
a

4

j‘wj2

w
þ w2

m� 1
ð1þ hw�p=2Þ2

þ p� 1

m� 1
ð1þ hw�p=2Þh‘v;‘wi� ð f1v1Þ2

m� n
:

The proof is complete. r

Now we will estimate Lf ðQÞ, for Q ¼ j‘vjp. From (1), we obtain

‘Dp; f v ¼ �h 0ðvÞ‘v� ‘ðj‘vjpÞ:

Combining this identity with Lemma 1.2, we have

Lf ðQÞ ¼ pwp�2ðjHess vj2A þRicf ð‘v;‘vÞÞ � pwðp�2Þ=2h‘v;‘Qi

� ph 0ðvÞwp=2�1j‘vj2:

Using Lemma 1.3 and noting that h 0ðvÞa a in the above equation, we infer

Lf ðQÞ ¼ Lf ðwp=2Þ

b pwp�2 a

4

j‘wj2

w
þ 1

m� 1
w2ð1þ hw�p=2Þ2 þ p� 1

m� 1
ð1þ hw�p=2Þh‘v;‘wi

 !

þ pwp�2 Ricmf ð‘v;‘vÞ � pwðp�2Þ=2h‘v;‘wp=2i� pawp=2:
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This inequality can be written as follows.

Lf ðQÞb ap

4
wp�3j‘wj2 þ p

m� 1
wpð1þ hw�p=2Þ2

þ pðp� 1Þ
m� 1

ð1þ hw�p=2Þ � p2

2

� �
wp�2h‘v;‘wi

þ p Ricmf ð‘v;‘vÞwp�2 � apwp=2:

Note that the above inequality holds when w > 0. In order to pass through
fw ¼ 0g, we put S ¼ fx A M : wðxÞ ¼ 0g. In the rest of this section, integra-
tion is taken with respect to e�f dm. Moreover, we skip e�f dm for simplicity of
notations. Now, integrating both sides on the above inequality and using inte-
gration by parts, we obtain

1

p

ð
W

Lf ðQÞc ¼ �
ð
W

1

2
wp�2‘wþ 1

2
ðp� 2Þwp�3h‘v;‘wi‘v;‘c

� �
ð4Þ

b

ð
W

�
a

4
wp�3j‘wj2 þ 1

m� 1
wpð1þ hw�p=2Þ2 � apwp=2

þ p� 1

m� 1
ð1þ hw�p=2Þ � p

2

� �
wp�2h‘v;‘wi

þRicmf ð‘v;‘vÞwp�2

�
c:

Here we used

Að‘QÞ ¼ p

2
wðp�2Þ=2‘wþ 1

2
pðp� 2Þwðp�4Þ=2h‘v;‘wi‘v:

We now assume that M satisfies a weighted Sobolev inequality (3). Using the
Sobolev inequality and the inequality (4), we can prove the following result which
is an important ingredient in the proof of Theorem 0.1.

Lemma 1.4 (Lq-norm estimate). With the same assumption as in Theorem
0.1, if b0 > 0 large enough, then there exists d1ðp;mÞ > 0 such that

kwkLðb0þ p�1Þðm=ðm�2ÞÞðB0ðð3=4ÞRÞÞ a d1
b20
R2

V ðm�2Þ=ðmðb0þp�1ÞÞ:

Proof. We choose c ¼ wb
� h

2, where � > 0, h A Cy
0 ðB0ðRÞÞ and w� ¼

ðw� �Þþ. Plugging c into (4), we obtain an inequality which is the same as
the equation (2.3) in [38]. Therefore, we can use the same arguments as in [38],
after letting � tend to zero and doing some direct computations, we obtain (see
the conclusion before Lemma 2.2 in [38])
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ð
BoðRÞ

j‘ðwðpþb�1Þ=2hÞj2 þ bd1

ð
BoðRÞ

wpþbh2ð5Þ

a a0

ð
BoðRÞ

wpþb�1j‘hj2 � bd2

ð
BoðRÞ

Ricmf ð‘v;‘vÞwpþb�2h2

þ bad3

ð
BoðRÞ

wp=2þbh2;

for some positive constants a0; d1; d2; d3 A Rþ and bG
1

m� 1
. From now on,

a0; a1; a2; . . . and d1; d2; . . . are coe‰cients depending only on p and m. We now
estimate the Ricci term. By Hölder inequality, we haveð

BoðRÞ
Ricmf ð‘v;‘vÞwpþb�2h2ð6Þ

b ðn� 1ÞK
ð
BoðRÞ

wpþb�1h2 �
ð
BoðRÞ

jðRicmf Þ
K
� jwpþb�1h2

b ðn� 1ÞK
ð
BoðRÞ

wpþb�1h2 �kðRicmf Þ
K
�k

q

ð
BoðRÞ

ðwpþb�1h2Þq=ðq�1Þ
 !ðq�1Þ=q

:

Now, we use a technique in [6] to process as follows. We put a ¼ 2q� n

2ðq� 1Þ and

y ¼ m

m� 2
then

aþ ð1� aÞy ¼ q

q� 1
:

Using Hölder inequality, for any e > 0, we have

ð
BoðRÞ

ðwpþb�1h2Þq=ðq�1Þ
 !ðq�1Þ=q

a

ð
BoðRÞ

wpþb�1h2

 !ððq�1Þ=qÞa

�
ð
BoðRÞ

ðwpþb�1h2Þy
 !ð1�aÞððq�1Þ=qÞ

a e

ð
BoðRÞ

ðwpþb�1h2Þy
 !1=y

þ e�ð1�aÞy=a �
ð
BoðRÞ

ðwpþb�1h2Þ
 !

;

where in the last inequality, we used Young’s inequality

xya exg þ e�g �=gyg � ; Ex; yb 0; g > 1;
1

g
þ 1

g�
¼ 1:
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By (3), this implies

ð
BoðRÞ

ðwpþb�1h2Þq=ðq�1Þ
 !ðq�1Þ=q

ð7Þ

a eC1e
C2ð1þ

ffiffiffi
K

p
RÞV�C3

ð
BoðRÞ

ðR2j‘ðwðpþb�1Þ=2hÞj2 þ wpþb�1h2Þ

þ e�ð1�aÞy=a �
ð
BoðRÞ

ðwpþb�1h2Þ
 !

:

Combining (5)–(7) and choose e ¼ 1

2bd1ðC1eC2ð1þ
ffiffiffi
K

p
RÞV�C3R2ÞkðRicmf Þ

K
�k

, we
conclude thatð

BoðRÞ
j‘ðwðpþb�1Þ=2hÞj2 þ bd1

ð
BoðRÞ

wpþbh2

a a0

ð
BoðRÞ

wpþb�1j‘hj2 � ðn� 1Þbd2K
ð
BoðRÞ

wpþb�1h2 þ bad3

ð
BoðRÞ

wp=2þbh2

þ d4ðbeC2ð1þ
ffiffiffi
K

p
RÞV�C3R2kðRic f

mÞ
K
�kÞ

n=ð2q�nÞ
ð
BoðRÞ

wpþb�1h2:

Since

a ¼ 0; if p0 2

b 0 if p ¼ 2

�
; kRicK�kq; r a

c

beC2ð1þ
ffiffiffi
K

p
RÞV�C3R2

;ð8Þ

and
p

2
þ b ¼ pþ b� 1 when p ¼ 2, the above inequality implies

ð
BoðRÞ

j‘ðwðpþb�1Þ=2hÞj2 þ bd1

ð
BoðRÞ

wpþbh2ð9Þ

a a1

ð
BoðRÞ

wpþb�1j‘hj2 þ Kbd3

ð
BoðRÞ

wpþb�1h2:

Combining this inequality with Sobolev inequality (3), we obtain

ð
B0ðRÞ

ðwðpþb�1Þ=2hÞ2m=ðm�2Þ
 !ðm�2Þ=m

þ bd1R
2ec2b0V�2=m

ð
B0ðRÞ

wpþbh2ð10Þ

a d2R
2ec2b0V�2=m

ð
B0ðRÞ

wpþb�1j‘hj2

þ Kbd3R
2ec2b0V�2=m

ð
B0ðRÞ

pðm� 1Þwpþb�1h2
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þ ec2b0V�2=m

ð
B0ðRÞ

wpþb�1h2

a d2R
2ec2b0V�2=m

ð
B0ðRÞ

wpþb�1j‘hj2 þ a1b0b
2ec2b0V�2=m

ð
B0ðRÞ

wpþb�1h2;

where b0 ¼ c1ðm; pÞð1þ
ffiffiffiffi
K

p
RÞ with c1 large enough. Choose h1 A Cy

0 ðWÞ

satisfying 0a h1 a 1, h1 1 1 on B0
3
4R
� �

, j‘h1ja
C1

R
and put h ¼ h

pþb
1 . Then

d2R
2

ð
B0ðRÞ

wpþb�1j‘hj2 a a2b
2

ð
B0ðRÞ

wpþb�1h2ðpþb�1Þ=ðpþbÞ

a a2b
2

ð
B0ðRÞ

wpþb�1h2

 !ð pþb�1Þ=ðpþbÞ

V 1=ðpþbÞ

a
bd1

2
R2

ð
B0ðRÞ

wpþb�1h2 þ a3

R2

� �pþb�1

bpþbþ1V ;

where we used the Hölder inequality and the Young inequality in the last two
inequalities. Let b ¼ b0, this implies

d2R
2ec2b0V�2=m

ð
B0ðRÞ

wpþb�1j‘hj2 a bd1

2
R2ec2b0V�2=m

ð
B0ðRÞ

wpþbh2ð11Þ

þ a3

R2

� �pþb�1

bpþbþ1ec2b0V 1�2=m:

We estimate the second term of the right hand side of (10). We see that
a1b

2
0bw

pþb�1 < 1
2 bd1R

2wpþb when w > a5b
2
0R

�2. Therefore, to estimate the term,

we divide B0ðRÞ into two domains B1 and B2 such that

wjB1
> a5b

2
0R

�2; wjB2
a a5b

2
0R

�2:

Since 0a ha 1, we have

a1b
2
0be

c2b0V�2=m

ð
B0ðRÞ

wpþb�1h2ð12Þ

a
1

2
bd1R

2ec2b0V�2=m

ð
B1

wpþbh2 þ a1b
2
0be

c2b0V�2=m

ð
B2

a5b
2
0

R2

� �pþb�1

a
1

2
bd1R

2ec2b0V�2=m

ð
B0ðRÞ

wpþbh2 þ a6b
2
0

R2

� �pþb0�1

V 1�2=m:

Substituting (11), (12) into (10), we obtainð
B0ðRÞ

ðwðpþb�1Þ=2hÞ2m=ðm�2Þ
 !ðm�2Þ=m

a
a7

R2
b20

� �pþb0�1

V 1�2=m:
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As a consequence, this implies

kwkLðb0þ p�1Þðm=ðm�2ÞÞðB0ðð3=4ÞRÞÞ a d4
b20
R2

V ðm�2Þ=ðmðb0þp�1ÞÞ:

We are done. r

Next, we will prove Theorem 0.1.

Proof. Observe that limb!ykwkLbðBoð3R=4ÞÞ ¼ kwkLyðBoð3R=4ÞÞ, for any h > 0,

there exists b > 0, such that for any bb b, we have

kwkLyðBoð3R=4ÞÞ a kwkLbðBoð3R=4ÞÞ þ h:

Let b ¼ b0 and choose b0 b b such that (8) holds true. Then the first conculu-
sion follows by Lemma 1.4.

We now assume that kRicK�kq; r ¼ 0, this means that (8) holds true for any b

large enough. Hence the inequality (10) holds true for arbitrary b large enough.
Thus, the last conclusion can be verified by following a standard Moser’s itera-
tion (see [8, 31, 38]). For the completeness, we include some details here. Note
that in the proof of Lemma 1.4, we have shown the inequality (10). Since the
second term in the left side hand of (10) is non-negative, we obtain

ð
B0ðRÞ

ðwðpþb�1Þ=2hÞ2m=ðm�2Þ
 !ðm�2Þ=m

a a8e
c2b0V�2=m

ð
B0ðRÞ

ðbR2j‘hj2 þ b20b
2h2Þwpþb�1:

To use the Moser’s iteration, we put

blþ1 ¼ bl
m

m� 2
; b1 ¼ ðb0 þ p� 1Þ m

m� 2
; Wl ¼ B0

R

2
þ R

4l

� �
; l ¼ 1; 2 . . .

and choose hl A Cy
0 ðRÞ such that

hl 1 1 on Wlþ1; hl 1 on B0ðRÞnWl; j‘hlja
C4l

R
; 0a hl a 1:

With the above choosing and note that b ¼ b0, we haveð
Wlþ1

wblþ1

� �1=blþ1

a ða8ec2b0V�2=mÞ1=bl
ð
Wl

ðb20b2 þ bR2j‘hj2Þwbl

� �1=bl
:

A standard argument implies

kwkLyðB0ðR=2ÞÞ a ða8ec2b0V�2=mÞm=ð2b1Þ17m2=ð4b1Þðb0bÞm=b1kwkLb1 ðB0ð3R=4ÞÞ:
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This together with Lemma 1.4 infers

kwkLyðB0ðR=2ÞÞ a a9
b0

R

� �2
:

Since b0 ¼ c1ð1þ
ffiffiffiffi
K

p
RÞ, we have

kwkLyðB0ðR=2ÞÞ a a10
1þ

ffiffiffiffi
K

p
R

R

� �2
:

Since w ¼ j‘uj
u

ðp� 1Þ
� �2

, we are done. r

Remark 1.5. If kðq; 1Þ0 0 then the condition (8) can not satisfy for b
large enough. Hence, the Moser iteration can not be applied in this case.
This explains why we need to add the constant h > 0 in the right hand side
of (4).

2. Liouville theorems and local gradient estimates

In this section, we will point out applications of Theorem 0.1 to derive some
Liouville results and local gradient estimates on Riemannian manifold. Recall
that hðvÞ ¼ ðp� 1Þp�1

e�vFðev=ðp�1ÞÞ. Hence

h 0ðvÞ ¼ ðp� 1Þp�1
e�v F 0ðev=ðp�1ÞÞev=ðp�1Þ

p� 1
� Fðev=ðp�1ÞÞ

	 

:

First, we give a proof of Corollary 0.4.

Proof of Corollary 0.4. For F ðuÞ ¼ uð1� u2Þ then F 0ðuÞ ¼ 1� 3u2. It is
easy to see that for 0 < ua 1; pb 2 then v ¼ log ua 0, consequently 0 <
ev=ðp�1Þ a 1. Moreover, if 0 < ua 1 then

F 0ðuÞu
p� 1

� FðuÞ ¼ ð1� 3u2Þu
p� 1

� uð1� u2Þ

¼ u

p� 1
ððp� 4Þu2 � ðp� 2ÞÞa 0:

Hence, h 0ðvÞa 0 assumption of Theorem 0.1 holds. So we have (5). When
K ¼ 0, this implies

j‘uj
u

a
Cp;m

R
:

Let R ! þy, since u > 0 then we have ‘u ¼ 0, therefore u is constant on M.
This leads to Dp; f u ¼ 0, as a consequence, we have uð1� u2Þ ¼ 0. Using condi-
tion 0 < ua 1, we conclude u ¼ 1 on M. The proof is complete. r
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Proof of Corollary 0.5. By assumption we have FðuÞ ¼ cuð1� uÞ ¼
cu� cu2. Therefore, for 0 < ua 1; pb 2 then

F 0ðuÞu
p� 1

� F ðuÞ ¼ ðc� 2cuÞu
p� 1

� cu� cu2

¼ cu

p� 1
ððp� 3Þu� ðp� 2ÞÞa 0:

The proof follows directly from Theorem 0.1. r

Proof of Corollary 0.6. We have F ðuÞ ¼ au log u. Hence for p ¼ 2, v ¼
log ub 0, we have hðvÞ ¼ avb 0 and h 0ðvÞ ¼ ab 0. The proof follows directly
from Theorem 0.1. r

Finally, we introduce a local gradient estimate for a nonlinear equation under
integral Ricci curvature condition.

Corollary 2.1. Let ðM; gÞ be complete Riemannian manifold. Suppose that
ub 1 is a positive solution of equation

Df uþ au log u ¼ 0; ab 0;ð13Þ

on the geodesic ball B0ðRÞ � M. For q > n=2 and Ra 1, then for any h > 0

there exists b large enough such that if kðq; 1Þa 1

b
and kRicK�kq; r a

1

bR2
then

j‘uj
u

aCp;m;V
1þ

ffiffiffiffi
K

p
R

R
þ h

on the geodesic ball B0
R

2

� �
, with Cp;m;V only depends on p, m and V ¼

VðBoðRÞÞ.

When K ¼ 0, we have kðq; 1Þ ¼ kRicK�kq; r. Then, Corollary 2.1 implies the
following result.

Corollary 2.2. Let ðM; gÞ be complete Riemannian manifold. Suppose that
ub 1 is a positive solution of equation

Df uþ au log u ¼ 0; ab 0;ð14Þ

on the geodesic ball B0ðRÞ � M. For q > n=2 and Ra 1, then for any h > 0

there exists b large enough such that if kðq; 1Þa 1

b
then

j‘uj
u

aCp;m;V
1þ

ffiffiffiffi
K

p
R

R
þ h
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on the geodesic ball B0
R

2

� �
, with Cp;m;V only depends on p, m and V ¼

VðBoðRÞÞ.

To prove Corollary 2.1, we need to use the following local Sobolev in-
equality (see Corollary 4.6 in [6]).

Lemma 2.3 ([6]). For any q > n=2, there exists e ¼ eðp; nÞ > 0 such that if
Mn has kðp; 1Þa e, then for any o A M; ra 1, we haveð

B0ðRÞ
jfj2m=ðm�2Þ

 !ðm�2Þ=m

aCðnÞV�2=n

ð
B0ðRÞ

ðR2j‘fj2 þ f2Þ;

where V ¼ VðB0ðRÞÞ.

Proof of Corollary 2.1. Since kRicK�kp; r a
1

bR2
, the condition (8) holds true

for b large enough. We can assume that such b to be satisfied
1

b
a e. Com-

bining the assumption kðp; 1Þa 1

b
and Lemma 2.3, we conclude that M has a

Sobolev inequality. Therefore, the proof follows directly from Theorem 0.1.
r
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