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Liouville theorems for infinity Laplacian
with gradient and KPP type equation

ANUP BISWAS AND HOANG-HUNG VO1

Abstract. In this paper, we prove new Liouville type results for a nonlinear
equation involving infinity Laplacian with gradient, of the form

Å
�
1uC q.x/ � rujruj2�� C f .x; u/ D 0 in Rd ;

where � 2 Œ0;2ç andÅ�1 is a .3��/-homogeneous operator associated with the in-
finity Laplacian.Under the assumption that lim infjxj!1lims!0f .x;s/=s

3��
>0

and that q is a continuous function vanishing at infinity, we construct a positive
bounded solution to the equation, and iff .x;s/=s3�� is decreasing in s, we further
obtain its uniqueness by improving a sliding method for infinity Laplacian oper-
ators with nonlinear gradient. Otherwise, if lim supjxj!1 supŒı1;ı2ç

f .x; s/ < 0,
then under some suitable additional conditions a nonexistence result holds. To
this aim, we develop novel techniques to overcome the difficulties stemming from
the degeneracy of infinity Laplacian and nonlinearity of the gradient term. Our
approach is based on a new regularity result, a strong maximum principle, and a
Hopf lemma for infinity Laplacian involving gradient and potential. We also con-
struct some examples to illustrate our results. We further investigate some deeper
qualitative properties of the principal eigenvalue of the corresponding nonlinear
operator

Å
�
1uC q.x/ � rujruj2�� C c.x/u

3��
;

with Dirichlet boundary condition in smooth bounded domains, which may be
of independent interest. The results obtained here could be considered as sharp
extensions of the Liouville type results obtained in [1, 2, 11, 24, 48, 52].

Mathematics Subject Classification (2020): 35J60 (primary); 35B65, 35J70
(secondary).

1. Introduction

Infinity Laplacian was first introduced in the pioneering works of G. Aronsson
[4–6] in the 1960s, and this operator appeared while studying absolute minimiz-
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ers in a domain of Rd . Later, infinity Laplacian also found its application in
image processing [19]. In the seminal work [31], R. Jensen employed the the-
ory of viscosity solutions of elliptic equations [25] to establish the equivalence
of absolute minimal Lipschitz extensions (AMLE) and viscosity solutions of the
infinity Laplace equation and then proved the uniqueness of AMLE for the first
time. Since then, it turned out that the theory of viscosity solution is an appro-
priate instrument for the study of infinity Laplacian. Equations involving infin-
ity Laplacian have thus received a lot of attention in the community and became
a subject of intensive research in the theory of partial differential equations. In
the elegant survey [7], Aronsson, Crandall and Juutinen gave a complete and self-
contained exposition of the theory of AMLE (see also [23]). In their celebrated
work using probabilistic methods, Peres, Schramm, Sheffield, and Wilson [49]
showed that the infinity Laplacian also appears in the tug-of-war games, where
two players try to move a token in an open set O toward a favorable spot on
the boundary @O corresponding to a given payoff function g on @O. The nice
works [1,3,12,14,29,33–35,42,43,48,50,51] motivated us to the current study of
the Liouville type result as aforementioned.

Throughout the paper, given � 2 Œ0; 2ç, we define the operator L as follows:

Lu D Å
�
1uC q.x/ � rujruj2��

D 1

jruj�
dX

i;jD1
@xi
u @xixj

u @xj
uC q.x/ � rujruj2��

:

Note that Å�1u becomes the classical infinity Laplacian for � D 0 while it is
the normalized infinity Laplacian for � D 2. We also denote Å01u by Å1u for
simplicity. In the present work, we are interested in the study of Liouville type
results, that is, the existence and nonexistence of positive solutions to the equation

LuC f .x; u/ D 0 in Rd ; (1.1)

with several types of nonlinearity f including identical zero. It should be noted
that this operator is of neither variational nor divergence form (with the exception
of the case � D 2 in the two dimensional space [28]). When � D 2 and q is
Lipschitz continuous, the operator L appears in certain tug-of-war games [41, The-
orem 1.3]. The main goal of this paper is to extend the research in [1, 2, 48, 52] to
a more general equation with a nonlinear gradient and reaction term, for which the
techniques used in the mentioned works cannot be applied.

As is known, the study of Liouville type results is one of the central topics
in the field of partial differential equations because it is not only important for in
understanding many natural phenomena such as spreading, vanishing and transition
(see Berestycki et al. [9, 10]) but also related to the theory of regularity [26, 27, 45,
52]. It is worth mentioning that the best known regularity results to date are C1;˛

regularity, with 0 < ˛ ⌧ 1, for infinity harmonic functions in the plane due
to Evans and Savin [29] and everywhere differentiability in dimensions d � 3
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due to Evans and Smart [30]. Later Lindgren [39] extended the result of [30]
to the inhomogeneous case. Moreover, some sharp Sobolev regularities of jruj˛
have been recently obtained for homogeneous and inhomogeneous infinity Laplace
equations by Koch, Zhang and Zhou in their interesting works [36,37]. As a direct
application of a regularity estimate, a Liouville type result for infinity harmonic
functions was obtained by Savin [52, Theorem 4]. More precisely, he proved that
any infinity harmonic function growing at most linearly at 1, that is,

ju.x/j  C.1C jxj/ for some positive constant C ;

must be linear. Another Liouville type result for infinity Laplacian equation with
strong absorptions has been recently obtained by Araújo, Leitão and Teixeira [1].
Their result asserts that any non-negative viscosity solution to

Å1u D �.uC/ˇ for given � > 0; ˇ 2 Œ0; 3/;

which satisfies the growth condition

u.x/ D o

⇣
jxj 4

3ˇ

⌘
as jxj ! 1;

is necessarily constant. More precisely, if

lim sup
jxj!1

u.x/

jxj 4
3ˇ

<

✓
�.3 � ˇ/4
64.1C ˇ/

◆ 1
3ˇ

;

then u ⌘ 0. Though the elliptic equation involving infinity Laplacian has been
extensively investigated in the recent years, there has been limited work on the
equation involving infinity Laplacian and gradient. We mention that some closely
related works to the current problem are done by Armstrong, Smart and Somer-
sille [2], López-Soriano, Navarro-Climent and Rossi [41], Patrizi [48], and Birin-
delli, Galise, and Ishii [17]. Note that in [17], the authors also proved some results
about existence and nonexistence of viscosity solutions for elliptic equations with
truncated Laplacian and general inhomogeneous term in any strictly convex do-
main, which may also be called the Liouville type result for degenerate equation.
The theory of inhomogeneous infinity Laplacian equations is more recent and del-
icate. In particular, Lu and Wang [42, 43] have first used Perron’s method and the
standard viscosity solution techniques to establish both the existence and unique-
ness of solutions to inhomogeneous infinity Laplace equations of the form

Å
�
1u.x/ D f .x/ x 2 O;

where O ⇢ Rd is a bounded domain and � 2 f0; 2g, with Dirichlet boundary con-
dition, provided f has a constant sign. It is also interesting in the works [42, 43]
that the uniqueness may fail when f is allowed to change sign. It is worth men-
tioning that the evolution equations of homogeneous equations involving infinity
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Laplacian and porous medium have been well investigated in the elegant works of
Portilheiro and Vázquez [50, 51]. Especially in the context of porous medium, the
authors of [50] can transform the original equation to

ut D .m � 1/u 1

jruj2Å1uC jruj2 x 2 O ;

where O ⇢ Rd is a bounded domain and m > 1 is the order of porous medium.
Lastly, we would like to mention the recent interesting work of Li, Nguyen and
Wang [38], who successfully used a comparison principle (for viscosity solutions)
to derive estimates, symmetry properties and Liouville results for solutions to the
class of equations (both degenerate and non-degenerate elliptic included fully non-
linear Yamabe problem) in conformal geometry. Another interesting work that also
considered a gradient term with infinity Laplacian operators is [32]. Symmetry and
overdetermined problems for infinity Laplacian operators are considered in the im-
portant works [18, 21, 22].

Our first contribution in this article comes from our new Liouville type results
and the uniqueness for the non-negative viscosity solution of the equation (1.1) for
a general f , not depending on u. This should be compared with [42, 43] where
uniqueness is established for f >0. Some of the key tools in our analysis are the
new regularity result in Lemma 2.2 and the comparison principle in Theorem 2.3.
Such results were first considered by Crandall, Evans and Gariepy [24] and later
improved by Armstrong, Smart, Somersille [2] for equations involving gradient and
by Mitake and Tran [46] for weakly coupled systems. A strong maximum princi-
ple and Hopf’s lemma, Theorem 2.4, is proved to support the positivity of solution
while its existence, Theorem 2.5, holds without any sign-assumption on f . On
the other hand, as a direct consequence of the regularity result and the comparison
principle, we establish three new Liouville type results (Theorems 2.6-2.9 below).
Recall that the first Liouville property of infinity Laplacian is obtained by Crandall,
Evans and Gariepy [24], which show that any supersolution u of �Å1u D 0 in
Rd , which is bounded below is necessarily constant. We extend this result in Theo-
rem 2.6 by proving that any locally Lipschitz supersolution u, which is bounded be-
low, to

�Å�1uC jruj4�� D 0 in Rd ;

is necessarily constant. Furthermore, in Theorem 2.7, provided q is allowed to
change sign but satisfies certain decay property at infinity, we also find another
Liouville type result establishing that any supersolution, which is bounded below,
to the equation

Å
�
1uC q.x/ � ru.x/jruj2�� D 0 in Rd ;

must be a constant. Our next result, Theorem 2.9, concerns a Liouville type result
for subsolutions of the equation with strong absorption

Å
�
1u.x/C q.x/ � ru.x/jruj2�� C c.x/.uC.x//ˇ D 0 in Rd ;
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for c < 0, provided uC satisfies a suitable growth condition at infinity. This is a
considerable extension of [1, Theorem 4.4], which considered the case of q D 0,
� D 0 and c constant (see Example 2.10 for further discussion). We remark that
another important regularity result near the boundary of the non-coincidence set,
that is, @fu > 0g, obtained in [1, Theorem 4.2] can be deduced using the results of
Section 2.

In the next step, we also study a related principal eigenvalue for the operator

LuC c.x/u
3��

;

with Dirichlet boundary condition in bounded domains and use it to characterize
the validity of the maximum principle. This is actually a preliminary step to con-
struct a subsolution for equation (1.1) in the whole space to be explained below.
However the results can be of independent interest. Some further insightful discus-
sion is given by Remark 4.9.

For the equation (1.1) imposed on Rd , one of the main difficulties, in studying
the existence and nonexistence of positive solution, is how to construct a suitable
pair of sub and supersolutions. Therefore, we need to assume that q.x/ vanishes at
infinity and

lim inf
jxj!1

lim
s!0

f .x; s/

s3�� > 0 D lim
jxj!1

jq.x/j: (1.2)

In fact, this type of condition is inspired by the series of works of Berestycki et
al. [9–11] in the investigation of the spreading phenomena of the transition front.
In particular, Berestycki, Hamel and Rossi [11] considered the semilinear elliptic
equation

trace
�
A.x/D

2
u.x/

�
C q.x/ � ru.x/C f .x; u/ D 0 in Rd ; (1.3)

where f is a Fisher-KPP (for Kolmogorov, Petrovsky and Piskunov) type nonlin-
earity, and established existence and uniqueness of positive bounded solution under
the key assumption

lim inf
jxj!1

�
4˛.x/fs.x; 0/ � jq.x/j2

�
> 0 ;

where ˛.x/ denotes the smallest eigenvalue of the matrix A.x/, provided
infRd ˛.x/ > 0. This condition plays a central role in the construction of a suitable
subsolution [11, Lemma 3.1] and corresponds to our condition (1.2) as q vanishes
at infinity. Also, note that in the degenerate case, i.e., ˛.x/ D 0, intuitively, we
should impose q.x/ ! 0 as jxj ! 1. Therefore, one of the main questions for
our model is: which suitable condition should we impose on the coefficients so that
we can construct a positive solution for equation (1.1)? We successfully solved this
problem by assuming that q vanishes at infinity and (1.2) for the equation (1.1). We
strongly believe that this type of condition is optimal to construct the positive solu-
tion for degenerate equations such as (1.1). In fact, this claim should be compared
with the interesting work of Berestycki, Hamel and Nadirashvili [9, Theorem 1.9]
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in the case trace.A.x/D2
u/ D Åu, q.x/ D q being a constant and f D f .u/ of

Fisher-KPP type. More precisely, the authors in [9] showed that if q > 2

p
f 0.0/

then the solution of the evolution equation corresponding to equation (1.3) con-
verges to zero while if q < 2

p
f 0.0/ then it converges to 1 in the large time, which

is called the vanishing/spreading phenomena. We also emphasize that condition
(1.2) is sharp for existence of a positive solution since we are able to prove, in
the spirit of the vanishing phenomenon as [9, Theorem 1.9], the nonexistence of
positive solutions of equation (1.1) by assuming the reverse condition

lim sup
jxj!1

sup
s2Œı1;ı2ç

f .x; s/ < 0 D lim
jxj!1

jq.x/j; 8ı2 > ı1 > 0: (1.4)

We would like to point out that this conditions are in the spirit of the conditions
used by Nguyen and Vo [47] to obtain the existence and uniqueness of positive
solution for quasilinear elliptic equation in the whole space. However, because of
the lack of variational and linear structure of infinity Laplacian and the presence of
the nonlinear gradient term most of the techniques used in [9–11, 47] cannot apply
in this framework. New ideas must be figured out to deal with the current problems.

The paper is organized as follows: In Section 2, we establish some prelim-
inary results such as a comparison principle, a strong maximum principle and a
Hopf lemma that are used to prove the main results. Here, we also prove some di-
rect Liouville type results without assumptions at infinity on the potential c.x/. In
Section 3, we study the related Dirichlet principal eigenvalue problem, some basic
qualitative properties of the eigenvalue and use them to characterize the maximum
principle. Section 4 is devoted to proofs of the existence, nonexistence and unique-
ness of positive solutions of equation (1.1) and construction of some examples to
illustrate the results.

2. Regularity, maximum principle, and direct Liouville results

In this section we prove the comparison principle, strong maximum principle and
Hopf lemma which will be used throughout this article. We also develop the Liou-
ville type results Theorems 2.6-2.9 in this section.

Let O be a domain in Rd . We denote by Br.x/ the ball of radius r centered
at x and for x D 0 this ball will be denoted by Br . We use the notation u �z '
when ' touches u from above exactly at the point z, i.e., for some open ball Br.z/
around z we have u.x/ < '.x/ for x 2 Br.z/ n fzg and u.z/ D '.z/.

To state the results in a general setting we introduce a Hamiltonian. Let H W
NO ⇥ Rd ! R be a continuous function with the following properties:

✏ H.x; p/  C.1C jpjˇ / for some ˇ 2 .0; 3 � �ç and .p; x/ 2 Rd ⇥ NO;
✏ jH.x; p/ �H.y; p/j  !.jx � yj/.1C jpjˇ / where ! W Œ0;1/ ! Œ0;1/ is a

continuous function with !.0/ D 0.

In this article, we deal with the viscosity solution to the equations of the form

Å
�
1uCH.x;ru/C F.x; u/ D 0 in O; and u D g on @O: (2.1)
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Here F and g are assumed to be continuous. For a symmetric matrix A we define

M.A/ D max
jxjD1

hx;Axi; m.A/ D min
jxjD1

hx;Axi:

Definition 2.1 (Viscosity solution). An upper-semicontinuous (lower-semicon-
tinous) function u on NO is said to be a viscosity subsolution (supersolution) of
(2.1) if the followings statements are satisfied:

(i) u  g on @O (u � g on @O);
(ii) If u �x0

' (' �x0
u ) for some point x0 2 O and a C2 test function ', then

Å
�
1'.x0/CH.x;r'.x0//C F.x0; u.x0// � 0 ;⇣
Å
�
1'.x0/CH.x;r'.x0//C F.x0; u.x0//  0

⌘
I

(iii) For � D 2, if u �x0
' (' �x0

u) and r'.x0/ D 0 then

M.D
2
'.x0//CH.x;r'.x0//C F.x0; u.x0// � 0 ;⇣

m.D
2
'.x0//CH.x;r'.x0//C F.x0; u.x0//  0

⌘
:

We call u a viscosity solution if it is both a sub and a super solution to (2.1).

As well known, one can replace the requirement of strict maximum (or min-
imum) above by non-strict maximum (or minimum). We would also require the
notion of superjet and subjet from [25]. A second order superjet of u at x0 2 O is
defined as

J
2;C
O

u.x0/ D
˚
.r'.x0/;D2

'.x0// W ' is C2 and u � ' has a maximum at x0
 
:

The closure of a superjet is given by

NJ 2;C
O

u.x0/ D
n
.p;X/ 2 Rd ⇥ Sd⇥d W 9 .pn; Xn/ 2 J 2;C

O
u.xn/ such that

.xn; u.xn/; pn; Xn/ ! .x0; u.x0/; p;X/

o
:

Similarly, we can also define the closure of a subjet, denoted by NJ 2;�
O

u. See for
instance, [25] for more details.

Our proof of the comparison principle (Theorem 2.3) uses the following regu-
larity result.

Lemma 2.2. Suppose that u is a bounded solution ofÅ�1u��✓1jrujˇ�✓2juj�✓3
in O for some positive constants ✓i ; i D 1; 2; 3 and ˇ 2 .0; 3��ç. Then u is locally
Lipschitz in O with (local) Lipschitz constant depending on ✓i and kukL1.O/.
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Proof. The idea of the proof is inspired by [44, Lemma 2.2(i)]. Due to Young’s
inequality we may choose ˇ D 3 � � . First we note that if Å�1u � �✓1jrujˇ �
✓2juj � ✓3 in O, then we also have

Å1u � �jruj�
�
✓1jrujˇ C ✓2juj C ✓3

�
;

in O, in viscosity sense. Thus a simple application of Young’s inequality shows
that

Å1u � �
� N✓1jruj3 C N✓2juj 3

3� C N✓3
�
;

in O for some N✓i > 0; i D 1; 2; 3.
Without loss of generality, we may assume that u � 0. Now we choose ˛ > 0

small enough so that ˛kukL1.O/ <
1
2

. Define w.x/ D u.x/C ˛
2
u
2
.x/. A simple

calculation yields that

Å1w D .1C ˛u/
3
Å1uC ˛.1C ˛u/

2jruj4

� .1C ˛u/
3


� N✓1jruj3 � N✓2juj 3

3� � N✓3 C ˛

1C ˛u
jruj4

�
:

Using Minkowski’s inequality, we find that

N✓1jruj3  1

4
. N✓1/4


1C ˛u

˛

�3
C 3

4

˛

1C ˛u
jruj4:

Since 1  1 C ˛u < 2, we find a constant , depending on kukL1.O/;
N✓i ,

i D 1; 2; 3, such that Å1w � � in O. This implies that w is locally Lipschitz
(cf. [44, Lemma 2.2(i)], [14, Theorem 2.4]). The proof now follows by noticing
that u D 1

˛
.
p
1C 2˛w � 1/.

Now we prove a comparison principle in bounded domains. It generalizes the
results in [2, 20].

Theorem 2.3. Let O ⇢ Rd be a bounded domain and c; h1; h2 2 C. NO/. Let
F W R ! R be a continuous, strictly increasing function. Suppose that u 2
USC. NO/ is a bounded subsolution to

Å
�
1uCH.x;ru/C c.x/F.u.x// D h1.x/ in O; (2.2)

and v 2 LSC. NO/ is a bounded supersolution to (2.2) with h1 replaced by h2.
Furthermore, assume that v � u on @O and one of the following holds:

(a) c < 0 in NO and h1 � h2 in NO;
(b) c  0 in NO and h1 > h2 in NO.

Then we have v � u in NO.
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Proof. We suppose by contradiction that M D max NO.u � v/ > 0. Consider

w".x; y/ D u.x/ � v.y/ � 1

4"
jx � yj4 for x; y 2 NO:

Note that the maximum of w" (say, M") is bigger than M for all ". Let .x"; y"/ 2
O ⇥ O be a point of maximum for w". It is then standard to show that (cf. [25,
Lemma 3.1])

lim
"!0

M" D M; lim
"!0

1

4"
jx" � y"j4 D 0:

This of course, implies that u.x"/ � v.y"/ & M , as " ! 0. Again, since the
maximizer can not move towards the boundary we can find a subset O1 b O such
that x"; y" 2 O1 for all " small. Since u; v are Lipschitz continuous in O1, by
Lemma 2.2, we can find a constant L such that

ju.z1/ � u.z2/j C jv.z1/ � v.z2/j  Ljz1 � z2j z1; z2 2 O1:

Observing

u.x"/ � v.x"/  u.x"/ � v.y"/ � 1

4"
jx" � y"j4;

we obtain
jx" � y"j3  4"L: (2.3)

Set ⌘" D 1
"
jx" � y"j2.x" � y"/ and ✓".x; y/ D 1

4"
jx � yj4. It then follows from

[25, Theorem 3.2] that for some X; Y 2 Sd⇥d we have .⌘"; X/ 2 NJ 2;C
O

u.x"/,
.⌘"; Y / 2 NJ 2;�

O
v.y"/ and
✓
X 0

0 �Y

◆
 D

2
✓".x"; y"/C "

⇥
D
2
✓".x"; y"/

⇤2
: (2.4)

In particular, we get X  Y . Moreover, if ⌘" D 0, we have x" D y". Then
from (2.4) it follows that ✓

X 0

0 �Y

◆

✓
0 0

0 0

◆
: (2.5)

In particular, (2.5) implies that X  0  Y and therefore, M.X/  0  m.Y /.
Applying the definition of superjet and subjet we now obtain for ⌘" ¤ 0

h1.x"/  j⌘"j�� h⌘"X; ⌘"i C c.x"/F.u.x"//CH.x"; ⌘"/

 j⌘"j�� h⌘"Y; ⌘"i C c.x"/F.u.x"//CH.x"; ⌘"/

 h2.y"/ � c.y"/F.v.y"//C c.x"/F.u.x"//CH.x"; ⌘"/ �H.y"; ⌘"/
 h2.y"/C F.v.y"//.c.x"/ � c.y"//

C


min
NO
c

�
.F.u.x"// � F.v.y"///C !.jx" � y"j/

�
1C j⌘"jˇ

�
:
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Letting " ! 0 and using (2.3), we find

Œmin
NO
cç sup

s2Œ�kvkL1.O/;kvkL1.O/ç

.F.s CM/ � F.s//C max
NO
.h2 � h1/ � 0 :

This is a contradiction to (a) and (b) and thus we prove that u  v in O. The
argument also works when ⌘" D 0 and � D 2. The result then follows.

Next we prove a strong maximum principle and a Hopf lemma.

Theorem 2.4 (Strong maximum principle). Let O be a bounded domain and q,
c continuous functions in NO. If v 2 LSC.O/ is a non-negative viscosity superso-
lution of

Å
�
1v C q.x/ � rv.x/jrv.x/j2�� C c.x/v

3��
.x/ D 0; x 2 O ; (2.6)

then either v ⌘ 0 or v > 0 in O. Furthermore, assume that O satisfies an interior
sphere condition and v.x/ > v.z/ D 0 for all x 2 O and some z 2 @O. Then for
some constant ⌫ > 0 we have

v.x/ � ⌫.r � jx � x0j/; for x 2 Br.x0/; (2.7)

where Br.x0/ ⇢ O is a ball touching the point z.

Proof. Note that without any loss of generality we may assume that c < 0 in NO.
Suppose that v  0 in O. We show that v > 0 in O. On the contrary, suppose
that there exists .x0; r/ 2 O ⇥ .0;1/ such that B2r.x0/ b O, v > 0 in Br.x0/

and v.z/ D 0 for some z satisfying jx0 � zj D r . For simplicity we also assume
that x0 D 0. Now we construct a test function using the ideas from [48]. Let
u.x/ D e

�˛jxj � e�˛r . Then u > 0 in Br.0/. A straightforward calculation shows
that for r

2
 x  r we have

Å
�
1u.x/C q.x/ � ru.x/jru.x/j2�� C c.x/u

3��
.x/

� e�˛.3��/jxj

˛
4���kqkL1.B2r /˛

3���kckL1.B2r /

⇣
1�e�˛.r�jxj/

⌘3���

>0

(2.8)

if we choose ˛ large enough. Now choose  small enough so that u  v on
@B r

2
. This is possible since v is positive on @B r

2
. Thus by Theorem 2.3 we get

v.x/ � u.x/ for r=2  jxj  r . On the other hand, u  0  v in B2r n Br .
Thus u �z v and v.z/ D 0. By the definition of viscosity solution we must have

Å
�
1.u/.z/C q.z/ � .ru/.z/jru.z/j2�� C c.z/v

3��
.z/  0 ;

which is a contradiction to (2.8). Therefore, we must have v > 0 in�. This proves
the first part of the theorem.

Also, (2.7) follows by repeating the above argument and using the fact that
for any a > 0 there exists  > 0 satisfying 1 � e

�s � s for all s 2 Œ0; aç. This
completes the proof.

Now we are ready to prove an existence result suited for our purpose:
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Theorem 2.5. Let O ⇢ Rd be a bounded C1 domain. Suppose that c; h; q 2 C. NO/
and g 2 C.@O/. Also, assume that c < 0 in NO. Suppose that Nu 2 C. NO/ is a
supersolution and u 2 C. NO/ is a subsolution to

Å
�
1uC q.x/ � ru.x/jru.x/j2�� C c.x/u

3��
.x/ D h.x/ in O ;

u D g on @O ;
(2.9)

with Nu � u � 0. We also assume that u D g on @O. Then equation (2.9) admits a
unique solution u satisfying Nu � u � u � 0 in NO.

Proof. The uniqueness follows from Theorem 2.3. The existence follows from
standard Perron’s method and the construction of an appropriate barrier function at
the boundary. We sketch a proof here for completeness. Let

A D
˚
 2 LSC. NO/ W  is a supersolution to (2.9) and   Nu

 
:

This represents the collection of all supersolutions below Nu. Letv.x/D inf 2A .x/

and
v⇤.x/ D lim

r!0
inffv.y/ W y 2 NO; jx � yj  rg

be the LSC envelope of v (cf. [25, page 22]). Keep in mind that by definition of
supersolution, v � g on @O. We claim that v⇤ 2 A which would then imply
v D v⇤. By Lemma 2.2 it follows that v is locally Lipschitz continuous in O. Now
suppose that v⇤ is not a supersolution. Suppose that for some ' 2 C2.O/ we have
' �x0

v⇤ for some x0 2 O and

Å
�
1'.x0/C q.x0/ � r'.x0/jr'.x0/j2�� C c.x/'

3��
.x0/ > h.x0/:

Using continuity we can find a ball B.x0/ around x0 satisfying

Å
�
1'.x/Cq.x/�r'.x/jr'.x/j2��Cc.x/'3��

.x/ > h.x/ in B.x0/: (2.10)

Now, for every " > 0 we can find a pair . "; x"/ 2 A ⇥ B.x0/ satisfying

 ".x"/ � '.x"/ D inf
B.x0/

. " � '/ < ":

Note that x" ! x0 as " ! 0. Also, ' C  ".x"/ � '.x"/ touches  " at x" from
below. Thus by the definition of supersolution we must have

Å
�
1'.x"/C q.x"/ � r'.x"/jr'.x"/j2�� C c.x"/ 

3��
" .x"/  h.x"/;

and letting " ! 0, we obtain a contradiction to (2.10). To complete the claim it
remains to show that v⇤ � g on @O. This follows from the fact that  � u for all
 2 A, by Theorem 2.3. Thus, v � u and v⇤ � g on @O.

It is also standard to show that v is a subsolution in O. For instance, we
can follow the arguments in [42, Theorem 1]. To complete the proof we must
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check that limx2O!z v.x/ D g.z/ for all z 2 O. Pick z 2 @O. We consider a
continuous extension of g to Rd . For a given " > 0 we choose r > 0 such that
jg.x/�g.z/j  " for x 2 Br.z/. We construct a barrier now. Fix any r1 2 .0; r^1/
and define the function �.x/ D .jxj˛ � r

˛
1 / for ˛ 2 .0; 1/. A direct calculation

yields

Å
�
1�.x/C kqkL1.O/jr�.x/j3�� D ˛

3�� jxj.3��/˛�4C�
.˛ � 1/

C kqkL1.O/˛
3�� jxj.3��/.˛�1/

for jxj > r1. Since

.3� �/˛� 4C �D3˛� 4� �.˛� 1/ < .3˛� 3/� �.˛� 1/D.3� �/.˛� 1/<0;

we can choose r1; ı > 0 small so that for r1  jxj  r1 C ı we have

Å
�
1.�.x//C kqkL1.O/jr�.x/j3�� C c.x/�.x/  �khkL1.O/;

for some large . If required, we can rotate the domain such that Br1.0/ touches O
from outside at z. Letw D minfg.z/C"C�; Nug. Then this is also a supersolution,
and thus v  w in O which gives us limx!z v.x/  w.z/  g.z/ C ". The
arbitrariness of " confirms the proof.

We end this section with three Liouville type results. Recall that the original
Liouville property of infinity Laplacian is that any supersolution u of �Å1u D 0

in Rd , which is bounded below is necessarily constant [15, 16, 24, 40]. We extend
this result in Theorem 2.6 and 2.7 below. The proofs of these results are intrinsi-
cally based on Theorem 2.3.

Theorem 2.6 (Liouville property I). If u is a locally Lipschitz viscosity solution
to Å�1u � cjruj4��  0 in Rd , where c � 0 and infRd u > �1, then u is
necessarily a constant.

Proof. Let ✓".x/ D jxj˛
"˛ for ˛ 2 .�1; 0/. Then a direct calculation shows that for

jxj > 0
Å1✓" � jr✓"j4 D ˛

3
"

�3˛jxj3˛�4�
˛ � 1C "

�˛jxj˛
�
:

Thus for jxj � " we have Å1✓" � jr✓"j4 > 0, since ˛ < 0. Hence, we have

Å1✓" � jr✓"j4 > 0 in B
c
" .0/:

It is easily seen that
Å1u � cjruj4  0:

If c D 0, then it becomes the standard Liouville property for super-harmonic func-
tions. So we assume that c > 0. Without loss of generality we may assume that
c D 1. Otherwise, replace u by cu. Also, by translating u we may assume that
infu D 1

2
. We need to show that u ⌘ 1

2
. Suppose, on the contrary, that there



LIOUVILLE THEOREMS FOR INFINITY LAPLACIAN 1235

exists a point x0 satisfying 1
2
< u.x0/ < 1. Without loss of generality we may

assume x0 D 0. Let m" D minB"
u. It is evident that for all " small we have

1
2
< m" < 1. For some large R consider the domain OR D BR n B". Since

✓".x/ ! 0 as jxj ! 1, it follows that u � m"✓" on @OR. Applying Theorem 2.3
we find that u � m"✓" in OR (note that the value of � is not important in Theo-
rem 2.3 if the solutions are locally Lipschitz and the same proof works since ✓" is
a strict subsolution). Now letting R ! 1 we obtain that u � m"✓" in Bc" for all
˛ < 0. Let ˛ ! 0 to find that u.x/ � m" for any jxj � ". This of course, implies
that infRd u � m" >

1
2

which is a contradiction. Hence, the proof is complete.

Our next Liouville result includes q with a certain decay rate at infinity. This
function should be seen as the small perturbation to the infinity Laplacian.

Theorem 2.7 (Liouville property II). Suppose that

lim sup
jxj!1

.q.x/ � x/C < 1:

Then every solution u to Å�1u C q.x/ � ru.x/jru.x/j2��  0 in Rd , with
infRd u > �1, is necessarily a constant.

Proof. As earlier, we can write

Å1uC q.x/ � ru.x/jru.x/j2  0 in Rd :

We claim that there exists a compact set K such that

inf
Rd
u D min

K
u : (2.11)

Let us first show that the claim (2.11) implies u to be a constant. By (2.11), the
function v.x/ D u.x/ � minK u is a non-negative solution to

Å1v C q.x/ � rv.x/jrv.x/j2  0 in Rd ;

and v vanishes somewhere in K. Applying Theorem 2.4 we obtain that v ⌘ 0 and
therefore, u is a constant.

Now we prove the claim (2.11). By translating u we may assume that u � 1

in Rd . LetK (containing 0 in the interior) be such that .q.x/ �x/C < 1 for x 2 Kc .
Let ✓˛.x/ D jxj˛ for ˛ 2 .�1; 0/. A routine calculation reveals that for x 2 Kc

Å1✓ C q.x/ � r✓.x/jr✓.x/j2

D˛
3
.˛ � 1/jxj3˛�4 C ˛

3
q.x/ � xjxj3˛�4

D˛
3jxj3˛�4

..˛ � 1/C q.x/ � x/
D˛

3jxj3˛�4
.˛ C ..q.x/ � x/C � 1/ � .q.x/ � x/�/ > 0 :

Thus, for all large R, we have u � ŒminK uçı˛ ✓˛ in BR n K, by Theorem 2.3,
where ı˛ D Œmax@K ✓˛ç�1. Letting R ! 1 we get u.x/ � ŒminK uçı˛ ✓˛.x/ for
x 2 Kc and ˛ < 0. Now let ˛ ! 0 to conclude (2.11).
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Remark 2.8. The decay of q in the above Liouville property seems optimal. For
example, take q.x/ D 4x

1Cx2 and let u.x/ D 1
1Cx2 for x 2 R. Then a straightfor-

ward calculation reveals

Å1uC q.x/.u
0
/
3 D � 8x

2

.1C x2/6
 0 in Rd :

Note that limjxj!1.q.x/ � x/C D 4.

The next Liouville result generalizes [1, Theorem 4.4].

Theorem 2.9 (Liouville III). Suppose that V W Rd ! Œ0;1/ is a locally Lipschitz
function with lim infjxj!1 V.x/ > 0 and satisfies

Å
�
1V C q.x/ � rV.x/jrV j2�� C c.x/V

ˇ
.x/  0 in Rd ; (2.12)

where c < 0 is a continuous function and ˇ 2 .0; 3 � �ç. Let u 2 C.Rd / be a
function satisfying

Å
�
1u.x/C q.x/ � ru.x/jruj2�� C c.x/.uC.x//ˇ � 0 in Rd : (2.13)

If we have

lim
jxj!1

uC.x/
V.x/

D 0 ; (2.14)

then u  0 .in particular, if u � 0, then u ⌘ 0/. In addition, if we also assume
that

lim sup
jxj!1

.q.x/ � x/C < 1;

then u is a constant.

Proof. For  2 .0; 1ç, we define V.x/ D V . Since c < 0 and ˇ 2 .0; 3 � �ç it
follows from (2.12) that

Å
�
1V C q.x/ � rV.x/jrV j2�� C c.x/V

ˇ
 .x/  0 in Rd : (2.15)

Now using (2.14) we can find R0 > 0 such that u  Vk on BR for every R � R0.
Then, by the proof of Theorem 2.3, and (2.13) and (2.15), it follows that u  Vk

in BR for all R � R0. Letting R ! 1, we obtain u  V for all  2 .0; 1ç. The
first part follows by letting  ! 0.

For the second part, we observe that Qu D � minfu; 0g satisfies

Å
�
1 QuC q.x/ � r Qu.x/jr Quj2��  0 in Rd :

Therefore, the result follows from Theorem 2.7.

We remark that the case � D 0 and q ⌘ 0 corresponds to [1, Theorem 4.4].
Below we give a family of operators satisfying (2.12).
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Example 2.10. Let � 2 Œ0; 2ç and ˇ 2 .0; 3 � �ç. Fix ˛ D 4��
3���ˇ > 1 and

V.x/ D jxj˛ . From the computations in the proof of Theorem 2.7, it follows that

Å
�
1V.x/C q.x/ � rV.x/jrV.x/j2��

D˛
3��

.˛ � 1/jxj3˛�4��.˛�1/ C ˛
3��

q.x/ � xjxj3˛�4��.˛�1/

 jxj˛ˇ˛3��
..˛ � 1/C .q.x/ � x/C/:

Letting �c.x/ � ˛
3��

..˛ � 1/C .q.x/ � x/C/ it follows from above that

Å
�
1V.x/C q.x/ � rV.x/jrV.x/j2�� C c.x/V

ˇ
.x/  0 in Rd :

Since rV.0/ D 0, it is straightforward to check that V is a solution to the above
equation for � 2 Œ0; 2/. For � D 2, we note that ˛ > 2, and therefore, for any
' �0 V we have D2

'.0/  0. Thus m.D2
'.0//  0, implying V to be a solution

to the above inequality.

3. Dirichlet principal eigenvalue problem

Let O be a bounded C1 domain. The goal of this section is to prove the existence
of a principal eigenfunction and other related properties. The functions q; c are
assumed to be continuous in NO. We denote by L the operator

L'.x/ D Å
�
1'.x/C q.x/ � r'.x/jr'.x/j2��

:

The principal eigenvalue of L C c is defined as follows

�O D sup
n
� 2 R W 9 ' 2 C. NO/ satisfying L' C c.x/'

3�� C �'
3��  0

in O; and min
NO
' > 0

o
:

Remark 3.1. It should be noted that the definition of principal eigenvalue is dif-
ferent from the one appeared in [8]. In the above we consider only those super-
solutions that are positive in NO whereas the class of supersolutions considered
in [8] might vanish on @O. The above definition is similar to the one considered
in [13, 33].

It is clear that �O � �kck1. Lemma 3.4 below shows that �O is finite. Our
goal is to prove the existence of an eigenfunction associated with �O. To do so, we
need some intermediate results. The first one is about the boundary behavior.

Lemma 3.2. Let h be bounded. Then for any positive solution ofLuCc.x/u3��Dh
that vanishes on @O, we have for any ˛ 2 .0; 1/, that

ju.x/j  C dist˛.x; @O/;

for some constant C , depending on kukL1.O/; ˛. In particular, if kukL1.O/  2,
then the constant C can be chosen independent of u.
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Proof. Suppose kukL1.O/  k 2 .1;1/. Then we note that

Å
�
1uCq.x/ � ru.x/jruj2��C.c.x/ � kkckL1.O//u

3�� �h � k4��kckL1.O/:

Let r0 be the radius of exterior sphere of O. Pick any point z 2 @O. Fix any
r1 2 .0; r0^ 1/ and define the function �.x/ D .jxj˛ � r˛1 / for ˛ 2 .0; 1/. A direct
calculation yields

Å
�
1�.x/C kqkL1.O/jr�.x/j3�� D ˛

3�� jxj.3��/˛�4C�
.˛ � 1/

C kqkL1.O/˛
3�� jxj.3��/.˛�1/

for jxj > r1. Since

.3� �/˛ � 4C�D3˛ � 4� �.˛ � 1/<.3˛ � 3/� �.˛ � 1/D.3� �/.˛ � 1/<0;

we can choose r1; ı > 0 small enough so that for r1  jxj  r1 C ı we have

Å
�
1.�.x//C kqkL1.O/jr�.x/j2�� C

�
c.x/ � kkckL1.O/

�
.�/

3��
.x/

 h � k4kckL1.O/;

for some large . Now  can be chosen large enough to satisfy �.x/ � k for
jxj D r1 C ı. Let Br1.z0/ be the ball that touches O from outside at the point z.
Define Q�.x/ D �.x � z0/ in Br1Cı.z0/. Then by the comparison principle we
have u  Q� in O \ .Br1Cı.z0/ n Br1Cı.z0//: Since z is arbitrary this proves the
result for u. This completes the proof.

Next we prove a maximum principle.

Lemma 3.3. Suppose that � < �O. Then for any solution u of

Lu.x/C c.x/u
3��
C C �u

3��
C � 0

in O with u  0 on @O we must have u  0 in O.

Proof. By definition we can find a �1 2 .�;�O/ and v 2 C. NO/, positive on the
boundary, satisfying

Lv C c.x/v
3�� C �1v

3��  0 in O:

Suppose uC ¤ 0. Let  D maxO
u
v
> 0. Then v touches u from above in O.

We replace v by v in the above. Repeating the arguments of Theorem 2.3, we
can find a point z 2 O with v.z/ D u.z/ > 0 and �u3��

.z/ � �1v
3��

.z/, which
contradicts the choice of �1. The result thus follows.

Now we can show that �O is finite. Due to the monotonicity property with
respect to domains it is enough to show that it is finite over balls.
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Lemma 3.4. Let �R be the principal eigenvalue in BR.0/. Then it holds that
�R < 1.

Proof. Let '.x/ D .e
�kjxj2 � e

�kjRj2
/. We show that for some large k and � we

have

Å
�
1' C q.x/ � r'jr'j2�� C .c.x/C �/'

3��
> 0 in BR.0/:

Then, by Lemma 3.3, it follows that �R  �, which proves the result. A direct
computation yields

Å
�
1' C q.x/ � r'jr'j2�� C .c.x/C �/'

3��

� .2kjxj/4��
e

�.3��/kjxj2 � .2k/3�� jxj2��
e

�.3��/kjxj2

� kqk1.2kjxj/3��
e

�.3��/kjxj2 C .c.x/C �/

⇣
e

�kjxj2 � e�kjRj2
⌘3��

� e
�.3��/kjxj2

h
.2kjxj/4�� � .2k/3�� jxj2�� � kqk1.2kjxj/3��

C .� � kck/
⇣
1 � e�k.jRj2�jxj2/

⌘3��i
:

Now choose k large enough so that for R=2  jxj  R we have

.2kjxj/4�� � .2k/3�� jxj2�� � kqk1.2kjxj/3��
> 0 :

With this choice of k, we choose � > kck large so that for jxj  R=2 we get

.2kjxj/4�� � .2k/3�� jxj2�� � kqk1.2kjxj/3��

C .� � kck/
⇣
1 � e�k.jRj2�jxj2/

⌘3��
> 0:

Note that for � D 2 we have to modify the calculation at x D 0, but the estimate
holds. Combining both cases together we have the result.

Let us now prove a standard existence result.

Lemma 3.5. Let � < �O. Then there exists a positive solution to

LuC c.x/u
3�� C �u

3�� D �1

in O with u D 0 on @O.

Proof. Note that 0 is a subsolution. Also, for any �1 2 .�;�O; / there exists
v 2 C. NO/, positive on the boundary, satisfying

Lv C c.x/v
3�� C �1v

3��  0; in O:
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Thus, for large  > 1, we have

L.v/C c.x/.v/
3��  ��1.v/3�� D ��.v/3�� C .��1 C �/.v/

3��

 ��.v/3�� � 1:

This gives a supersolution. Then existence follows from the monotone iteration
method and the comparison principle in Theorem 2.3. Note that the sequence of
monotone iteration functions converges due to Lemma 2.2 and Lemma 3.2. The
strict positivity follows from the strong maximum principle, Theorem 2.4.

Now we prove the existence of a principal eigenpair.

Theorem 3.6. There exists a positive solution ' of L'Cc.x/'3�� C�O'3�� D 0

in O with ' D 0 on @O.

Proof. Assume ��O is positive, otherwise translate. Let . n;�n/ be a sequence of
solutions from Lemma 3.5 and �n & �O. We claim that k nkL1.O/ is unbounded.
If not, employing Lemma 2.2 and Lemma 3.2, we can find a subsequence of f ng,
converging to  with k kL1.O/ > 0, and

L C c.x/ 
3�� D �1 � �O 3�� in O; and  D 0 on @O:

Again, by Theorem 2.4,  > 0 in O. Note that for  " D  C "

L "Cc.x/ 3��
" �1 � �O 3��CO."/


�1CO."/

max "
� �O

�
 
3��
" �� 3" ;

for some � > �O, provided we choose " small enough. This contradicts the defi-
nition of �O, and confirms the claim. Now define 'n D Œk nkL1.O/ç

�1
 n. Then

use Lemma 2.2 and Lemma 3.2, to pass to the limit and obtain a principal eigen-
function.

Corollary 3.7. In view of the above Theorem 3:6 and Lemma 3:3 we obtain the
following characterization of the principal eigenvalue:

�O D inf
˚
�2R W 9  C ¤0;  0 on @O; and L C c.x/ 

3��
C C � 

3��
C �0

 
:

In view of the above corollary the following result is immediate.

Lemma 3.8. Suppose that �˛ is the principal eigenvalue with respect to the poten-
tial ˛c.x/. Then it holds that lim˛!1 �˛

˛
D � sup

O
c.

Proof. It is obvious from the definition that lim inf˛!1 �˛

˛
� � sup

O
c. So we

only prove the following:

lim sup
˛!1

�˛

˛
 � sup

O

c: (3.1)
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Pick " > 0 and consider a ball B b O such that c.x/ > sup
O
c � " in NB. Let

. Q�B; 'B/ be the principal eigenpair in B for the operator L. Then for large ˛ it
holds that

L'B C ˛c.x/'
3��
B

� � Q�B'3��
B

C ˛

✓
sup
O

c � "
◆
'
3��
B

D .� Q�B C ˛"/'
3��
B

C ˛

✓
sup
O

c � 2"
◆
'
3��
B

� ˛

✓
sup
O

c � 2"
◆
'
3��
B

:

Hence, by Corollary 3.7, we find �˛  �B.˛c/  �˛ .sup
O
c � 2"/ which in turn,

gives

lim sup
˛!1

�˛

˛
 � sup

O

c C 2":

Since " is arbitrary, we get (3.1). Hence, the proof is complete.

Let us also prove a continuity property of �O with respect to decreasing do-
mains.

Lemma 3.9. Let fOng be an exhaustion of O, i.e., On is a smooth bounded domain
with uniform radius of exterior sphere, OnC1 b On and

T
nOn D O. Then we

have �On
! �O.

Proof. Let .�On
; 'n/ be a principal eigenpair obtained in Theorem 3.6. Also, set

k'nk D 1. Since all the domains have a uniform radius of exterior spheres, the
constant C in Lemma 3.2 can be chosen independent of the domains. Therefore,
employing Lemma 2.2 and Lemma 3.2, we can extract a subsequence of 'n con-
verging uniformly to ' with k'k D 1, ' � 0 and

Å
�
1'Cq.x/ � r'jr'j2��C c.x/'

3��C�'3�� D0 in O; and 'D0 on @O;

where � D limn!1 �On
 �O. We also infer, by the strong maximum principle

(Theorem 2.4), that ' > 0 in O. It then follows from Corollary 3.7 that � D �O.
This completes the proof.

4. Bounded positive solutions of Luuu...xxx///CCC fff ...xxx;;; uuu/// DDD 000

The main goal of the section is to prove Theorem 4.1 which gives the existence of
a unique positive solution to LuC f .x; u/ D 0 in Rd . Recall that

L'.x/ D Å
�
1'.x/C q.x/ � r'.x/jr'.x/j2��

:

Throughout this section we make the following assumption on q:

(Q) q W Rd ! Rd is continuous and vanishing at infinity.
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Let f W Rd ⇥ Œ0;1/ ! R be a continuous function with the following properties:

(A1) f W Rd ⇥ Œ0;1/ ! R is continuous and f .x; 0/ D 0. Also, f .x; �/ is locally
Lipschitz in Œ0;1/ uniformly with respect to x;

(A2) For some M > 0 we have f .x;M/  0 in Rd ;
(A3) The limit `.x/ WD lims!0

f .x;s/

s3� exists uniformly with respect to x. More-
over, `.x/ is continuous and satisfies

lim inf
jxj!1

`.x/ > 0 I (4.1)

(A4) For some constant M12.0;M ç we have the following: for any ı2.0;M1/

lim inf
jxj!1

inf
s2.0;M1�ı/

f .x; s/

s3�� > 0; and

lim sup
jxj!1

sup
s2.M1Cı;2M/

f .x; s/

s3�� < 0 I
(4.2)

(A5) (Strict monotonicity) For any 1 > 2 > 0 it holds that

inf
x2Rd

 
f .x; 2/


3��
2

� f .x; 1/


3��
1

!
> 0:

Conditions (A1)-(A3) will be used to establish existence of a positive solution
whereas (A4)-(A5) will be used to prove uniqueness of positive solution. Con-
dition (A4) will be useful to find the asymptotic behaviour of the positive solutions
at infinity.

We also consider another class of f ’s satisfying:

(B1) f W Rd ⇥ Œ0;1/ ! R is continuous and f .x; 0/ D 0. Also, f .x; �/ is locally
Lipschitz in .0;1/ uniformly with respect to x;

(B2) For some M > 0 we have f .x;M/  0 in Rd ;
(B3) For some ˛ 2 .0; 3 � �ç, the limit `.x/ WD lims!0

f .x;s/
s˛ exists and con-

vergence is uniform in x. In particular, `.x/ is continuous. Moreover,
infRd `.x/ > 0;

(B4) For some constant M1 2 .0;M ç we have the following: for any ı 2 .0;M1/

we have

lim inf
jxj!1

inf
s2.0;M1�ı/

f .x; s/

s˛
> 0; and

lim sup
jxj!1

sup
s2.M1Cı;2M/

f .x; s/

s˛
< 0 I

(4.3)

(B5) (Strict monotonicity) For any 1 > 2 > 0 it holds that

inf
x2Rd

 
f .x; 2/


3��
2

� f .x; 1/


3��
1

!
> 0:
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A typical example of such an f would be f .x; s/Ds˛.a.x/�b.x/s4�˛
/where a; b

are bounded,positive continuous functions and limjxj!1 a.x/D1Dlimjxj!1 b.x/,
or f .x; s/ D a.x/s

˛
.1 � s

4�˛
/ for some positive a. The reader may observe that

(B3) implies (A3) with ˛ D 3 � � and (B1) is weaker than (A1).
The nonlinearity f is often referred to as a Fisher-KPP (for Kolmogorov,

Petrovsky and Piskunov) type nonlinearity. This problem is closely related to the
one studied in [9, 11]. The authors in [9, 11] considered the equation

trace
�
a.x/D

2
u.x/

�
C q.x/ � ru.x/C f .x; u/ D 0 in Rd ;

for a Fisher-KPP type nonlinearity f and established existence and uniqueness of
positive solutions. One of the key assumptions imposed on the coefficients is

lim inf
jxj!1

�
4˛.x/fs.x; 0/ � jq.x/j2

�
> 0 ;

where ˛.x/ denotes the smallest eigenvalue of a.x/. This condition plays a key
role in the construction of a suitable subsolution [11, Lemma 3.1]. Since we are
dealing with a degenerate and nonlinear operator, an analogous condition for the
current problem should not be the same as above. However, in that spirit, it is
also interesting to ask that if the equation becomes degenerate, it also forces q to
vanish. In particular, if ˛.x/ tends to 0 at infinity, we have jq.x/j ! 0 at infinity.
This leads to our hypothesis (Q) above. We show in Proposition 4.6 that condition
(Q) is sufficient to construct a subsolution suitable for our purpose.

Our main result of this section is the following:

Theorem 4.1. Under (A1)-(A5) or (B1)-(B5) there exists a unique bounded, posi-
tive solution to

LuC f .x; u/ D 0 in Rd .

Remark 4.2. It is not hard to see that (A3) is crucial for the existence of non-trivial
non-negative solutions. For instance, suppose that f .x; s/ W Rd ⇥ R ! R is such
that

s W .0;1/ 7! f .x; s/

s3
is strictly decreasing, for every x;

and lims!0C
f .x;s/

s3  0 for every x. It then follows that f .x; s/  0 for s � 0.
Thus any bounded, non-negative solution u of Å1u C f .x; u/ D 0 must satisfy
Å1u � 0 and therefore, by the Liouville property [24], we get u to be constant.
This also implies f .x; u/ D 0 and hence, u D 0.

Let us also mention the nonexistence result. The condition (4.4) below implies
that �Rd .L C `/ � 0 and therefore, is consistent with [11, Proposition 6.1]. Also,
condition (Q) is not imposed in the theorem below.

Theorem 4.3. Suppose that for some positive continuous functionVwith infRdV>0

we have
LV C `.x/V

3��  0 in Rd ; (4.4)
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where `.x/ D lims!0
f .x;s/

s3� , uniformly in x. Furthermore, assume that

.0;1/ 3 s 7! f .x; s/

s3��

is strictly decreasing for every x 2 Rd , and for any 0 < ı1  ı2 we have

lim sup
jxj!1

sup
s2Œı1;ı2ç

f .x; s/ < 0 : (4.5)

Then any bounded, non-negative solution to LuC f .x; u/ D 0 must be 0.

Remark 4.4. If lim supjxj!1 `.x/ < 0 and s 7! f .x;s/

s3� is decreasing for every
x 2 Rd , then we have (4.5). In particular, let `.x/  �" for jxj � R" for some
"; R" > 0. For 0 < ı1  ı2, it then follows that

sup
jxj�R"

sup
s2Œı1;ı2ç

f .x; s/

s3��  sup
jxj�R"

 
sup

s2Œı1;ı2ç

f .x; s/

s3�� � f .x; ı1/

ı
3��
1

!
C sup

jxj�R"

f .x; ı1/

ı
3��
1

 sup
jxj�R"

f .x; ı1/

ı
3��
1

 sup
jxj�R"

`.x/  �":

This gives (4.5).

A typical example of f satisfying (4.5) is f .x; s/ D s
3��

.a.x/�b.x/s/ with
limjxj!1 a.x/ < 0 and b positive, vanishing at infinity. The following example
gives the existence of V satisfying (4.4).

Example 4.5.
(a) For `  0 we may take V D 1.

(b) Suppose that q.x/ � x  �jxj for jxj � ✏ > 0 and some  > 0. Take
V.x/ D e

ı✓.x/ where ✓ is a non-negative C2 function satisfying ✓.x/ D jxj for
jxj � ✏. Also, we let ✓ to attain its minimum only at 0 and r✓.x/ ¤ 0 for x ¤ 0.
Then a direct calculation gives us, for x ¤ 0, that

LVDeı.3��/✓.x/ ⇥
ı
3�� jr✓ j��Å1✓C ı

4�� jr✓ j4��C ı
3��

q.x/ � r✓ jr✓ j2��⇤
:

In Bc✏ , we have

LV D V
3��

.x/
⇥
ı
4�� C ı

3��
q.x/ � xjxj�1

⇤
 V

3��
.x/

⇥
ı
4�� � ı3��⇤

:

Fixing ı D =2 it follows from above that

LV 
�
‚✏IB✏

.x/ � ı4���
V
3��

;
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where

‚✏ D sup
B✏

⇥
ı
3�� jr✓ j��Å1✓ C ı

4�� jr✓ j4�� C ı
3��

q.x/ � r✓ jr✓ j2��⇤
:

Thus, if we have ` satisfying

`  �‚✏IB✏
.x/C ı

4��

in Rd , we have (4.4).

The remaining part of this section is devoted to the proofs of Theorems 4.1
and 4.3. We start by constructing a test function which would play a key role in our
analysis.

Proposition 4.6. Assume (Q) above. Then for every ı > 0 there exist R1; R2 > 0

and a smooth function   0 such that for any point jx0j � R1 we have

L�
x0 C ı.�

x0/
3��

> 0 in BR2
.x0/; �

x0 > 0 in BR2
.x0/; and

�
x0 D 0 on @BR2

.x0/;

where �x0.�/ D  .� � x0/. In particular, we have

�BR2
.x0/.L/  ı:

Proof. Fix ı > 0. For some " > 0, we define

 .x/ D exp
✓

� 1

1 � j"xj2
◆
; jxj < "�1

:

Pick R0 such that jq.x/j  " for jxj � R0. We shall fix a choice of " later
depending on ı. Let jzj � R0 C "

�1, and define �z.x/ D �.x/ D  .x � z/ for
x 2 B"1.z/. Then direct calculations give us

Å
�
1� C q.x/ � r�jr�j2�� C ı�

3��

��3��
"

.2"
2jx � zj/4��

.1 � j".x � z/j2/8�� � .2"
2
/
3�� jx � zj2��

.1 � j".x � z/j2/6�� � 2.2"
2
/
4�� jx � zj4��

.1 � j".x � z/j2/7��

� kqkB

.2"
2jx � zj/3��

.1 � j".x � z/j2/6�� C ı

#

� 23�� �
3��

.1�j".x�z/j2/8��

"
2
�
"
2jx�zj

�4���"2.3��/jx�zj2���
1 � j".x � z/j2

�2

� 4"2.4��/jx � zj4���
1 � j".x � z/j2

�

� ""2.3��/jx � zj3���
1 � j".x � z/j2

�2

C ı

23�� .1 � j".x � z/j2/8��
#
:
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Now take ı1 2 .0; 1/ and and consider j".x�z/j2 � .1�ı1/. Since j".x�z/j  1,
we note that 1 � j".x � z/j2  ı1 and

2
�
"
2jx � zj

�4�� � "2.3��/jx � zj2���
1 � j".x � z/j2

�2
� 4"2.4��/jx � zj4���

1 � j".x � z/j2
�
�""2.3��/jx�zj3���

1 � j".x � z/j2
�2

� 2."/4��
.1 � ı1/

4�
2 � "4��

ı
2
1 � 4"4��

ı1 � "4��
ı
2
1

D "
4��

h
2.1 � ı1/

4�
2 � 2ı21 � 4ı1

i
> 0 ;

for ı1 small, uniformly in " 2 .0; 1/. Thus, for 1 � ı1  j".x � z/j2  1, we have

Å
�
1� C q.x/ � r�jr�j2 C ı�

3
> 0:

Now we consider the situation 1 � ı1 > j".x � z/j2. Then, we have .1 � j".x �
z/j2/ > ı1. Therefore, we obtain from the above calculation that

Å
�
1� C q.x/ � r�jr�j2 C ı�

3

� 23�� �
3��

.1 � j".x � z/j2/8��

 
�8"4�� C ıı

8��
1

23��

!
> 0 ;

for " small enough. Thus, with this choice of ", we find that

Å1� C q.x/ � r�jr�j2�� C ı�
3��

> 0 in B"1.z/:

We choose R1 D R0 C "
�1 and R2 D "

�1.
By Corollary 3.7, �B

"1 .z/.L/  ı for any z satisfying jzj � R1 C "
�1. This

completes the proof.

We start by proving an existence result.

Lemma 4.7. Suppose condition (Q) and one of the followings hold:

(a) (A1)-(A3);
(b) (B1)-(B3).

Then there exists a non-trivial non-negative solution of

Lu.x/C f .x; u/ D 0 x 2 Rd :

Proof. First we consider (b). Thanks to Theorem 2.3 and 2.5, we can apply the
monotone iteration method to find a solution. Since f need not be Lipschitz all the
way up to 0, we need to modify the proof a bit. Due to (B3) we can find ✏0; ı > 0

satisfying
inf
Rd
f .x; s/ � 2ıs

˛
; for s  ✏0 : (4.6)
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Now for every " 2 .0; ✏0=2/ we define f".x; s/ D f .x; " C s/. Note that f" is
locally Lipschitz in Œ0;1/. We first find a non-negative non-trivial solution to

Lu" C f".x; u"/ D 0 in Rd : (4.7)

By (B2), the constant function M � " is a supersolution to (4.7). Using Proposi-
tion 4.6, we can find a ball B and a principal eigenpair .';�B/ satisfying

L' C �B'
3�� D 0 in B ;

and �B  ı. Also, normalize ' so that k'k1 D ✏0^1
2

. Then, using (4.6),

L' C f".x; '/ � f .x; "C '/ � �B'3��

� 2ı."C '/
˛ � ı'3��

D 2ı."C '/
˛ � ı'˛ > 0 in B:

Thus we have a subsolution to (4.7) in B. Note that the subsolution vanishes at the
boundary. Denote by Nu D M � ". Let � be large enough to satisfy

� > sup
x2Rd

.Lip.f".x; �// on Œ0;M ç/:

Fix Bn large enough to contain B, and define a sequence of functions fukg as
follows: u1 D Nu, and

LukC1 � �ukC1 D f".x; uk/ � �uk in Bn;

ukC1 D 0 on @Bn:

Existence of solutions follows from the arguments of Theorem 2.5. By Theo-
rem 2.3 it also follows that u1 � u2 � u3 � : : : � 0. Employing the comparison
principle in B we also have uk � ' for all k. Therefore, using Lemma 2.2, we can
pass the to limit for k ! 1 to find a solution to

Lun;" C f".x; un;"/ D 0 in Bn.0/;

with '  un;"  M in Bn.0/. Also, by Lemma 2.2 , we note that the function
un;" is locally Lipschitz uniformly in n; ". Thus, we can extract a subsequence
converging to some u" 2 C.Rd / solving

Lu" C f".x; u"/ D 0 ;

in Rd and '  u"  M in Rd . This gives (4.7). We again use a similar argument
to pass to the limit for " ! 0, and obtain a solution

LuC f .x; u/ D 0;

in Rd and '  u  M in Rd .
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Now we consider (a). In this case the proof is more straightforward since f is
locally Lipschitz in Œ0;1/. We just need to find a positive subsolution in a ball B.
Note that by (4.1) there exists ı > 0 such that

`.x/ > 2ı;

for all jxj � R, for some R. Again, f .x; s/ � .`.x/� ı/s3�� for all x and s  ✏0.
Then applying Proposition 4.6 we can find a ball B b BcR, and and eigenfunction
' with k'k1 2 .0; ✏0=2/ satisfying

L' C f .x; '/ � 0 in B;

giving a positive subsolution in B. Hence, we can repeat the arguments as above to
find a non-trivial, non-negative solution.

The following result shows a strong maximum principle.

Lemma 4.8. Suppose that either (A3) or (B3) holds. If v is a non-negative super-
solution to Lv C f .x; v/ D 0, then either we have v ⌘ 0 or infRd v > 0.

Proof. For the first part, we show that either v ⌘ 0 or v > 0. Consider D D fx 2
Rd W v.x/ D 0g. Since v is continuous, by Lemma 2.2, we must have D closed.
We show that D is also open. Take z 2 D. Using (A3) above we can find a ball
B.z; r/ such that c.x/ WD f .x;v.x//

v3� .x/
is bounded. Thus v is a supersolution of

Lv � kckL1.B.z;r//v
3�� D 0 in B.z; r/:

Applying Theorem 2.4 we obtain v D 0 in B.z; r/. ThusD is open. Now consider
(B3). Since f .x; s/ � 0 for all s small, we can choose B.z; r/ small enough so
that f .x; v/ � 0 in B.z; r/. Hence, Lv  0 in B.z; r/ implying v D 0 in B.z; r/,
by Theorem 2.4. Hence D is open. Therefore, either D D ; or D D Rd . This
proves the first part.

Next we suppose that v > 0 in Rd . We give a proof with the assumption (B3)
and the proof assuming (A3) would be analogous. The idea of the proof is to use
the subsolution constructed in Proposition 4.6. Fix ı > 0 small enough so that

`.x/ � 3ı for all jxj � R;

for some R > 0. By our assumption of f , there exists ✏0 > 0 satisfying f .x; s/ �
2ıs

˛ � 2ıs
3�� for all jxj � R and s 2 Œ0; ✏0/. Choose R1.� R/;R2 and  from

Proposition 4.6 with the above choice of ı. Normalize  so that k k1 D   ✏0.
Here we choose  small enough so that

 < inf
BR1C2R2

v:

We show that
inf
Rd
v � : (4.8)
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From Proposition 4.6, we note that for any jzj � R1 C 2R2 and �.x/ D �
z
.x/ D

 .x � z/ we have that

L� C f .x;�/ � �ı�3�� C 2ı�
3�� D ı�

3�� in BR2
.z/: (4.9)

Pick z 2 Rd with jzj � R1 CR2 and let � W Œ0; 1ç ! Rd be the line joining 0 to z.
Define

t
⇤ D sup

˚
t 2 Œ0; 1ç W  .� � �.t// < v in BR2

.�.t//
 
:

Clearly, t⇤>0 due to continuity. We need to show that t⇤ D1. Suppose that t⇤<1.
Then in the ball bB D BR2

.�.t
⇤
// we have �.�/ D  .� � �.t

⇤
//  v and it must

touch v at some point in bB. By our choice it also evident that j�.t⇤/j � R1 C R2.
Also, � satisfies (4.9) in bB and vanishes on the boundary of bB. As in the proof of
Theorem 2.3, we consider

w".x; y/ D �.x/ � v.y/ � 1

4"
jx � yj4; x; y 2 bB:

Clearly, maxw" > 0. Let .x"; y"/ be a maximizer. As shown in Theorem 2.3, we
may also assume that x"; y" ! z 2 bB as " ! 0, since the maximum of .��v/ can
not be attained on the boundary. Hence repeating the arguments of Theorem 2.3
we arrive at

ı�
3��

.x"/ � f .x";�.x"//  �f .y"; v.y"//
C !.jx" � y"j/

⇣
1C

�
"

�1jx" � y"j3
�3��⌘

:

Letting " ! 0 and using (2.3), we obtain ı�3��
.z/  0, contradicting the fact that

� is positive inside B1. This proves (4.8).

Remark 4.9. As far as the existence of a bounded positive solution is concerned,
condition (A3) can be relaxed. For instance, a condition weaker than (4.1) is

lim
n!1�Bn

.L C `/ < 0 :

Under this hypothesis we can construct a positive subsolution uk of LuCf .x; u/D
0 in an arbitrary large ball Bk with a Dirichlet condition on the boundary. By
scaling we can also keep this subsolution smaller that M . Then the arguments
of Lemma 4.7 show that the solution obtained by monotone iteration should stay
above uk for all k. Thus, the solution has to be positive in Rd .

Combining Lemma 4.7 and Lemma 4.8 we obtain the existence of a positive
solution. Now we proceed with the uniqueness. In some cases, we can obtain
the uniqueness as a consequence of the Liouville property. For instance, if we
consider f .x; s/ D s

3��
.1 � s/ and q is compactly supported, then from the Li-

ouville property (Theorem 2.7) it follows that there is no non-constant solution
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of Lu C f .x; u/ D 0 in Rd if u  1. But we cannot apply Liouville theorem
in our general setting. Also, the method of [11] fails to apply, as we are dealing
with a degenerate nonlinear operator. To establish the uniqueness we first find the
asymptotic behaviour of solutions at infinity.

Lemma 4.10. Suppose that either (A4) or (B4) holds. Then for any positive su-
persolution v of Lv C f .x; v/ D 0 in Rd we have lim infjxj!1 v.x/ � M1.

Proof. We may assume, without loss of generality, that M1 D 1. We only provide
a proof under the hypothesis (B4). Fix " 2 .0; 1/. Let  > 0 be small enough to
satisfy

4 < lim inf
jxj!1

inf
s2.0;1�"/

f .x; s/

s˛
:

Thus, there exists rı > 0 such that

inf
s2.0;1�"/

f .x; s/

s˛
> 3 for all jxj � rı: (4.10)

Pick r1; r2 and  from Proposition 4.6 for ı D . Normalize k k1 D 1 and
define �z" .x/ D .1 � "/ .x � z/. We claim that

�
z
" .�/  v.�/ in Br2.z/; for all jzj large: (4.11)

If not, there would exist jzj > 2.r1 C r2 C rı/ such that �z" .x0/ > v.x0/ for some
x0 2 Br2.z/. Define

⌘ D max
˚
t > 0 W t�z" < v in Br2.z/

 
:

It is easily seen that ⌘ 2 .0; 1/ and furthermore, ⌘�z" should touch v from be-
low inside Br.z/ as v > 0 and �z" vanishes on the boundary of Br2.z/. Again,
k⌘�z" k1 < .1 � "/ and, by Proposition 4.6, we have

L
�
⌘�

z
"

�
C f

�
x; ⌘�

z
"

�
� � ⌘3��

.�
z
" /
3�� C f .x; ⌘�

z
" /

� f
�
x; ⌘�

z
"

�
� 

�
⌘�

z
"

�˛

�
�
⌘�

z
"

�˛ ✓f .x; ⌘�z" /
.⌘�z" /

˛
� 

◆

� 2
�
⌘�

z
"

�˛
;

by (4.10). Then, repeating the argument of Lemma 4.8 (or Theorem 2.3) we get
a contradiction. This proves the claim (4.11). Since the maximum of  is 1, it
follows from (4.11) that

lim inf
jxj!1

v.x/ � 1 � ":

The arbitrariness of " implies the result.
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Let us now prove an upper bound on the asymptotic behaviour at infinity.

Lemma 4.11. Suppose that either (A4)-(A5) or (B4)-(B5) hold.Let u be a bounded,
positive subsolution to Lu C f .x; u/ D 0 in Rd . Then we have supRd u  M .
Furthermore, we also have lim supjxj!1 u.x/  M1.

Proof. We only provide a proof under the hypotheses (A4)–(A5). On the contrary,
we assume that supu D Mı > M . We fix " > 0 such that u.x0/ > Mı�" > MC"
for some x0. For simplicity we may assume that x0 D 0. Note that

sup
x2Rd

sup
s2ŒMC";MıC2ç

f .x; s/ < 0: (4.12)

Indeed,

sup
x2Rd

sup
s2ŒMC";MıC2ç

f .x; s/

s3��

 sup
x2Rd

sup
s2ŒMC";MıC2ç

✓
f .x; s/

s3�� � f .x;M C "/

.M C "/3��

◆

C sup
x2Rd

✓
f .x;M C "/

.M C "/3�� � f .x;M/

M 3��

◆
C sup

Rd

f .x;M/

M 3��

 sup
x2Rd

✓
f .x;M C "/

.M C "/3�� � f .x;M/

M 3��

◆
< 0;

by (A5). Define ✓.x/ D jxj2 � 1 and ✓r.x/ D ✓.
1
r
x/. Then for r > 0 large it is

easily seen that

sup
x2Rd

sup
s2ŒMC";MıC2ç

f .x; s/ < �.Å�1✓r C kqkL1 jr✓r j3��
/; in Br.0/:

Note that ✓r.0/ D �1. Let

ˇ D inf
˚
 2 ŒM C ";Mı C 2ç W  C  r > u in Br.0/

 
:

Since u.0/ > Mı�", it follows that ˇ > MıC1�" asMıC1�"�✓r.0/ D Mı�".
Again, ˇC✓r should touch u from above inside Br.0/ since .ˇC✓r/ > Mı C1�✏
on @Br.0/. We call v D ˇ C ✓r . Then

LvCf .x; v/ sup
x2Rd

sup
s2ŒMC";MıC2ç

f .x; s/CÅ�1v C kqkL1 jrvj3�� D�ı<0:

Thus v is supersolution touching u from above. We can now follow the arguments
of Lemma 4.8 (or Theorem 2.3) to obtain that ı < 0, which is a contradiction. This
proves the first part.

Now we come to the second part and proceed with a proof which is quite
similar to the one above. For simplicity assume M1 D 1. Suppose that QMı WD
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lim supjxj!1 u.x/ > 1. Then we can find " 2 .0; 1/ so that u.x/ > QMı �" > 1C"
for infinitely many x tending to infinity. On the other hand, by (4.2), we have

sup
jxj�rı

sup
s2Œ1C";2M ç

f .x; s/ < 0;

for some rı > 0. Therefore, we can apply the argument as above by suitably
translating the test function v and then get a contradiction. Hence we must have
lim supjxj!1 u.x/  1. This completes the proof.

Finally, we establish the uniqueness.

Lemma 4.12. Suppose that either (A4)-(A5) or (B4)-(B5) hold. Then there exists
a unique, bounded positive solution to LuC f .x; u/ D 0 in Rd .

Proof. In view of Lemma 2.2 we note that any bounded solution has to be globally
Lipschitz. Let w1; w2 be two solutions to Lu C f .x; u/ D 0 in Rd . In view of
Lemma 4.10 and Lemma 4.11 we see that limjxj!1w1.x/ D limjxj!1w2.x/ D
M1. Suppose that there exists x0 2 Rd satisfying w1.x0/ > w2.x0/. Define


⇤ D max

˚
t > 0 W tw1 < w2 in Rd

 
:

Since infw2>0, it follows that ⇤
> 0. Also, ⇤

<1. Thus,

lim inf
jxj!1

.w2.x/ � ⇤
w1.x// > 0:

This then implies thatw2�⇤
w1must vanish somewhere inRd , i.e., minRd .w2.x/�


⇤
w1.x// D 0.

As before, we consider the coupling function

w".x; y/ D 
⇤
w1.x/ � w2.y/ � 1

2"
jx � yj4; x; y 2 Rd :

Note that there will be a pair of points .x"; y"/ attaining the maximum of w". Pick
a ı 2 .0; 1 � ⇤

/ small and a number K large enough so that


⇤
w1.x/  

⇤ C ı; w2.x/ � 
⇤ C 2ı for all jxj � K:

Thus, for jx � yj  1 and jyj � K C 1 we have w".x; y/ < �ı. Again, for
jx � yj � 1, w".x; y/ < 0 for all " small. Since w".x"; y"/ � 0, it follows that
jx"j C jy"j  K C 1 for all ". As in the proof of Theorem 2.3, we will also have

lim
"!0

1

2"
jx" � y"j4 D 0; jx" � y"j3 D O."/; and x"; y" ! z:

Also, w2.z/ D 
⇤
w1.z/ > 0. Also, we have

L.
⇤
w1/C .

⇤
/
3��

f .x;w1/ � .
⇤
/
3��

.Lw1.x/C f .x;w1.x/// � 0:
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Thus, arguing as in Theorem 2.3, we obtain

�.⇤
/
3��

f .x"; w1.x"//  �f .y"; w2.y"//C !.jx" � y"j/."�1jx" � y"j3/3��
:

Letting " ! 0, and arguing similarly to Theorem 2.3, we find

0 � f .z; 
⇤
w1.z// � .⇤

/
3��

f .z; w1.z//

� .
⇤
w1.z//

3�� inf
y2Rd

✓
f .y; 

⇤
w1.z//

.⇤w1.z//3�� � f .y;w1.z//

.w1.z//
3��

◆
> 0;

by (A5). This is a contradiction and therefore, w1  w2. Similarly, we have
w2  w1. Hence, the proof is complete.

Proof of Theorem 4:1. The existence follows from Lemma 4.7 and Lemma 4.8,
whereas the uniqueness follows from Lemma 4.12.

Finally, we prove Theorem 4.3.

Proof of Theorem 4:3. Since we have s 7! f .x;s/

s3� strictly decreasing, it is easily
seen that f .x; s/  `.x/s

3�� for all s � 0. Thus it follows from (4.4) that

LV C f .x;V.x//  0 in Rd : (4.13)

Suppose that there exists u  0, bounded, satisfying

LuC f .s; u/ D 0 in Rd : (4.14)

Then, the first part of the proof of Lemma 4.8 implies that u > 0 in Rd . For any
 < 1, set u D u. Using monotonicity and (4.14) it then follows that

Lu C f .s; u/ � 0 in Rd : (4.15)

Choose ✏0 2 .0; 1/ so that f .x; s/  `.x/s
3�� for all s 2 Œ0; ✏0/. Now we claim

that for any  < ✏0

kuk1C1 , kuk1 WD kukL1.Rd /, we have

u.x/  V.x/ for all x 2 Rd : (4.16)

To prove the claim, we first observe from the proof of Lemma 4.11 and (4.5) that
limjxj!1 u.x/ D 0. Let

ˇ D sup
˚
t � 0 W t u < V

 
:

Since V > 0, it is obvious that ˇ > 0. To prove (4.16) we need show that ˇ � 1.
We assume by contradiction that ˇ < 1. Since lim infjxj!1.V.x/� ˇu.x// > 0,
ˇu must touch V from below in Rd . Consider the coupling function

w".x; y/ D ˇu.x/ � V.y/ � 1

2"
jx � yj4; x; y 2 Rd
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as in Lemma 4.12; then following the arguments of Lemma 4.12 we find

lim
"!0

1

2"
jx" � y"j4 D 0; jx" � y"j3 D O."/; x"; y" ! z;

and V.z/ D ˇu.z/ 2 .0; ✏0/. Also, `.z/V3��
.z/ � f .z;V.z//. Then, repeating

the arguments of Lemma 4.12 and using (4.15) we arrive at a contradiction. This
proves ˇ � 1, giving us (4.16).

Now observe that (4.4) (and therefore, (4.13)) holds if we replace V by �V
for any � > 0. Thus, we obtain from (4.16) that u  �V for any � > 0

and  < ✏0

kuk1C1 . But this is not possible since u > 0 in Rd . This gives us a
contradiction. Hence u ⌘ 0.
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[50] M. PORTILHEIRO and J. L. VÁZQUEZ, A porous medium equation involving the infinity-
Laplacian. Viscosity solutions and asymptotic behavior, Comm. Partial Differential Equa-
tions 37 (2012), 753–793.
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