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GRADIENT ESTIMATES FOR WEIGHTED p-LAPLACIAN
EQUATIONS ON RIEMANNIAN MANIFOLDS WITH A SOBOLEV
INEQUALITY AND INTEGRAL RICCI BOUNDS

L. V. Da, N. T. Dung,” N. D. Tuyen® anD L. ZHAO

Abstract

In this paper, we consider the non-linear general p-Laplacian equation A, su + F(u)
= 0 for a smooth function F on smooth metric measure spaces. Assume that a Sobolev
inequality holds true on M and an integral Ricci curvature is small, we first prove a
local gradient estimate for the equation. Then, as its applications, we prove several
Liouville type results on manifolds with lower bounds of Ricci curvature. We also
derive new local gradient estimates provided that the integral Ricci curvature is small
enough.

Introduction

It is well-known that gradient estimates are an important tool in geometric
analysis and have been used, among other things, to derive Liouville theorems
and Harnack inequalities for positive solutions to a variety of nonlinear equations
on Riemannian manifolds. Historically, the local Cheng-Yau gradient estimate
asserts that if M is an n-dimensional complete Riemannian manifold with Ric >
—(n— 1)k for some ¥ >0 and u: B(o, R) C M — R harmonic and positive then
there is a constant ¢, depending only on n such that
(1) sup [vu| < cnﬂ.

Blo,R/2) U R
Here B(o, R) stands for the geodesic ball centered at a fixed point o € M. Later,
Cheng-Yau’s gradient estimate has been extended and generalized by many math-
ematicians. To describe recent results, let us recall some notations. The triple
(M",g,e” du) is called a smooth metric measure space if (M,g) is a Rieman-
nian manifold, f is a smooth function on M and du is the volume element
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induced by the metric g. On M, we consider the differential operator Ay, which
is called f-Laplacian and given by

Ar-i=A- =V, V).

It is symmetric with respect to the measure e du. That is,

J V9. Ve du= —J (Arp)pe™ du,
M M

for any ¢, € Cy°(M). Smooth metric measure spaces are also called manifolds
with density. By m-dimensional Bakry-Emery Ricci tensor we mean

. . . Vf®V
Ric’ = Ric + Hess f — %nf,

for m > n. The tensor Ric; is only defined when f is constant. In this case,
this tensor is referred as oo-Barky-Emery tensor

Ricy = Ric + Hess f.

In a variational point of view, the weighted p-Laplacian, p > 1 is a natural gen-
eralization of Ay and is defined by

Ay ui=el div(e ™ |Vul?~*Vu)

for ue W,(l)’cp (M). 1In [8], Dung and Dat considered F(u) = u?~' and studied
gradient estimates for weighted p-eigenfunctions of A, r. If F(u) = cu®, (2) is a
Lichnerowicz type equation. In [38], the authors proved local gradient estimates
for positive solutions to this equation, and as applications, they gave a corre-
sponding Liouville property and Harnack inequality. Then, Wang [28] estimated
eigenvalues of the weighted p-Laplacian. Wang, Yang, and Chen [32] estab-
lished gradient estimates and entropy formulae for weighted p-heat equations.
Later, Dung and Sung [10] investigated some Liouville properties for weighted
p-harmonic /-forms on smooth metric measure spaces with Sobolev and Poincaré
inequalities. For the general setting on metric spaces, recently in [3], the authors
considered under which geometric conditions on the underlying metric measure
space the finite-energy Liouville theorem holds for p-harmonic functions and
quasiminimizers. For further discussion about this topic, we refer the reader to
[3, 14, 17, 19, 20, 25, 31, 32] and the references therein.

In another direction, gradient estimates have been successfully generalized on
manifolds with integral Ricci curvature condition. Before stating results, let us
fix some notations. For each x € M, denote by p(x) the smallest eigenvalue for
the m-dimensional Bakry-Emery Ricci tensor Ric/": TyM — T.M, and for any
fixed number K, let

(Ricf") X (x) = ((n = DK = p(x)), = max{0, (n — DK — p(x)},
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the amount of m-dimensional Bakry-Emery Ricci curvature lying below (n — 1)K.
Let

1/q
IRic® ], , = sup (L( )((Ricf'”)f)q d001> :
xe X, r

Then |[Ric”| 4. measures the amount of m-dimensional Bakry-Emery Ricci cur-
vature lying below a given bound, in this case, (n — 1)K, in the LY sense. It is
easy to see that ||Ricf\|q’r =0 if and only if Ricyy > (n — 1)K. We also often

work with the following scale invariant curvature quantity (with K = 0)

. 1/q
k(x,q,r) =r? (ffg(_ )p"> , k(g,r) = sup k(x,q,r),

xXeM

where the notation

represents the average integral on B(x,r) and |B(x,r)| stands for the volume of
B(x,r). We should note that the integral curvature bound is a natural, and much
weaker than lower bound Ricci curvature condition. It has a close relationship
aspects of topology and geometry of manifolds, we refer the reader to [2, 12, 23,
24] and the references therein. Recently, integral Ricci curvature conditions are
used to give gradient estimates of positive solutions to heat equations. In par-
ticular, in [27], Rose investigated heat kernel upper bound on Riemannian mani-
folds with locally uniform Ricci curvature integral bounds. In [21], Olivé used
the integral Ricci curvature to show a Li-Yau gradient estimate on a compact
Riemannian manifolds with Neumann boundary condition. It is worth to men-
tion that Li-Yau gradient estimates for linear heat equation on complete non-
compact manifolds were obtained by Zhang and Zhu in [36, 37]. Later, these
results were generalizied by Wang in [30] to non-linear heat equation. More-
over, inspired by a method in [8], Wang derived a gradient estimate of Hamilton
type for a non-linear heat equation in [29].

Motivated by Liouville results for p-Laplacian obtained by Zhao and Yang
n [38], by Hou in [15], our aim is to give local gradient estimates for positive
solutions of the following equation

) Apju+ F(u) =0

on non-compact smooth metric measure space. Throughout this paper, we
assume that F is a differentiable function, F(u) >0 when u > 0. Let A(v) =
(p— )P e vF(ev/(P=D), we assume further that 4'(v) < a := a(p) for some con-
stant ¢ > 0, where a =0 if p #2. We say that a weighted Sobolev inequality
holds true on M if there exist positive constants C;, C,, C3, depending only
on m, such that for every ball By(R) C M, every function ¢ € C;°(Bo(R)) we
have
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(m—=2)/m
() | gt e g
B()(R)

< CleCz(H—\/ER)V—Cg J (R2|V¢|2 + ¢2)e_f dﬂ7
By(R)

where V' is volume of the geodesic ball By(R).
The main result of this paper can be stated as follows.

TueoreM 0.1. Let (M,g,e™ du) be a smooth metric space admitting a
Sobolev inequality (3). Assume that u is a positive solution of (2) on the geodesic
ball By(R) C M and F(u) >0 when u>0, h'(v) <a=a(p) for some constant

a>0,wherea=a(p)=0ifp#2 Foranyn>0,q> g, there exists b > 0 such

1 1
that if |RicX| . < — and k(¢q,1) < 5 then there exists a constant C, ,, y which

%r = pR2
depends only on p, m and V and such that
Vu 1+ VKR
(4) % = Cp,n1.VT+’7’

R .
on the geodesic ball B <2) However, if ||RicX|| gr =0 then

|V 1++VKR
() L = CGm—p

R
on the geodesic ball By (5), and C(p,m) depends only on p and m.

Note that the condition ||Ric®|| ,.» = 0 is equivalent to Ric/" > (n —1)K. In
this case, we do not need to require any bound for k(g,1). Moreover, a Sobolev
inequality also holds true on M.

LemMa 0.2 (see [8, 38]). Let (M,g,e” du) be a smooth metric measure
space of dimension n.  Assume that Ric;' > —(m — 1)K where K is a non-negative
constant, m > n > 2. Then, there exists a constant C, depending only on m, such
that for every ball Bo(R) C M, every function ¢ € C5°(Bo(R)) we have

(m=2)/m
(J g dﬂ) < COnRRY (RN e du
By(R) Bo(R)

where V' is geodesic ball volume By(R).

Now, combining Theorem 0.1 and Lemma 0.2, we derive some applications
of Theorem 0.1. Note that when F(u) = cu’, for some c>0and 0 <o < p—1,
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p>1, we have that h(v) = c(p — 1)”'el/(r=0=Dv " Hence

P =cp =1t (S5

1 1>e<a/<p1>1>v <0
p —

Therefore, for K =0, letting R tend to infinity in (5), we obtain the following
corollary.

COROLLARY 0.3. Let (M, g,e™ du) be a smooth metric space with Ric}" > 0.
If u is a positive solution to equation A, ju+ cu® = 0 and is defined globally on the
space then u must be constant.

This corollary is a refinement of a result by Zhao and Yang in [38]. In fact,
in Theorem 1.1 in [38], the authors proved that

Vvl _ (1+ VER)™
R

0

if Ric,{; >—(n—1)K, K >0. However, the above estimate should be corrected
as (5).

We now consider the Allen-Cahn equation. This equation has its origin in
the gradient theory of phase transitions [1], and the intricate connection to the
minimal surface theory, for example, see [5, 22, 26]. Our gradient estimate can
be stated as follows.

COROLLARY 0.4. Let (M,g,e™ du) be a smooth metric measure space with
Ric/" > —(m — 1)K, K is a non-negative constant. If u is a solution of the
equation

Apsu+tu(l—u?)=0, p=2,
satisfying 0 < u <1 on the ball By(R) C M then

1 KR
@ < Cp.mi
u R

R
on the ball By (5>, where C, ,, is a constant depending only on p and m. In

particular, when K =0, if 0<u <1 in M, then u=1 on M.

Note that for p = 2, this kind of Liouville type theorem was verified by S. B.
Hou in [15]. This corollary can be considered as a generalization of those in [15]
in the non-linear setting. It is also worth to emphasize that the above gradient
is new, even for p = 2.

The second application is a new gradient estimate for the Fisher-KPP
equation.
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COROLLARY 0.5. Let (M,g,e™ du) be a smooth metric space with Ric/" >
—(m = 1)K, constant K > 0. If u is a positive solution of the equation

Apjutcu(l —u)=0, p=2,¢>0,
on the geodesic ball By(R) C M, u<1 in M then

1 KR
M < Cp.mi
u ’ R

R
on the geodesic ball By (E), with C, ,, only depends on p and m. When K =0
then u=1 on M.

The equation in Corollary 0.5 was proposed by Fisher in 1937 to describe
the propagation of an evolutionarily advantageous gene in a population [11], and
was also independently described in a seminal paper by Kolmogorov, Petrovskii,
and Piskunov [16]. In [4], the authors derived differential Harnack estimates for
positive solutions of this equation.

The third application is the below Liouville result.

COROLLARY 0.6. Let (M,g,e™ du) be a smooth metric space with Ric}” >
—(m—-1)K, K>0. Ifu>1 is a solution of the equation '

(6) Aru+aulogu=0, a=>0,
on the geodesic ball By(R) C M, then
M < Cp.m ! + \/1_<R
u ’ R

R
on the geodesic ball By <2>, with C, ,, only depends on p and m. When K =0

and u>1in M then u=1 in M.

Note that equation (14) originated from gradient Ricci solitons. We refer
the reader to [18] for further explanation (see also [7, 35]). It is worth to men-
tion that in [9, 34], the authors showed that there does not exist positive solution
satisfying 0 <u <c¢ < 1 for some c e R.

The paper has three sections. Beside this section, we prove Theorem 0.1
in the Section 2. As its applications, we derive proof of corollaries in the Sec-
tion 3 and point our some local gradient estimate under integral Ricci curvature
condition.

1. Gradient estimate with a Sobolev inequality and integral Ricci bounds

Since the equation (2) can be either degenerate or singular in the set
{Vu =0}, the elliptic regular theory may not be applied. It is well known
that the best regular properties of the solution of this kind of equations is C!%,
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for some 0 <o <1. As in [38] (see also [13, 31]), using an e-regularization
technique by replacing the linearized operator % (see below definition) with
its approximate, we can assume that u is smooth. Therefore, in order to avoid
tedious presentation, throughout this paper, for simplicity, we assume that u is a
positive %2-solution of (2). Put

v=(p—1)logu, w=|Vu|*.
To prove Theorem 0.1, we need to use the following operator.

DeriniTioN 1.1 ([33, 31]). Linearization operator of the weighted
p-Laplacian corresponding with u € $*(M) such that Vu # 0 is defined as follows
L) = e/ div(e™ |Vul" 2 A(VY)),

where  is a smooth function on M and A4 is a tensor defined by

Vu® Vu

A=Td+(p-2
(p )|Vu|2

LemMa 1.2 ([33])). Let (M,g,e™ du) be a smooth metric space and function
ue @ (M). Then, if |Vu| #0, then

Lr(|Vul’) = p|Vu|2p_4(\Hess u|f1 + Ricy (Vu, Vu)) + p|Vu|p_2<Vu, VA, ju,

where |Hess u|’ = A* A ujuy and A is defined as above.
To estimate the Hessian term, we need the following lemma.

LemMa 1.3. For v=(p—1)logu,w= |VU|2, and
. m(p—1)°
= 2(p—1),———~
o mm{ (p—1), p— )
let
h(v) = (p = 1) e F (),
then we have

o Vw2 w2
Hess % > -
| 4= 4 w +m -

2
+p;11(1 + hw P2V, V) — m

m — m-—n

[ (L o 2/2)2

Proof. Substituting v into the equation (2), we obtain
0=A, u+F(u) = e/ div(e™ |Vet/ (P~ |P=2yet/ (=) 4 F(et/(P=1))
=(p—1)"Pe"(|Vol? + A, v) + F(e?/ 7).
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Hence
(1) Ay o =—(p—1)"Te " F(e/P=Dy — V| = —h(v) — wP/2

By the definition of the weighted p-Laplacian, this implies
-2
(2) W<P’2)/2Afv + %(VW, Vodw P92 = _jp — wp/2,

We need to estimate |Hess v|f1 at points where w > 0. Choose a local orthogonal
basis {e;};_, near a given point such that Vo = |Vuvle;. We use Vo,w=w;, i =

1,...,n then w= vlz, w1 = 2v;10; = 201101, when j > 2, w; = 2vv1.  Therefore,
20 :%, {Vf,Vv) = fiv;. Hence (2) leads to
: !
n
3 = —hwi 2 (L) -
(3) 12:2:% W ) LTt i —w

—hwlr/2 — (p — Doy + fivg — w.
From the definition of matrix 4, we have

(p )2

Hess v|> = |Hess v|” + Vo, Vw2 + Vw
A

Using the Cauchy-Schwarz inequality, we obtain

|Hessv\A_Zv,j (p—2) vll+2p ZZvlk
k=

=(p—1)f +2(p—1 Zvlk+zvzk

i,k=2

> (p— 17 +2(p - 1) Z’hk"‘ (Z%)-

Substituting (3) into the above inequality, we have
|Hess v\j > (p—1)> vl +2(p Zvlk

1
—|—nfl(—hwl’f”/2 —(p— D + fivg — w)™.
2

140

Using inequality (x— y)> >

—% for x=hw'?2+w+(p— 1oy,
y = fiv1, we have
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1
n—1
- (hw'=12 4 w)2 4+ 2(p — Doy  (hw'2/2 4 w) n (p—1)° 02 (fivr)?

m—1 m—1 "N m—n’

(—hw!' P2 — (p = Doy + fivg —w)?

—1)?
Denoting o = min{Z(p - 1),’%(?571)}, we obtain

n
1
|Hess o] > O‘ZU%/C +m(hwl_”/2 +w)?
k=1
2(p—1 §
L2 )Ull(hw1_p/z+w)_(f101) .
m—1 m-—n

Observe that
~ _1 |VW|2

2woy = Vo, Vw), Z vy = ’

. 4 w
J=1

Substituting these identities into the above inequality, we have

5 o [Vw]? w? Zpj2\2
|Hessu|AZ‘—l +m(1+hwp )

w

2
+p—11(1 + hw ™)V, Vw) — @

m— m-—n

The proof is complete. U
Now we will estimate %(Q), for Q = |Vv|’. From (1), we obtain
VA, v = —h'(v)Vv — V(|Vo]").
Combining this identity with Lemma 1.2, we have
Z/(Q) = pw”*(|Hess o5+ Ric,(Vo, Vo)) — pwP=2/2(Vu, V Q)
— ph'(v)w?/>7 1| Vo).

Using Lemma 1.3 and noting that /4’(v) < a in the above equation, we infer

2 (0) = Lr(w'?)

vw)* 1 —1
> pw?2 ¢ [Vwi + w(1 —&—hmfp/z)2 +p—(l —|—/’ZW7P/2)<VU,VW>
4 w m—1 m—1

+ pwP2 Ricf"(Vo, Vv) — pw P22V VwPly — paw?/?
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This inequality can be written as follows.

Z(0) = %‘Vp73\V»v|2 +#Wﬂ(1 + hwfp/Z)Z

—1 2
- (’% (14 hw?/?) —%) WPV, V)
+p Ric}”(Vu, Vv)w’“2 — apw”/z.

Note that the above inequality holds when w > 0. In order to pass through
{w=0}, we put ¥ ={xeM:w(x)=0}. In the rest of this section, integra-
tion is taken with respect to e/ du. Moreover, we skip e du for simplicity of
notations. Now, integrating both sides on the above inequality and using inte-
gration by parts, we obtain

L P IV PSS >
@ PJQzI(Q)W JQ<2W Vw—l—z(p 2)wP>{Vo, Vw)Vo, Vi
= Jg(%wp_3|VWI2+

—1
+ p—(l —I—hw_P/z) _P wP=2(Vo, Vw)
m—1 2

1
wP (14 hw /%) — apw?/?
m—1

+ Ricy" (Vo, VU)W”_2> v.

Here we used
1
AVQ) = gw@’z)/sz + Ep(p — 2wV, Vw)Vo.

We now assume that M satisfies a weighted Sobolev inequality (3). Using the
Sobolev inequality and the inequality (4), we can prove the following result which
is an important ingredient in the proof of Theorem 0.1.

LemMa 1.4 (L%-norm estimate). With the same assumption as in Theorem
0.1, if bop > 0 large enough, then there exists dy(p,m) > 0 such that

2

b
W] -0 n-20 gy 37y Yy < R_O2 pr(m=2)/(m(bo-+p=1))

Proof. We choose  =wlp? where €¢>0, ne%"(By(R)) and w, =
(w—¢€)". Plugging  into (4), we obtain an inequality which is the same as
the equation (2.3) in [38]. Therefore, we can use the same arguments as in [38§],
after letting ¢ tend to zero and doing some direct computations, we obtain (see
the conclusion before Lemma 2.2 in [38])
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(5) J \V(l/v(l’+b71)/217)|2 + bd, J wPthy?
B,(R) B,(R)

< a J whtb=1 |V77|2 — bd, J Ric}”(Vu, VU)Werb72;72
B(R B(R)

+ bad, J wP/2tbp2
BO(R)

.. 1
for some positive constants ag,d;,d>,d; e RT and b =~ 1 From now on,
m

ap,ai,as, ... and dy,d, ... are coefficients depending only on p and m. We now
estimate the Ricci term. By Holder inequality, we have

(6) J Ric/"(Vo, Vo)w? 0= 2p?
By(R) ’

> (n— I)KJ wP =1y J |(Ric)") X wrt=1y?
By(R) By(R)
(¢-1)/q
> (n — I)KJ Wp+b*1;72 . H(Rlc;n)f”q J (Werb71;72)q/(q71) '
B,(R) ’ o
. . 2g—n
Now, we use a technique in [6] to process as follows. We put a = =1 and
0=—""_ then
m—2
q
1—0)=——.
o+ (1 —0a) i1

Using Holder inequality, for any ¢ > 0, we have

(g=1)/q
J (‘/Vp+b71,72)q/(f171)
BU(R>
((g=1)/q) (I-2)((g=1)/q)
<J W‘D+b_1}’]2> . <J (Wp+b—1;72)0>
B,(R) B,(R)
1/0
8<J (Wp+b1172)9> 4 g~ (1=0)0/2 <J (prrb1;72)>7
B,(R) B,(R)

where in the last inequality, we used Young’s inequality

IA

IA

- 11
Xy <ex’ ey Vx,y=20,7>1,-+—=1.
Yo7
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By (3), this implies

(g-1)/q
(7) J (Wp+b—1;72)q/(q—1)
By(R)

< SC]eC2(1+\/ER)V*C3J ( )(RZ‘V(W([J+b71)/2;7)‘2 +Wp+b711’]2)
B,(R

+87(17a)(1/o<. J (14}[74'1771]72) )
BU(R>

1
Combining (5)—(7) and choose ¢= —
conclude that 2bd, (CreC+VER) V-GR2)||(Ric/ )X

b

J |V(w(”+b71)/277)\2 + bd, J whthy?
B,(R) B,(R)

< aOJ wP = vg|? — (n — l)bdgKJ
By(R)

Wp+b71;72 + badg.J Wp/2+b’,/2
B,(R)

B,(R)

+ d4(b€C2(l+\/ER> V—C3R2H(Ric’{q)i(”)n/(qun) J Wp+b_17’]2.
B,(R)
Since

0, if p#2 . K ¢
(8) a= {2 0 if p= 7 ||RIC— Hq‘r =< becz(l_._\/ER) V—C3R27

and §+ b=p+b—1 when p=2, the above inequality implies

9) j V(w1722 bdlj WPty
B,(R) B,(R)

<a J w?t=11vy|? 4 Kbds J whtb=ly2,
B,(R) B,(R)

Combining this inequality with Sobolev inequality (3), we obtain

(m=2)/m
(10) (J (W(P-Fb—l)/2n)2m/(”12)> + bleZec’zbo V—Z/m J Wp+b}72
By(R) Bo(R)

< dZRZeczbO V—Z/m J Wp+b—l |V77|2
B()(R)

+ Kbd3R2eczb0 V72/m J p(m _ 1>Wp+b71’72
By(R)
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+ ec’zbn V*2/m J prrbfan
By(R)

< dszeQbo V*Z/m J

Werbfl |V77|2 + albobZECZbO V72/m J Wp+b71’727
B(](R)

B“(R)

where by = ¢;(m, p)(1 +VKR) with ¢; large enough. Choose 7, € C(Q)
o C

satisfying 0 <5, <1, 7y =1 on By(3R), |Vn,| < fl and put n =", Then

d> R? J

Wp+b—l|vi7‘2 Sazsz. prrb71’72(p+b71)/(p+b)
By(R)

By(R)

< arb? J P12
By(R)

b1
< %RZJ wp+b—1772 n (“3 )p pribtl v,
By(R)

(p+b-1)/(p+b)
) p1/(p+b)

R?
where we used the Holder inequality and the Young inequality in the last two
inequalities. Let b = by, this implies
bd,

(11) dsze‘CzbO sz/m J Wp+b71|V’7|2 < _RZeczboV72/mJ Wp+b}72
Bo(R) 2 By(R)

as p+b—1
4 (F) bp+b+lec'zbo V172/m.

We estimate the second term of the right hand side of (10). We see that

a1bIbw? =1 < Lbdi R*wP*? when w > ash3R™2. Therefore, to estimate the term,
we divide By(R) into two domains B; and B, such that

2 p-2. 2 p-2
wlg, > asbgR™=  wlp, < asbgR™".

Since 0 <# <1, we have

(12) albgbe"zb‘) y-2/m J whh=ly2

By(R)
< Lpaireeemy=2m [ rit2 o g p2besshoy—2im asbg)"*""!
=5 1 e w n abybe Rz
B 5 —5
1 2 esbo 17—2/m b2 aébg p+bo—1 2/
< —bd|R" eV whtby? 4 ) v '
2 By(R) R

Substituting (11), (12) into (10), we obtain

(m=2)/m 4 pbo—1
J (W(p+b71)/2’7)2m/(m—2) < (_72 bé) p1-2/m
By(R) R
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As a consequence, this implies

b2 m— m n—
HM/HL(bo—p—])(m/(m—Z))(BO((3/4)R)) S d4 R_O2 V( 2>/< <b0+1 1)) .

We are done. [
Next, we will prove Theorem 0.1.

Proof. Observe that limbﬁw||w||Lh<B”<3_R/4)) = ||W[l = (5,3r/4)) for any >0,
there exists b > 0, such that for any b > b, we have

Wl s, 3rpa) < W llLois, aryay) + 1

Let b = by and choose by > b such that (8) holds true. Then the first conculu-
sion follows by Lemma 1.4.

We now assume that ||RicX|| g = 0, this means that (8) holds true for any b
large enough. Hence the inequality (10) holds true for arbitrary b large enough.
Thus, the last conclusion can be verified by following a standard Moser’s itera-
tion (see [8, 31, 38]). For the completeness, we include some details here. Note
that in the proof of Lemma 1.4, we have shown the inequality (10). Since the
second term in the left side hand of (10) is non-negative, we obtain

(m—=2)/m
J (P +5=1)/2yy2m/(m=2)
B()(R)

< ageczbo V—2/mJ (bR2|V7’]|2 +b§b2772)lvp+b_l.
B()(R)

To use the Moser’s iteration, we put

b1 =by

m R R
Py b]—(b0+p—1)m, Q/—Bo(——ﬁ‘—/), /—1,2

and choose #, € C;°(R) such that
n,=1on Qs, n=on By(R\Qy, |Vy|<—, 0<y,<1.
With the above choosing and note that » = by, we have
1/b/+1
(J Wb/“) < (agetshoy2/my 1/t (J <b5b2+bR2Vn|2>wb’>
Qi1 Q

A standard argument implies

1/b,

¢ _ m/(2b 2 m/b
Wl gy 2y < (ase @V =2mym 2P0 7 @00 (bo by ™ 1P vl oy 3y -
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This together with Lemma 1.4 infers

bo\*
Wl e 8y (r/2)) < @9 R/
Since by = ¢;(1 ++KR), we have
1+ VKR’
2 .

Wl L By (ry2)) < a10<
. v ?
Since w = <M (p— 1)) , we are done. O
u

Remark 1.5. If k(g,1) #0 then the condition (8) can not satisfy for b
large enough. Hence, the Moser iteration can not be applied in this case.

This explains why we need to add the constant # > 0 in the right hand side
of (4).

2. Liouville theorems and local gradient estimates

In this section, we will point out applications of Theorem 0.1 to derive some
Liouville results and local gradient estimates on Riemannian manifold. Recall
that h(v) = (p — 1)P'e "F(e"/(»~D). Hence

F!(ev(p=1))ev/(p=1)
W)= (p— l)p—le—u (e . _)16 _ F(ev/(ﬂ—l)) .

First, we give a proof of Corollary 0.4.

Proof of Corollary 0.4. For F(u) =u(l —u?) then F'(u) =1—3u?. It is
easy to see that for O <u<1,p>2 then v=Ilogu <0, consequently 0 <
e?/(r=1) < 1. Moreover, if 0 <u <1 then

1 —3u?
u
= -4’ —(p-2)) <0.
pildp Juw—(p=2)) <
Hence, /'(v) <0 assumption of Theorem 0.1 holds. So we have (5). When
K =0, this implies

M < Cp,m
u - R

Let R — +o0, since u > 0 then we have Vu = 0, therefore u is constant on M.
This leads to A, ju =0, as a consequence, we have u(1 —u?) = 0. Using condi-
tion 0 <u <1, we conclude u=1 on M. The proof is complete. O
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Proof of Corollary 0.5. By assumption we have F(u)=cu(l —u)=

cu — cu?. Therefore, for 0 <u <1,p > 2 then

F'(u)u (e —2cuju 5
pfl_ (u)—ﬁ—cu—cu
cu
= - —(p=-2)) <.
S (== (p-2) 0
The proof follows directly from Theorem 0.1. O

Proof of Corollary 0.6. We have F(u) =aulogu. Hence for p=2, v=
log u > 0, we have h(v) =av >0 and A'(v) =a >0. The proof follows directly
from Theorem 0.1. O

Finally, we introduce a local gradient estimate for a nonlinear equation under
integral Ricci curvature condition.

COROLLARY 2.1.  Let (M,g) be complete Riemannian manifold.  Suppose that
u>1is a positive solution of equation

(13) Aru+aulogu=0, a=>0,
on the geodesic ball By(R) C M. For q>n/2 and R <1, then for any n >0

1 .
there exists b large enough such that if k(q,1) < — and ||Ric¥|| then

- b
1+ VKR
—r 1

1
o = bR

[V

<Comv
» p.m,

on the geodesic ball By (g), with C, v only depends on p, m and V =
V(B,(R)).

When K =0, we have k(g,1) = HRicfHW. Then, Corollary 2.1 implies the
following result.

COROLLARY 2.2. Let (M,g) be complete Riemannian manifold.  Suppose that
u>1 is a positive solution of equation

(14) Aju+aulogu=0, a=0,
on the geodesic ball By(R) C M. For q>n/2 and R <1, then for any n >0

there exists b large enough such that if k(q,1) < é then

[V

1+ +vKR
u R

< GComy
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R
on the geodesic ball By (5>, with C, v only depends on p, m and V =
V(Bo(R)).

To prove Corollary 2.1, we need to use the following local Sobolev in-
equality (see Corollary 4.6 in [6]).

LemMa 2.3 ([6]). For any q > n/2, there exists ¢ = e(p,n) >0 such that if
M" has k(p,1) <e, then for any oe M,r < 1, we have

(m—2)/m

(J ST ey | R g

By(R)

where V = V(By(R)).

X . . 1 o
Proof of Corollary 2.1. Since ||Rlc£<||p.,. < R the condition (8) holds true
' . 1

for b large enough. We can assume that such b to be satisfied b <e¢  Com-

.. . 1
bining the assumption k(p,1) < b and Lemma 2.3, we conclude that M has a
Sobolev inequality. Therefore, the proof follows directly from Theorem O0.1.

O
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