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Abstract

Definitive screening design (DSD) is a new class of three-
level screening designs proposed by Jones and Nacht-
sheim [3] which only requires 2m+1 runs for experiments
with m three-level quantitative factors. The design matri-
ces for DSDs are of the form (C′, − C′, 0)′ where C is
a (0,±1) submatrix with zero diagonal and 0 is a column
vector of 0’s. This paper reviews recent development on
D-efficient mixed-level foldover designs for screening
experiments. It then discusses a fast coordinate-exchange
algorithm for constructing D-efficient DSD-augmented
designs (ADSDs). This algorithm provides a new class
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of conference matrix-based mixed-level foldover designs
(MLFODs) for screening experiments as introduced by
Jones and Nachtsheim [4]. In addition, the paper also
provides an alternative class of D-efficient MLFODs and
an exhaustive algorithm for constructing the new designs.
A case study comparing two candidate MLFODs for a
large mixed-level screening experiment with 17 factors
used is used to demonstrate the properties of the new
designs.
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16.1 Introduction

Screening experiments are designed to sort a typically long
list of factors that can potentially affect the response variables
of a product or process. The sorting highlights active factors.
This experimentation strategy is widely applied in science
and engineering. Another approach, pioneered by Genichi
Taguchi, is to follow an experimental path of system design,
parameter design, and tolerance design [6]. In this paper
we consider the screening-optimizing continuum with the
objective of improving the knowledge acquisition effort by
increasing its quality and reducing the required effort. Most
screening experiments in engineering and science involve
both two-level and three-level factors. Yet, the most popular
screening designs are two-level designs such as resolution
III and IV fractional factorial designs (FFDs). Jones and
Nachtsheim [3] pointed out the following disadvantages of
using two-level FFDs to study quantitative factors:

(i) Quadratic effects are not estimable if they are included
in the model;
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(ii) Main effects are not completely orthogonal to two-factor
interactions as in the case of resolution III FFDs;

(iii) Certain two-factor interactions are fully aliased with one
another as in the case of resolution IV FFDs;

A new class of three-level screening designs called DSDs
introduced by Jones and Nachtsheim [3] eliminates these
shortcomings. In addition, all quadratic effects of DSDs are
orthogonal to main effects and not fully aliased with two-
factor interactions. The design matrix for a DSD can be
written as: ⎛

⎝
C

−C
0′

⎞
⎠ , (16.1)

where C is an m × m (0,±1) submatrix with zero diagonal
and 0 is a column vector of 0’s. Xiao et al. [14] pointed out
that if we use a conference matrix of order m for C, i.e.,
if C′C = (m − 1) Im×m, then the DSD is also orthogonal
for main effects, i.e., all main effects are orthogonal to one
another. For even m ≤ 50 except for m = 22 and m = 34,
the C matrices which are also conference matrices are given
by Xiao et al. [14] and Nguyen and Stylianou [11]. All the
Cmatrices we use in this paper are conference matrices with
the exception of the one of order 22. Figure 16.1 shows theC
matrices of order m = 4, 6, 8, and 10 generated by the cyclic
generators given by Nguyen and Stylianou [11].

The limitation of a DSD is that all factors should be
quantitative. Jones and Nachtsheim [4] (hereafter abbrevi-
ated as JN) introduced two types of conference matrix-
based mixed-level screening designs. They called the more
D-efficient, more economic one, DSD-augmented designs
(ADSDs). ADSDs are in fact belonging to a class of mixed-
level foldover designs (MLFODs), and, as such, they retain
two advantages of the original DSD, namely, (i) all quadratic
effects are orthogonal to main effects and (ii) all main effects
are orthogonal to two-factor interactions. The latter feature is
extremely useful when the experimenter wishes to include a

m=4
0+++
+0–+
++0–
+–+0

m=6
0+++++
+0–++–
+–0–++
++–0–+
+++–0–
+–++–0

m=8
0+++++++
+0++–+––
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+––0++–+
++––0++–
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Fig. 16.1 Conference C matrices of order m (+ denotes +1 and −
denotes −1)

specific two-factor interaction in the model. The limitation of
this class of designs is that it has a high correlation among the
quadratic effects. JN showed that this correlation was 1

2 − 2
n−4

where n is the number of runs.
Nguyen et al. [12] introduced a new class of Hadamard

matrix-based mixed-level foldover designs (MLFODs)
and an algorithm which produces these MLFODs. These
MLFODs were constructed by converting some two-level
columns of a Hadamard matrix to three-level ones (see
[2] for the information on Hadamard matrices and their
use in design construction). Like the two-level foldover
designs (FODs), each new MLFOD was constructed by a
half fraction and its foldover. These Hadamard matrix-based
MLFODs require fewer runs and compare favorably with
the conference matrix-based MLFODs of [4] in terms of
the D-efficiencies and rmax, the maximum of the absolute
values of the correlation coefficients among the columns of
the model matrix. Like the ADSDs, these MLFODs are also
definitive in the sense that the estimates of all main effects are
unbiased with respect to any active second-order effects. The
limitation of this class of Hadamard matrix-based MLFODs
is that it is not very efficient when the number of three-level
factors is greater than the number of two-level ones.

The design matrix of a conference matrix-based MLFOD
for m3 three-level factors and m2 two-level factors has a
foldover structure and can be written as:

(
D

−D

)
, (16.2)

where the submatrix Dm∗×(m3+m2) can be constructed from
a matrix of order m (m3 + m2 ≤ m ≤ m∗). In the fol-
lowing sections, we describe (i) a fast coordinate-exchange
algorithm (CEA) [8] for constructing ADSDs which are con-
ference matrix based and (ii) an exhaustive search algorithm
or ESA for constructing an alternative class of MLFODs.
Both algorithms attempt to transform a base matrix to the
submatrix D in (16.2) from which a D-efficient MLFOD can
be obtained. For ADSDs, the base matrix is a conference
matrix. For the new MLFODs, the base matrix is a two-level
orthogonal matrix such as Hadamard matrix or a Plackett-
Burman design [13].

16.2 A CEA for Constructing D-efficient
ADSDs

The Appendix shows that the first-order and second-order
D-efficiencies d1 and d2 of an ADSD are functions of
|B| (= |D′D|) where |B| is the determinant of matrix B.
Our algorithm minimizes the sum of squares of the off-
diagonal elements ofB as an indirect attempt tomaximize |B|



16 D-Efficient Mixed-Level Foldover Designs for Screening Experiments 307

16

(see, e.g., [9]). The steps of our CEA for obtaining a
submatrix D in (2) from which a D-efficient ADSD for
m3 three-level factors and m2 two-level factors are:

1. Form a starting design D(m+1)×(m3+m2) = (dij) by first
picking m3 + m2 columns from a conference matrix
of order m at random and add an extra zero row to
the bottom of these columns. Mark the positions of
the 2m2 zero entries in the last m2 columns of D,
and replace these 0’s by ±1 in a random manner.
Calculate the vector Ji (i = 1, . . . , m + 1) of length
m3m2 + (

m2
2 ) for each row of D where Ji is defined

as (di1di(m3+1), . . . , dim3di(m3+m2), di(m3+1)di(m3+2), . . . ,
di(m3+m2−1)di(m3+m2)). Let J = ∑m+1

i=1 Ji and f equal the
sum of squares of the elements of J.

2. Among the 2m2 marked positions in Step 1, search for a
position such that the sign switch in this position results
in the biggest reduction in f . If the search is successful,
update f, J andD. Repeat this step until f equals the length
of J (i.e., all elements of J equal ±1) or this value cannot
be reduced further by any sign switch.

Remarks

(i) The above steps correspond to one “try” of the CEA and
each try produces a matrix D. Among a large number of
tries whose f value reaches its lower bound, i.e., f equals
J’s length (or f cannot be reduced further), the one with
the largest value of |B| is selected.

(ii) The purpose of picking at random m3 +m2 columns
from a conference matrix of order m (m ≥ m3 + m2)

to form D in a random manner is to avoid being trapped
in the local optima.

(iii) When the input matrix in Step 1 is a conference matrix,
the firstm3m2 elements of J always take values±1. This
is not the case when the input matrix is not a conference
matrix such as the one of order 22.

(iv) Our CEA is less prone to the curse of dimensionality
than JN’s exhaustive algorithm for ADSD construction
which attempts to maximize |B| from among the 22m2

arrangements for 2m2 entries in D.

Figure 16.2 shows the steps of constructing an ADSD
for four three-level factors and four two-level factors.
Figure 16.2a displays a starting design in Step 1. Figure
16.2b shows that the eight 0’s in the last four columns
of the design in Fig. 16.2a are being replaced by ±1
in a random manner. At this point, the vector J is
(1, 1, 1, 1, 1, −1, 1, 1, 1, 1, 1, −1, −1, −1, 1, 1, −3, 1, −1, 1,
−1, 3) and f is 38. Figure 16.2c,d correspond to Step
2. In Fig. 16.2c, the value 1 in the position (1, 7) of the
design in Fig. 16.2b is replaced by −1. At this point,

++++++0+
–––+0+++
–++0–++–
+–+––0++
–+0–+–++
++–+––+0
+0––+++–
0–+++–+–
00000000

a) b) c) d)
++++++++
–––+–+++
–++0–++–
+–+––+++
–+0–+–++
++–+––++
+0––+++–
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0000+–++

++++++–+
–––+–+++
–++0–++–
+–+––+++
–+0–+–++
++–+––++
+0––+++–
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++++++–+
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Fig. 16.2 Steps of constructing an ADSD for four three-level factors
and four two-level factors

the vector J is (1, 1,−1, 1, 1,−1,−1, 1, 1, 1,−1,−1,
−1,−1,−1, 1,−3,−1,−1,−1,−1, 1) and f is reduced to
30. In Fig. 16.2d, the value −1 in the position (2, 5) of
the design in Fig. 16.2c is replaced by 1. At this point,
the vector J is (−1, 1,−1, 1,−1,−1,−1, 1,−1, 1,−1,
−1, 1,−1,−1, 1,−1, 1, 1,−1,−1, 1) and f is reduced to
22 which is its lower bound.

16.3 An ESA for Constructing D-efficient
MLFODs

While the CEA attempts to convert some three-level columns
of a conference matrix into two-level columns, the ESA
attempts to convert some two-level columns of a two-level or-
thogonal matrix into three-level columns. The ESA requires
three simple steps:

1. From each base matrix of order m, generate m − 1 ad-
ditional matrices by shifting the columns of this matrix
to the left cyclically. From each matrix, use the first m3 +
m2 (≤ m) columns to form a starting designDm×(m3+m2) =
(dij).

2. For each matrix obtained from Step 1, generate (mk ) new
matrices by replacing k elements in each of its first m3

columns by 0’s. Here k = 2, . . . , x where x is an integer
chosen to be �m5 � where �.� denotes the ceiling function.

The replacement is performed so that if (i1, j), (i2, j),
. . . , (ik, j) are entries in column j being replaced by 0’s,
and then the entries being replaced by 0’s in the next
column are ((i1+1) mod m, j+1), ((i2+1) mod m, j+
1), . . . , ((ik + 1) mod m, j+ 1).

3. For each matrix in Step 2, calculate rmax, the maximum
in terms of absolute value of the correlation coefficients
among the columns of the model matrix. Then among the
designs with smallest rmax, pick the one with the highest
d2, the D-efficiency for the pure quadratic model (see
Eq. (16.8) in the Appendix).
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0+++++++
(1) (2) (3) (4)

00++–+––
+00++–+–
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+++0+––+

Fig. 16.3 Some candidate designs generated in Step 2 for an MLFOD
for four three-level factors and four two-level factors

Remarks

(i) In Step 1, the base matrix is a two-level orthogonal
matrix. This is a Hadamard matrix or a Plackett-Burman
design if m is divisible by 4 or a conference matrix with
the 0’s on the diagonal being replaced by 1’s if m is
not divisible by 4 but is divisible by 2. The base matrix
slightly affects the goodness of the resulting design.

(ii) For small m, say m ≤ 12, the starting designs in Step 1
can also be constructed by randomly selecting a subset
of m3 + m2 from m columns of the base matrix.

(iii) For each pair (m3, m2) and a given x, the number of zeros
in each of the m3 three-level columns, the number of
candidate designs we have to consider is m

∑x
k=2(

m
k ).

(iv) rmax in Step 3 is calculated from the vector J =∑m
i=1 Ji of length 2(m3

2 ) + m3m2 where Ji is defined
as (d2i1d

2
i2, . . . , d

2
i(m3−1)d

2
im3
, di1di2, . . . , di(m3−1)dim3 ,

di1di(m3+1), . . . , dim3di(m3+m2)).

Figure 16.3 shows some candidate designs generated in Step
2 for an MLFOD for four three-level factors and four two-
level factors.

16.4 Results and Discussion

Table 16.1 provides d1, d2, and rmax of 69 D-efficient ADSDs
and two sets of corresponding new MLFODs with m3 =
4, . . . , 12, m2 = 1, . . . , m3, and n ≥ 16. The goodness
statistics are the first-order D-efficiency and the second-order
D-efficiency, the maximum in terms of the absolute value of
the correlation coefficients among 2m3 + m2 columns of the
model matrix X for the pure quadratic model, respectively.
The D-efficiencies d1, d2 of ADSDs are calculated according
to Eqs. (16.5) and (16.8) in the Appendix. The first set of
MLFODs labeled MLFOD1 was obtained by selecting the
firstm3+m2 columns of a conference matrix and then change
the 0’s to 1’s in the last m2 columns. The second set of
MLFODs labeled MLFOD2 was constructed by the ESA in
Sect. 16.3 using x = �m5 �.

The advantage of the MLFODs over the orthogonal arrays
(for the same number of three-level and two-level factors) is
that the former require much less runs. At the same time, the
former, unlike the latter, could guarantee that (i) all quadratic
effects are orthogonal to main effects and (ii) all main effects
are orthogonal to two-factor interactions. While orthogonal-
ity does not help in simplifying the data analysis which is now
done entirely by computers, they help in the interpretations
of the results which is the aim of the experimenters.

ADSDs, due to their method of construction, always have
two runs more than the corresponding new MLFODs. It
can be seen in Table 16.1 that all ADSDs have higher d1’s
than the corresponding MLFOD2’s (but smaller d1’s than
the corresponding MLFOD1’s). At the same time, nearly all
MLFOD2’s have higher d2’s than the corresponding ADSDs.
The rmax’s of the ADSDs are always higher than the ones of
MLFODs. This is due to the fact that the correlation between
any two quadratic effect columns is 1

2 − 2
n−4 (see JN p. 129).

This value approaches 1/2 as n becomes large. In table 16.1,
d1 (or d2) values of MLFODs printed in bold are higher than
the ones of ADSDs for the same set of (m3,m2). rmax values of
MLFODs printed in bold are smaller than the ones of ADSDs
for the same set of (m3, m2).

With the exception of the ADSD for m3 = m2 = 9
and four ADSDs constructed from a C matrix of order 22
(see Table 16.1), all ADSDs in Table 16.1 have the f values
reaching their lower bound. This fact guarantees that the
constructedADSDswill haveminimum correlations between
a two-level factor and a three-level factor and between any
two two-level factors.

Unlike ADSDs, our MLFOD2’s do not guarantee zero
correlation among three-level factors. At the same time,
unlike our MLFOD2’s with n = 16, 24, 32, 40, and 48
(whose D matrices were constructed from the Hadamard
matrices or Plackett-Burman designs), ADSDs do not have
zero correlation among the two-level factors.

16.5 An Industrial Case Study

Lin andKacker [7] describe an experiment aiming to improve
the quality and productivity of wave soldering of circuit pack
assemblies (CPA). This experiment, summarized in a study
by Kenett et al. [6] (p. 474), has four yield variables and 17
factors (controllable variables). The four yield variables are:
(i) Insulation resistance, (ii) Cleaning characterization, (iii)
Soldering efficiency, and (iv) Solder mask cracking. The 17
factors are: (A) Type of activator, (B) Amount of activator,
(C) Type of surfactant, (D)Amount of surfactant, (E) Amount
of antioxidant, (F) Type of solvent, (G) Amount of solvent,
(H) Amount of flux, (I) Preheat time, (J) Solder tempera-
ture, (K) Conveyor speed, (L) Conveyor angle, (M) Wave
height setting, (N) Detergent concentration, (O) Detergent
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Table 16.1 Comparison of D-efficiencies and rmax of MLFODs and ADSDs

MLFOD1 MLFOD2 ADSD

m3 m2 na d1 d2 rmax d1 d2 rmax d1 d2 rmax

4 3 16 0.909 0.443 0.143 0.831 0.484 0.333 0.858 0.478 0.357

5 2 16 0.899 0.390 0.143 0.795 0.412 0.333 0.836 0.426 0.357

6 1 16 0.892 0.348 0.143 0.764 0.352 0.333 0.818 0.386 0.357

4 4 16 0.911 0.469 0.143 0.839 0.508 0.333 0.862 0.502 0.357

5 3 16 0.900 0.415 0.143 0.797 0.432 0.333 0.843 0.450 0.357

6 2 16 0.892 0.371 0.143 0.744 0.364 0.333 0.826 0.408 0.357

7 1 16 0.888 0.331 0.143 0.812 0.376 0.357

5 4 20 0.902 0.414 0.200 0.822 0.452 0.375 0.882 0.455 0.389

6 3 20 0.907 0.375 0.200 0.811 0.411 0.375 0.869 0.411 0.389

7 2 20 0.910 0.342 0.200 0.803 0.359 0.375 0.856 0.376 0.389

8 1 20 0.911 0.312 0.111 0.784 0.314 0.375 0.845 0.347 0.389

5 5 20 0.888 0.430 0.200 0.814 0.466 0.375 0.884 0.475 0.389

6 4 20 0.896 0.392 0.200 0.804 0.425 0.375 0.873 0.431 0.389

7 3 20 0.903 0.359 0.200 0.795 0.373 0.375 0.861 0.395 0.389

8 2 20 0.907 0.329 0.200 0.785 0.330 0.375 0.850 0.365 0.389

9 1 20 0.909 0.300 0.111 0.768 0.293 0.375 0.841 0.340 0.389

6 5 24 0.939 0.403 0.091 0.806 0.481 0.333 0.900 0.434 0.409

7 4 24 0.933 0.366 0.091 0.793 0.443 0.333 0.890 0.396 0.409

8 3 24 0.929 0.335 0.091 0.764 0.406 0.333 0.881 0.365 0.409

9 2 24 0.926 0.309 0.091 0.738 0.370 0.333 0.872 0.339 0.409

10 1 24 0.924 0.285 0.091 0.714 0.339 0.333 0.865 0.316 0.409

6 6 24 0.940 0.422 0.091 0.811 0.496 0.333 0.903 0.452 0.409

7 5 24 0.934 0.384 0.091 0.791 0.456 0.333 0.893 0.413 0.409

8 4 24 0.930 0.352 0.091 0.767 0.419 0.333 0.884 0.381 0.409

9 3 24 0.926 0.325 0.091 0.743 0.383 0.333 0.876 0.354 0.409

10 2 24 0.924 0.300 0.091 0.722 0.352 0.333 0.869 0.331 0.409

11 1 24 0.923 0.276 0.091 0.696 0.322 0.333 0.863 0.312 0.409

7 6 28 0.923 0.381 0.143 0.816 0.463 0.273 0.912 0.416 0.423

8 5 28 0.927 0.351 0.143 0.803 0.432 0.273 0.905 0.383 0.423

9 4 28 0.930 0.326 0.143 0.786 0.406 0.273 0.898 0.354 0.423

10 3 28 0.933 0.303 0.143 0.771 0.382 0.273 0.892 0.331 0.423

11 2 28 0.934 0.283 0.143 0.757 0.361 0.273 0.886 0.310 0.423

12 1 28 0.934 0.265 0.077 0.744 0.340 0.273 0.881 0.292 0.423

7 7 28 0.917 0.395 0.143 0.808 0.472 0.273 0.913 0.431 0.423

8 6 28 0.921 0.365 0.143 0.798 0.442 0.273 0.907 0.398 0.423

9 5 28 0.925 0.339 0.143 0.780 0.416 0.273 0.901 0.369 0.423

10 4 28 0.929 0.317 0.143 0.766 0.391 0.273 0.895 0.345 0.423

11 3 28 0.931 0.296 0.143 0.753 0.370 0.273 0.889 0.323 0.423

12 2 28 0.932 0.277 0.143 0.743 0.350 0.273 0.884 0.305 0.423

8 7 32 0.954 0.374 0.067 0.857 0.467 0.231 0.923 0.400 0.433

9 6 32 0.951 0.345 0.067 0.835 0.432 0.231 0.917 0.371 0.433

10 5 32 0.948 0.321 0.067 0.815 0.402 0.231 0.912 0.345 0.433

11 4 32 0.945 0.299 0.067 0.795 0.375 0.231 0.906 0.323 0.433

12 3 32 0.944 0.281 0.067 0.778 0.351 0.231 0.902 0.304 0.433

8 8 32 0.955 0.388 0.067 0.860 0.479 0.231 0.925 0.414 0.433

9 7 32 0.951 0.359 0.067 0.834 0.443 0.231 0.919 0.384 0.433

10 6 32 0.948 0.334 0.067 0.814 0.412 0.231 0.914 0.358 0.433

11 5 32 0.946 0.312 0.067 0.793 0.385 0.231 0.909 0.336 0.433

12 4 32 0.944 0.293 0.067 0.778 0.361 0.231 0.904 0.316 0.433

9 8 36 0.939 0.357 0.111 0.845 0.447 0.200 0.929 0.386 0.441

(continued)
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Table 16.1 (continued)

MLFOD1 MLFOD2 ADSD

m3 m2 na d1 d2 rmax d1 d2 rmax d1 d2 rmax

10 7 36 0.941 0.333 0.111 0.840 0.422 0.200 0.925 0.359 0.441

11 6 36 0.943 0.312 0.111 0.832 0.397 0.200 0.921 0.336 0.441

12 5 36 0.945 0.293 0.111 0.827 0.373 0.200 0.917 0.316 0.441

9 9 36 0.935 0.368 0.111 0.844 0.456 0.200 0.929 0.398 0.441

10 8 36 0.938 0.344 0.111 0.838 0.431 0.200 0.926 0.371 0.441

11 7 36 0.940 0.323 0.111 0.829 0.406 0.200 0.922 0.348 0.441

12 6 36 0.942 0.304 0.111 0.821 0.381 0.200 0.919 0.328 0.441

10 9 40 0.963 0.351 0.053 0.867 0.440 0.216 0.937 0.374 0.447

11 8 40 0.961 0.328 0.053 0.857 0.414 0.216 0.933 0.350 0.447

12 7 40 0.959 0.308 0.053 0.844 0.390 0.216 0.930 0.329 0.447

10 10 40 0.963 0.363 0.053 0.867 0.450 0.216 0.938 0.385 0.447

11 9 40 0.961 0.339 0.053 0.858 0.424 0.216 0.935 0.361 0.447

12 8 40 0.959 0.319 0.053 0.845 0.400 0.216 0.931 0.339 0.447

11 10 44 0.946 0.337 0.095 0.841 0.460 0.222 0.935 0.361 0.452

12 9 44 0.946 0.317 0.095 0.832 0.438 0.222 0.931 0.339 0.452

11 11 44 0.944 0.347 0.095 0.842 0.469 0.222 0.933 0.370 0.452

12 10 44 0.943 0.326 0.140 0.830 0.446 0.222 0.932 0.349 0.452

12 11 48 0.969 0.333 0.043 0.874 0.457 0.200 0.947 0.353 0.457

12 12 48 0.969 0.343 0.043 0.877 0.466 0.200 0.948 0.362 0.457

aRun size of MLFODs. For the same set of (m3, m2) ADSD requires two extra runs

temperature, (P) Cleaning conveyor speed (Q) Rinse water
temperature. Out of these 17 factors, 7 factors (A), (C), (F),
(M), (N), (O), and (Q) are two-level factors and the rest are
three-level factors. The aim of this experiment is to single
out the active factors and then apply a full quadratic model in
these factors.

Let us consider two candidate MLFODs for ten three-
level factors and eight two-level factors (including a block-
ing factor): (a) a 36-run MLFOD constructed by the ESA
and (b) a 38-run ADSD. Both designs were constructed
from a conference matrix of size 18. We do not consider
the 30-run mixed-level screening design of [10] and the
orthogonal arrays (http://support.sas.com/techsup/technote/
ts723_Designs.txt) for the same number of three- and two-
level factors as they are not MLFODs and as such might
not possess the advantages of an MLFOD, namely, (i) all
quadratic effects are orthogonal to main effects and (ii) all
main effects are orthogonal to two-factor interactions. Be-
sides, a 72-run orthogonal array exceeds the available budget
for this experiment. Figure 16.4 displays the D matrices of
two mentioned candidate MLFODs.

Table 16.1 shows the goodness statistics of the two can-
didate designs. The d1, d2, and rmax of the 38-run ADSD are
0.926, 0.371, and 0.441, and the one of the corresponding
36-run MLFOD are 0.838, 0.410, and 0.2. While the 38-run
ADSD is superior to the 36-run MLFOD in terms of d1, it is
inferior to the latter in terms of d2 and rmax. This pattern can
be observed in Table 16.1 for all MLFOD2’s with n ≥ 24.

The correlation cell plots of the two candidate designs
are shown in Fig. 16.5. These plots, used in Jones and
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Fig. 16.4 TheDmatrices of two candidateMLFODs for ten three-level
factors and eight two-level factors (including a blocking factor) for the
PCA experiment described by Kenett et al. [6]: (a) of a 36-run MLFOD
constructed by the ESA and (b) of a 38-run ADSD

Nachtsheim [3], display the magnitude of the correlation
between main effects, quadratic effects of three-level factors
and two-factor interactions in screening designs. The color
of each cell in these plots goes from white (no correlation)
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Fig. 16.5 Correlation cell plots of (a) 36-run MLFOD constructed by the ESA and (b) a 38-run ADSD for the experiment with ten three-level
and eight two-level factors (including a blocking factor)

to dark (correlation of 1 or close to 1). Figure 16.5 confirms
that for both designs, the main effects are orthogonal to the
quadratic effects and two-factor interactions. It can be seen
in Fig. 16.5b that while the main effects of three-level factors
have zero correlation, the quadratic effects of these factors
have fairly high correlation.

Both algorithms in Sects. 16.2 and 16.3 appear to be very
fast and do not seem to be affected by the curse of dimen-
sionality for design optimization. Both algorithms construct
the abovementioned 38-run ADSD and 36-run MLFOD for
ten three-level factors and eight two-level factors in less than
1 s on an HP EliteBook 8770w laptop. Note that the CEA
uses 10,000 tries and out of 10,000 tries, 366 have the f
values reaching the lower bound and all of them have the
same values of (d1, d2, rmax).

16.6 Conclusion

Screening designs precede efforts to optimize a product or
process. Their goal is to reduce a long list of factors so that
the optimization effort can focus on a shorter list of fac-
tors. The literature on screening experiments in engineering
and science popularized experiments with two-level factors
such as orthogonal FFDs [1]. This constraint slows down
the knowledge acquisition process by producing information
only on main effects and interactions. In mixed-level screen-
ing designs, one combines factors at two and three levels,
thus also producing information on quadratic effects. This
paper presents two new classes of MLFODs. Both classes
are economical and efficient. These designs provide more
choices for the experimenters and help them to “design for

experiments instead of experiment for the design.” A wider
scope to this work is the augmentation of data collected
in nonexperimental contexts with experimentally designed
add-on observations. The analysis of observed data provides
initial information on the X space characteristics. To achieve
the optimized conditions, the designs discussed in this paper
can be used to expand the initial data sets. This approach was
mentioned by Kenett and Nguyen [5] with examples of tools
used to assess the X space statistical properties. In summary,
we aim here at expanding the screening-optimization contin-
uum with more flexible and optimized designs.

The zipped file containing the D matrices (i.e., half
fractions) for the designs in Table 16.1 and the input
matrices we use to construct these D matrices as well as the
Java programs implementing the algorithms in Sects. 16.2
and 16.3 is downloadable from https://drive.google.com/
open?id=16thajCMzr4WLIb-GkyKrBv2HHnziAIMr.

Appendix: Calculating (d1, d2) Values of an
MLFOD

Recall that Dm∗×(m3+m2)(= (dij)) in (16.2) is the submatrix
from which an MLFOD for m3 three-level factors and m2

two-level factors can be constructed from a matrix of order
m (m3 + m2 ≤ m ≤ m∗). For ADSDs m∗ = m + 1 and
for our MLFODs m∗ = m. The first-order D-efficiency d1
and the pure quadratic D-efficiency d2 of this MLFOD can
be calculated as:

|X′X|1/p/n (16.3)

whereX, p, and n are the model matrix, the number of param-
eters for the models, and the number of runs, respectively.
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For the first-order model, p = 1 + m3 + m2 and the ith
row of X can be written as (1, di1, . . . , di(m3+m2)). Thus the
(information matrix) X′X will be of the form

2

(
m∗ 0′
0 B

)
, (16.4)

where 0m3+m2 is a column vector of 0’s andB(m3+m2)×(m3+m2) =
D′D. The determinant of X′X for the first-order model can
now be calculated as

|X′X| = 21+m3+m2 m∗ |B|. (16.5)

For the pure quadratic model, p = 1 + m3 +
m3 + m2 and the ith row of X can be written as
(1, d2i1, . . . , d

2
im3
, di1, . . . , di(m3+m2)). Thus, the matrix X′X

will be of the form

2

(
A 0′
0 B

)
, (16.6)

where 0(m3+m2)×(1+m3) a matrix of 0’s and A(1+m3)×(1+m3) is a
matrix of the form (

m∗ b1′
b1 A∗

)
(16.7)

assuming each of them3 three-level columns ofD has a fixed
number b of ±1’s. Here 1m3 is a column vector of 1’s and
A∗
m3×m3

the core of A in (16.7), i.e., the matrix A without its
first row and first column. The determinant of X′X for the
pure quadratic model can now be calculated as

|X′X| = 21+2m3+m2 m∗ |A∗ − b2

m∗ J| |B|. (16.8)

For some MLFODs such as ADSDs, MLFOD1, and
MLFOD2 with n = 16 and 38, the matrix A∗ in (16.7)
will be of the form cJ + dI where I is the identity matrix
and J is a matrix of 1’s. Nguyen et al. [12] denoted this
class of MLFODs as MLFOD*s. In these cases, A∗ − b2

m∗ J
will also be of the form cJ + dI. The determinants of a
matrix of this form can be calculated as dm3 (1 + c m3

d ). For

ADSDs, c = m − 2 − (m−1)2

m+1 and d = 1. For MLFOD1,

c = m− 2 − (m−1)2

m and d = 1.
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