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Abstract. In this paper, we study rings having the property that every finitely generated right ideal is
automorphism-invariant. Such rings are called right f a-rings. It is shown that a right f a-ring with finite
Goldie dimension is a direct sum of a semisimple artinian ring and a basic semiperfect ring. Assume that
R is a right f a-ring with finite Goldie dimension such that every minimal right ideal is a right annihilator,
its right socle is essential in RR, R is also indecomposable (as a ring), not simple, and R has no trivial
idempotents. Then R is QF. In this case, QF-rings are the same as q−, f q−, a−, f a-rings. We also obtain

that a right module (X,Y, f , 1) over a formal matrix ring
(
R M
N S

)
with canonical isomorphisms f̃ and 1̃

is automorphism-invariant if and only if X is an automorphism-invariant right R-module and Y is an
automorphism-invariant right S-module.

1. Introduction

Johnson and Wong [7] proved that a module M is invariant under any endomorphism of its injective
envelope if and only if any homomorphism from a submodule of M to M can be extended to an endo-
morphism of M. A module satisfying one of these equivalent conditions is called a quasi-injective module.
Clearly any injective module is quasi-injective. A module M which is invariant under automorphisms of
its injective envelope has been called an automorphism-invariant module. The class of these modules were
investigated by many authors, e.g., [1], [5], [9, 10], [12], [15–20], [22]. The generalizations of quasi-injectivity
were considered. Many results were obtained for a right q-ring (i.e., every right ideal is quasi-injective) (see
[4], [6]), for a right a-ring (i.e., every right ideal is automorphism-invariant) (see [8]), for a right fq-ring (i.e.,
every finitely generated right ideal is quasi-injective), for a right fa-ring (i.e., every finitely generated right
ideal is automorphism-invariant) (see [15]). In this paper, we continue to consider the structure of a f a-ring
with some addition conditions, for example, the finite Goldie dimension of the ring R, or R is semiperfect,....
Besides, we also consider the automorphism-invariance of formal matrix rings.
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Throughout this article all rings are associative rings with identity and all modules are right unital
unless stated otherwise. For a submodule N of M, we use N ≤ M (N < M, resp.) to mean that N is a
submodule of M (proper submodule, resp.), and we write N ≤e M and N ≤⊕ M to indicate that N is an
essential submodule of M and N is a direct summand of M, respectively. We denote by Soc(M) and E(M),
the socle and the injective envelope of M, respectively. The Jacobson radical of a ring R is denoted by
J(R) or J. A ring R is called semiperfect in case R/J(R) is semisimple artinian and idempotents lift modulo
J(R). It is equivalent to every finitely generated right (left) R-module has a projective cover. A module is
called uniform if the intersection of any two nonzero submodules is nonzero. A ring R is called I-finite if it
contains no infinite orthogonal family of idempotents. A ring R is said to have finite right Goldie dimension
if R does not contain an infinite direct sum of nonzero right ideals. A ring R is called right pseudo-Frobenius
(briefly, right PF) if R is right self-injective, semiperfect and Soc(RR) ≤e RR. A ring R is local if R has a unique
maximal left (right) ideal. We call an idempotent e ∈ R local if eRe � EndR(eR) is a local ring. For any term
not defined here the reader is referred to [2], [11] and [21].

Our paper will be structured as follows: In Section 1, we will give the basic concepts and some known
results that are used or cited throughout in this paper. Section 2 deals with rings whose finitely generated
ideals are automorphism-invariant. We prove that a right f a-ring with finite Goldie dimension is a direct
sum of a semisimple artinian ring and a basic semiperfect ring. Next, we consider the right f a-ring with
finite Goldie dimension such that every minimal right ideal is a right annihilator and its right socle is
essential in RR. We obtain some properties of the kind of these rings. From these, we have that for this
ring and moreover it is also indecomposable (as ring), not simple with non-trivial idempotents then it is
QF. In this case, QF-rings are the same as q−, f q−, a−, f a-rings. Section 3 discusses about the invariance of

formal matrix rings. Let K =
(
R M
N S

)
and (X,Y, f , 1) be a right K-module, f̃ and 1̃ be isomorphisms. Then

(X,Y, f , 1) is an automorphism-invariant right K-module if and only if X is an automorphism-invariant right
R-module and Y is an automorphism-invariant right S-module.

2. On fa-Rings with finite Goldie dimension

Recall that a ring R is a right f a-ring (resp., f q-ring) if every finitely generated right ideal of R is
automorphism-invariant (resp., quasi-injective).

Remark 2.1. Applying [8, Lemma 2.1] we deduce the following result:
Let R be commutative ring. Then R is a f a-ring if and only if it is an automorphism-invariant ring.

Example 2.2. It is clear that a-rings are f a-rings. And we have the example of a-rings but not self-injective. For
example, consider the ring R consisting of all eventually constant sequences of elements from F2. Clearly, R is a
commutative a-ring. But R is not self-injective. Thus, f a-rings are not f q-rings.

Example 2.3. The ring of linear transformations R := End(VD) of a vector space V infinite-dimensional over a
division ring D. Then R is not a right a-ring, because V is not finite dimensional. But R is a right f a-ring, since
every finitely generated ideal is a direct summand of R and R is right self-injective.

Let R be a semiperfect ring. Then, there exists a set of orthogonal local idempotents {e1, e2, . . . , em} such
that 1 = e1 + e2 + · · · + em. We may assume that {eiR/ei J(R)| 1 ≤ i ≤ n} is a complete set of representatives of
the isomorphism classes of the simple right R-modules. In this case, {e1, e2, . . . , en} is called the set of basic
idempotents for R, and if e = e1 + e2 + · · · + en, the ring eRe is called the basic ring of R. Note that eR � f R if
and only if eR/eJ(R) � f R/ f J(R) for idempotents e and f of R by Jacobson’s Lemma (see [14, Lemma B.12]).
The ring R is itself called a basic semiperfect ring if m = n, that is, if 1 = e1 + e2 + · · · + en, where {e1, e2, . . . , en}

is a basic set of local idempotents.

Lemma 2.4. If R is a right automorphism-invariant I-finite ring, then R is a semiperfect ring.
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The following result is the main result of this section.

Theorem 2.5. Let R be a right fa-ring with finite Goldie dimension. Then R is a direct sum of a semisimple artinian
ring and a basic semiperfect ring.

Proof. By Lemma 2.4, R is a semiperfect ring, and so there exists a set of orthogonal local idempotents
{e1, e2, . . . , em} such that 1 = e1 + e2 + · · ·+ em. Suppose that eiR � e jR for all i , j with i, j ∈ {1, 2, . . . ,m}. Then,
we are done. Assume that ei, for some i ∈ {1, 2, . . . ,m}, is a local idempotent of R such that there are direct
summands isomorphic to eiR in each decomposition of RR as a direct sum of indecomposable modules.
Thus, there exists an idempotent e′ of R such that eiR ∩ e′R = 0 and eiR � e′R. It follows, from [15, Lemma
4.2], that eiR is a semisimple right R-module. On the other and, we have that eiR is an idecomposable
module and obtain that eiR is simple. Let eR be the direct sum of all copies of eiR in the decomposition of
R = e1R ⊕ e2R ⊕ · · · ⊕ emR. Note that eR is a direct summand of R. We can assume that e is an idempotent of
R. Then, we have a decomposition R = eR ⊕ (1 − e)R. Next, we show that eR and (1 − e)R are ideals of R. In
order to show this, it is necessary to prove that eR(1 − e) = 0 and (1 − e)Re = 0.

Suppose (1 − e)Re , 0. Take (1 − e)te , 0 for some t ∈ R. Then, there are primitive idempotents
e j and ek such that e jR � eiR, ekR � eiR with j, k ∈ {1, 2, . . . ,m}, e j ∈ eR, ek ∈ (1 − e)R and ekte j , 0. We
consider the following map α : e jR → ekR defined by α(e jr) = ekte jr for all r ∈ R. One can check that α is a
nonzero homomorphism. Note that e jR is simple. Thus, α is a monomorphism. Since R is a right f a-ring,
e jR ⊕ ekR is an automorphism-invariant module, and so e jR is ekR-injective by [12, Theorem 5]. From this,
it immediately follows that α splits. We have that ekR is simple and obtain e jR � ekR, a contradiction. We
deduce that (1 − e)Re = 0, and so eR is an ideal of R.

Similarly to the above proof, suppose that eR(1− e) , 0. Call eu(1− e) , 0 for some u ∈ R. Then there are
primitive idempotents ep and eq of R such that epR � eiR, eqR � eiR with p, q ∈ {1, 2, . . . ,m}, ep ∈ eR, eq ∈ (1−e)R
and epueq , 0. We consider the following map β : eqR → epR defined by β(eqr) = epueqr for all r ∈ R. Then,
β is a nonzero epimorphism by the simplicity of epR. Since epR is projective, β splits. One can check that
eqR � epR. This is a contradiction, and so eR(1 − e) = 0. We deduce that (1 − e)R is an ideal of R.

Thus, eR is a semisimple artinian ring and (1 − e)R is a basic semiperfect ring.

Next, we give some properties of minimal right and left ideals of R. Moreover, the self-injectivity of R
is considered.

Lemma 2.6. Let R be a right automorphism-invariant ring and Soc(RR) ≤e RR such that every minimal right ideal
is a right annihilator.

(1) If xR is a minimal right ideal of R, then lRrR(x) = Rx and Rx is a minimal left ideal of R.
(2) If Ry is a minimal left ideal of R then yR is a minimal right ideal of R and lRrR(Ry) = Ry. In particular,

Soc(RR) = Soc(RR) is denoted by S.
(3) Soc(eR) and Soc(Re) are simple for all local idempotents e ∈ R.
(4) If R is I-finite then R is a right PF-ring.

Proof. (1) Assume that xR is a minimal right ideal of R. It is easy to see that Rx ≤ lRrR(x). For the converse,
let t ∈ lRrR(x) be a nonzero element. Then, we have rR(x) ≤ rR(t), and so rR(x) = rR(t) by the maximality of
rR(x). It follows that Rx = Rt by [16, Lemma 1]. Then, t ∈ Rx and so lRrR(x) ≤ Rx or lRrR(x) = Rx. On the
other hand, for any nonzero element y in Rx, we have rR(x) ≤ rR(y), and so rR(x) = rR(y) by the maximality
of rR(x). It shows that Rx = Ry is a minimal left ideal. We deduce that Rx is a minimal left ideal of R.

(2) Suppose that Ry is a minimal left ideal of R. Since Soc(RR) ≤e RR, yR contains a minimal right ideal
mR of R. Thus, lR(y) = lR(m). It follows that y ∈ rRlR(y) = rRlR(m) = mR ≤ yR by our assumption, and so
yR = mR. Thus, yR is a minimal right ideal of R. The rest is followed by (1).

(3) Take kR a minimal right ideal of eR. Then, Rk is a minimal left ideal of R. Therefore, lR(kR) ≥ R(1− e)
and lR(kR) = lR(k) ≥ J(R). It follows that lR(kR) = J(R)+R(1− e) because J(R)+R(1− e) is the unique maximal
left ideal containing R(1 − e). By our assumption we have

kR = rRlR(kR) = rR[J(R) + R(1 − e)] = rR(J(R)) ∩ eR = Soc(RR) ∩ eR = Soc(eR)
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It shows that Soc(eR) is a minimal right ideal of R.
Similarly, we also have Soc(Re) is simple for all local idempotents e ∈ R.
(4) From the hypothesis, we have R is a semiperfect ring. We have a decomposition R = e1R ⊕ e2R ⊕

· · · ⊕ emR. By (2), we have that eiR is uniform for any i ∈ {1, 2, . . . ,m}, and so R is right self-injective by [12,
Corollary 15]. We deduce that R is a right PF-ring.

Fact 2.7. All endomorphism rings of indecomposable automorphism-invariant modules are local rings.

Lemma 2.8. Let R be a right f a-ring with finite Goldie dimension, e be a primitive idempotent of R. Then the
following conditions hold:

(1) If α : eR→ R is a nonzero homomorphism with eR ∩ α(eR) = 0 then α(eR) is a simple module.
(2) If (1 − e)Re , 0 then eR(1 − e) , 0.

Proof. (1) Note that eR is local. Then, α(eR) is indecomposable. Let U be an arbitrary essential submodule of
α(eR), then E(U) = E(α(eR)). Since R has finite Goldie dimension, there exists a finitely generated right ideal
I with I ≤e U. It follows that I ≤e U ≤e α(eR), and so E(I) = E(U) = E(α(eR)). Since I⊕eR is a finitely generated
right ideal of R, I ⊕ eR is automorphism-invariant. It follows that I is eR−injective. On the other hand,
there exists a homomorphism ᾱ : E(eR) → E(α(eR)) such that ᾱ|eR = α. We have that E(I) = E(α(eR)) and I
is eR−injective and obtain that ᾱ(eR) ≤ I ≤ U. It shows that α(eR) ≤ U. We deduce that α(eR) = Soc(α(eR)),
and so α(eR) is semisimple. We deduce that α(eR) is simple.

(2) Assume that (1− e)Re , 0. Note that R is automorphism-invariant, eR is (1− e)R-injective and (1− e)R
is eR-injective. Call α : eR→ (1 − e)R a nonzero homomorphism. Now, we assume that eR(1 − e) = 0. Then,
eRe = eR is a local ring with its unique maximal ideal eJ(R). If eJ(R) = 0 then eR is simple right R-module
and so α(eR) � eR. It follows that α−1 : α(eR) → eR is extended to a homomorphism from (1 − e)R to eR. It
means that eR(1 − e) , 0. Now, if eJ(R) is nonzero, then we get a nonzero element x in eJ(R). We have that
eRe is local and obtain that there exists an eRe-epimorphism β : xeR→ eR/eJ(R). On the other hand, we have
eRe = eR and so β is an R-homomorphism. From (1) it immediately infers that eR/eJ(R) � α(eR) ≤ (1 − e)R.
Then, there exists a nonzero homomorphism γ : eR/eJ(R) → (1 − e)R. It follows that composition of β
and γ is a nonzero homomorphism γ ◦ β : xeR → (1 − e)R. Again, (1 − e)R is eR-injective we have that
there is a nonzero homomorphism θ : eR → (1 − e)R such that θ is an extension of γ ◦ β. Moreover, we
have xeR ≤ eJ(R) = Ker(θ) (by (1)) which implies that (γ ◦ β)(xeR) = θ(xeR) = 0, a contradiction. Thus,
eR(1 − e) , 0.

Proposition 2.9. An indecomposable right f a-ring with finite Goldie dimension such that every minimal right ideal
is a right annihilator. Then the following conditions are equivalent:

(1) R has essential right socle.
(2) Soc(RR) = Soc(RR).

Proof. (1)⇒ (2) by Lemma 2.6.
(2) ⇒ (1). Assume that Soc(RR) = Soc(RR). Since R is semiperfect, R = e1R ⊕ e2R ⊕ · · · ⊕ emR with a set

of orthogonal local idempotents {e1, e2, . . . , em} of R. Since R is an indecomposable ring, eiR(1 − ei) , 0 or
(1− ei)Rei , 0 for all i ∈ {1, 2, . . . ,m}. Suppose that (1− ei)Rei , 0. Then by Lemma 2.8 we have eiR(1− ei) , 0.
We deduce that eiR(1 − ei) , 0 for all i ∈ {1, 2, . . . ,m}. Take αi : (1 − ei)R → eiR a nonzero homomorphism.
Then by Lemma 4.2 in [15], Im(αi) is semisimple. It follows that Soc(eiR) , 0 for all i ∈ {1, 2, . . . ,m}.

For any i ∈ {1, 2, . . . ,m}, take kR a minimal right ideal of eiR. Then, Rk is a minimal left ideal of R.
Therefore, lR(kR) ≥ R(1 − ei) and lR(kR) = lR(k) ≥ J(R). It follows that lR(kR) = J(R) + R(1 − ei) because
J(R) + R(1 − ei) is the unique maximal left ideal containing R(1 − ei). By our assumption we have

kR = rRlR(kR) = rR[J(R) + R(1 − ei)] = rR(J(R)) ∩ eiR = Soc(RR) ∩ eiR = Soc(eiR)

It shows that Soc(eiR) is a minimal right ideal of R for all i ∈ {1, 2, . . . ,m}. It follows that Soc(eiR) is essential
in eiR. Thus, Soc(R) is essential in RR.
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In this section, we assume that R is a right f a-ring with finite Goldie dimension such that every
minimal right ideal is a right annihilator and Soc(RR) is essential in RR. Moreover, R is semiperfect, and
so there exists a set of orthogonal local idempotents {e1, e2, . . . , em} of R such that 1 = e1 + e2 + · · · + em. Call
{e1, e2, . . . , en} a set of basic idempotents for R with n ≤ m.

Lemma 2.10. If e and f are two orthogonal idempotents of R then eR f ⊆ Soc(RR).

Proof. Suppose that e and f are two orthogonal idempotents of R. Then, eR ∩ f R = 0. If eR f = 0, we are
done. Otherwise, let ex f be a nonzero arbitrary element of eR f . We consider a nonzero homomorphism
α : f R → eR defined by α( f r) = ex f r for all r ∈ R. By [15, Lemma 4.2], we have that Im(α) = ex f R is
semisimple. It follows that ex f ∈ Soc(RR). We deduce that eR f ⊆ Soc(RR).

Let R be a semiperfect ring with basic idempotents {e1, e2, . . . , en}. A permutation σ of {1, 2, . . . ,n} is called
a Nakayama permutation for R if Soc(Reσ(i)) � Rei/J(R)ei and Soc(eiR) � eσ(i)R/eσ(i) J(R) for each i = {1, 2, . . . ,n}.
A ring R is called quasi-Frobenius (brief, QF) if R is one-sided artinian one-sided self-injective, see [14]. It is
well-known that every QF-ring has a Nakayama permutation.

Lemma 2.11. Let R be an indecomposable ring with non-trivial idempotents. Then, R has a Nakayama permutation
σ of {1, 2, . . . ,n}. In particular, σ(i) , i for all i = 1, 2, . . . ,n if R is not a simple ring.

Proof. By the hypothesis, R is indecomposable and so R is either semisimple artinian or basic semiperfect
by Theorem 2.5. If R is a semisimple artinian ring then R has a Nakayama permutation. Now, we assume
that R is not a simple ring. It follows that R is a basic semiperfect ring.

For any i ∈ {1, 2, . . . ,n}, from the simplicity of Soc(eiR), it infers that there exists σ(i) ∈ {1, 2, . . . ,n}
such that Soc(eiR) � eσ(i)R/eσ(i) J(R). This map σ is a permutation of {1, 2, . . . ,n} because σ(i) = σ( j) implies
that Soc(eiR) � Soc(e jR). By the injectivity of eiR and e jR, we infer that eiR � e jR, and so i = j (because
the ei are basic). Let α : eσ(i)R/eσ(i) J(R) → Soc(eiR) be an isomorphism and si = α(eσ(i) + eσ(i) J(R)). It
follows that siR = Soc(eiR) is a minimal right ideal of R. One can check that J(R) + R(1 − ei) ≤ lR(si). But
R/[J(R) + R(1 − ei)] � Rei/J(R)ei is simple, and so lR(si) = J(R) + R(1 − ei). It follows that Rsi � Rei/J(R)ei.
Now observe that si = sieσ(i) ∈ Soc(RR)eσ(i) = Soc(Reσ(i)). We have, from Lemma 2.6, that Soc(Reσ(i)) is simple
and obtain that Soc(Reσ(i)) � Rei/J(R)ei. Thus, R has a Nakayama permutation σ of {1, 2, . . . ,n}.

Next, we suppose that σ(i) = i for some i ∈ {1, 2, . . . ,n} or Soc(eiR) � eiR/ei J(R). Assume that eiR(1−ei) , 0.
Since R is a basic semiperfect ring, there would exist j ∈ {1, 2, . . . ,n}with j , i such that eiRe j , 0. Then, there
exists a nonzero homomorphism β : e jR→ eiR. By [8, Lemma 4.1] and eiR is uniform, we infer that Im(β) is
simple. It follows that Im(β) = Soc(eiR) and Ker(β) is maximal in e jR. Then, Ker(β) = e j J(R) which implies
that e jR/e j J(R) � Soc(eiR) � eiR/ei J(R). From this, it immediately infers that eiR � e jR, a contradiction. It is
shown that eiR(1 − ei) = 0. Similarly, we have (1 − ei)Rei = 0. In fact, if (1 − ei)Rei , 0, then ekRei , 0 for
some k ∈ {1, 2, . . . ,n} with k , i. By the above similar proof, we infer that Soc(eiR) � eiR/ei J(R) � Soc(ekR).
By the injectivity of eiR and ekR, we have eiR � ekR which is impossible. It is shown that ei is central, a
contradiction. We deduce that σ(i) , i for all i = 1, 2, . . . ,n.

Lemma 2.12. Let R be an indecomposable ring not simple with non-trivial idempotents. Then, eiRei is a division
ring for any i ∈ {1, 2, . . . ,n}.

Proof. By the hypothesis, R is a basic semiperfect ring and 1 = e1 + e2 + · · · + en. For any i ∈ {1, 2, . . . ,n},
there exists j , i with j ∈ {1, 2, . . . ,n} such that eiRe j , 0 by Lemma 2.11. Suppose that eiR(1 − ei) = 0.

Then, eiR(
n∑

k,i
ek) = 0 which implies that eiRe j = 0, a contradiction. Thus, eiR(1 − ei) , 0. Next, we show that

ei J(R)ei = 0.We have eiR(1− ei) ⊂ Soc(eR) by Lemma 2.10, and so eiR(1− ei) = Soc(eiR)(1− ei).Now, we show
that ei J(R)ei is a submodule of eiR. Since R is right automorphism-invariant, J(R) = {a ∈ R : rR(a) ≤e RR}
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by [5, Proposition 1] and so J(R) Soc(eiR) = 0. Now (ei J(R)ei) Soc(eiR) = ei J(R) Soc(eiR) = 0 which implies
(ei J(R)ei)(eiR(1 − ei)) = 0. On the other hand, we have

ei J(R)eiR = ei J(R)ei(Rei + R(1 − ei)) = ei J(R)eiRei ⊂ ei J(R)ei.

Hence ei J(R)ei is an R-submodule of eiR. Since Soc(eiR) is simple, we have ei J(R)ei ∩ Soc(eiR) = 0 or
Soc(eiR) ≤ ei J(R)ei. Suppose Soc(eiR) ≤ ei J(R)ei. Then eiR(1 − ei) = Soc(eiR)(1 − ei) ≤ ei J(R)ei(1 − ei) = 0, a
contradiction. It follows that ei J(R)ei ∩ Soc(eiR) = 0. Thus ei J(R)ei = 0 because Soc(eiR) is essential in eiR.
Note that eiRei � End(eiR) is a local ring. We deduce that eiRei is a division ring.

Theorem 2.13. If R is an indecomposable (as ring) ring not simple with non-trivial idempotents, then R is a QF-ring.

Proof. By Lemma 2.6 and the hypothesis, R is a basic semiperfect right self-injective ring and Soc(RR) is an
artinian right R-module. We have a decomposition R = e1R ⊕ e2R ⊕ · · · ⊕ enR. Then

R =
n∑

i=1

eiRei +

n∑
i, j

eiRe j

Note that eiRe j ⊆ Soc(RR) for all i , j by Lemma 2.10. We consider the following mapping

ϕ : R/Soc(RR)→
n⊕

i=1

eiRei

via ϕ(
n∑

i=1
eiriei)+ Soc(RR) =

n∑
i=1

eiriei We show that ϕ is an isomorphism. If
n∑

i=1
eiriei ∈ S, then eiriei ∈ eiSei for all

i = 1, 2, . . . ,n. Since ei J(R) is the unique maximal submodule of eiR, eiSoc(RR) ≤ ei J(R), and so eiriei ∈ ei J(R)ei.
Note that ei J(R)ei = 0 by Lemma 2.12. It shows that ϕ is a mapping. One can check that ϕ is a ring
homomorphism. Moreover, ϕ is a bijection, and so ϕ is a ring isomorphism. It shows that R/Soc(RR) is a
semisimple artinian ring. We deduce that R is a right artinian ring, and so R is QF.

Corollary 2.14. Let R be an indecomposable (as ring) ring not simple with non-trivial idempotents. Then, the
following conditions are equivalent:

(1) R is a right q-ring.
(2) R is a right f q-ring.
(3) R is a right a-ring.
(4) R is a right f a-ring.
(5) eR f ⊆ Soc(RR) for each pair e, f of orthogonal idempotents of R.
(6) R is an QF-ring.

Proof. (1)⇒ (2), (3); (2)⇒ (4) and (3)⇒ (4) are obvious.
(4)⇒ (5) by Lemma 2.10.
(5)⇒ (6). By Theorem 2.13, R is a basic semiperfect QF-ring.
(6) ⇒ (1). Since R is QF, it follows that RR is injective cogenerator. Thus, R is a right q-ring by [4,

Theorem 2.9].

3. The automorphism-invariance of formal matrix rings

Let R and S be two rings and M be an R−S-bimodule and N be a S−R-bimodule. Take the set of matrices

K =
(
R M
N S

)
=

{ (
r m
n s

) ∣∣∣∣∣ r ∈ R, s ∈ S,m ∈M,n ∈ N
}
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Assume that there exist an R-homomorphismφ : M⊗S N→ R and an S-homomorphismψ : N⊗R M→ S
such that

φ(m ⊗ n)m′ = mψ(n ⊗m′), ψ(n ⊗m)n′ = nφ(m ⊗ n′)

for all m,m′ ∈ M and n,n′ ∈ N. For convenience in using notations, we can write φ(m ⊗ n) := mn,
ψ(n ⊗m) := nm and MN := φ(M ⊗S N), NM := ψ(N ⊗R M).

Then, K is a ring with the addition and multiplication as follows:(
r m
n s

)
+

(
r′ m′

n′ s′

)
=

(
r + r′ m +m′

n + n′ s + s′

)
(
r m
n s

) (
r′ m′

n′ s′

)
=

(
rr′ +mn′ rm′ +ms′

nr′ + sn′ nm′ + ss′

)
The ring K is called a formal matrix ring or generalized matrix rings (see [11] or [13]). It is well-known that
the category of right K-module Mod-K is equivalent to the categoryA(K) of objects (X,Y, f , 1), where X is a
right R-module, Y is a right S-module, f : X ⊗R M → Y is an S-homomorphism and 1 : Y ⊗S N → X is an
R-homomorphism. The right K-module (X,Y, f , 1) is the additive group X ⊕ Y with right K-action given by

(x y)
(
r m
n s

)
= (xr + 1(y ⊗ n), f (x ⊗m) + ys)

such that the following diagrams are commutative

X ⊗R M ⊗S N
f⊗1N //

1X⊗φ

��

Y ⊗S N
1 // X

1X

��
X ⊗R R

µ // X

Y ⊗S N ⊗R M
1⊗1M //

1Y⊗ψ

��

X ⊗R M
f // Y

1Y

��
Y ⊗S S ν // Y

where µ : X ⊗R R→ X and ν : Y ⊗S S→ Y are canonical isomorphisms.
Next, we consider homomorphisms of K-modules. Let (X1,Y1, f1, 11) and (X2,Y2, f2, 12) be right K-

modules. A right K-homomorphismφ : (X1,Y1, f1, 11)→ (X2,Y2, f2, 12) is a pair (φ1, φ2) whereφ1 : X1 → X2
is an R-homomorphism and φ2 : Y1 → Y2 is an S-homomorphism such that the following diagrams are
commutative

X1 ⊗R M
f1 //

φ1⊗1M

��

Y1

φ2

��
X2 ⊗R M

f2 // Y2
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Y1 ⊗S N
11 //

φ2⊗1N

��

X1

φ1

��
Y2 ⊗S N

12 // X2

Note that a K-homomorphism φ = (φ1, φ2) : (X1,Y1, f1, 11) → (X2,Y2, f2, 12) is a monomorphism (epi-
morphism, resp.) if and only if φ1 and φ2 are monomorphisms (epimorphisms, resp.).

A submodule of a right K-module (X,Y, f , 1) is a quadrupe (X0,Y0, f0, 10), where X0 ≤ XR, Y0 ≤ YS such
that the following diagrams are commutative.

X0 ⊗R M
f0 //

ι1⊗1M

��

Y0

ι2

��
X ⊗R M

f // Y

Y0 ⊗S N
10 //

ι2⊗1N

��

X0

ι1

��
Y ⊗S N

1 // X

with ι1 : X0 → X, ι2 : Y0 → Y the inclusion maps. This is equivalent X0M ⊆ Y0 and Y0N ⊆ X0.

Let K =
(
R M
N S

)
and X be a right R-module. Denote by H(X) = HomR(N,X). We consider the following

homomorphisms

uX : X ⊗R M −→ HomR(N,X)
x ⊗m 7−→ u(x ⊗m) : N→ X

n 7→ u(x ⊗m)(n) = x(mn)

and

vX : HomR(N,X) ⊗S N −→ X
α ⊗ n 7−→ α(n)

One can check that (X,H(X),uX, vX) is a right K-module. Similarly, we also have that (H(Y),Y, vY,uY)
is a right K-module for all right S-module Y with H(Y) = HomS(M,Y) and vY : H(Y) ⊗R M → Y and
uY : Y ⊗S N→ H(Y).

Let (X,Y, f , 1) be a right K-module. Then, we have the following R-homomorphism

f̃ : X −→ HomS(M,Y) = H(Y)

x 7−→ f̃ (x) : M→ Y

m 7→ f̃ (x)(m) = f (x ⊗m)
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and S-homomorphism

1̃ : Y −→ HomS(N,X) = H(X)
y 7−→ 1̃(y) : N→ X

n 7→ 1̃(y)(n) = 1(y ⊗ n)

Theorem 3.1. Let K =
(
R M
N S

)
and (X,Y, f , 1) be a right K-module. Assume that f̃ and 1̃ are isomorphisms. Then

the following conditions are equivalent:

(1) (X,Y, f , 1) is an automorphism-invariant right K-module.
(2) (a) X is an automorphism-invariant right R-module.

(b) Y is an automorphism-invariant right S-module.

Proof. (2) ⇒ (1). By Lemma 2.3 in [13], there exist isomorphisms µ̃ : E(X) → HomS(M,E(Y)) and η̃ :
E(Y) → HomR(N,E(X) such that (E(X),E(Y), µ, η) is the injective envelope of (X,Y, f , 1). Let φ = (φ1, φ2) be
an automorphism of (E(X),E(Y), µ, η) then φ1 is an R-automorphism of E(X) and φ2 is an S-automorphism
of E(Y). Since X is an automorphism-invariant right R-module and Y is an automorphism-invariant right
S-module, it follows that (X,Y, f , 1) is an automorphism-invariant right K-module.

(1) ⇒ (2) Assume that (X,Y, f , 1) is an automorphism-invariant right K-module. We show that X is an
automorphism-invariant right R-module. To prove this, firstly we show that (X,Y, f , 1) � (X,H(X),uX, vX).
In fact we consider the mapping (1X, 1̃) : (X,Y, f , 1)→ (X,H(X),uX, vX). Since (X,Y, f , 1) is a right K-module,
1 ◦ ( f ⊗ 1N) = µ ◦ (1X ⊗ φ), where µ : X ⊗R R→ X is the canonical isomorphism and φ : M ⊗S N → R is the
multipilication in K. Then, for all x ∈ X, m ∈M and n ∈M, we have

(1̃ ◦ f )(x ⊗m)(n) = 1( f (x ⊗m) ⊗ n) = µ(1X ⊗ φ)(x ⊗m ⊗ n) = x(mn)

and
uX(1X ⊗ 1M)(x ⊗m)(n) = uX(x ⊗m)(n) = x(mn)

It shows that 1̃ ◦ f = uX ◦ (1X ⊗ 1M) and so the following diagram is commutative.

X ⊗R M
f //

1X⊗1M

��

Y

1̃

��
X ⊗R M

uX // H(X)

On the other hand, for all y ∈ Y and n ∈ N, we have

vX(1̃ ⊗ 1N)(y ⊗ n) = vX(1̃(y) ⊗ n) = 1̃(y)(n) = 1(y ⊗ n) = 1X1(y ⊗ n)

and so 1X ◦ 1 = vX ◦ (1̃ ⊗ 1N). It means that the following diagram is commutative.

Y ⊗S N
1 //

1̃⊗1N

��

X

1X

��
H(X) ⊗S N

vX // X
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Thus, (1X, 1̃) : (X,Y, f , 1)→ (X,H(X),uX, vX) is a K-homomorphism. By our assumption, 1̃ is an isomorphism,
(1X, 1̃) is an isomorphism. Then,
(X,H(X),uX, vX) is an automorphism-invariant right K-module.

Now, we show that X is an automorphism-invariant right R-module. Let α : A → X be an R-
monomorphism. Then, we have that (A,H(A),uA, vA) is a submodule of (X,H(X),uX, vX). We consider
the mapping β : H(A) → H(X) via by the relation β(h)(n) = α(vA(h ⊗ n)). One can check that β is an
S-homomorphism. For all a ∈ A, m ∈M and n ∈M, we have

(β ◦ uA)(a ⊗m)(n) = α(vA(uA(a ⊗m) ⊗ n)) = α(µ(1A ⊗ φ)(a ⊗m ⊗ n)) = α(a)mn

and
uX(α ⊗ 1M)(a ⊗m)(n) = uX(α(a) ⊗m)(n) = α(a)mn

It shows that β ◦ uA = uX ◦ (α ⊗ 1M) and so the following diagram is commutative.

A ⊗R M
uA //

α⊗1M

��

H(A)

β

��
X ⊗R M

uX // H(X)

On the other hand, for all h ∈ H(A) and n ∈ N, we have

vX(β ⊗ 1N)(h ⊗ n) = vX(β(h) ⊗ n) = β(h)(n) = αvA(h ⊗ n)

and so α ◦ vA = vX ◦ (β ⊗ 1N). It means that the following diagram is commutative.

H(A) ⊗S N
vA //

β⊗1N

��

A

α

��
H(X) ⊗S N

vX // X

Thus, (α, β) : (A,H(A),uA, vA) → (X,H(X),uX, vX) is a K-monomorphism. Since (X,H(X),uX, vX) is an
automorphism-invariant right K-module, there exists an endomorphism (γ, θ) of (X,H(X),uX, vX) such that
(γ, θ) is an extension of (α, β). Thus, γ : X→ X is an extension of α. We deduce that X is an automorphism-
invariant right R-module.

Similarly, we also prove that Y is an automorphism-invariant right S-module.

By [11, Lemma 3.8.1] and Theorem 3.1, we have the following result:

Corollary 3.2. Let K =
(
R M
N S

)
and (X,Y, f , 1) be a right K-module. Assume that MN = R and NM = S. Then

the following conditions are equivalent:

(1) (X,Y, f , 1) is an automorphism-invariant right K-module.
(2) (a) X is an automorphism-invariant right R-module.

(b) Y is an automorphism-invariant right S-module.
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Corollary 3.3. Let e be a non-zero idempotent of a ring R, K =
(

R Re
eR eRe

)
and (X,Y, f , 1) be a right K-module.

Assume that f̃ and 1̃ are isomorphisms. Then (X,Y, f , 1) is an automorphism-invariant right K-module if and only if
X is an automorphism-invariant right R-module and Y is an automorphism-invariant right eRe-module.

If e is an idempotent of a ring R such that ReR = R then R ≈ eRe. So in this case, we have:

Corollary 3.4. Let e be an idempotent of a ring R such that ReR = R and K =
(

R Re
eR eRe

)
. Assume that R is a right

fa-ring and f̃ , 1̃ are isomorphisms. Then (eR,Re, f , 1) is an automorphism-invariant right K-module.
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