New characterizations of quasi-Frobenius rings

Le Van Thuyet
Department of Mathematics
College of Education, Hue University
34 Le Loi, Hue City, Vietnam
lvthuyet@hueuni.edu.vn
Abdoul Djibril Diallo
Département de Mathématiques et d'Informatique
Faculté des Sciences et Techniques
Université Cheikh Anta Diop de Dakar, Sénégal
dialloabdoulaziz58@yahoo.fr
Papa Cheikhou Diop
Département de Mathématiques
Université Iba Der Thiam de Thiès, Sénégal
cheikpapa@gmail.com
Truong Cong Quynh*
Department of Mathematics
The University of Danang - University of Science and Education
459 Ton Duc Thang, Danang City, Vietnam
tcquynh@ued.udn.vn

Communicated by Q. Mushtaq
Received August 2, 2022
Accepted May 9, 2023
Published June 21, 2023

In this paper, we firstly provide several new characterizations of quasi-Frobenius rings by using some generalized injectivity of rings with certain chain conditions. For example, (1) a ring R is quasi-Frobenius if and only if R is right C_{11}, right minfull with ACC on right annihilators; (2) a ring R is quasi-Frobenius if and only if R is two-sided min-CS with ACC on right annihilators in which $\operatorname{Soc}\left({ }_{R} R\right) \leq_{e} R_{R} ;(3)$ a ring R is quasi-Frobenius if and only if R is right Johns left C_{11}; (4) a ring R is quasi-Frobenius if and only if R is quasi-dual two-sided C_{11} with ACC on right annihilators. Moreover, it is shown that a ring R is quasi-Frobenius if and only if R is a left P-injective left IN-ring with right RMC and $Z\left(R_{R}\right)=Z\left({ }_{R} R\right)$. Also, we prove that if R is a right duo, right QF-3 ${ }^{+}$left

[^0]> quasi-duo ring satisfying ACC on right annihilators, then R is quasi-Frobenius. In this paper, several known results on quasi-Frobenius rings are reproved as corollaries.

Keywords: Automorphism-invariant ring; C_{11}-ring; mininjective ring; IN-ring; P-injective ring; quasi-Frobenius ring.

AMS Subject Classification: 16D50, 16D70, 16D80

1. Introduction

Throughout this paper, all rings R are associative with identity and all modules are unitary right R-module. The notations $N \leq_{e} M$ and $N \leq \oplus M$ mean that N is an essential submodule and a direct summand, respectively. Let M be an R-module. Recall that the singular submodule $Z(M)$ of M is defined by

$$
Z(M)=\{m \in M \mid m I=0 \text { for some essential right ideal } I \text { of } R\} .
$$

The Goldie torsion submodule $Z_{2}(M)$ of M (also known as the second singular submodule of M) is defined to be the submodule of M which contains $Z(M)$ such that $Z(M / Z(M))=Z_{2}(M) / Z(M)$. The module M is called singular if $Z(M)=M$ and is called nonsingular if $Z(M)=0$ (equivalently, $Z_{2}(M)=0$). Notice that $M / Z_{2}(M)$ is a nonsingular module. For a ring R, we denote by $J(R)$ the Jacobson radical of R. If X is a subset of a ring R, the right (left) annihilator in R is denoted by $r(X)(l(X))$.

The notion of self-injective rings is generalized by many authors (see [8-11, 16(20).

Recall that a module M is said to be a C_{11}-module if every submodule of M has a complement which is a direct summand [25]. A ring R is called a right C_{11}-ring if R_{R} is a C_{11}-module. Clearly, every CS-module (modules whose complements are direct summands) satisfies the C_{11}-condition. However, the converse is not true in general (see [25, p. 1814]).

A submodule N of a module M is said to be an automorphism-invariant submodule if $f(N) \subseteq N$ for every automorphism f of M. A module is called automorphisminvariant if it is an automorphism-invariant of its injective hull [15. A ring R is called right automorphism-invariant if R_{R} is automorphism-invariant.

A module M is said to be satisfy the restricted minimum condition (briefly, RMC) if for every essential submodule N of $M, M / N$ is an artinian module. A ring R is said to be have right RMC if R satisfies the RMC as a right R-module.

Recall that a ring R is quasi-Frobenius if R is two-sided artinian and two-sided self-injective. Quasi-Frobenius rings play an important role in the theory, and many interesting characterizations can be found in [13].

In Sec. 2, we provide several new characterizations of quasi-Frobenius rings by using some generalized injectivity of rings satisfying certain chain conditions. We first prove that a right C_{11}, right minfull ring satisfying ACC on right annihilators is quasi-Frobenius. We prove that a two-sided min-CS ring with ACC on right annihilators in which $\operatorname{Soc}\left({ }_{R} R\right) \leq_{e} R_{R}$ is quasi-Frobenius. It is also shown that a
left AGP-injective two-side min-CS ring satisfying ACC on left annihilators is quasiFrobenius We prove that a right Johns left C_{11}-ring is quasi-Frobenius. Note that in this section, some known results on quasi-Frobenius are obtained as corollaries.

In Sec. 3. quasi-Frobenius rings are characterized via two-side C_{11}-rings. We prove that a ring is quasi-Frobenius if and only if it is quasi-dual two-side C_{11} with ACC on right annihilators. Moreover, a right artinian two-side C_{11}-ring R is shown in which $\operatorname{Soc}\left(R_{R}\right)=\operatorname{Soc}\left({ }_{R} R\right)$ is quasi-Frobenius.

Section 4 is devoted to automorphism-invariant rings and their generalizations. In this section, it is shown among others results that every left automorphisminvariant ring R with ACC on right annihilators in which $\operatorname{Soc}\left({ }_{R} R\right)$ is an essential right ideal is quasi-Frobenius. We prove also that every two-side pseudo- c^{*}-injective two-side C_{11}-ring with ACC on right annihilators is quasi-Frobenius.

In Sec. 5 we provide more characterizations of quasi-Frobenius rings. Firstly, we prove that a left perfect right simple-injective ring, such that for every injective right R-module $M, Z_{2}(M)$ is projective, is quasi-Frobenius. Also, it is shown that a two-sided minfull left (or right) pseudo-coherent ring R for which $J(R)$ is left or right T-nilpotent is quasi-Frobenius. Moreover, we prove that a left P-injective left IN-ring with right RMC is quasi-Frobenius if and only if $Z\left({ }_{R} R\right)=Z\left(R_{R}\right)$. This result extends in [7, Theorem $13(1) \Leftrightarrow(2) ;$ 2, Proposition 18.6]. As a direct consequence of the last result, it is shown that a two-sided P-injective left IN-ring with right RMC is quasi-Frobenius. Finally, we show that if R is a right duo, right QF- 3^{+}left quasi-duo ring satisfying ACC on right annihilators, then R is quasiFrobenius.

2. Quasi-Frobenius Rings via the Mimimal Ideals

A ring R is said to be a right mininjective ring if every R-homomorphism from a minimal right ideal of R extends to an endomorphism of R. A ring R is called a right minfull ring if it is semiperfect right mininjective and $\operatorname{Soc}(e R) \neq 0$ for each local idempotent e of R [13]. It is obvious that a quasi-Frobenius ring is right minfull with ACC on right annihilators. However, 13, Examples 2.5 and 6.41(1)] show that the converse is not true in general. In the next theorem, we provide some conditions which force a right minfull ring with ACC on right annihilators to be quasi-Frobenius. We first prove the following lemma.

Lemma 2.1. Let R be a right C_{11} right minfull ring. Then $\operatorname{Soc}(e R)$ is a minimal right ideal for every local idempotent e of R (i.e. $\operatorname{End}(\mathrm{eR})$ is a local ring) and R is right finitely cogenerated.

Proof. Since R is right minfull, R_{R} satisfies the C_{2}-condition by [13, Lemma 1.46 and Theorem 3.12]. Now, let e be a local idempotent of R. As R_{R} is a C_{11}-module, then by [25, Theorem 4.3], $e R$ is also a C_{11}-module. Hence, since $e R$ is indecomposable, it follows from [25, Proposition 2.3(iii)] that $e R$ is uniform. Note that $\operatorname{Soc}(e R) \neq 0$. Therefore, $\operatorname{Soc}(e R)$ is a minimal right ideal. On the other hand, since
R is semiperfect, there exits a decomposition $R_{R}=e_{1} R \oplus e_{2} R \oplus \cdots \oplus e_{n} R$ where each e_{i} is a local idempotent. Therefore, by what we shown above, $\operatorname{Soc}\left(e_{i} R\right)$ is a minimal right ideal and $\operatorname{Soc}\left(e_{i} R\right) \leq_{e} e_{i} R$. From this, we deduce that $\operatorname{Soc}\left(R_{R}\right)$ is a finitely generated right ideal and $\operatorname{Soc}\left(R_{R}\right) \leq_{e} R_{R}$. Therefore, R is right finitely cogenerated.

Theorem 2.1. The following conditions are equivalent for a ring R :
(1) R is quasi-Frobenius;
(2) R is right minfull with ACC on right annihilators and every complement right ideal is a right annihilator;
(3) R is right C_{11} right minfull with ACC on right annihilators;
(4) R is right C_{11} right minfull with right RMC.

Proof. $(1) \Rightarrow(2),(4)$ are clear.
$(2) \Rightarrow(3)$ Being right minfull, R is left Kasch by [13, Theorem 3.12]. But every complement right ideal is a right annihilator. Then R is a right C_{11}-ring by [27, Theorem 10].
$(3) \Rightarrow(1)$ By Lemma $2.1 R$ is right finitely cogenerated. In addition, since R is right mininjective, $\operatorname{Soc}\left(R_{R}\right) \subseteq \operatorname{Soc}\left({ }_{R} R\right)$ by [13, Theorem 2.21]. Consequently, $\operatorname{Soc}\left({ }_{R} R\right) \leq_{e} R_{R}$, and so $J(R) \subseteq Z(R)$. But R is semiperfect. Then $J(R)=Z(R)$. Note that R has ACC on right annihilators and it is semiprimary if $R / J(R)$ is semisimple and $J(R)$ is nilpotent. Therefore, in view of [13, Lemma 3.29], $J(R)$ is nilpotent, from which it follows that R is semiprimary. Hence, by Lemma 2.1 and [26. Corollary 7], $\operatorname{Soc}(R e)$ is a minimal left ideal for every local idempotent e of R. In addition, since R is right minfull, we infer from [13, Theorem 3.12] that R is right Kasch. So, using [13, Theorem 3.7(3)(a)], we deduce that $\operatorname{Soc}\left(R_{R}\right)=\operatorname{Soc}\left({ }_{R} R\right)$. Now, we claim that R is left mininjective. To see this fact, let e be a local idempotent of R. By Lemma 2.1. Soc $(e R)$ is a minimal right ideal. Therefore, being semiperfect, R is left mininjective by [13, Theorem 3.2(1)]. Finally, since R is a right mininjective ring with ACC on right annihilators in which $\operatorname{Soc}\left(R_{R}\right) \leq_{e} R_{R}, R$ is quasi-Frobenius by [13, Theorem 3.31].
$(4) \Rightarrow(1)$ By Lemma 2.1, R is right finitely cogenerated. Thus, by hypothesis, $R / \operatorname{Soc}\left(R_{R}\right)$ is right noetherian, and so R has ACC on right annihilators. Therefore, R is quasi-Frobenius by (3).

Corollary 2.1. The the following conditions are equivalent for a ring R :
(1) R is quasi-Frobenius;
(2) R is a right minfull right C_{11}-ring and $Z\left(R_{R}\right)$ is a noetherian right R-module.

Proof. (1) $\Rightarrow(2)$ is clear.
$(2) \Rightarrow(1)$ Assume that R has the stated condition. Then by Lemma 2.1, $\operatorname{Soc}\left(R_{R}\right)$ is a finitely generated right ideal and essential in R_{R}. So, using [13, Lemma 6.43],
we deduce that $R / Z\left(R_{R}\right)$ is right noetherian. Note that $Z\left(R_{R}\right)$ is a noetherian right R-module. Hence, R is right noetherian, which implies that R has ACC on right annihilators. Therefore, according to Theorem[2.1(2), R is quasi-Frobenius.

Recall a ring R is called right (left) QF-2 if R is a direct sum of uniform right (left) ideals.

Corollary 2.2 ([22, Theorem 4.4]). If R is a QF-2 ring with ACC on right annihilators in which $\operatorname{Soc}\left({ }_{R} R\right) \leq_{e} R_{R}$, then R is quasi-Frobenius.

Proof. By [22, Lemma 4.3], R is semiperfect and $\operatorname{Soc}(R e) \neq 0$ for every local idempotent $e \in R$. Since R is left QF-2, $R e$ is uniform by [3, Lemma 2.7], from which it follows that $\operatorname{Soc}(R e)$ is simple. In addition, since $\operatorname{Soc}\left({ }_{R} R\right) \leq_{e} R_{R}, \operatorname{Soc}\left(R_{R}\right) \subseteq$ $\operatorname{Soc}\left({ }_{R} R\right)$. So, R is right mininjective by [13, Proposition 3.5] and consequently, R is right minfull. Note that R is a right C_{11}-ring (being right QF-2) by [25, Theorem 2.4]. Therefore, the result follows from Theorem [2.1(2).

A ring R is called a right $G P$-injective ring if for each $0 \neq a \in R$, there exists $n \in \mathbb{N}$ such that $a^{n} \neq 0$ and $\operatorname{lr}\left(a^{n}\right)=R a^{n}$ [1.

Corollary 2.3. The the following conditions are equivalent for a ring R :
(1) R is quasi-Frobenius;
(2) R is right C_{11} right GP-injective with ACC on right annihilators;
(3) R is a right artinian right mininjective right CS-ring;
(4) R is a right artinian right mininjective right C_{11}-ring.

Proof. (1) $\Rightarrow(2)$ is clear.
$(2) \Rightarrow(1)$ follows from [1, Theorem 3.7] and Theorem [2.1(2).
$(1) \Leftrightarrow(3) \Leftrightarrow(4)$ follows from Theorem 2.1(2).
Corollary 2.4. The following conditions are equivalent for a ring R :
(1) R is quasi-Frobenius;
(2) R is right C_{11}, left minannihilator (i.e. every left minimal right ideal is a left annihilator) and right artinian.

A ring R is called a right min-CS ring if every minimal right ideal is essential in a direct summand.

Theorem 2.2. The following conditions are equivalent for a ring R :
(1) R is quasi-Frobenius;
(2) R is two-sided min-CS with ACC on right annihilators in which $\operatorname{Soc}\left({ }_{R} R\right)$ is essential in R_{R};
(3) R is left AGP-injective two-sided min-CS with ACC on left annihilators.

Proof. (1) $\Rightarrow(2),(3)$ are clear.
$(2) \Rightarrow(1)$ Since R has ACC on right annihilators and $\operatorname{Soc}\left({ }_{R} R\right) \leq_{e} R_{R}, R$ is semiprimary by [22, Lemma 4.3]. Thus, R is left Kasch by [13, Lemma 4.2]. As R is left min-CS, then it follows from [13, Lemma 4.5] that $\operatorname{Soc}(R e)$ is simple for all local idempotent $e \in R$. On the other hand, the fact that $\operatorname{Soc}\left({ }_{R} R\right) \leq_{e} R_{R}$ implies that $\operatorname{Soc}\left(R_{R}\right) \subseteq \operatorname{Soc}\left({ }_{R} R\right)$. Hence, being semiperfect, R is right mininjective by [13. Proposition 3.5], from which it follows that R is right minfull. Thus, using [13, Theorem 3.12], R is right Kasch. Since R is semiperfect right min-CS, we infer from [13, Lemma 4.5] that $\operatorname{Soc}(e R)$ is simple for all local idempotent $e \in R$ for. But we have already seen that $\operatorname{Soc}(R e)$ is simple for all local idempotent $e \in R$. Then, since R is right Kasch, it follows from [13, Theorem 3.7(3)] that $\operatorname{Soc}\left(R_{R}\right)=$ $\operatorname{Soc}\left({ }_{R} R\right)$. So, by [13, Proposition 3.5] again, R is left mininjective. Finally, being a two-sided mininjective ring with ACC on right annihilators in which $\operatorname{Soc}\left({ }_{R} R\right) \leq_{e}$ R_{R}, R is quasi-Frobenius by [13, Theorem 3.31].
$(3) \Rightarrow(1)$ Being left AGP-injective with ACC on left annihilators, R is semiprimary by [28, Corollary 1.6]. On the other hand, since R is left AGP-injective, $J\left({ }_{R} R\right)=Z\left({ }_{R} R\right)$ by [28, Lemma 1.3], and so $\operatorname{Soc}\left({ }_{R} R\right) \subseteq \operatorname{Soc}\left(R_{R}\right)$. This implies that $\operatorname{Soc}\left(R_{R}\right) \leq_{e} R R$. Therefore, according to (2) $\Rightarrow(1), R$ is quasi-Frobenius.

A module M is called ef-extending if every closed submodule which contains essentially a finitely generated submodule is a direct summand of M.

Corollary 2.5 ([22, Theorem 4.7]). The following conditions are equivalent for a ring R :
(1) R is quasi-Frobenius;
(2) R is right ef-extending with ACC on right annihilators in which $\operatorname{Soc}\left({ }_{R} R\right) \leq_{e}$ R_{R}.

Proposition 2.1. The following conditions are equivalent for a ring R :
(1) R is quasi-Frobenius;
(2) R is a right noetherian left AGP-injective two-sided ef-extending ring.

Proof. $(1) \Rightarrow(2)$ is clear.
$(2) \Rightarrow(1)$ Since R is right noetherian, R contains no infinite orthogonal sets of idempotents. Hence, ${ }_{R} R=R e_{i} \oplus \cdots \oplus R e_{n}$, where each $R e_{i}$ is indecomposable. As ${ }_{R} R$ is an ef-extending module, each $R e_{i}$ is also $e f$-extending. Note that every finitely generated submodule of $R e_{i}$ is essential in a direct summand of $R e_{i}$. It follows that $R e_{i}$ is uniform. Thus, ${ }_{R} R$ has finite uniform dimension. We deduce that R is semilocal by [15, Corollary 1.2]. On the other hand, being right noetherian left AGP-injective, $J(R)$ is nilpotent by [15, Theorem 2.1]. Therefore, R is semiprimary, from which it follows that R is right artinian. So, R has ACC on left annihilators. Therefore, the claim follows from Theorem 2.2(3).

Theorem 2.3. The following conditions are equivalent for a ring R :
(1) R is quasi-Frobenius;
(2) R is left C_{11} right cogenerator with ACC on right annihilators.

Proof. (1) $\Rightarrow(2)$ is clear.
$(2) \Rightarrow(1)$ As R has ACC on right annihilators, then R contains no infinite orthogonal sets of idempotents. So we can write $R=R e_{1} \oplus R e_{2} \oplus \cdots \oplus R e_{n}$, where $\left\{e_{i}\right\}_{i=1}^{n}$ is an orthogonal set of primitive idempotents. Since R is right cogenerator, R is right Kasch. Thus, R is a left C_{2}-ring, and so ${ }_{R} R$ is a C_{3}-module. Then, since ${ }_{R} R$ is a C_{11}-module, it follows from [25, Proposition 2.3(iii) and Theorem 4.3] that each $R e_{i}$ is uniform. Consequently, ${ }_{R} R$ has finite uniform dimension. As ${ }_{R} R$ is a C_{2}-module, then R is semiperfect by [13, Lemma 4.26]. In particular, R has a finite number of isomorphism classes of simple right and (left) R-modules. Since R is right cogenerator, R is right self-injective by [13, Theorem 1.56]. Therefore, in view of [2, Proposition 18.9], R is quasi-Frobenius.

A ring R is called a right P-injective (respectively, 2-injective) ring if every R homomorphism from a principal (respectively, 2-generated) right ideal of R extends to an endomorphism of R.

Theorem 2.4. The following conditions are equivalent for a ring R :
(1) R is quasi-Frobenius;
(2) R is a right noetherian left P-injective left C_{11}-ring.

Proof. (1) $\Rightarrow(2)$ is clear.
$(2) \Rightarrow(1)$ Since R is right noetherian, R contains no infinite orthogonal sets of idempotents. So, we can write ${ }_{R} R=R e_{1} \oplus \cdots \oplus R e_{n}$, where each $R e_{i}$ is a primitive orthogonal idempotent. Note that ${ }_{R} R$ is a C_{3}-module. Then, since ${ }_{R} R$ is a $C_{11^{-}}$ module, it follows from [25, Proposition 2.3(iii) and Theorem 4.3] that each $R e_{i}$ is uniform. Consequently, ${ }_{R} R$ has finite uniform dimension. Thus, using [28, Corollary 1.2], we deduce that R is semilocal. On the other hand, since R is right noetherian left AGP-injective, $J(R)$ is nilpotent by [28, Theorem 2.1]. This implies that R is semiprimary, and so R is right artinian. Hence, R has ACC on left annihilators. Note that R is left mininjective. Then, R is left minfull. Therefore, being left C_{11}, R is quasi-Frobenius by Theorem 2.1(2).

Corollary 2.6. The following conditions are equivalent for a ring R :
(1) R is quasi-Frobenius;
(2) R is a right Johns left C_{11}-ring.

Corollary 2.7. The following conditions are equivalent for a ring R :
(1) R is quasi-Frobenius;
(2) R is a strongly right Johns left C_{11}-ring.

3. Quasi-Frobenius Rings via Two-Sided C_{11}-Rings

Following [28], a ring R is called right (left) quasi-dual if every right (left) ideal is a direct summand of a right (left) annihilator.

Theorem 3.1. The following conditions are equivalent for a ring R :
(1) R is quasi-Frobenius;
(2) R is quasi-dual two-sided C_{11} with ACC on right annihilators;
(3) R is a two-sided C_{11}-ring with ACC on right annihilators in which $\operatorname{Soc}\left(R_{R}\right)=$ $\operatorname{Soc}\left({ }_{R} R\right)$ is essential as a left and a right ideal of R.

Proof. $(1) \Rightarrow(2)$ is clear.
$(2) \Rightarrow(3)$ Since R is quasi-dual, $\operatorname{Soc}\left(R_{R}\right)=\operatorname{Soc}\left({ }_{R} R\right)$ is essential as a left and a right ideal of R by [28, Corollary 3.3].
$(3) \Rightarrow(1)$ Since R has ACC on right annihilators and $\operatorname{Soc}\left(R_{R}\right)=\operatorname{Soc}\left({ }_{R} R\right)$ is essential as a left and a right ideal of R, we infer from [22, Lemma 4.3] that R is semiprimary. Thus, using [13, Lemma 4.2], we deduce that R is right Kasch. Hence, by [13, Lemma 1.46], ${ }_{R} R$ satisfies the C_{2}-condition. Now, we claim that R is right mininjective. To see this, let e be a local idempotent of R. Then $\operatorname{Soc}(R e) \neq 0$. Since ${ }_{R} R$ is a C_{11}-module satisfying the C_{2}-condition, it follows from [25, Proposition 2.3(iii) and Theorem 4.3] that $R e$ is a uniform module. Consequently, $\operatorname{Soc}(R e)$ is simple. But $\operatorname{Soc}\left(R_{R}\right) \subseteq \operatorname{Soc}\left({ }_{R} R\right)$. Then, R is right mininjective by [13, Proposition 3.5]. Therefore, by Theorem 2.1(2), R is quasi-Frobenius.

Corollary 3.1. The following conditions are equivalent for a ring R :
(1) R is quasi-Frobenius;
(2) R is right artinian two-sided C_{11} and $\operatorname{Soc}\left(R_{R}\right)=\operatorname{Soc}\left({ }_{R} R\right)$.

Corollary 3.2. The following conditions are equivalent for a ring R :
(1) R is quasi-Frobenius;
(2) R is two-sided C_{11} two-sided AGP-injective with ACC on right annihilators.

Proof. $(1) \Rightarrow(2)$ is clear.
$(2) \Rightarrow(1) \mathrm{By}$ [22, Theorem 3.4] and its proof, R is semiprimary and $\operatorname{Soc}\left(R_{R}\right)=$ $\operatorname{Soc}\left({ }_{R} R\right)$. Therefore, by Theorem 3.1(3), R is quasi-Frobenius.

The next example shows that the condition $" \operatorname{Soc}\left(R_{R}\right)=\operatorname{Soc}\left({ }_{R} R\right)$ " in the hypothesis of Corollary 3.1 is necessary.
Example 3.1 ([22, Remark 4.8(i)]). Consider the ring $R=\left[\begin{array}{ll}F & F \\ 0 & F\end{array}\right]$, where F is a field. R is a two-sided artinian two-sided $C S$ ring which is not quasi-Frobenius. However, $\operatorname{Soc}\left(R_{R}\right)=\left[\begin{array}{cc}0 & F \\ 0 & F\end{array}\right]$ and $\operatorname{Soc}\left({ }_{R} R\right)=\left[\begin{array}{cc}F & F \\ 0 & 0\end{array}\right]$ and $\operatorname{Soc}\left(R_{R}\right) \not \leq \operatorname{Soc}\left({ }_{R} R\right)$ and $\operatorname{Soc}\left({ }_{R} R\right) \not \leq \operatorname{Soc}\left(R_{R}\right)$.

4. Automorphism-Invariant Rings and Their Generalizations

Lemma 4.1. If R is a left automorphism-invariant ring and containing no infinite orthogonal sets of idempotents, then R is semiperfect.

Proof. Assume that R is a left automorphism-invariant ring and R contains no infinite orthogonal sets of idempotents. Let e be a primitive idempotent of R. Then, $R e$ is an indecomposable automorphism-invariant left R-module by [12, Lemma 4]. It follows that $\operatorname{End}(R e)$ is a local ring, and so e is a local idempotent of R. Thus, R is semiperfect.

Proposition 4.1. If R is left automorphism-invariant and has ACC on right annihilators with $\operatorname{Soc}\left({ }_{R} R\right)$ an essential right ideal, then R is a quasi-Frobenius ring.

Proof. Assume that R is left automorphism-invariant and has ACC on right annihilators with $\operatorname{Soc}\left({ }_{R} R\right)$ an essential right ideal. Then, R is semiperfect by Lemma 4.1 Moreover, $J(R)$ is nilpotent by [6, Corollary 1.5]. It follows that R is semiprimary and so R is left self-injective. This shows that R is quasi-Frobenius.

Proposition 4.2. The following conditions are equivalent for a ring R :
(1) R is quasi-Frobenius;
(2) R is right automorphism-invariant right C_{11} with ACC on left annihilators.

Proof. (1) $\Rightarrow(2)$ is clear.
$(2) \Rightarrow(1)$ Since R has ACC on left annihilators, it has enough idempotents. So, we can write $R_{R}=e_{i} R \oplus \cdots \oplus e_{n} R$ where each $e_{i} R$ is a primitive orthogonal idempotent. Being automorphism-invariant, R_{R} is a C_{3}-module by [15, page 26]. Thus, since R_{R} is a C_{11}-module, each $e_{i} R$ is uniform by [25, Proposition 2.3(iii)] and Theorem 4.3. Therefore, according to the proof of (5) \Rightarrow (1) of 15, Theorem 2], R is right self-injective. Thus, using [13, Proposition 18.9], we deduce that R is quasi-Frobenius.

Corollary 4.1. A left noetherian right automorphism-invariant C_{11}-ring is quasiFrobenius.

Recall from [14] that a module N is said to be pseudo $M-c^{*}$-injective if for any submodule A of M which is isomorphic to a closed submodule of M, every monomorphism from A to N can be extended to a homomorphism from M to N. A module M is called pseudo- c^{*}-injective if M is pseudo $M-c^{*}$-injective. A ring is called right pseudo- c^{*}-injective if R_{R} is pseudo- c^{*}-injective.

Proposition 4.3. The following conditions are equivalent for a ring R :
(1) R is quasi-Frobenius;
(2) R is left 2-injective with ACC on right annihilators and $\operatorname{Soc}\left({ }_{R} R\right) \leq{ }_{e} R_{R}$;
(3) R is left 2 -injective right AGP-injective with ACC on right annihilators;
(4) R is left 2 -injective right pseudo-c*-injective with ACC on right annihilators.

Proof. $(1) \Rightarrow(2),(3),(4)$ are clear.
$(2) \Rightarrow(1)$ Since R has ACC on right annihilators and $\operatorname{Soc}\left({ }_{R} R\right) \leq_{e} R_{R}, R$ is semiprimary by [22, Lemma 4.3]. Then by [13, Theorem 5.31], R is left Kasch. Consequently, R is right P-injective by [13, Lemma 5.21]. Therefore, by [13, Theorem 3.31], R is quasi-Frobenius.
$(3) \Rightarrow(2)$ Since R is right AGP-injective with ACC on right annihilators, R is semiprimary, by [28, Corollary 1.6]. Moreover, $J(R)=Z\left(R_{R}\right)$ by [28, Lemma 1.3], and so $\operatorname{Soc}\left(R_{R}\right) \subseteq \operatorname{Soc}\left({ }_{R} R\right)$. Hence, $\operatorname{Soc}\left({ }_{R} R\right) \leq_{e} R_{R}$.
(4) $\Rightarrow(2)$ Since R is right pseudo- c^{*}-injective with ACC on right annihilators, it follows from [14, Corollary 3.6] that R is semiprimary. Hence, by [13, Theorem 5.31], $\operatorname{Soc}\left({ }_{R} R\right) \leq_{e} R_{R}$.

A ring R is strongly right Johns if $M_{n}(R)$ is right Johns for all $n \geq 1$. By [13, Lemma 8.10], if $M_{2}(R)$ is right Johns, then so is R. We have the following result.

Corollary 4.2. The following conditions are equivalent for a ring R :
(1) R is quasi-Frobenius;
(2) R is strongly right Johns right pseudo-c*-injective;
(3) R is strongly right Johns and $\operatorname{Soc}\left({ }_{R} R\right) \leq_{e} R_{R}$;
(4) $M_{2}(R)$ is right Johns right pseudo-c*-injective;
(5) $M_{2}(R)$ is right Johns and $\operatorname{Soc}\left({ }_{R} R\right) \leq_{e} R_{R}$.

Theorem 4.1. The following conditions are equivalent for a ring R :
(1) R is quasi-Frobenius;
(2) R is two-sided pseudo-c*-injective, two-sided C_{11} and has ACC on right annihilators.

Proof. (1) $\Rightarrow(2)$ is clear.
$(2) \Rightarrow(1)$ Since R is right pseudo- c^{*}-injective and has ACC on right annihilators, by [14, Corollary 3.6], R is semiprimary. Hence, we can write $R_{R}=e_{i} R \oplus \cdots \oplus e_{n} R$ where each $e_{i} R$ is a primitive orthogonal idempotent. Being right pseudo-c*injective, R_{R} is a C_{3}-module by [14, Theorem 3.1]. Thus, since R_{R} is a C_{11}-module, each $e_{i} R$ is uniform by [25], Proposition 2.3(iii) and Theorem 4.3]. Therefore, according to [14, Theorem 3.4], R is right continuous. Similarly, since R is left C_{11}, we can easily show that R is left continuous. Now, being two-sided continuous with ACC on right annihilators, R is quasi-Frobenius by [22, Corollary 4.11].

5. More Characterizations

In the next result, we provide a necessary and sufficient condition for a left perfect right simple-injective ring to be quasi-Frobenius. A ring R is called a right simpleinjective ring if every R-linear map with simple image from a right ideal to R extends to R.

Theorem 5.1. The following conditions are equivalent for a ring R :
(1) R is quasi-Frobenius;
(2) R is left perfect right simple-injective and for every projective right R-module $M, Z_{2}(M)$ is injective;
(3) R is left perfect right simple-injective and for every injective right R-module $M, Z_{2}(M)$ is projective;
(4) R is left perfect right simple-injective and $Z\left(R_{R}\right)$ is a noetherian right R module.

Proof. $(1) \Rightarrow(2),(3),(4)$ are clear.
$(2) \Rightarrow(1)$ By [13, Theorem 2.21], $\operatorname{Soc}\left(R_{R}\right) \subseteq \operatorname{Soc}\left({ }_{R} R\right)$, from which it follows that $\operatorname{Soc}\left({ }_{R} R\right) \leq_{e} R_{R}$. Using [13, Lemma 4.2], we deduce that R is left Kasch and $\operatorname{rl}(T)$ is essential in a direct summand of R for all right ideals T of R. Also, R is right Kasch by [13, Theorem 3.12]. Therefore, according to [13, Proposition 6.14], $\operatorname{rl}(T)=T$ for all right ideals T of R. Hence, $J(R) \leq Z_{2}\left(R_{R}\right)$ by [5, Lemma 2]. Let M be any projective R-module. Then, by [4, p. 48 Exercise 22], $M=$ $Z_{2}(M) \oplus M^{\prime}$ for some injective R-module. Therefore, by hypothesis, R is quasiFrobenius.
$(3) \Rightarrow(1)$ Let M be an injective R-module. Thus, by the proof of $(2) \Rightarrow(1), M=$ $Z_{2}(M) \oplus M^{\prime}$ for some projective R-module. By hypothesis, R is quasi-Frobenius.
$(4) \Rightarrow(1)$ As shown in the proof of $(2) \Rightarrow(1), R$ is left Kasch and $r l(T)=T$ for all right ideals T of R. Thus, by [13, Proposition 5.20], $\operatorname{Soc}\left({ }_{R} R\right) \leq_{e} R_{R}$. It follows from [13, Corollary 5.53] that R is right finitely cogenerated. Using [13, Lemma 6.43], we deduce that $R / Z\left(R_{R}\right)$ is right noetherian. Note that $Z\left(R_{R}\right)$ is a noetherian right R-module. Hence, we infer from [13, Lemma 8.6] that right artinian. Finally, R is quasi-Frobenius by [13, Theorem 3.31].

Corollary 5.1. The following conditions are equivalent for a ring R :
(1) R is quasi-Frobenius;
(2) R is left perfect right self-injective and for every projective right R-module M, $Z_{2}(M)$ is injective;
(3) R is left perfect right self-injective and for every injective right R-module M, $Z_{2}(M)$ is projective.

Recall that a ring R is said to be left pseudo-coherent if the left annihilator of every finite subset of R is finitely generated.

Theorem 5.2. The following conditions are equivalent for a ring R :
(1) R is quasi-Frobenius;
(2) R is two-sided minfull left (or right) pseudo-coherent and $J(R)$ is left (or right) T-nilpotent.

Proof. $(1) \Rightarrow(2)$ is clear.
$(2) \Rightarrow(1)$ By [13, Corollary 5.53], $\operatorname{Soc}\left({ }_{R} R\right)$ is a finitely generated right ideal. Note that R is left pseudo-coherent. Thus, $J(R)$ is finitely generated as a left ideal. Since $J(R)$ is left T-nilpotent, we infer from [13, Lemma 5.64] that R is right perfect. Therefore, according to [13, Lemma 6.50], R has ACC on left annihilators. On the other hand, $\operatorname{Soc}\left(R_{R}\right)=\operatorname{Soc}\left({ }_{R} R\right)$ is left finitely generated as a right R module by [13, Corollary 5.53]. Hence, by [13, Lemma 3.30], R is right artinian and we conclude by [13, Theorem 3.31] that R is quasi-Frobenius.

A ring R is called a right dual ring if $r l(T)=T$ for all right ideals T of R.
Corollary 5.2. The following conditions are equivalent for a ring R :
(1) R is quasi-Frobenius;
(2) R is a dual left (or right) pseudo-coherent ring in which $J(R)$ is left (or right) T-nilpotent.

Corollary 5.3. The following conditions are equivalent for a ring R :
(1) R is quasi-Frobenius;
(2) R is left perfect, two-sided mininjective and left (or right) pseudo-coherent.

Let A be a non-empty subset of R. We denote by $r(A)=\{x \in R \mid A x=0\}$ the right annihilator of A in R.

Theorem 5.3. Let R be a right C_{11} right minfull ring such that $J^{2}(R)=r(A)$ for a finite subset A of R. Then $J(R) / J^{2}(R)$ is a finitely generated right R-module.

Proof. Let $J^{2}(R)=r\left(a_{1}, \ldots, a_{n}\right)$. Define $\phi: R / J^{2}(R) \rightarrow R_{R}^{n}$ via $\phi\left(a+J^{2}(R)\right)=$ $r\left(a_{1} a, a_{2} a, \ldots, a_{n} a\right)$ for $a \in R$. Then ϕ is a monomorphism. Hence, we may regard $J^{2}(R) / J(R)$ as a submodule of R_{R}^{n}. Also, we have $J(R) / J^{2}(R)=$ $\operatorname{Soc}\left(J(R) / J^{2}(R)\right) \subseteq \operatorname{Soc}\left(R_{R}^{n}\right)=\left(\operatorname{Soc}\left(R_{R}\right)\right)^{n}$. On the other hand, $\operatorname{Soc}\left(R_{R}\right)$ is finitely generated by Lemma 2.1. Therefore, as a direct summand of $\left(\operatorname{Soc}\left(R_{R}\right)\right)^{n}$, $J(R) / J^{2}(R)$ is a finitely generated right R-module.

Corollary 5.4. Let R be a left perfect right C_{11} right mininjective ring. If $J^{2}(R)=$ $r(A)$ for a finite subset A of R, then R is quasi-Frobenius.

Proof. Since R is left perfect right mininjective, it is right minfull. Thus, $J(R) / J^{2}(R)$ is a finitely generated right R-module by Theorem 5.3 Now, being
left perfect, R is right artinian by [13, Lemma 6.50]. Thus, using Corollary [2.3(5), we deduce that R is quasi-Frobenius.

The following theorem is motivated by [7, Theorem 3.13]. First, we prove the following lemmas.

Lemma 5.1. Let R be a left continuous ring right RMC. Then R is semiperfect.
Proof. Assume that R is left continuous right RMC. Let $\bar{S}_{1}=\operatorname{Soc}\left(\bar{Q}_{\bar{Q}}\right)$ where $\bar{Q}=R / J(R)$. By [5, Lemma 2], \bar{Q} is a von Neumann regular left continuous ring. Consequently, \bar{Q} / \bar{S}_{1} is von Neumann regular. In addition, since \bar{Q} has right RMC, \bar{Q} / \bar{S}_{1} has finite right uniform dimension by [2, Lemma 5.14]. It follows that \bar{Q} / \bar{S}_{1} is semisimple. As \bar{Q} is semiprime, then $\bar{S}_{1}=\operatorname{Soc}(\bar{Q} \bar{Q})$. Thus, \bar{Q} satisfies DCC on essential left ideals. Therefore, \bar{Q} is an artinian ring by [2, Corollary 18.7(2)], and we conclude by [5, Lemma 2] that R is semiperfect.

Lemma 5.2. Let R be a left CS ring with right RMC such that every principal right ideal is right annihilator. Then $r(J(R))$ is a noetherian right R-module.

Proof. Since every principal right ideal is right annihilator, R is a left C_{2}-ring by [14, Proposition 5.10]. Thus, by Lemma [5.1, R is semiperfect. Using [13, Theorem 5.52], we deduce that $r(J(R))$ is a noetherian right R-module, as required.

Lemma 5.3. Let R be a left CS ring with right RMC such that every principal right ideal is right annihilator. The following conditions are equivalent:
(1) R is quasi-Frobenius;
(2) $Z\left({ }_{R} R\right)=Z\left(R_{R}\right)$.

Proof. $(1) \Rightarrow(2)$ is clear.
$(2) \Rightarrow(1)$ By Lemma 5.2, $r(J(R))$ is a noetherian right R-module. By hypothesis, $Z\left({ }_{R} R\right)=Z\left(R_{R}\right)$. Thus, as $Z\left({ }_{R} R\right)=J$ by [5, Lemma 2], then it follows that $\operatorname{Soc}\left(R_{R}\right)$ is right finitely generated. Therefore, according to [2, Lemma 5.14], R has finite right uniform dimension. Using [7] Proposition 2.4(e)], we deduce that $Z\left(R_{R}\right)$ is right artinian. Hence, by hypothesis, R has ACC on left annihilators. Clearly, R is right minannihilator by [13, Lemma 5.1] (i.e. every minimal right ideal of R is an annihilator). Therefore, R is quasi-Frobenius by [13, Theorem $4.22(1) \Leftrightarrow(2)$].

Now, we are able to prove the following result which improve in 7. Theorem $3.13(1) \Rightarrow(2) ;$ 2, Proposition 18.6].

A ring R is said to be a left IN ring if $r\left(T \cap T^{\prime}\right)=r(T)+r\left(T^{\prime}\right)$ for all left ideals T and T^{\prime} of R.

Theorem 5.4. The following conditions are equivalent for a ring R :
(1) R is quasi-Frobenius;
(2) R is a left P-injective left IN-ring with right RMC and $J(R)$ is nil-ideal;
(3) R is a left P-injective left IN -ring with right RMC and $Z\left(R_{R}\right)=Z\left({ }_{R} R\right)$.

Proof. $(1) \Rightarrow(2)$ is clear.
$(2) \Rightarrow(3)$ Assume that R has the stated condition. By [7, Propositon 2.4(a)], $J(R)$ is nilpotent. It follows from [13, Proposition 5.10 and Theorem 6.32] and Lemma 5.1 that R is semiprimary. Since R is left P-injective, we infer from 13 , Theorem 5.31] that $Z\left(R_{R}\right)=Z\left({ }_{R} R\right)$.
$(3) \Rightarrow(1)$ As R is a left $I N$-ring, it is left $C S$ by [13, Theorem 6.32]. It is clear that every principal right ideal is right annihilator (R is left P-injective). But by hypothesis, $Z\left({ }_{R} R\right)=Z\left(R_{R}\right)$. Therefore, according to Lemma 5.3, R is quasiFrobenius.

Corollary 5.5. The following conditions are equivalent for a ring R :
(1) R is quasi-Frobenius;
(2) R is a two-sided P-injective left IN -ring with right RMC .

Proposition 5.1. The following conditions are equivalent for a ring R :
(1) R is quasi-Frobenius;
(2) R is a right P-injective right IN -ring with right RMC .

Proof. $(1) \Rightarrow(2)$ is clear.
$(2) \Rightarrow(1)$ By [13, Proposition 5.10 and Theorem 6.32], R is right continuous. Using [13, Proposition 18.14], we deduce that R is right artinian. Hence, R has ACC on right annihilators. Since R is left minannihilator, we infer from 13, Theorem $4.22(1) \Leftrightarrow(2)]$ that R is quasi-Frobenius.

Proposition 5.2. The following conditions are equivalent for a ring R :
(1) R is quasi-Frobenius;
(2) R is left Kasch, every closed right ideal is a right annihilator and $Z_{2}\left(R_{R}\right)$ is an injective artinian right R-module.

Proof. $(1) \Rightarrow(2)$ is clear.
$(2) \Rightarrow(1) \mathrm{By}$ [27, Theorem 10], R is semiperfect right continuous. Using [5, Lemma 2], we deduce that $J(R) \leq Z_{2}\left(R_{R}\right)$. Therefore, from the hypothesis, we can write $R=Z_{2}\left(R_{R}\right) \oplus K$, where K is a semisimple right ideal. It follows that R is quasi-Frobenius.

Let (P) be a property of rings. A ring R is called completely (P) if each factor ring of R has the property (P).

Proposition 5.3. A left perfect right completely simple-injective ring is quasiFrobenius.

Proof. Let \bar{R} be a factor ring of R. By the proof (2) \Rightarrow (1) of Theorem 5.1, \bar{R} is right continuous and $\operatorname{rl}(T)=T$ for all right ideals T of R. It follows that \bar{R} has finite right uniform dimension. Hence, every cyclic right R-module is finitely cogenerated. Thus, R is right artinian by [13, Lemma 1.52]. But R is two-sided mininjective. Therefore, R is quasi-Frobenius by [13, Theorem 3.31].

Surjeet Singh and Yousef Al-Shaniafi (see [24, Theorem 1.10]) proved that: Let R be any commutative ring such that the injective envelope $E(R)$ of R is a projective R-module. Then $R=E(R)$, i.e. R is self-injective. From this, it is easy to see that for a commutative ring R satisfying ACC on annihilators such that the injective envelope $E(R)$ of R is a projective R-module then R is quasi-Frobenius. Now we will extend this result to the noncommutative case. A ring R is called right duo if every right ideal is an ideal.

For a subset X of a right R-module M over a ring R, we denote that $r_{R}(X)$ or $r(X)$ the right annihilator of X in R. Now let X and Y are two subset of a right R-module M, the subset $\{r \in R \mid X r \subseteq Y\}$ of R is denoted by $[Y: X]$. Recall that if $Y \leq M_{R}$ then $[Y: X] \leq R_{R}$ and if $X \leq M_{R}$ and $Y \leq M_{R}$ then $[Y: X]$ is an ideal of R.

Let R be a right duo ring and P be a maximal ideal of R. Then it is easy to prove that $R \backslash P$ is multiplicatively closed and satisfies condition (S1): $\forall s \in R \backslash P$ and $r \in R$, there exist $t \in R \backslash P$ and $u \in R$ such that $s u=r t$. Moreover, if R satisfies ACC on right annihilators then by [21, Proposition 1.5], $R \backslash P$ is a right denominator set. In this case, the ring $R(R \backslash P)^{-1}$ is called the right localization with respect to P and we write R_{P} and M_{P} instead of $R(R \backslash P)^{-1}$ and $M(R \backslash P)^{-1}=M \otimes_{R} R_{P}$, respectively. A ring R is called right localizable if for each maximal right ideal P of R, the right localization R_{P} exists. A ring R is said to be left quasi-duo if each of its maximal left ideals is an ideal of R. A ring R is called right QF-3+ if the injective envelope $E\left(R_{R}\right)$ of R_{R} is a projective right R-module.

Theorem 5.5. Let R be a right duo, right $\mathrm{QF}-3^{+}$, left quasi-duo ring satisfying ACC on right annihilators. Then R is quasi-Frobenius.

Proof. Now let P be a maximal ideal of R and $\theta: E \rightarrow E_{P}$ be the canonical map. Then the right localization R_{P} exists. Since E is projective, we have $E \oplus A=R^{(X)}$ with some A_{R} and index set X. We know that $E_{P}=E \otimes_{R} R_{P}$, so

$$
\begin{aligned}
(E \oplus A) \otimes_{R} R_{P} & =\left(E \otimes_{R} R_{P}\right) \oplus\left(A \otimes_{R} R_{P}\right) \\
& =R^{(X)} \otimes_{R} R_{P} \cong R_{P}^{(X)}
\end{aligned}
$$

Hence E_{P} is a projective right R_{P}-module.
Let $F=\{x \in E \mid[E P: x] \nsubseteq P\}$. With assumption $\theta(1) \in E_{P} P$ and by [23, Lemma 3.17], $[E P: 1] \nsubseteq P$. So $1 \in F$. Similarly, by [23, Lemma 3.17], $\theta(x) \in E_{P} P$ if and only if $[E P: x] \nsubseteq P$. So $F=\left\{x \in E \mid \theta(x) \in E_{P} P\right\}$. Because θ is an R-homomorphism, we can prove easily that F is a submodule of E.

Now we will prove that F is quasi-injective. Now since $E(F)$ is a direct summand of E, we can assume that we take any homomorphism $\psi: E \rightarrow E$. There exists an R_{P}-homomorphism $\sigma: E_{P} \rightarrow E$ such that $\sigma \theta=\psi$.

Now, let $t \in F$ then $t \in E$ and there exists $r \notin P$ such that $t r \in E P$. Moreover, $\theta(t) \in E_{P} P$. Hence there exists $p \in P, e_{t} \in E_{p}$ such that $\theta(t)=e_{t} p$. So $\psi(t)=(\sigma \theta)(t r)=\sigma(\theta(t)) r=(\sigma \theta)\left(e_{t} p\right) r=(\sigma \theta)\left(e_{t}\right) p r \in E P$. It follows that $\psi(t) \in L$.

Since F is invariant under any homomorphism of E, F is quasi-injective. Now since $1 \in F$, there exists $r \in E P$ such that $r \notin P$. Let $e \in E$ then since $r \in(E P) \cap R$, er $\in E[(E P) \cap R] \leq E P$. So $e \in F$. Hence $E=F$. Hence $E_{P} \neq E_{P} P$. So there exists an $e \in E$ such that $\theta(e) \notin E_{P} P$. Since $E=L, e \in L$, so $[E P: e] \nsubseteq P$. Then there exists $v \notin P$ such that $e v \in E P$. Hence $\theta(e) \in E P$. Contradiction. Hence $\theta(1) \notin E_{P} P$. Since R_{P} is a local ring and E_{P} is a non-zero projective R_{P}-module, so it is free and then

$$
E_{P}=\bigoplus_{i \in I} A_{i}, \quad A_{i} \cong R_{P}
$$

Now we prove that E / R is a flat right R-module. By [21, Exe. 39, p. 48] we need to prove that for every maximal left ideal P of $R, E P \neq E$. Note that P is an ideal and since $\theta(1) \notin E_{P} P, R \cap E P \leq P$. Assume that $E P=E$ then $x \in R \Rightarrow x \in E \Rightarrow x \in E P \Rightarrow x \in P$. So $R=P$. Contradiction. Since E is projective and by [13, Lemma 7.30], E is also finitely generated, so for some $n \in \mathbb{N}$, we obtain that $R^{n} \rightarrow E / R \rightarrow 0$ is exact and then by [21, Cor. 11.4, p.38], E / R is projective. Then $E=R$. And R is right self-injective. Then R is quasi-Frobenius.

Corollary 5.6 ([24, Theorem 1.10]). Let R be any commutative, QF-3+ ring satisfying ACC on annihilators. Then R is quasi-Frobenius.

Acknowledgment

The authors would like to express their special thanks to the referee for her/his careful corrections. Le Van Thuyet and Truong Cong Quynh acknowledge the support/partial support of the Core Research Program of Hue University, Grant No. NCM.DHH.2020.15. Parts of this paper were written during a stay of Le Van Thuyet and Truong Cong Quynh in the Vietnam Institute For Advanced Study in Mathematics (VIASM) and they would like to thank the members of VIASM for their hospitality, as well as to gratefully acknowledge the received support.

References

1. J. Chen and N. Ding, On general principally injective rings, Commun. Algebra 27 (1999) 2097-2116.
2. N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer, Extending Modules, Pitman Research Notes in Mathematics, Vol. 313 (Longman, Harlow, 1994).
3. A. Facchini, Module Theory. Endomorphism Rings and Direct Sum Decompositions in Some Classes of Modules, Progress in Mathematics, Vol. 167 (Birkhäuser Verlag, 1998).
4. K. R. Goodearl, Ring Theory: Nonsingular Rings and Modules, Monographs on Pure and Applied Mathematics, Vol. 33 (Dekker, New York, 1976).
5. S. K. Jain, S. R. Lopez-Permouth and S. T. Rizvi, Continuous rings with ACC on essential ideals, Proc. Am. Math. Soc. 108 (1990) 583-586.
6. B. Johns, Chain conditions and nil ideals, J. Algebra 73 (1981) 287-294.
7. A. Karami Z and M. R. Vedadi, On the restricted minimum condition for rings, Mediterr. J. Math. 18 (2021) 9.
8. M. T. Koşan, T. C. Quynh and A. Srivastava, Rings with each right ideal automorphism-invariant, J. Pure Appl. Algebra 220 (2016) 1525-1537.
9. M. T. Koşan and T. C. Quynh, Nilpotent-invariant modules and rings, Commun. Algebra 45 (2017) 2775-2782.
10. M. T. Koşan and T. C. Quynh, Rings whose (proper) cyclic modules have cyclic automorphism-invariant hulls, Appl. Algebra Eng. Commun. Comput. 32 (2021) 385397.
11. M. T. Koşan, T. C. Quynh and Z. Jan, Kernels of homomorphisms between uniform quasi-injective modules, J. Algebra Appl. 21 (2022) 2250158.
12. T. K. Lee and Y. Zhou, Modules which are invariant under automorphisms of their injective hulls, J. Algebra Appl. 12 (2013) 1250159.
13. W. K. Nicholson and M. F. Yousif, Quasi-Frobenius Rings, Cambridge Tracts in Mathematics, Vol. 158 (Cambridge University Press, Cambridge, 2003).
14. T. C. Quynh and P. H. Tin, Modules satisfying extension conditions under monomorphism of their closed submodules, Asian-Eur. J. Math. 5 (2012) 1250041.
15. T. C. Quynh, M. T. Koşan and L. V. Thuyet, On automorphism-invariant rings with chain conditions, Vietnam J. Math. 48 (2020) 23-29.
16. T. C. Quynh and M. T. Koşan, On automorphism-invariant modules, J. Algebra Appl. 14 (2015) 1550074.
17. T. C. Quynh, A. Abyzov and D. D. Tai, Modules which are invariant under nilpotents of their envelopes and covers, J. Algebra Appl. 20 (2021) 2150218.
18. T. C. Quynh, A. Abyzov, N. T. T. Ha and T. Yildirim, Modules close to the automorphism invariant and coinvariant, J. Algebra Appl. 14 (2019) 19502359.
19. T. C. Quynh, A. Abyzov, P. Dan and L. V. Thuyet, Rings characterized via some classes of almost-injective modules, Bull. Iran. Math. Soc. 47 (2021) 15711584.
20. T. C. Quynh, A. Abyzov and D. T. Trang, Rings all of whose finitely generated ideals are automorphism-invariant, J. Algebra Appl. 21 (2022) 2250159.
21. B. Stenstrom, Rings of Quotients, Grundlehren der mathematischen Wissenschaften, Vol. 217 (Springer-Verlag, 1975).
22. L. V. Thuyet and T. C. Quynh, On general injective rings with chain conditions, Algebra Colloq. 16 (2009) 243-252.
23. A. A. Tuganbaev, Multiplication modules, J. Math. Sci. 123 (2004) 3839-3905.
24. S. Singh and Y. Al-Shaniafi, Quasi-injective multiplication modules, Commun. Algebra 28 (2000) 3329-3334.
25. P. F. Smith and A. Tercan, Generalizations of CS-modules, Commun. Algebra 21 (1993) 1809-1847.
L. V. Thuyet et al.
26. L. D. Thoang and L. V. Thuyet, On semiperfect mininjective rings with essential socles, Southeast Asian Bull. Math. 30 (2006) 555-560.
27. M. F. Yousif and Y. Zhou, Pseudo-Frobenius rings: Characterizations and questions, Commun. Algebra 31 (2003) 4473-4484.
28. Y. Zhou, Rings in which certain right ideals are direct summands on annihilators, J. Aust. Math. Soc., Ser. A 73 (2002) 335-346.

[^0]: * Corresponding author.

