On the automorphism-invariance of finitely generated ideals and formal matrix rings

Le Van Thuyet ${ }^{\text {a }}$, Truong Cong Quynh ${ }^{\text {b,* }}$
${ }^{a}$ Department of Mathematics, College of Education, Hue University, 34 Le Loi, Hue city, Viet Nam
${ }^{b}$ Department of Mathematics, The University of Danang - University of Science and Education, 459 Ton Duc Thang, Danang city, Vietnam

Abstract

In this paper, we study rings having the property that every finitely generated right ideal is automorphism-invariant. Such rings are called right $f a$-rings. It is shown that a right $f a$-ring with finite Goldie dimension is a direct sum of a semisimple artinian ring and a basic semiperfect ring. Assume that R is a right $f a$-ring with finite Goldie dimension such that every minimal right ideal is a right annihilator, its right socle is essential in R_{R}, R is also indecomposable (as a ring), not simple, and R has no trivial idempotents. Then R is QF . In this case, $\mathrm{QF}-$ rings are the same as $q-, f q-, a-, f a$-rings. We also obtain that a right module (X, Y, f, g) over a formal matrix ring $\left(\begin{array}{lc}R & M \\ N & S\end{array}\right)$ with canonical isomorphisms \tilde{f} and \tilde{g} is automorphism-invariant if and only if X is an automorphism-invariant right R-module and Y is an automorphism-invariant right S-module.

1. Introduction

Johnson and Wong [7] proved that a module M is invariant under any endomorphism of its injective envelope if and only if any homomorphism from a submodule of M to M can be extended to an endomorphism of M. A module satisfying one of these equivalent conditions is called a quasi-injective module. Clearly any injective module is quasi-injective. A module M which is invariant under automorphisms of its injective envelope has been called an automorphism-invariant module. The class of these modules were investigated by many authors, e.g., [1], [5], [9, 10], [12], [15-20], [22]. The generalizations of quasi-injectivity were considered. Many results were obtained for a right q-ring (i.e., every right ideal is quasi-injective) (see [4], [6]), for a right a-ring (i.e., every right ideal is automorphism-invariant) (see [8]), for a right $f q$-ring (i.e., every finitely generated right ideal is quasi-injective), for a right fa-ring (i.e., every finitely generated right ideal is automorphism-invariant) (see [15]). In this paper, we continue to consider the structure of a $f a$-ring with some addition conditions, for example, the finite Goldie dimension of the ring R, or R is semiperfect,.... Besides, we also consider the automorphism-invariance of formal matrix rings.

[^0]Throughout this article all rings are associative rings with identity and all modules are right unital unless stated otherwise. For a submodule N of M, we use $N \leq M$ ($N<M$, resp.) to mean that N is a submodule of M (proper submodule, resp.), and we write $N \leq^{e} M$ and $N \leq^{\oplus} M$ to indicate that N is an essential submodule of M and N is a direct summand of M, respectively. We denote by $\operatorname{Soc}(M)$ and $E(M)$, the socle and the injective envelope of M, respectively. The Jacobson radical of a ring R is denoted by $J(R)$ or J. A ring R is called semiperfect in case $R / J(R)$ is semisimple artinian and idempotents lift modulo $J(R)$. It is equivalent to every finitely generated right (left) R-module has a projective cover. A module is called uniform if the intersection of any two nonzero submodules is nonzero. A ring R is called I-finite if it contains no infinite orthogonal family of idempotents. A ring R is said to have finite right Goldie dimension if R does not contain an infinite direct sum of nonzero right ideals. A ring R is called right pseudo-Frobenius (briefly, right PF) if R is right self-injective, semiperfect and $\operatorname{Soc}\left(R_{R}\right) \leq^{e} R_{R}$. A ring R is local if R has a unique maximal left (right) ideal. We call an idempotent $e \in R$ local if $e R e \cong E n d_{R}(e R)$ is a local ring. For any term not defined here the reader is referred to [2], [11] and [21].

Our paper will be structured as follows: In Section 1, we will give the basic concepts and some known results that are used or cited throughout in this paper. Section 2 deals with rings whose finitely generated ideals are automorphism-invariant. We prove that a right $f a$-ring with finite Goldie dimension is a direct sum of a semisimple artinian ring and a basic semiperfect ring. Next, we consider the right fa-ring with finite Goldie dimension such that every minimal right ideal is a right annihilator and its right socle is essential in R_{R}. We obtain some properties of the kind of these rings. From these, we have that for this ring and moreover it is also indecomposable (as ring), not simple with non-trivial idempotents then it is QF. In this case, QF-rings are the same as $q^{-}, f q_{-}, a-, f a$-rings. Section 3 discusses about the invariance of formal matrix rings. Let $K=\left(\begin{array}{cc}R & M \\ N & S\end{array}\right)$ and (X, Y, f, g) be a right K-module, \tilde{f} and \tilde{g} be isomorphisms. Then (X, Y, f, g) is an automorphism-invariant right K-module if and only if X is an automorphism-invariant right R-module and Y is an automorphism-invariant right S-module.

2. On $f a$-Rings with finite Goldie dimension

Recall that a ring R is a right $f a$-ring (resp., $f q$-ring) if every finitely generated right ideal of R is automorphism-invariant (resp., quasi-injective).

Remark 2.1. Applying [8, Lemma 2.1] we deduce the following result:
Let R be commutative ring. Then R is a fa-ring if and only if it is an automorphism-invariant ring.
Example 2.2. It is clear that a-rings are fa-rings. And we have the example of a-rings but not self-injective. For example, consider the ring R consisting of all eventually constant sequences of elements from \mathbb{F}_{2}. Clearly, R is a commutative a-ring. But R is not self-injective. Thus, fa-rings are not fq-rings.

Example 2.3. The ring of linear transformations $R:=\operatorname{End}\left(V_{D}\right)$ of a vector space V infinite-dimensional over a division ring D. Then R is not a right a-ring, because V is not finite dimensional. But R is a right fa-ring, since every finitely generated ideal is a direct summand of R and R is right self-injective.

Let R be a semiperfect ring. Then, there exists a set of orthogonal local idempotents $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ such that $1=e_{1}+e_{2}+\cdots+e_{m}$. We may assume that $\left\{e_{i} R / e_{i} J(R) \mid 1 \leq i \leq n\right\}$ is a complete set of representatives of the isomorphism classes of the simple right R-modules. In this case, $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ is called the set of basic idempotents for R, and if $e=e_{1}+e_{2}+\cdots+e_{n}$, the ring $e R e$ is called the basic ring of R. Note that $e R \cong f R$ if and only if $e R / e J(R) \cong f R / f J(R)$ for idempotents e and f of R by Jacobson's Lemma (see [14, Lemma B.12]). The ring R is itself called a basic semiperfect ring if $m=n$, that is, if $1=e_{1}+e_{2}+\cdots+e_{n}$, where $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ is a basic set of local idempotents.

Lemma 2.4. If R is a right automorphism-invariant I-finite ring, then R is a semiperfect ring.

The following result is the main result of this section.
Theorem 2.5. Let R be a right fa-ring with finite Goldie dimension. Then R is a direct sum of a semisimple artinian ring and a basic semiperfect ring.
Proof. By Lemma 2.4, R is a semiperfect ring, and so there exists a set of orthogonal local idempotents $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ such that $1=e_{1}+e_{2}+\cdots+e_{m}$. Suppose that $e_{i} R \not \approx e_{j} R$ for all $i \neq j$ with $i, j \in\{1,2, \ldots, m\}$. Then, we are done. Assume that e_{i}, for some $i \in\{1,2, \ldots, m\}$, is a local idempotent of R such that there are direct summands isomorphic to $e_{i} R$ in each decomposition of R_{R} as a direct sum of indecomposable modules. Thus, there exists an idempotent e^{\prime} of R such that $e_{i} R \cap e^{\prime} R=0$ and $e_{i} R \cong e^{\prime} R$. It follows, from [15, Lemma 4.2], that $e_{i} R$ is a semisimple right R-module. On the other and, we have that $e_{i} R$ is an idecomposable module and obtain that $e_{i} R$ is simple. Let $e R$ be the direct sum of all copies of $e_{i} R$ in the decomposition of $R=e_{1} R \oplus e_{2} R \oplus \cdots \oplus e_{m} R$. Note that $e R$ is a direct summand of R. We can assume that e is an idempotent of R. Then, we have a decomposition $R=e R \oplus(1-e) R$. Next, we show that $e R$ and $(1-e) R$ are ideals of R. In order to show this, it is necessary to prove that $e R(1-e)=0$ and $(1-e) R e=0$.

Suppose $(1-e) R e \neq 0$. Take $(1-e) t e \neq 0$ for some $t \in R$. Then, there are primitive idempotents e_{j} and e_{k} such that $e_{j} R \cong e_{i} R, e_{k} R \not \equiv e_{i} R$ with $j, k \in\{1,2, \ldots, m\}, e_{j} \in e R, e_{k} \in(1-e) R$ and $e_{k} t e_{j} \neq 0$. We consider the following map $\alpha: e_{j} R \rightarrow e_{k} R$ defined by $\alpha\left(e_{j} r\right)=e_{k} t e_{j} r$ for all $r \in R$. One can check that α is a nonzero homomorphism. Note that $e_{j} R$ is simple. Thus, α is a monomorphism. Since R is a right $f a$-ring, $e_{j} R \oplus e_{k} R$ is an automorphism-invariant module, and so $e_{j} R$ is $e_{k} R$-injective by [12, Theorem 5]. From this, it immediately follows that α splits. We have that $e_{k} R$ is simple and obtain $e_{j} R \cong e_{k} R$, a contradiction. We deduce that $(1-e) R e=0$, and so $e R$ is an ideal of R.

Similarly to the above proof, suppose that $e R(1-e) \neq 0$. Call $e u(1-e) \neq 0$ for some $u \in R$. Then there are primitive idempotents e_{p} and e_{q} of R such that $e_{p} R \cong e_{i} R, e_{q} R \nsubseteq e_{i} R$ with $p, q \in\{1,2, \ldots, m\}, e_{p} \in e R, e_{q} \in(1-e) R$ and $e_{p} u e_{q} \neq 0$. We consider the following map $\beta: e_{q} R \rightarrow e_{p} R$ defined by $\beta\left(e_{q} r\right)=e_{p} u e_{q} r$ for all $r \in R$. Then, β is a nonzero epimorphism by the simplicity of $e_{p} R$. Since $e_{p} R$ is projective, β splits. One can check that $e_{q} R \cong e_{p} R$. This is a contradiction, and so $e R(1-e)=0$. We deduce that $(1-e) R$ is an ideal of R.

Thus, $e R$ is a semisimple artinian ring and $(1-e) R$ is a basic semiperfect ring.

Next, we give some properties of minimal right and left ideals of R. Moreover, the self-injectivity of R is considered.

Lemma 2.6. Let R be a right automorphism-invariant ring and $\operatorname{Soc}\left(R_{R}\right) \leq^{e} R_{R}$ such that every minimal right ideal is a right annihilator.
(1) If $x R$ is a minimal right ideal of R, then $l_{R} r_{R}(x)=R x$ and $R x$ is a minimal left ideal of R.
(2) If $R y$ is a minimal left ideal of R then $y R$ is a minimal right ideal of R and $l_{R} r_{R}(R y)=R y$. In particular, $\operatorname{Soc}\left(R_{R}\right)=\operatorname{Soc}\left({ }_{R} R\right)$ is denoted by S.
(3) $\operatorname{Soc}(e R)$ and $\operatorname{Soc}(R e)$ are simple for all local idempotents $e \in R$.
(4) If R is I-finite then R is a right PF-ring.

Proof. (1) Assume that $x R$ is a minimal right ideal of R. It is easy to see that $R x \leq l_{R} r_{R}(x)$. For the converse, let $t \in l_{R} r_{R}(x)$ be a nonzero element. Then, we have $r_{R}(x) \leq r_{R}(t)$, and so $r_{R}(x)=r_{R}(t)$ by the maximality of $r_{R}(x)$. It follows that $R x=R t$ by [16, Lemma 1]. Then, $t \in R x$ and so $l_{R} r_{R}(x) \leq R x$ or $l_{R} r_{R}(x)=R x$. On the other hand, for any nonzero element y in $R x$, we have $r_{R}(x) \leq r_{R}(y)$, and so $r_{R}(x)=r_{R}(y)$ by the maximality of $r_{R}(x)$. It shows that $R x=R y$ is a minimal left ideal. We deduce that $R x$ is a minimal left ideal of R.
(2) Suppose that $R y$ is a minimal left ideal of R. Since $\operatorname{Soc}\left(R_{R}\right) \leq^{e} R_{R}, y R$ contains a minimal right ideal $m R$ of R. Thus, $l_{R}(y)=l_{R}(m)$. It follows that $y \in r_{R} l_{R}(y)=r_{R} l_{R}(m)=m R \leq y R$ by our assumption, and so $y R=m R$. Thus, $y R$ is a minimal right ideal of R. The rest is followed by (1).
(3) Take $k R$ a minimal right ideal of $e R$. Then, $R k$ is a minimal left ideal of R. Therefore, $l_{R}(k R) \geq R(1-e)$ and $l_{R}(k R)=l_{R}(k) \geq J(R)$. It follows that $l_{R}(k R)=J(R)+R(1-e)$ because $J(R)+R(1-e)$ is the unique maximal left ideal containing $R(1-e)$. By our assumption we have

$$
k R=r_{R} l_{R}(k R)=r_{R}[J(R)+R(1-e)]=r_{R}(J(R)) \cap e R=\operatorname{Soc}\left(R_{R}\right) \cap e R=\operatorname{Soc}(e R)
$$

It shows that $\operatorname{Soc}(e R)$ is a minimal right ideal of R.
Similarly, we also have $\operatorname{Soc}(\operatorname{Re})$ is simple for all local idempotents $e \in R$.
(4) From the hypothesis, we have R is a semiperfect ring. We have a decomposition $R=e_{1} R \oplus e_{2} R \oplus$
$\cdots \oplus e_{m} R$. By (2), we have that $e_{i} R$ is uniform for any $i \in\{1,2, \ldots, m\}$, and so R is right self-injective by [12, Corollary 15]. We deduce that R is a right PF-ring.

Fact 2.7. All endomorphism rings of indecomposable automorphism-invariant modules are local rings.
Lemma 2.8. Let R be a right fa-ring with finite Goldie dimension, e be a primitive idempotent of R. Then the following conditions hold:
(1) If $\alpha: e R \rightarrow R$ is a nonzero homomorphism with $e R \cap \alpha(e R)=0$ then $\alpha(e R)$ is a simple module.
(2) If $(1-e) R e \neq 0$ then $e R(1-e) \neq 0$.

Proof. (1) Note that $e R$ is local. Then, $\alpha(e R)$ is indecomposable. Let U be an arbitrary essential submodule of $\alpha(e R)$, then $E(U)=E(\alpha(e R))$. Since R has finite Goldie dimension, there exists a finitely generated right ideal I with $I \leq^{e} U$. It follows that $I \leq^{e} U \leq^{e} \alpha(e R)$, and so $E(I)=E(U)=E(\alpha(e R))$. Since $I \oplus e R$ is a finitely generated right ideal of $R, I \oplus e R$ is automorphism-invariant. It follows that I is $e R$-injective. On the other hand, there exists a homomorphism $\bar{\alpha}: E(e R) \rightarrow E(\alpha(e R))$ such that $\bar{\alpha}_{e R}=\alpha$. We have that $E(I)=E(\alpha(e R))$ and I is $e R$-injective and obtain that $\bar{\alpha}(e R) \leq I \leq U$. It shows that $\alpha(e R) \leq U$. We deduce that $\alpha(e R)=\operatorname{Soc}(\alpha(e R))$, and so $\alpha(e R)$ is semisimple. We deduce that $\alpha(e R)$ is simple.
(2) Assume that $(1-e) R e \neq 0$. Note that R is automorphism-invariant, $e R$ is $(1-e) R$-injective and $(1-e) R$ is $e R$-injective. Call $\alpha: e R \rightarrow(1-e) R$ a nonzero homomorphism. Now, we assume that $e R(1-e)=0$. Then, $e R e=e R$ is a local ring with its unique maximal ideal $e J(R)$. If $e J(R)=0$ then $e R$ is simple right R-module and so $\alpha(e R) \cong e R$. It follows that $\alpha^{-1}: \alpha(e R) \rightarrow e R$ is extended to a homomorphism from $(1-e) R$ to $e R$. It means that $e R(1-e) \neq 0$. Now, if $e J(R)$ is nonzero, then we get a nonzero element x in $e J(R)$. We have that $e R e$ is local and obtain that there exists an $e R e$-epimorphism $\beta: x e R \rightarrow e R / e J(R)$. On the other hand, we have $e R e=e R$ and so β is an R-homomorphism. From (1) it immediately infers that $e R / e J(R) \cong \alpha(e R) \leq(1-e) R$. Then, there exists a nonzero homomorphism $\gamma: e R / e J(R) \rightarrow(1-e) R$. It follows that composition of β and γ is a nonzero homomorphism $\gamma \circ \beta: x e R \rightarrow(1-e) R$. Again, $(1-e) R$ is $e R$-injective we have that there is a nonzero homomorphism $\theta: e R \rightarrow(1-e) R$ such that θ is an extension of $\gamma \circ \beta$. Moreover, we have $x e R \leq e J(R)=\operatorname{Ker}(\theta)$ (by (1)) which implies that $(\gamma \circ \beta)(x e R)=\theta(x e R)=0$, a contradiction. Thus, $e R(1-e) \neq 0$.

Proposition 2.9. An indecomposable right fa-ring with finite Goldie dimension such that every minimal right ideal is a right annihilator. Then the following conditions are equivalent:
(1) R has essential right socle.
(2) $\operatorname{Soc}\left(R_{R}\right)=\operatorname{Soc}\left({ }_{R} R\right)$.

Proof. (1) \Rightarrow (2) by Lemma 2.6.
(2) \Rightarrow (1). Assume that $\operatorname{Soc}\left(R_{R}\right)=\operatorname{Soc}\left({ }_{R} R\right)$. Since R is semiperfect, $R=e_{1} R \oplus e_{2} R \oplus \cdots \oplus e_{m} R$ with a set of orthogonal local idempotents $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ of R. Since R is an indecomposable ring, $e_{i} R\left(1-e_{i}\right) \neq 0$ or $\left(1-e_{i}\right) R e_{i} \neq 0$ for all $i \in\{1,2, \ldots, m\}$. Suppose that $\left(1-e_{i}\right) R e_{i} \neq 0$. Then by Lemma 2.8 we have $e_{i} R\left(1-e_{i}\right) \neq 0$. We deduce that $e_{i} R\left(1-e_{i}\right) \neq 0$ for all $i \in\{1,2, \ldots, m\}$. Take $\alpha_{i}:\left(1-e_{i}\right) R \rightarrow e_{i} R$ a nonzero homomorphism. Then by Lemma 4.2 in [15], $\operatorname{Im}\left(\alpha_{i}\right)$ is semisimple. It follows that $\operatorname{Soc}\left(e_{i} R\right) \neq 0$ for all $i \in\{1,2, \ldots, m\}$.

For any $i \in\{1,2, \ldots, m\}$, take $k R$ a minimal right ideal of $e_{i} R$. Then, $R k$ is a minimal left ideal of R. Therefore, $l_{R}(k R) \geq R\left(1-e_{i}\right)$ and $l_{R}(k R)=l_{R}(k) \geq J(R)$. It follows that $l_{R}(k R)=J(R)+R\left(1-e_{i}\right)$ because $J(R)+R\left(1-e_{i}\right)$ is the unique maximal left ideal containing $R\left(1-e_{i}\right)$. By our assumption we have

$$
k R=r_{R} l_{R}(k R)=r_{R}\left[J(R)+R\left(1-e_{i}\right)\right]=r_{R}(J(R)) \cap e_{i} R=\operatorname{Soc}\left(R_{R}\right) \cap e_{i} R=\operatorname{Soc}\left(e_{i} R\right)
$$

It shows that $\operatorname{Soc}\left(e_{i} R\right)$ is a minimal right ideal of R for all $i \in\{1,2, \ldots, m\}$. It follows that $\operatorname{Soc}\left(e_{i} R\right)$ is essential in $e_{i} R$. Thus, $\operatorname{Soc}(R)$ is essential in R_{R}.

In this section, we assume that R is a right $f a$-ring with finite Goldie dimension such that every minimal right ideal is a right annihilator and $\operatorname{Soc}\left(R_{R}\right)$ is essential in R_{R}. Moreover, R is semiperfect, and so there exists a set of orthogonal local idempotents $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ of R such that $1=e_{1}+e_{2}+\cdots+e_{m}$. Call $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ a set of basic idempotents for R with $n \leq m$.

Lemma 2.10. If e and fare two orthogonal idempotents of R then $e R f \subseteq \operatorname{Soc}\left(R_{R}\right)$.
Proof. Suppose that e and f are two orthogonal idempotents of R. Then, $e R \cap f R=0$. If $e R f=0$, we are done. Otherwise, let exf be a nonzero arbitrary element of $e R f$. We consider a nonzero homomorphism $\alpha: f R \rightarrow e R$ defined by $\alpha(f r)=e x f r$ for all $r \in R$. By [15, Lemma 4.2], we have that $\operatorname{Im}(\alpha)=e x f R$ is semisimple. It follows that exf $\in \operatorname{Soc}\left(R_{R}\right)$. We deduce that $e R f \subseteq \operatorname{Soc}\left(R_{R}\right)$.

Let R be a semiperfect ring with basic idempotents $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$. A permutation σ of $\{1,2, \ldots, n\}$ is called a Nakayama permutation for R if $\operatorname{Soc}\left(\operatorname{Re}_{\sigma(i)}\right) \cong R e_{i} / J(R) e_{i}$ and $\operatorname{Soc}\left(e_{i} R\right) \cong e_{\sigma(i)} R / e_{\sigma(i)} J(R)$ for each $i=\{1,2, \ldots, n\}$. A ring R is called quasi-Frobenius (brief, QF) if R is one-sided artinian one-sided self-injective, see [14]. It is well-known that every QF-ring has a Nakayama permutation.

Lemma 2.11. Let R be an indecomposable ring with non-trivial idempotents. Then, R has a Nakayama permutation σ of $\{1,2, \ldots, n\}$. In particular, $\sigma(i) \neq i$ for all $i=1,2, \ldots, n$ if R is not a simple ring.

Proof. By the hypothesis, R is indecomposable and so R is either semisimple artinian or basic semiperfect by Theorem 2.5. If R is a semisimple artinian ring then R has a Nakayama permutation. Now, we assume that R is not a simple ring. It follows that R is a basic semiperfect ring.

For any $i \in\{1,2, \ldots, n\}$, from the simplicity of $\operatorname{Soc}\left(e_{i} R\right)$, it infers that there exists $\sigma(i) \in\{1,2, \ldots, n\}$ such that $\operatorname{Soc}\left(e_{i} R\right) \cong e_{\sigma(i)} R / e_{\sigma(i)} J(R)$. This map σ is a permutation of $\{1,2, \ldots, n\}$ because $\sigma(i)=\sigma(j)$ implies that $\operatorname{Soc}\left(e_{i} R\right) \cong \operatorname{Soc}\left(e_{j} R\right)$. By the injectivity of $e_{i} R$ and $e_{j} R$, we infer that $e_{i} R \cong e_{j} R$, and so $i=j$ (because the e_{i} are basic $)$. Let $\alpha: e_{\sigma(i)} R / e_{\sigma(i)} J(R) \rightarrow \operatorname{Soc}\left(e_{i} R\right)$ be an isomorphism and $s_{i}=\alpha\left(e_{\sigma(i)}+e_{\sigma(i)} J(R)\right)$. It follows that $s_{i} R=\operatorname{Soc}\left(e_{i} R\right)$ is a minimal right ideal of R. One can check that $J(R)+R\left(1-e_{i}\right) \leq l_{R}\left(s_{i}\right)$. But $R /\left[J(R)+R\left(1-e_{i}\right)\right] \cong R e_{i} / J(R) e_{i}$ is simple, and so $l_{R}\left(s_{i}\right)=J(R)+R\left(1-e_{i}\right)$. It follows that $R s_{i} \cong R e_{i} / J(R) e_{i}$. Now observe that $s_{i}=s_{i} e_{\sigma(i)} \in \operatorname{Soc}\left({ }_{R} R\right) e_{\sigma(i)}=\operatorname{Soc}\left(\operatorname{Re} e_{\sigma(i)}\right)$. We have, from Lemma 2.6, that $\operatorname{Soc}\left(\operatorname{Re} e_{\sigma(i)}\right)$ is simple and obtain that $\operatorname{Soc}\left(\operatorname{Re} e_{\sigma(i)}\right) \cong R e_{i} / J(R) e_{i}$. Thus, R has a Nakayama permutation σ of $\{1,2, \ldots, n\}$.

Next, we suppose that $\sigma(i)=i$ for some $i \in\{1,2, \ldots, n\}$ or $\operatorname{Soc}\left(e_{i} R\right) \cong e_{i} R / e_{i} J(R)$. Assume that $e_{i} R\left(1-e_{i}\right) \neq 0$. Since R is a basic semiperfect ring, there would exist $j \in\{1,2, \ldots, n\}$ with $j \neq i$ such that $e_{i} R e_{j} \neq 0$. Then, there exists a nonzero homomorphism $\beta: e_{j} R \rightarrow e_{i} R$. By [8, Lemma 4.1] and $e_{i} R$ is uniform, we infer that $\operatorname{Im}(\beta)$ is simple. It follows that $\operatorname{Im}(\beta)=\operatorname{Soc}\left(e_{i} R\right)$ and $\operatorname{Ker}(\beta)$ is maximal in $e_{j} R$. Then, $\operatorname{Ker}(\beta)=e_{j} J(R)$ which implies that $e_{j} R / e_{j} J(R) \cong \operatorname{Soc}\left(e_{i} R\right) \cong e_{i} R / e_{i} J(R)$. From this, it immediately infers that $e_{i} R \cong e_{j} R$, a contradiction. It is shown that $e_{i} R\left(1-e_{i}\right)=0$. Similarly, we have $\left(1-e_{i}\right) R e_{i}=0$. In fact, if $\left(1-e_{i}\right) R e_{i} \neq 0$, then $e_{k} R e_{i} \neq 0$ for some $k \in\{1,2, \ldots, n\}$ with $k \neq i$. By the above similar proof, we infer that $\operatorname{Soc}\left(e_{i} R\right) \cong e_{i} R / e_{i} J(R) \cong \operatorname{Soc}\left(e_{k} R\right)$. By the injectivity of $e_{i} R$ and $e_{k} R$, we have $e_{i} R \cong e_{k} R$ which is impossible. It is shown that e_{i} is central, a contradiction. We deduce that $\sigma(i) \neq i$ for all $i=1,2, \ldots, n$.

Lemma 2.12. Let R be an indecomposable ring not simple with non-trivial idempotents. Then, $e_{i} R e_{i}$ is a division ring for any $i \in\{1,2, \ldots, n\}$.

Proof. By the hypothesis, R is a basic semiperfect ring and $1=e_{1}+e_{2}+\cdots+e_{n}$. For any $i \in\{1,2, \ldots, n\}$, there exists $j \neq i$ with $j \in\{1,2, \ldots, n\}$ such that $e_{i} R e_{j} \neq 0$ by Lemma 2.11. Suppose that $e_{i} R\left(1-e_{i}\right)=0$. Then, $e_{i} R\left(\sum_{k \neq i}^{n} e_{k}\right)=0$ which implies that $e_{i} R e_{j}=0$, a contradiction. Thus, $e_{i} R\left(1-e_{i}\right) \neq 0$. Next, we show that $e_{i} J(R) e_{i}=0$. We have $e_{i} R\left(1-e_{i}\right) \subset \operatorname{Soc}(e R)$ by Lemma 2.10, and so $e_{i} R\left(1-e_{i}\right)=\operatorname{Soc}\left(e_{i} R\right)\left(1-e_{i}\right)$. Now, we show that $e_{i} J(R) e_{i}$ is a submodule of $e_{i} R$. Since R is right automorphism-invariant, $J(R)=\left\{a \in R: r_{R}(a) \leq^{e} R_{R}\right\}$
by [5, Proposition 1] and so $J(R) \operatorname{Soc}\left(e_{i} R\right)=0$. Now $\left(e_{i} J(R) e_{i}\right) \operatorname{Soc}\left(e_{i} R\right)=e_{i} J(R) \operatorname{Soc}\left(e_{i} R\right)=0$ which implies $\left(e_{i} J(R) e_{i}\right)\left(e_{i} R\left(1-e_{i}\right)\right)=0$. On the other hand, we have

$$
e_{i} J(R) e_{i} R=e_{i} J(R) e_{i}\left(R e_{i}+R\left(1-e_{i}\right)\right)=e_{i} J(R) e_{i} R e_{i} \subset e_{i} J(R) e_{i} .
$$

Hence $e_{i} J(R) e_{i}$ is an R-submodule of $e_{i} R$. Since $\operatorname{Soc}\left(e_{i} R\right)$ is simple, we have $e_{i} J(R) e_{i} \cap \operatorname{Soc}\left(e_{i} R\right)=0$ or $\operatorname{Soc}\left(e_{i} R\right) \leq e_{i} J(R) e_{i}$. Suppose $\operatorname{Soc}\left(e_{i} R\right) \leq e_{i} J(R) e_{i}$. Then $e_{i} R\left(1-e_{i}\right)=\operatorname{Soc}\left(e_{i} R\right)\left(1-e_{i}\right) \leq e_{i} J(R) e_{i}\left(1-e_{i}\right)=0$, a contradiction. It follows that $e_{i} J(R) e_{i} \cap \operatorname{Soc}\left(e_{i} R\right)=0$. Thus $e_{i} J(R) e_{i}=0$ because $\operatorname{Soc}\left(e_{i} R\right)$ is essential in $e_{i} R$. Note that $e_{i} R e_{i} \cong \operatorname{End}\left(e_{i} R\right)$ is a local ring. We deduce that $e_{i} R e_{i}$ is a division ring.

Theorem 2.13. If R is an indecomposable (as ring) ring not simple with non-trivial idempotents, then R is a $Q F$-ring.
Proof. By Lemma 2.6 and the hypothesis, R is a basic semiperfect right self-injective ring and $\operatorname{Soc}\left(R_{R}\right)$ is an artinian right R-module. We have a decomposition $R=e_{1} R \oplus e_{2} R \oplus \cdots \oplus e_{n} R$. Then

$$
R=\sum_{i=1}^{n} e_{i} R e_{i}+\sum_{i \neq j}^{n} e_{i} R e_{j}
$$

Note that $e_{i} R e_{j} \subseteq \operatorname{Soc}\left(R_{R}\right)$ for all $i \neq j$ by Lemma 2.10. We consider the following mapping

$$
\phi: R / \operatorname{Soc}\left(R_{R}\right) \rightarrow \bigoplus_{i=1}^{n} e_{i} R e_{i}
$$

via $\phi\left(\sum_{i=1}^{n} e_{i} r_{i} e_{i}\right)+\operatorname{Soc}\left(R_{R}\right)=\sum_{i=1}^{n} e_{i} r_{i} e_{i}$ We show that ϕ is an isomorphism. If $\sum_{i=1}^{n} e_{i} r_{i} e_{i} \in S$, then $e_{i} r_{i} e_{i} \in e_{i} S e_{i}$ for all $i=1,2, \ldots, n$. Since $e_{i} J(R)$ is the unique maximal submodule of $e_{i} R, e_{i} \operatorname{Soc}\left(R_{R}\right) \leq e_{i} J(R)$, and so $e_{i} r_{i} e_{i} \in e_{i} J(R) e_{i}$. Note that $e_{i} J(R) e_{i}=0$ by Lemma 2.12. It shows that ϕ is a mapping. One can check that ϕ is a ring homomorphism. Moreover, ϕ is a bijection, and so ϕ is a ring isomorphism. It shows that $R / \operatorname{Soc}\left(R_{R}\right)$ is a semisimple artinian ring. We deduce that R is a right artinian ring, and so R is QF .

Corollary 2.14. Let R be an indecomposable (as ring) ring not simple with non-trivial idempotents. Then, the following conditions are equivalent:
(1) R is a right q-ring.
(2) R is a right fq-ring.
(3) R is a right a-ring.
(4) R is a right fa-ring.
(5) $e R f \subseteq \operatorname{Soc}\left(R_{R}\right)$ for each pair e, f of orthogonal idempotents of R.
(6) R is an $Q F$-ring.

Proof. (1) $\Rightarrow(2),(3) ;(2) \Rightarrow(4)$ and $(3) \Rightarrow(4)$ are obvious.
$(4) \Rightarrow(5)$ by Lemma 2.10.
(5) \Rightarrow (6). By Theorem $2 \cdot 13, R$ is a basic semiperfect QF-ring.
$(6) \Rightarrow(1)$. Since R is QF , it follows that R_{R} is injective cogenerator. Thus, R is a right q-ring by [4, Theorem 2.9].

3. The automorphism-invariance of formal matrix rings

Let R and S be two rings and M be an $R-S$-bimodule and N be a $S-R$-bimodule. Take the set of matrices

$$
K=\left(\begin{array}{cc}
R & M \\
N & S
\end{array}\right)=\left\{\left.\left(\begin{array}{cc}
r & m \\
n & s
\end{array}\right) \right\rvert\, r \in R, s \in S, m \in M, n \in N\right\}
$$

Assume that there exist an R-homomorphism $\varphi: M \otimes_{S} N \rightarrow R$ and an S-homomorphism $\psi: N \otimes_{R} M \rightarrow S$ such that

$$
\varphi(m \otimes n) m^{\prime}=m \psi\left(n \otimes m^{\prime}\right), \psi(n \otimes m) n^{\prime}=n \varphi\left(m \otimes n^{\prime}\right)
$$

for all $m, m^{\prime} \in M$ and $n, n^{\prime} \in N$. For convenience in using notations, we can write $\varphi(m \otimes n):=m n$, $\psi(n \otimes m):=n m$ and $M N:=\varphi\left(M \otimes_{S} N\right), N M:=\psi\left(N \otimes_{R} M\right)$.

Then, K is a ring with the addition and multiplication as follows:

$$
\begin{gathered}
\left(\begin{array}{cc}
r & m \\
n & s
\end{array}\right)+\left(\begin{array}{cc}
r^{\prime} & m^{\prime} \\
n^{\prime} & s^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
r+r^{\prime} & m+m^{\prime} \\
n+n^{\prime} & s+s^{\prime}
\end{array}\right) \\
\left(\begin{array}{cc}
r & m \\
n & s
\end{array}\right)\left(\begin{array}{cc}
r^{\prime} & m^{\prime} \\
n^{\prime} & s^{\prime}
\end{array}\right)=\left(\begin{array}{ll}
r r^{\prime}+m n^{\prime} & r m^{\prime}+m s^{\prime} \\
n r^{\prime}+s n^{\prime} & n m^{\prime}+s s^{\prime}
\end{array}\right)
\end{gathered}
$$

The ring K is called a formal matrix ring or generalized matrix rings (see [11] or [13]). It is well-known that the category of right K-module Mod- K is equivalent to the category $\mathcal{A}(K)$ of objects (X, Y, f, g), where X is a right R-module, Y is a right S-module, $f: X \otimes_{R} M \rightarrow Y$ is an S-homomorphism and $g: Y \otimes_{S} N \rightarrow X$ is an R-homomorphism. The right K-module (X, Y, f, g) is the additive group $X \oplus Y$ with right K-action given by

$$
(x y)\left(\begin{array}{lc}
r & m \\
n & s
\end{array}\right)=(x r+g(y \otimes n), f(x \otimes m)+y s)
$$

such that the following diagrams are commutative

where $\mu: X \otimes_{R} R \rightarrow X$ and $v: Y \otimes_{S} S \rightarrow Y$ are canonical isomorphisms.
Next, we consider homomorphisms of K-modules. Let $\left(X_{1}, Y_{1}, f_{1}, g_{1}\right)$ and ($X_{2}, Y_{2}, f_{2}, g_{2}$) be right K modules. A right K-homomorphism $\varphi:\left(X_{1}, Y_{1}, f_{1}, g_{1}\right) \rightarrow\left(X_{2}, Y_{2}, f_{2}, g_{2}\right)$ is a pair $\left(\varphi_{1}, \varphi_{2}\right)$ where $\varphi_{1}: X_{1} \rightarrow X_{2}$ is an R-homomorphism and $\varphi_{2}: Y_{1} \rightarrow Y_{2}$ is an S-homomorphism such that the following diagrams are commutative

Note that a K-homomorphism $\varphi=\left(\varphi_{1}, \varphi_{2}\right):\left(X_{1}, Y_{1}, f_{1}, g_{1}\right) \rightarrow\left(X_{2}, Y_{2}, f_{2}, g_{2}\right)$ is a monomorphism (epimorphism, resp.) if and only if φ_{1} and φ_{2} are monomorphisms (epimorphisms, resp.).

A submodule of a right K-module (X, Y, f, g) is a quadrupe ($X_{0}, Y_{0}, f_{0}, g_{0}$), where $X_{0} \leq X_{R}, Y_{0} \leq Y_{S}$ such that the following diagrams are commutative.

with $\iota_{1}: X_{0} \rightarrow X, \iota_{2}: Y_{0} \rightarrow Y$ the inclusion maps. This is equivalent $X_{0} M \subseteq Y_{0}$ and $Y_{0} N \subseteq X_{0}$.
Let $K=\left(\begin{array}{cc}R & M \\ N & S\end{array}\right)$ and X be a right R-module. Denote by $H(X)=\operatorname{Hom}_{R}(N, X)$. We consider the following homomorphisms

$$
\begin{aligned}
u_{X}: X \otimes_{R} M & \longrightarrow \operatorname{Hom}_{R}(N, X) \\
x \otimes m & \longmapsto u(x \otimes m): N \rightarrow X \\
n & \mapsto u(x \otimes m)(n)=x(m n)
\end{aligned}
$$

and

$$
\begin{aligned}
v_{X}: \operatorname{Hom}_{R}(N, X) \otimes_{S} N & \longrightarrow X \\
\alpha \otimes n & \longmapsto \alpha(n)
\end{aligned}
$$

One can check that $\left(X, H(X), u_{X}, v_{X}\right)$ is a right K-module. Similarly, we also have that $\left(H(Y), Y, v_{Y}, u_{Y}\right)$ is a right K-module for all right S-module Y with $H(Y)=\operatorname{Hom}_{S}(M, Y)$ and $v_{Y}: H(Y) \otimes_{R} M \rightarrow Y$ and $u_{Y}: Y \otimes_{S} N \rightarrow H(Y)$.

Let (X, Y, f, g) be a right K-module. Then, we have the following R-homomorphism

$$
\left.\begin{array}{rl}
\tilde{f}: X & \longrightarrow \operatorname{Hom}_{S}(M, Y)=H(Y) \\
x & \longmapsto \tilde{f}(x): M
\end{array}\right) Y\left(\begin{array}{rl}
& \mapsto \tilde{f}(x)(m)=f(x \otimes m)
\end{array}\right.
$$

and S-homomorphism

$$
\begin{aligned}
\tilde{g}: Y & \longrightarrow \operatorname{Hom}_{S}(N, X)=H(X) \\
y & \longmapsto \tilde{g}(y): N
\end{aligned} \begin{aligned}
& \rightarrow X \\
& \mapsto \tilde{g}(y)(n)=g(y \otimes n)
\end{aligned}
$$

Theorem 3.1. Let $K=\left(\begin{array}{cc}R & M \\ N & S\end{array}\right)$ and (X, Y, f, g) be a right K-module. Assume that \tilde{f} and \tilde{g} are isomorphisms. Then the following conditions are equivalent:
(1) (X, Y, f, g) is an automorphism-invariant right K-module.
(2) (a) X is an automorphism-invariant right R-module.
(b) Y is an automorphism-invariant right S-module.

Proof. (2) \Rightarrow (1). By Lemma 2.3 in [13], there exist isomorphisms $\tilde{\mu}: E(X) \rightarrow \operatorname{Hom}_{S}(M, E(Y))$ and $\tilde{\eta}:$ $E(Y) \rightarrow \operatorname{Hom}_{R}\left(N, E(X)\right.$ such that $(E(X), E(Y), \mu, \eta)$ is the injective envelope of (X, Y, f, g). Let $\varphi=\left(\varphi_{1}, \varphi_{2}\right)$ be an automorphism of $(E(X), E(Y), \mu, \eta)$ then φ_{1} is an R-automorphism of $E(X)$ and φ_{2} is an S-automorphism of $E(Y)$. Since X is an automorphism-invariant right R-module and Y is an automorphism-invariant right S-module, it follows that (X, Y, f, g) is an automorphism-invariant right K-module.
$(1) \Rightarrow(2)$ Assume that (X, Y, f, g) is an automorphism-invariant right K-module. We show that X is an automorphism-invariant right R-module. To prove this, firstly we show that $(X, Y, f, g) \cong\left(X, H(X), u_{X}, v_{X}\right)$. In fact we consider the mapping $\left(1_{X}, \tilde{g}\right):(X, Y, f, g) \rightarrow\left(X, H(X), u_{X}, v_{X}\right)$. Since (X, Y, f, g) is a right K-module, $g \circ\left(f \otimes 1_{N}\right)=\mu \circ\left(1_{X} \otimes \varphi\right)$, where $\mu: X \otimes_{R} R \rightarrow X$ is the canonical isomorphism and $\varphi: M \otimes_{S} N \rightarrow R$ is the multipilication in K. Then, for all $x \in X, m \in M$ and $n \in M$, we have

$$
(\tilde{g} \circ f)(x \otimes m)(n)=g(f(x \otimes m) \otimes n)=\mu\left(1_{X} \otimes \varphi\right)(x \otimes m \otimes n)=x(m n)
$$

and

$$
u_{X}\left(1_{X} \otimes 1_{M}\right)(x \otimes m)(n)=u_{X}(x \otimes m)(n)=x(m n)
$$

It shows that $\tilde{g} \circ f=u_{X} \circ\left(1_{X} \otimes 1_{M}\right)$ and so the following diagram is commutative.

On the other hand, for all $y \in Y$ and $n \in N$, we have

$$
v_{X}\left(\tilde{g} \otimes 1_{N}\right)(y \otimes n)=v_{X}(\tilde{g}(y) \otimes n)=\tilde{g}(y)(n)=g(y \otimes n)=1_{X} g(y \otimes n)
$$

and so $1_{X} \circ g=v_{X} \circ\left(\tilde{g} \otimes 1_{N}\right)$. It means that the following diagram is commutative.

Thus, $\left(1_{X}, \tilde{g}\right):(X, Y, f, g) \rightarrow\left(X, H(X), u_{X}, v_{X}\right)$ is a K-homomorphism. By our assumption, \tilde{g} is an isomorphism, $\left(1_{X}, \tilde{g}\right)$ is an isomorphism. Then,
$\left(X, H(X), u_{X}, v_{X}\right)$ is an automorphism-invariant right K-module.
Now, we show that X is an automorphism-invariant right R-module. Let $\alpha: A \rightarrow X$ be an $R-$ monomorphism. Then, we have that $\left(A, H(A), u_{A}, v_{A}\right)$ is a submodule of $\left(X, H(X), u_{X}, v_{X}\right)$. We consider the mapping $\beta: H(A) \rightarrow H(X)$ via by the relation $\beta(h)(n)=\alpha\left(v_{A}(h \otimes n)\right)$. One can check that β is an S-homomorphism. For all $a \in A, m \in M$ and $n \in M$, we have

$$
\left(\beta \circ u_{A}\right)(a \otimes m)(n)=\alpha\left(v_{A}\left(u_{A}(a \otimes m) \otimes n\right)\right)=\alpha\left(\mu\left(1_{A} \otimes \varphi\right)(a \otimes m \otimes n)\right)=\alpha(a) m n
$$

and

$$
u_{X}\left(\alpha \otimes 1_{M}\right)(a \otimes m)(n)=u_{X}(\alpha(a) \otimes m)(n)=\alpha(a) m n
$$

It shows that $\beta \circ u_{A}=u_{X} \circ\left(\alpha \otimes 1_{M}\right)$ and so the following diagram is commutative.

On the other hand, for all $h \in H(A)$ and $n \in N$, we have

$$
v_{X}\left(\beta \otimes 1_{N}\right)(h \otimes n)=v_{X}(\beta(h) \otimes n)=\beta(h)(n)=\alpha v_{A}(h \otimes n)
$$

and so $\alpha \circ v_{A}=v_{X} \circ\left(\beta \otimes 1_{N}\right)$. It means that the following diagram is commutative.

Thus, $(\alpha, \beta):\left(A, H(A), u_{A}, v_{A}\right) \rightarrow\left(X, H(X), u_{X}, v_{X}\right)$ is a K-monomorphism. Since $\left(X, H(X), u_{X}, v_{X}\right)$ is an automorphism-invariant right K-module, there exists an endomorphism (γ, θ) of $\left(X, H(X), u_{X}, v_{X}\right)$ such that (γ, θ) is an extension of (α, β). Thus, $\gamma: X \rightarrow X$ is an extension of α. We deduce that X is an automorphisminvariant right R-module.

Similarly, we also prove that Y is an automorphism-invariant right S-module.
By [11, Lemma 3.8.1] and Theorem 3.1, we have the following result:
Corollary 3.2. Let $K=\left(\begin{array}{cc}R & M \\ N & S\end{array}\right)$ and (X, Y, f, g) be a right K-module. Assume that $M N=R$ and $N M=S$. Then the following conditions are equivalent:
(1) (X, Y, f, g) is an automorphism-invariant right K-module.
(2) (a) X is an automorphism-invariant right R-module.
(b) Y is an automorphism-invariant right S-module.

Corollary 3.3. Let e be a non-zero idempotent of a ring $R, K=\left(\begin{array}{cc}R & R e \\ e R & e R e\end{array}\right)$ and (X, Y, f, g) be a right K-module. Assume that \tilde{f} and \tilde{g} are isomorphisms. Then (X, Y, f, g) is an automorphism-invariant right K-module if and only if X is an automorphism-invariant right R-module and Y is an automorphism-invariant right eRe-module.

If e is an idempotent of a ring R such that $R e R=R$ then $R \approx e R e$. So in this case, we have:
Corollary 3.4. Let e be an idempotent of a ring R such that $R e R=R$ and $K=\left(\begin{array}{cc}R & R e \\ e R & e R e\end{array}\right)$. Assume that R is a right fa-ring and \tilde{f}, \tilde{g} are isomorphisms. Then $(e R, R e, f, g)$ is an automorphism-invariant right K-module.

Acknowledgment

The authors are grateful to the referee for her/his valuable comments.

References

[1] A.N. Abyzov, T.C. Quynh and A. A. Tuganbaev, Modules that are invariant with respect to automorphisms and idempotent endomorphisms of their hulls and covers, J. Math. Sci., 256 (2021), 235-277.
[2] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, 1992.
[3] S. E. Dickson and K. R. Fuller, Algebras for which every indecompoable right module is invariant in its injective envolope, Pacific J. Math., 31 (1969), 655-658.
[4] D. A. Hill, Semi-perfect q-rings, Math. Ann, 200 (1973), 113-121.
[5] P. A. Guil Asensio, A. K. Srivastava, Automorphism-invariant modules satisfy the exchange property, J. Algebra 388 (2013), 101-106.
[6] S. K. Jain, S. Mohamed, S. Singh, Rings in which every right ideal is quasi-injective, Pacific J. Math., 31 (1969), 73-79.
[7] R.E. Johnson and E.T. Wong, Quasi-injective modules and irreducible rings, J. London Math. Soc., 36 (1961), 260-268.
[8] M. T. Koşan, T. C. Quynh and A. K. Srivastava, Rings with each right ideal automorphism-invariant, J. Pure Appl. Algebra 220 (2016), 1525-1537.
[9] M. T. Koşan, T. C. Quynh, Rings whose (proper) cyclic modules have cyclic automorphism-invariant hulls, Appl. Algebra Engrg. Comm. Comput. 32 (2021), 385-397.
[10] M. T. Koşan, T. C. Quynh, Z. Jan, Kernels of homomorphisms between uniform quasi-injective modules, J. Algebra Appl. 21 (2022), 2250158, 15 pp.
[11] P. Krylov, A. Tuganbaev, Formal Matrices: Algebra and Applications, Springer-Cham, 2017.
[12] T.K. Lee and Y. Zhou, Modules which are invariant under automorphisms of their injective hulls, J. Algebra Appl., 12 (2013), 1250159, 9 pp .
[13] M. Müller, Rings of quotients of generalized matrix rings, Commun. Algebra 15(1987), 1991-2015
[14] W. K. Nicholson, M. F. Yousif, Quasi-Frobenius rings, Cambridge Univ. Press., 2003.
[15] T. C. Quynh, A. N. Abyzov, D. T. Trang, Rings all of whose finitely generated ideals are automorphism-invariant, J. Algebra Appl., 21 (2022) 2250159, 19 pp.
[16] T. C. Quynh, M. T. Koşan, L. V. Thuyet, On automorphism-invariant rings with chain conditions, Vietnam J. Math., 48 (2020), 23-29.
[17] T. C. Quynh and M. T. Koşan, On automorphism-invariant modules, J. Algebra Appl., 14 (2015), no. 5, 1550074 (11 pages).
[18] T. C. Quynh, A. Abyzov, D. D. Tai, Modules which are invariant under nilpotents of their envelopes and covers, J. Algebra Appl., 20 (2021), no. 12, 2150218
[19] T. C. Quynh, A. Abyzov, N.T.T Ha, T. Yildirim, Modules close to the automorphism invariant and coinvariant, J. Algebra Appl. 14 (2019), 19502359.
[20] T. C. Quynh, A. Abyzov, P. Dan, Phan, L. V. Thuyet, Rings characterized via some classes of almost-injective modules, Bull. Iranian Math. Soc. 47 (2021), 1571-1584.
[21] A. K. Srivastava, A. A. Tuganbaev and P. A. Guil Asensio, Invariance of modules under automorphisms of their envelopes and covers, Cambridge University Press-Cambridge, 2021.
[22] A. A. Tuganbaev, Automorphism-Invariant Modules, J. Math. Sci. (N.Y.), 206 (2015), 694-698.

[^0]: 2020 Mathematics Subject Classification. 16D50, 16D70, 16D80, 16 S50.
 Keywords. Automorphism-invariant module; fa-ring, Finite Goldie dimension; Formal matrix ring.
 Received: 30 November 2022; Accepted: 23 June 2023
 Communicated by Dijana Mosić
 The authors acknowledge the support/partial support of the Core Research Program of Hue University, Grant No. NCM.DHH.2020.15. Parts of this paper were written during a stay of the authors in the Vietnam Institute For Advanced Study in Mathematics (VIASM)

 * Corresponding author: Truong Cong Quynh

 Email addresses: lvthuyet@hueuni.edu.vn (Le Van Thuyet), tcquynh@ued.udn.vn (Truong Cong Quynh)

