
Received: 7 May 2023 Revised: 13 September 2023 Accepted: 14 November 2023

DOI: 10.1002/rnc.7115

R E S E A R C H A R T I C L E

Robustness of exponential stability of a class of switched
positive linear systems with time delays

Nguyen Khoa Son1 Le Van Ngoc2

1Institute of Mathematics, Vietnam
Academy of Science and Technology,
Hanoi, Vietnam
2Department of Scientific Fundamentals,
Posts and Telecommunications Institute
of Technology, Hanoi, Vietnam

Correspondence
Nguyen Khoa Son, Institute of
Mathematics, Vietnam Academy of
Science and Technology, 18 Hoang Quoc
Viet Rd., Hanoi, Vietnam.
Email: nkson@vast.vn and
nkson1610@gmail.com

Funding information
Ministry of Education and Training of
Vietnam, Grant/Award Number:
B2023-CTT-05

Summary
This paper investigates the robustness of exponential stability of a class of
positive switched systems described by linear functional differential equations
(FDE) under arbitrary switching or average dwell time switching. We will mea-
sure the stability robustness of such a system (which is considered as a nominal
system) subject to parameter affine perturbations of its constituent subsys-
tems matrices, by introducing the notion of structured stability radius. Some
formulas for computing this radius, as well as estimating its lower bounds
and upper bounds, are established. In the case of switched linear systems
with multiple discrete time-delays or/and distributed time-delays, the obtained
results yield tractably computable formulas or bounds for the stability radius.
The extension of the obtained results to non-positive systems and the class of
multi-perturbations has been presented. Examples are given to illustrate the
proposed method.
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1 INTRODUCTION

The stability robustness of dynamical systems subject to parameter perturbations or uncertainties has attracted significant
attention from researchers for many years. The motivation comes from engineering practices. In order to study or control a
real system with complicated dynamic behaviors the engineer usually considers a simplified mathematical model, which
is called a nominal system. Then there arises the question of whether a desired property established for the nominal
system, say asymptotic stability or controllability, is robust enough to be true when applied to the real system. Since a
mathematical model never exactly represents the dynamics of a physical system, the robustness issue is not only important
in the context of model reduction but is a fundamental problem for the application of systems and control theory in
general.

One of the most effective approaches in measuring the system stability robustness is based on the concept of stability
radius, see, for example, References 1,2. By definition, the structured stability radius of a given nominal asymptoti-
cally stable system ẋ(t) = A0x(t), t ≥ 0, is defined as the maximal number 𝛿0 > 0 such that all the perturbed systems
ẋ(t) = ̃A0x(t) = (A0 + DΔE)x(t) are asymptotically stable whenever ||Δ|| < 𝛿0 (with some matrix norm || ⋅ ||) where D and
E are given real matrices of appropriate dimensions defining the structure of perturbation and Δ is a unknown distur-
bance matrix. Depending on Δ being real or complex, one gets, correspondingly, the real stability radius rR(A0) or the
complex stability radius rC(A0), which are, in general, distinct,3 namely, rC(A0) < rR(A0). Geometrically, when D and E are
the identity matrix, the real stability radius is just the distance to instability of an asymptotically stable nominal system.
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If the nominal system is real then the computation of rR(A0) is, of course, a more natural problem. However, this problem
is much more difficult, compared with that of rC(A0), being reduced to a complicated global optimization problem for the
parameterized structured singular value of A0, see, for example, Reference 2. Problems of characterizing and calculating
stability radii for different classes of dynamical systems and subject to different types of perturbations or uncertainties
have been a topic of major interest in the system and control theory over the past several decades. The interested reader is
referred to the monograph3 where an extensive literature on this study can be found; see also Reference 4 for discrete-time
systems and References 5,6 for positive systems. Recall that a dynamical system with state space Rn is called positive if any
trajectory of the system starting at an initial state in the positive orthant R

n
+ remains forever in R

n
+. For instance, the linear

system ẋ(t) = A0x(t), t ≥ 0 is positive if and only if A0 is a Metzler matrix (i.e., all off-diagonal entries are nonnegative).
Positive systems are used in many areas such as economics, population dynamics, and ecology, see, for example, Refer-
ence 7. The mathematical theory of positive systems is based on the theory of nonnegative matrices,8 where the famous
Perron–Frobenius theorem plays an essential role, particularly in the system stability analysis. It has been shown in Ref-
erence 5, for instance, that if the mentioned linear system is positive and D,E are nonnegative matrices, then its complex
and the real stability radii coincide and are equal to the stability radius rR+(A0), corresponding to the nonnegative per-
turbation Δ ≥ 0, and can be computed directly via a simple formula. In more recent years, robust stability problems have
been considered intensively also for time-delay linear systems of the form ẋ(t) = A0x(t) +

∑m
i=1Aix(t − hi), t ≥ 0, hi > 0

(see, e.g., References 9,10) and, more generally, for linear functional differential equations (or shortly, FDEs) of the form
ẋ(t) = A0x(t) + ∫ 0

−hd[𝜂(𝜃)]x(t + 𝜃), t ≥ 0 (see, e.g., References 11–13) where similar results have been proved for stability
conditions and stability radii of positive systems.

Given the mentioned widespread popularity of stability radii in the robustness stability analysis, it is surprising that
this approach has not been developed so far in the literature on the stability of switched systems. We recall that a switched
system is a type of hybrid dynamical systems that consists of a family of subsystems and a rule called a switching signal
that chooses an active subsystem from the family at every instant of time. For instance, a linear switched system can be
represented in the form

ẋ(t) = A
𝜎(t)x(t), t ≥ 0, 𝜎 ∈ Σ, (1)

whereΣ is a set of switching signals which are piece-wise constant functions 𝜎 ∶ [0,+∞) → N ∶= {1, 2, … ,N} (satisfying
some realistic assumptions). The study on switched systems has drawn considerable attention in the system and control
community over the past few decades, due to the wide range of applications of this type of systems in the engineering
practice. The reader is referred to the monographs,14,15 survey papers,16,17 and the references therein for more details
on different problems regarding switched systems, in particular, on stability issues. It has been indicated, for instance,
that the switched linear system (1) is exponentially stable under arbitrary switching 𝜎 if all constituent subsystems have
a common quadratic Lyapunov function (CQLF, for short). Recently, similar problems have been considered intensively
also for time-delay switched systems, for instance, the linear systems of the form ẋ(t) = A

𝜎(t)x(t) + B
𝜎(t)x(t − h), t ≥ 0, 𝜎 ∈

Σ, where different kinds of the so-called Lyapunov–Krasovskii functionals play a similar role (see, e.g., References 18,19,
which contain the extensive literature on the topic). In the meantime, for the class of positive or compartmental switched
linear systems, besides traditional quadratic Lyapunov functions, a more restrictive notion of common linear copositive
Lyapunov functions, as well as the comparison principle, are exploited effectively in the study of stability problems (see
e.g., References 20–22 and also References 23–25 for time-delay systems). Some recent development in stability problems
for positive switched systems can be found, for instance, in References 26–29 and the references given therein. We would
like to emphasize that the above references are all dedicated to the stability analysis of switched systems under arbitrary
switching signals. Such a strong requirement is important when the switching mechanism is unknown, or too complicated
to be useful in the stability analysis. On the other side, in engineering practices, switching laws must usually satisfy
some technical restriction (for instance, the time between switching instances must be not smaller than a given number
𝜏D > 0). In particular, the problem of stability and stabilization of switched systems, using the so-called average dwell
time switching (or ADT switching, for short) has attracted considerable attention, see for example, References 14,30–36,
for more recent contributions. It is emphasized that in Reference 36 based on the properties of positive systems and the
comparison principle, we developed a unified approach to study exponential stability of nonlinear time-varying switched
systems described by functional differential equations (or FDEs, for short), under arbitrary switching as well as ADT
switching, which covers, as a particular case, the time-delay switched linear systems of the form

ẋ(t) = A0
𝜎(t)x(t) + ∫

0

−h
d[𝜂

𝜎(t)(𝜃)]x(t + 𝜃), t ≥ 0, 𝜎 ∈ Σ. (2)
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In contrast, little attention has been paid to the stability robustness analysis of switched systems. One of the challenges
in this problem comes from the fact that instability of perturbed switched systems may be caused not only by the size
of perturbations but also by the switching signals. The other obstacle is raised by the well-known fact that stability of
all constituent subsystems may not be sufficient for the original switched system to be stable. There exist so far very few
results dedicated to this topic in the existing literature, see, for example, References 14 (pp. 41–42) and 37,38 where some
stability bounds of the delay-free switched linear system (1) have been calculated, with the underlying assumption that
constituent subsystems have a common quadratic Lyapunov function (CQLF). While, it is well-known that the assumption
on the existence of CQLF is rather conservative, being satisfied only for some classes of systems and, moreover, the CQLF
is not easy to be constructed (see, e.g., Reference 16), the extension of stability results based on this approach to time-delay
switched systems of the form (2) has not been available in the literature, to the best of our knowledge. This makes the
problem of calculation of robust stability bounds for switched time-delay systems even more difficult.

The main purpose of this paper is to develop a different approach for studying the robust stability of time-delay
switched systems of the form (2), under arbitrary switching or ADT switching, by making use of the exponential stability
conditions obtained in Reference 36 for this class of positive systems. For this purpose, we introduce the notion of the sys-
tem’s stability radius and establish some formulas to estimate its bounds, when the subsystems matrices Ak, 𝜂k(⋅), k ∈ N
are subjected to affine perturbations or multi-perturbations. Formulas will be derived and expressed in terms of coefficient
matrices appearing in the initial nominal system’s equations. The extensions of results are obtained also for non-positive
systems. A similar approach was first introduced in our previous work,38 but only for delay-free switched systems of the
form (1), under simple affine perturbations of the subsystems matrices Ak, k ∈ N, so that the method and the results of
Reference 38 can not be applied to the general model considered in this paper. Additionally, it should be emphasized that
the switched linear systems of the general form (2) cover systems with multiple discrete delays and those with distributed
delays as particular cases, giving the obtained results a wider range of applications.

The remainder of the paper is organized as follows. In Section 2, we present the notation and the mathematical back-
ground, necessary to prove the main results of the paper, including some criteria for exponential stability of switched
systems described by linear FDEs. Section 3 is devoted to presenting the main results of the paper. Definitions of the sta-
bility radii of switched linear FDEs subject to affine perturbations are given and some formulas for computing its bounds
are established. In particular, for two-order positive switched linear systems with no time-delays, a formula for comput-
ing the unstructured stability radius is established. Examples are provided to illustrate the use of the obtained results and
the extension to the class of multi-perturbations are given. Finally, in Section 4, we summarize the main contribution of
the paper and give some remarks on future work.

2 PRELIMINARIES AND MATHEMATICAL BACKGROUND

In this section, we introduce the main notation and present a number of previous results to be used in what follows.
Throughout, N,R stand, respectively, for the sets of positive integers and real numbers. For r ∈ N, r denotes the set of
numbers {1, 2, … , r}. Rn is the linear space of n-dimensional column vectors and Rn×m is the space of (n ×m)-matrices
(aij)with entries aij ∈ R, In is the identity matrix of Rn×n. Inequalities between vectors and matrices are understood com-
ponentwise, so that for matrices A = (aij) and B = (bij) in Rn×m, we write A ≥ B and A ≫ B iff aij ≥ bij and aij > bij for
i ∈ n, j ∈ m, respectively. |A| stands for the matrix (|aij|) and A⊤ is the transpose of A. Similar notation is applied for vec-
tors x = (xi) ∈ Rn. Denote R

n
+ = {x ∈ Rn ∶ x ≥ 0} and R

n×m
+ = {A ∈ Rn×m ∶ A ≥ 0}. Without lost of generality, we assume

that Rn is equipped with the∞-norm: for x = (xi) ∈ Rn
, ||x|| = max1≤i≤n |xi| and the norm in Rn×m is the induced operator

norm: ||A|| = max1≤i≤n
∑m

j=1|aij|.The maximal real part of all eigenvalues of A ∈ Rn×n is denoted by𝜇(A)while 𝜌(A) stands
for its spectral radius. If 𝜇(A) < 0 then A is said to be Hurwitz stable. Further, for h > 0, ∶= C([−h, 0],Rn) denotes the
Banach space of continuous functions𝜑 ∶ [−h, 0] → Rn with the norm ||𝜑|| = max

𝜃∈[−h,0] ||𝜑(𝜃)|| and NBV([−h, 0],R)will
stand for the linear space of all normalized functions of bounded variation𝜓 ∶ [−h, 0] → R, which are left-side continuous
on the interval (−h, 0], 𝜓(−h) = 0 and have the bounded total variation Var([−h, 0], 𝜓) = supP[−h,0]

∑
k |𝜓(𝜃k) − 𝜓(𝜃k−1)| <

∞, the supremum being taken over the set of all finite partitions of the interval [−h, 0]. Denote by NBV([−h, 0],Rp×q) the
linear space of all matrix functions 𝛿 ∶ [−h, 0] → Rp×q such that 𝛿ij(⋅) ∈ NBV([−h, 0],R),∀i ∈ p,∀j ∈ q, and define the the
nonnegative matrix V(𝛿) ∈ R

p×q
+ , by setting

V(𝛿) ∶=
(

Var([−h, 0], 𝛿ij)
)
≥ 0. (3)
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Then it is easy to verify that NBV([−h, 0],Rp×q) is a Banach space being equipped with the norm

||𝛿|| ∶= ||V(𝛿)|| = max
1≤i≤p

q∑

j=1
Var([−h, 0], 𝛿ij). (4)

It follows from the definition that if both Rp and Rq are provided with the norm || ⋅ ||∞ then, for any Δ ∈ Rp×q
, any

𝛿, 𝛿1, 𝛿2 ∈ NBV([−h, 0],Rp×q) and any constant matrices D ∈ Rn×p
,E ∈ Rq×n, we have

|| |Δ| || = ||Δ||, (5)

D𝛿E ∈ NBV([−h, 0],Rn×n) and V(D𝛿E) ≤ |D| V(𝛿) |E|, (6)

V(𝛿1 + 𝛿2) ≤ V(𝛿1) + V(𝛿2); V(𝛼𝛿) ≤ |𝛼|V(𝛿), ∀𝛼 ∈ R. (7)

Finally, recall that A ∈ Rn×n is said to be a Metzler matrix if all off-diagonal elements of A are nonnegative: aij ≥ 0, if
i ≠ j. For an arbitrary matrix A ∈ Rn×n we can associate the Metzler matrix(A), by defining,

(A) ∶= (âij), âii = aii,∀i ∈ n, and âij = |aij|,∀i ≠ j ∈ n. (8)

It can easily be verified that

(A + B) ≤(A) + |B|, ∀A,B ∈ R
n×n
. (9)

Some well-known properties of Metzler matrices are collected in the following lemma (see, e.g., Reference 8), which is a
direct consequence of the Perron–Frobenius Theorem.

Lemma 1. Let A ∈ Rn×n be a Metzler matrix. Then the following statements are equivalent: (i) A is Hurwitz
stable, that is, 𝜇(A) < 0; (ii) Ap ≪ 0 for some p ∈ R

n
+, p ≫ 0; (iii) A is invertible and −A−1 ≥ 0.

Consider a switched linear system, whose dynamics are described by the FDE of the form

(,Γ, 𝜎) ∶ ẋ(t) = A0
𝜎(t)x(t) + ∫

0

−h
d[𝜂

𝜎(t)(𝜃)]x(t + 𝜃), t ≥ 0, 𝜎 ∈ Σ. (10)

Here, Σ is a set of admissible switching signals 𝜎, which are assumed to be piece-wise constant and right-continuous
functions 𝜎 ∶ [0,∞)→ N, having on each bounded interval of [0,+∞) a finite number of discontinuities 𝜏k, k = 1, 2, … ,

known as the switching instances. For each t ≥ 0,A0
𝜎(t) ∈  ∶=

{
A0

k, k ∈ N
}
⊂ Rn×n

, a given family of N real matrices and
𝜂

𝜎(t) ∈ Γ ∶= {𝜂k(⋅), k ∈ N} ⊂ NBV([−h, 0],Rn×n), a given family of N matrix functions with normalized bounded variation
elements 𝜂k,ij(⋅). In this paper, we shall assume that Σ = Σ+ or Σ

𝜏a,N0 , where Σ+ is the class of all admissible switching
signals 𝜎 for which the infimum of the time intervals between discontinuities of 𝜎 satisfies

𝜏min(𝜎) ∶= inf
k∈N

(𝜏k+1 − 𝜏k) > 0, (11)

and Σ
𝜏a,N0 is the class of all admissible switching signals 𝜎 for which the number of discontinuities of 𝜎 on the interval

(0, t) satisfies

N
𝜎

(0, t) ≤ N0 +
t
𝜏a
, (12)

where N0 ≥ 1 and 𝜏a > 0 are given numbers, called the chatter bound and the average dwell time (or ADT, for short),
respectively. To simplify the notation, in what follows, for an arbitrarily fixed chatter bound N0, we will denoteΣ

𝜏a = Σ𝜏a,N0 .
Note that such a class Σ+ excludes, for example, any switching signal 𝜎 whose discontinuities have a finite accumulation
point or occur at 𝜏2j = j, 𝜏2j+1 = j + 1

2j+2
, j = 0, 1, 2, … for which, clearly, 𝜏min(𝜎) = 0. The concept of ADT switching was

introduced in References 30,31 and has been proved to be a standard and effective tool in the stability analysis of switched
systems.
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Thus, each signal 𝜎 ∈ Σ performs, by the system (10), the switching between the following N time-delay constituent
linear subsystems (called sometimes switched modes):

(
A0

k, 𝜂k
)
∶ ẋ(t) = A0

kx(t) +
∫

0

−h
d[𝜂k(𝜃)]x(t + 𝜃), t ≥ 0, k ∈ N, (13)

where the i-th component of the second term in (13), for each k ∈ N and i = 1, … ,n, is defined as
(

∫

0

−h
d[𝜂k(𝜃)]x(t + 𝜃)

)

i
=

n∑

j=1
∫

0

−h
d[𝜂k,ij(𝜃)]xj(t + 𝜃),

the integral terms on the right side being understood in the sense of Riemann–Stieltjes. In what follows, the switched
system (,Γ, 𝜎), together with its constituent subsystems

(
A0

k, 𝜂k
)
, k ∈ N, is sometimes referred to as the system (10), (13)

when the link between them needs to be specified.
For any 𝜑 ∈ C([−h, 0],Rn) and any switching signal 𝜎 ∈ Σ+, the system (10) admits a unique solution x(t) = x(t, 𝜑, 𝜎),

t ≥ −h, satisfying the initial condition x(𝜃) = 𝜑(𝜃), 𝜃 ∈ [−h, 0]. Note that the solution x(t) is an absolutely continuous
function on [0,+∞) and differentiable everywhere, except for the set of the switching instances {𝜏k} of 𝜎 where x(t) has
only Dini right- and left-derivatives D+x(𝜏k),D−x(𝜏k) which are generally different.

Definition 1. The switched system (10), (13) with Σ = Σ+ or Σ
𝜏a , is said to be positive if for any switching

signal 𝜎 ∈ Σ and any nonnegative initial function𝜑 ∈ + ∶= C([0,−h],Rn
+), the corresponding solution x(t) =

x(t, 𝜑, 𝜎) of (10) satisfies x(t) ≥ 0,∀t ≥ 0.

The following criterion of positivity of the FDE system (10), (13) is followed straightforwardly from the well-known
results in the theory of positive operators, see, for example, Reference 39 and also References 11,12.

Proposition 1. The switched system (10), (13) is positive if and only if, for each k ∈ N,A0
k is a Metzler matrix

and 𝜂k(⋅) is non-decreasing on [−h, 0], that is, 0 = 𝜂k(−h) ≤ 𝜂k(𝜃1) ≤ 𝜂k(𝜃2), whenever −h ≤ 𝜃1 < 𝜃2 ≤ 0.

Definition 2. Given 𝜏a > 0, the switched system (10), (13), with Σ = Σ+ or Σ
𝜏a , is said to be globally expo-

nentially stable (or shortly, GES) over Σ if, there exist real numbers M > 0, 𝛼 > 0 such that for any 𝜑 ∈  and
any 𝜎 ∈ Σ, the solutions x(t, 𝜑, 𝜎) of (10) satisfies

||x(t, 𝜑, 𝜎)|| ≤ Me−𝛼t||𝜑||, ∀t ≥ 0. (14)

The system (10), (13) is said to be GES over ΣADT if, there exists 𝜏a > 0 such that it is GES over Σ = Σ
𝜏a . The

number 𝛼 satisfying (14) is called the exponential decay rate.

Remark 1. The concept ‘GES over a setΣ of switching signals’ in Definition 2 has been introduced and studied
firstly in References 30,31. In many subsequent works, the equivalent concept “GES under arbitrary switching
𝜎 ∈ Σ” is used more frequently. In what follows, when saying that a switched system is GES under arbitrary
switching, it is understood that the system is GES over the set of switching signals Σ+. Similarly, saying that
the system is GES under switching with ADT 𝜏a will amount to say that the system is GES over the set Σ

𝜏a .

Clearly, if the switched system (10), (13) is GES over Σ+ then it is GES over Σ
𝜏a ,∀𝜏a > 0. Since, for each k ∈ N, the

signal 𝜎(t) ≡ k belongs toΣ+, it follows then that all of the constituent subsystems (13) are globally exponentially stable or,
equivalently (see, e.g., Reference 40), all zeros of their characteristic quasi-polynomials have negative real parts. However,
similarly to the case of switched systems with no delays (i.e., when 𝜂k ≡ 0,∀k ∈ N), the last condition is not sufficient for
(10) to be GES over Σ+. On the other hand, it is easy to give a simple example of a second-order system, which is GES over
ΣADT but is not GES over Σ+ (see, e.g., Reference 14).

The following theorem collects some results obtained in Reference 36 (namely, Corollaries 2 and 6), which will be
used in Section 3 for analyzing the stability robustness of the FDE switched systems.

Theorem 1. The time-delay switched linear system (10), (13) is GES over ΣADT if there exist vectors 𝜉k ∈
Rn
, 𝜉k ≫ 0, k ∈ N satisfying

(
(A0

k) + V(𝜂k)
)
𝜉k ≪ 0, ∀k ∈ N, (15)
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where the matrix of variations V(𝜂k) and the Metzler matrix (A0
k) are defined, respectively, by (3), (8). If,

moreover, 𝜉k = 𝜉, ∀k ∈ N in (15), that is,

(

(

A0
k

)
+ V(𝜂k)

)
𝜉 ≪ 0, ∀k ∈ N, (16)

then the switched linear system (10), (13) is GES over the set of switching signals Σ+. In the particular case, when
the system (10), (13) is positive, the condition (15) is replaced by

(
A0

k + 𝜂k(0)
)
𝜉k ≪ 0, ∀k ∈ N, (17)

which becomes a necessary and sufficient condition for the system to be GES over ΣADT, while the condition (16)
is replaced by

(
A0

k + 𝜂k(0)
)
𝜉 ≪ 0, ∀k ∈ N, (18)

which gives a sufficient condition for the system to be GES over Σ+.

Remark 2. Roughly speaking, the condition (16) means that the switched linear system (10), (13) is GES over
Σ+ if all the dual positive “upper bounding” linear subsystems ẋ = ((A0

k) + V(𝜂k))⊤x, k ∈ N admit a com-
mon copositive linear Lyapunov function L(x) ∶= 𝜉⊤x. On the other hand, if the nominal linear system is
positive and delay-free then the condition (18) in Theorem 1 is reduced to the previously well-known result
(see, e.g., Reference 22, Proposition 3.4). It is worth mentioning additionally that the conditions (18) and (16)
can be verified directly via a finite procedure, due to the result obtained in References 21,41.

The most important particular case of (10), (13) is the class of switched linear system with multiple discrete time-delays
and distributed time-delays of the form

ẋ(t) = A0
𝜎(t)x(t) +

m∑

i=1
Ai
𝜎(t)x(t − hi) +

∫

0

−h
B
𝜎(t)(𝜃)x(t + 𝜃)d𝜃, t ≥ 0, 𝜎 ∈ Σ, (19)

where 0 = h0 < h1 < · · · < hm = h and Σ = Σ+ or Σ
𝜏a , with some 𝜏a > 0. Then, by Proposition 1, the system (19) is pos-

itive if and only if, for each k ∈ N,A0
k are Metzler matrices and Ai

k ≥ 0, ∀i ∈ m, Bk(𝜃) ≥ 0,∀𝜃 ∈ [−h, 0]. Application of
Theorem 1 to this class of systems yields the following verifiable condition of exponential stability, which will be used in
the next Section 3.

Corollary 1. The switched positive linear system with delay (19) is GES over ΣADT if and only if there exist vectors
𝜉k ∈ Rn

, 𝜉k ≫ 0, k ∈ N such that

(

A0
k +

m∑

i=1
Ai

k + ∫

0

−h
Bk(s)ds

)

𝜉k ≪ 0, ∀k ∈ N. (20)

If, moreover, 𝜉k = 𝜉,∀k ∈ N then the system (19) is GES over the set of switching signals Σ+.

3 MAIN RESULTS

Assume that the nominal time-delay switched linear system (10), (13) is GES overΣ, withΣ = ΣADT orΣ+, as being defined
by Definition 2. Let the matrices A0

k, 𝜂k(⋅), k ∈ N of the constituent subsystems (13) be subjected to structured real affine
perturbations of the form

A0
k →

̃A0
k ∶= A0

k + D0
kΔkE0

k, k ∈ N and 𝜂k(⋅)→ 𝜂k(⋅) ∶= 𝜂k(⋅) + D1
k𝛿k(⋅)E1

k, k ∈ N. (21)

Here, for each k ∈ N, D0
k ∈ Rn×rk

, E0
k ∈ Rqk×n

, D1
k ∈ Rn×sk

, E1
k ∈ Rpk×n are given matrices defining the structure of the

perturbations, Δk ∈ Rrk×qk and 𝛿k ∈ NBV([−h, 0],Rsk×pk ) are unknown disturbances. These perturbations are said to be
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nonnegative if, moreover, Δk ≥ 0 and 𝛿k(⋅) are non-decreasing on [−h, 0],∀k ∈ N. Then the perturbed switched system is
described by

( ̃, ̃Γ, 𝜎) ∶ ẋ(t) = ̃A0
𝜎(t)x(t) + ∫

0

−h
d[𝜂

𝜎(t)(𝜃)]x(t + 𝜃), t ≥ 0, 𝜎 ∈ Σ. (22)

As is well-known (see e.g., References 1,3 for the case of linear systems with no delays), by choosing appropriate structur-
ing matrices Di

k,E
i
k, i = 0, 1, k ∈ N, one can represent the perturbations, which affect independently all elements of the

k-th subsystem matrices A0
k, 𝜂k(⋅) or their individual rows, columns, or elements. In what follows, it is assumed that these

structuring matrices are fixed in the perturbation models (21) and hence, if otherwise not stated, they will be dropped in
all the definitions and notations related to the stability radius, for the sake of brevity.

The stability robustness question we are interested in is, given the perturbation model (21), how large disturbances
Δk, 𝛿k(⋅), k ∈ N are allowable without destroying the exponential stability property of the original nominal system (10),
(13). To this end, let us measure the size of disturbances 𝚫 ∶= {[Δk, 𝛿k(⋅)], k ∈ N} by the quantity

||𝚫||max ∶= max
k∈N

(||Δk|| + ||𝛿k||). (23)

Then the robustness of exponential stability of the system (10), (13) can be quantified by the following definition.

Definition 3. Assume that the time-delay switched linear system (10), (13) is GES overΣADT (resp., GES over
Σ+). Then its structured stability radius over ΣADT (respectively, over Σ+), subject to affine perturbations of the
form (21) is defined as

rstr
R
(ΣADT) ∶= inf

{

||𝚫||max ∶ ∀𝜏a > 0, ∃𝜎 ∈ Σ
𝜏a s.t. the perturbed system ( ̃, ̃Γ, 𝜎) is not GES

}

. (24)

respectively as,

rstr
R
(Σ+) ∶= inf

{

||𝚫||max ∶ ∃𝜎 ∈ Σ+ s.t. the perturbed system ( ̃, ̃Γ, 𝜎) is not GES
}

. (25)

If rk = sk = qk = pk = n,Di
k = In, Ei

k = In, i ∈ {0, 1}, k ∈ N in the perturbations model (21), then we get, by
(24) and (25), the unstructured stability radii which are denoted respectively by runstr

R
(ΣADT) and runstr

R
(Σ+).

Remark 3. It follows from Definition 3 that, for any disturbance 𝚫 ∶= {[Δk, 𝛿k(⋅)], k ∈ N} satisfying
||𝚫||max = maxk∈N(||Δk|| + ||𝛿k||) < rstr

R
(ΣADT), the perturbed switched system (22) is GES over ΣADT, that is,

there exists 𝜏a > 0 such that ( ̃, ̃Γ, 𝜎) is GES, for any 𝜎 ∈ Σ
𝜏a . The similar property holds also for rstr

R
(Σ+).

Remark 4. If the nominal system is positive then it is meaningful to restrict disturbances𝚫 in (24) and (25) of
Definition 3 to those perturbations which preserve the positivity of the system, for instance, by Proposition 1, to
the class of nonnegative perturbations𝚫 = {[Δk, 𝛿k(⋅)], k ∈ N} (so thatΔk ≥ 0 and 𝛿k(⋅) are non-decreasing on
[−h, 0]), provided that the structuring matrices are all nonnegative: Di

k ≥ 0,Ei
k ≥ 0, i = 0, 1, k ∈ N. Denote by

rstr
R+
(ΣADT) and rstr

R+
(Σ+) the stability radii corresponding to this class of perturbations, then we have obviously

rstr
R
(ΣADT) ≤ rstr

R+
(ΣADT) and rstr

R
(Σ+) ≤ rstr

R+
(Σ+). (26)

Obviously, if the switched system (10), (13) consists of only one subsystem (A0
k, 𝜂k), for a fixed k ∈ N, then the above

definitions of the two radii are identical and reduced to the well-known notion of the real structured stability radius
rR(A0

k, 𝜂k) of the time-delay subsystem (A0
k, 𝜂k) subject to structured affine perturbations

A0
k →

̃A0
k ∶= A0

k + D0
kΔkE0

k, 𝜂k → 𝜂k ∶= 𝜂k + D1
k𝛿kE1

k, (27)

that was studied in References 11,12, namely,

rR(A0
k, 𝜂k) = inf

{

||Δk|| + ||𝛿k|| ∶ (̃A0
k, 𝜂k) is not GES

}

. (28)
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It has been proved, in particular, that if the time-delay system (A0
k, 𝜂k) is positive (i.e., A0

k is Metzler and 𝜂k ∈
NBV([−h, 0],Rn) is non-decreasing on [−h, 0]) and the structuring matrices Di

k,E
i
k, i = 0, 1 are nonnegative then its struc-

tured stability radius rR(A0
k, 𝜂k) coincides with rR+(A

0
k, 𝜂k), the stability radius corresponding to nonnegative perturbations,

and can be estimated by some computable bounds, which yield the explicit formula for computing the structured stability
radius, if D0

k = D1
k or E0

k = E1
k, namely,

rR+

(
A0

k,A
i
k

)
= rR

(
A0

k,A
i
k

)
=
[

max
j∈M
‖
‖
‖

Ej
k

(
A0

k + 𝜂k(0)
)−1Dj

k
‖
‖
‖

]−1

, M ∶= {0, 1}. (29)

In the particular case of the positive linear systems with multiple discrete delays described by (19), with Bk(𝜃) ≡ 0, the
above result implies readily the following formula of the stability radius:

rR+(A
0
k,A

i
k) = rR(A0

k,A
i
k) =

⎡
⎢
⎢
⎣

max
j∈M

‖
‖
‖
‖
‖
‖

Ej
k

( m∑

i=0
Ai

k

)−1

Dj
k

‖
‖
‖
‖
‖
‖

⎤
⎥
⎥
⎦

−1

, M ∶= {0, 1}. (30)

Remark 5. It has been shown in References 11,12 that, if the system is positive and rR+(A
0
k, 𝜂k) <∞, then

there exists a destabilizing perturbation of the form [̃Δk, 0] or [0, ̃𝛿k] such that ̃Δk ≥ 0, ̃𝛿k(⋅) is a step func-
tion ̃

𝛿k(−h) = 0, ̃𝛿k(𝜃) = ̃Δ
1
k ≥ 0, 𝜃 ∈ (−h, 0], both matrices ̃Δk, ̃Δ

1
k being of rank-one and ||̃Δk|| = rR+

(
A0

k, 𝜂k
)

or ||̃𝛿k|| = ||̃Δ
1
k|| = rR+

(
A0

k, 𝜂k
)
.

The following theorem gives a formula for computing the stability radius of positive switched systems over ΣADT.

Theorem 2. Let the positive switched linear system (10), (13) be GES over ΣADT and subjected to affine pertur-
bations (21), with nonnegative structuring matrices Di

k,E
i
k, i ∈ {0, 1}, k ∈ N. Then its stability radius rstr

R+
(ΣADT)

is calculated as

rstr
R+
(ΣADT) = min

k∈N
rR+(A

0
k, 𝜂k). (31)

If, moreover, D0
k = D1

k or E0
k = E1

k, k ∈ N, then we get

rstr
R+
(ΣADT) =

[

max
k∈N, i∈M

‖
‖
‖

Ei
k

(
A0

k + 𝜂k(0)
)−1Di

k
‖
‖
‖

]−1

, M ∶= {0, 1}. (32)

In particular, the unstructured stability radius over ΣADT is calculated by

runstr
R+

(ΣADT) =
[

max
k∈N

‖
‖
‖

(
A0

k + 𝜂k(0)
)−1‖
‖
‖

]−1

. (33)

Proof. To prove the upper bound, assume that min
k∈N

rR+

(
A0

k, 𝜂k
)
= rR+

(
A0

k0
, 𝜂k0

)
, for some k0 ∈ N. By Remark 5,

there exists a rank-one nonnegative perturbation [̃Δk0 ,
̃

𝛿k0] such that

||̃Δk0 || + ||̃𝛿k0 || = rR+

(
A0

k0
, 𝜂k0

)

and the time-delay positive perturbed system
(
̃A0

k0
, 𝜂k0

) (
with ̃A0

k0
∶= A0

k0
+ D0

k0
̃Δk0 E0

k0
, 𝜂k0(⋅) ∶= 𝜂k0(⋅) +

D1
k0
̃

𝛿k0 (⋅)E
1
k0

)
is not GES. This implies, however, that the perturbed switched linear system (22) associated with

perturbation ̃𝚫 ∶= {[Δk, 𝛿k(⋅)], k ∈ N} with [Δk, 𝛿k(⋅)] = 0,∀k ≠ k0 and [Δk, 𝛿k(⋅)] = [̃Δk0 ,
̃

𝛿k0 (⋅)] for k = k0
is not GES under the switching signal𝜎k0(t) ≡ k0, t ≥ 0. On the other hand, it is obvious that𝜎k0 ∈ Σ𝜏a ,∀𝜏a > 0,
therefore, by the definition of the stability radius, we get

rstr
R+
(ΣADT) ≤ ||̃𝚫||max = ||̃Δk0 || + ||̃𝛿k0 || = rR+(A

0
k0
, 𝜂k0), (34)
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as to be shown. To prove the lower bound, let 𝚫 ∶= {[Δk, 𝛿k(⋅)], k ∈ N} be an arbitrary nonnegative distur-
bance such that ||𝚫||max ∶= maxk∈N(||Δk|| + ||𝛿k||) < min

k∈N
rR+

(
A0

k, 𝜂k
)
= rR+

(
A0

k0
, 𝜂k0

)
. Then for each k ∈ N,we

have

||Δk|| + ||𝛿k|| < rR+

(
A0

k, 𝜂k
)
,

and, hence, by definition of the stability radius of the subsystem (A0
k, 𝜂k), all the positive perturbed systems

(̃A0
k, 𝜂k), k ∈ N are GES. It follows, by theorem 4.1 of Reference 13 that there exist strictly positive vectors

𝜉k ≫ 0, k ∈ N, such that (̃A0
k + 𝜂k(0))𝜉k ≪ 0, k ∈ N which, by Theorem 1, implies that the perturbed switched

system ( ̃, ̃Γ, 𝜎) is GES over ΣADT. Indeed, it has been shown by corollary 6 in Reference 36 that the positive
switched system ( ̃, ̃Γ, 𝜎) is then GES over Σ

𝜏a for any 𝜏a > 𝜏∗ = ln 𝛾
𝛼

, where 𝛾 ∶= max{𝜉k,i∕𝜉l,i, k, l ∈ N, i ∈
n} > 1 and 𝛼 > 0 is chosen to satisfy

(
̃A0

k + e𝛼h
𝜂k(0)

)
𝜉k ≤ −𝛼𝜉k, k ∈ N. Therefore, by the definition of the

stability radius, we get rstr
R+
(ΣADT) ≥ mink∈N rR+

(
A0

k, 𝜂k
)
, which, together with (34) and (29) implies (31) and

(32), completing the proof. ▪

Example 1. Consider the time-delay switched positive linear system (10) in R2 with h = 1,N = 2,

A0
1 =

[
−5.0221 0.2531
1.0103 −3.0105

]

, A0
2 =

[
−4.1023 0.2517
0.5314 −2.4531

]

,

and, for k = 1, 2,

𝜂k(𝜃) =

{
0 if 𝜃 = −1;
A1

k ∈ R2×2 if 𝜃 ∈ (−1, 0],

A1
1 =

[
0.6321 0.3507
1.0315 0.2403

]

, A1
2 =

[
1.103 0.5041

0.7013 0.1102

]

.

Choosing positive vectors 𝜉1 = [0.5 1]⊤ and 𝜉2 = [1 0.8]⊤, it is readily verified that the condition (20) holds and
therefore the system is GES over ΣADT. Now, assume that the second rows of the above subsystems matrices
are subjected to unknown disturbances so that the perturbed subsystems take the form

ẋ(t) = ̃A0
kx(t) + ̃A1

kx(t − 1), t ≥ 0, k = 1, 2, (35)

where

̃A0
1 =

[
−5.0221 0.2531

1.0103 + 𝜔0
1,1 −3.0105 + 𝜔0

1,2

]

,

̃A1
1 =

[
0.6321 0.3507

1.0315 + 𝜔1
1,1 0.2403 + 𝜔1

1,2

]

,

̃A0
2 =

[
−4.1023 0.2517

0.5314 + 𝜔0
2,1 −2.4531 + 𝜔0

2,2

]

,

̃A1
2 =

[
1.103 0.5041

0.7013 + 𝜔1
2,1 0.1102 + 𝜔1

2,2

]

,

and𝜔i
k, k = 1, 2, i = 0, 1 are unknown parameters. Then, by defining the structuring matrices D0

1 = D0
2 = D1

1 =
D1

2 = [0 1]⊤ ∈ R2×1 and E0
1 = E0

2 = E1
1 = E1

2 = I2 ∈ R2×2 (the identity matrix) and setting 𝚫 = [Δ0
k,Δ

1
k] with

Δi
k = [𝜔

i
k,1 𝜔

i
k,2] ∈ R

1×2
+ , i = 0, 1 and k = 1, 2 we get the affine perturbation model (21). By Theorem 2 and

formula (30), the stability radius of the switched system under consideration is

rstr
R+
(ΣADT) = min

k∈N
rR+(A

0
k,A

i
k) = 2.0323.

It follows, by definition, that the perturbed switched system having (35) as subsystems is GES over ΣADT, for
any disturbances 𝜔i

k,j ≥ 0 satisfying maxk=1,2
{
𝜔

0
k,1 + 𝜔

0
k,2 + 𝜔

1
k,1 + 𝜔

1
k,2

}
< 2.0323.
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Now, let the switched system (10), (13) be GES over Σ+ and the constituent subsystems be subjected to affine
perturbations (21). Then, by the same argumentation as in the proof of Theorem 2, it can be shown that

rstr
R
(Σ+) ≤ min

k∈N
rR(Ak, 𝜂k). (36)

However, it is easy to construct an example to shown that a formula similar to (31) is not true for this radius rstr
R
(Σ+), even

for the unstructured perturbations case.
Finding a formula for computing or estimating the stability radius of a switched system over Σ+ is a difficult problem.

So far, this problem was considered only for linear delay-free systems (see, e.g., References 14,37,38) where some lower
bounds for the stability radius were obtained. In the case of positive systems in R2, with two switched modes, based on
the necessary and sufficient conditions of stability obtained in References 42,43, we have a formula for computing the
unstructured stability radius, by the following theorem.

Theorem 3. Consider the positive linear switched system in R2, with two stable modes,

ẋ = A0
𝜎(t)x(t), t ≥ 0, 𝜎(t) ∈ {1, 2}. (37)

Assume that the system is GES over Σ+. Then the unstructured stability radius of this system is calculated by

runstr
R

(Σ+) = min
𝛼∈[0, 1]

rR

(
𝛼A0

1 + (1 − 𝛼)A
0
2
)
∶= 𝛾, (38)

where rR(A) denotes the real unstructured stability radius of a Hurwitz matrix A.

Proof. Since the switched system (37) is positive and GES over Σ+, it follows that all matrices of the matrix
pencil A

𝛼

∶= 𝛼A0
1 + (1 − 𝛼)A

0
2, 𝛼 ∈ [0, 1] are Metzler and, moreover, Hurwitz, by Corollary 2.3 of Reference

14. Due to the continuity of the stability radius (see, e.g., Reference 3), there exists 𝛼0 ∈ [0, 1] such that

min
𝛼∈[0, 1]

rR(A𝛼

) = rR(A𝛼0) = 𝛾

We proof first that

runstr
R

(Σ+) ≤ 𝛾. (39)

Obviously, (39) holds if 𝛼0 = 0 or 1. Assume to the contrary that rR(A𝛼0) = 𝛾 < runstr
R

(Σ+), for some 𝛼0 ∈ (0, 1).
Then, by the definition (25), the perturbed systems ( ̃, 𝜎) are GES for any signal 𝜎 ∈ Σ+ and any perturba-
tions 𝚫 = [Δ1,Δ2] such that ||𝚫||max ∶= max{||Δ1||, ||Δ2||} ≤ 𝛾 < runstr

R
(Σ+), implying, again by Corollary 2.3

of Reference 14, that all convex combination

̃A
𝛼

∶= 𝛼(A0
1 + Δ1) + (1 − 𝛼)(A0

2 + Δ2), 𝛼 ∈ [0, 1] are Hurwitz. (40)

On the other hand, it follows from the theory of stability radius (see, e.g., References 3,5), that there exists a
minimal destabilizing perturbation Δ

𝛼0 ∈ R2×2 such that ||Δ
𝛼0 || = rR(A𝛼0) = 𝛾 and the perturbed matrix

̃A
𝛼0 = A

𝛼0 + Δ𝛼0 = 𝛼0(A0
1 + Δ𝛼0) + (1 − 𝛼0)(A0

2 + Δ𝛼0)

is not Hurwitz, contradicting to (40). Thus (39) is proved. Further, let𝚫 = [Δ1,Δ2] be an arbitrary perturbation
such that Δi ≥ 0, i = 1, 2 and ||𝚫||max < 𝛾 = rR(A𝛼0) = rR+(A𝛼0), the last equality between stability radii being
proved in Reference 5, for any Metzler and Hurwitz matrix. Then, defining, for any 𝛼 ∈ [0, 1], the pertuba-
tionΔ

𝛼

∶= 𝛼Δ1 + (1 − 𝛼)Δ2 we have, obviously, ||Δ
𝛼

|| ≤ maxi=1,2 ||Δi|| < 𝛾 = rR(A𝛼0) ≤ rR(A𝛼

) and, therefore,
the perturbed matrix ̃A

𝛼

∶= A
𝛼

+ Δ
𝛼

is Hurwitz, while being Metzler. It follows, by a result in References 42
and 43, that the perturbed positive switched system ( ̃, 𝜎) is GES for arbitrary switching 𝜎 ∈ Σ+ (the per-
turbed modes ẋ = (A0

k + Δk)x, k = 1, 2, having, moreover, a common quadratic Lyapunov function). Since
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this was proved for an arbitrary nonnegative perturbation 𝚫 satisfying ||𝚫||max < rR(A𝛼0) it implies, by the
definition (25) and Remark 3, that runstr

R
(Σ+) ≥ rR(A𝛼0) = 𝛾. This, together with (39), yields (38), completing

the proof. ▪

Remark 6. Note that the proof of the upper bound (39) is valid without the assumption on positivity of the
system. Further, it follows from the above proof that, actually, the equality holds in (26), for the class of
two-dimensional positive switched systems (37). Remark, furthermore, that the real unstructured stability
radius of a Hurwitz matrix A ∈ R2×2 can be calculated straightforwardly as rR(A) = min{s2(A); |Tr(A)|∕2}
where s2(A) is the smallest singular value of A and Tr denotes its trace, provided that the Euclidean vector
norm in R2 is used (see, e.g., Reference 3). On the other hand, if the matrix A ∈ Rn×n is Metzler and Hur-
witz, then its real unstructured stability radius is given by rR(A) =

[
||A−1||

]−1, for any monotonic vector norm
of Rn, in particular for ∞-norm (see, e.g., Reference 5). As a consequence, the problem of calculation of the
unstructured stability radius of switched linear system (37) is reduced, by (38), to a minimization problem
with respect to the parameter 𝛼 ∈ [0, 1]. The extension of Theorem 3 to higher-order systems is not valid,
because the proof of the lower bound of the stability radius runstr

R
(Σ+) is based on the result of Reference 42,

which was shown to be false for n = 3, by a counterexample in Reference 44. On the other hand, based on
Reference 45, a result similar to Theorem 3 can be obtained for a more general switched systems in R2 of the
form ẋ = A0

𝜎

x(t), t ≥ 0, 𝜎(t) ∈ {1, 2, … ,N}, with N > 2, namely, we have

runstr
R

(Σ+) = min
i,j∈N

min
𝛼∈[0, 1]

rR

(
𝛼A0

i + (1 − 𝛼)A
0
j
)
. (41)

The following example illustrates the use of Theorem 3.

Example 2. Consider the switched positive linear system (19) in R2 with h = 0,m = 0,N = 2, and with the
two stable modes

A0
1 =

[
−1 0.2
0.5 −1

]

, A0
2 =

[
−1 0.4
1 −1

]

.

It is readily verified that vector 𝜉 = [1 2]⊤ satisfies A0
k𝜉 ≪ 0, k = 1, 2 so that, by Corollary 1, this switched

system is GES over Σ+. Define the matrix pencil

A
𝛼

= 𝛼A0
1 + (1 − 𝛼)A

0
2 =

[
−1 0.4 − 0.2𝛼

1 − 0.5𝛼 −1

]

, 𝛼 ∈ [0, 1].

Then, we have

rR(A𝛼

) = 1
||A−1

𝛼

||
= 6 + 4𝛼 − 𝛼2

20 − 5𝛼
, 𝛼 ∈ [0, 1].

By a simple calculation, we obtain min
𝛼∈[0,1] rR(A𝛼

) = rR(A0
2) = 0.3. Therefore, by Theorem 3, runstr

R
(Σ+) = 0.3.

Below we make use of the approach developed in Reference 38 and Theorem 1 to establish some bounds for the
structured stability radius of the system (10), (13) over Σ+.

Assume that the condition (18) holds for the switched time-delay linear system (10), (13) or, equivalently, the open
convex cone

,Γ =
{
𝜉 ∈ R

n
+ ∶ 𝜉 ≫ 0,

(
(A0

k) + V(𝜂k)
)
𝜉 ≪ 0, k ∈ N

}
(42)

is non-empty. Then, by Theorem 1, system (10), (13) is GES over Σ+. Denote, for each 𝜉 ∈ ,Γ and each k ∈ N,

(
(A0

k) + V(𝜂k)
)
𝜉 = −

(
𝛽

k
1 (𝜉), 𝛽

k
2 (𝜉), … , 𝛽

k
n(𝜉)
)
⊤

, (43)

and define

𝛽(𝜉) ∶= min
k∈N,i∈n

𝛽

k
i (𝜉), (44)
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then, clearly, 𝛽(𝜉) > 0. The following theorem gives computable estimates for the structured stability radius of the system
(10) over Σ+. The proof is similar to the case of delay-free systems considered in Reference 38. We give the details for the
completeness of the presentation.

Theorem 4. Let the switched time-delay linear system (10), (13) be GES over Σ+. Assume, moreover, that the
condition (16) holds or, equivalently, ,Γ ≠ ∅. Then the structured stability radius of the switched linear system
(10) over Σ+, subject to structured affine perturbations (21), satisfies the inequality

1
M0

sup
𝜉∈ ,Γ

𝛽(𝜉)
||𝜉||

≤ rstr
R
(Σ+) ≤ min

k∈N
rR

(
A0

k, 𝜂k
)
, (45)

where

M0 ∶= max
k∈N

{
||D0

k|| ||E
0
k||; ||D

1
k|| ||E

1
k||
}
.

Proof. The upper bound in (45) is proved similarly as in Theorem 2. To prove the lower bound, first
we have, by (9), (43), and (44), for each k ∈ N, 𝜉 ∈ ,Γ and arbitrary disturbances Δk ∈ Rrk×qk

, 𝛿k(⋅) ∈
NBV([−h, 0],Rsk×pk ),

(


(
̃A0

k

)
+ V(𝜂k)

)

𝜉 ≤

(


(

A0
k

)
𝜉 + V(𝜂k)𝜉 +

(
|
|D

0
kΔkE0

k
|
| + V

(
D1

k𝛿kE1
k
))

𝜉

≤ −𝛽(𝜉)1n +
(
|
|D

0
kΔkE0

k
|
| + V

(
D1

k𝛿kE1
k
))

𝜉, (46)

where 1n ∶= (1, 1, … , 1)⊤. Using (5), (6) and the definition of M0 we get easily, for any k ∈ N,

‖
‖
‖

(
|
|D

0
kΔkE0

k
|
| + V

(
D1

k𝛿kE1
k
))
𝜉

‖
‖
‖
≤ M0(||Δk|| + ||𝛿k||)||𝜉||. (47)

It follows that, for any disturbance 𝚫 ∶= {[Δk, 𝛿k(⋅)], k ∈ N} satisfying

||𝚫||max ∶= max
k∈N

(||Δk|| + ||𝛿k||) <
1

M0

𝛽(𝜉)
||𝜉||

, (48)

we have ‖‖
‖

(
|D0

kΔkE0
k| + V

(
D1

k𝛿kE1
k

))
𝜉

‖
‖
‖
< 𝛽(𝜉). Therefore every component of the vector

(
|
|D0

kΔkE0
k
|
|+

V
(

D1
k𝛿kE1

k

))
𝜉 is strictly smaller than 𝛽(𝜉). It follows, by (46), that

(

(̃A0
k) + V(𝜂k)

)

𝜉 ≪ 0, ∀k ∈ N.

Therefore, by Theorem 1, the perturbed system (22) is GES over Σ+. Since this is proved for any disturbance𝚫
satisfying (48), we have, by definition, rstr

R
(Σ+) ≥

1
M0

𝛽(𝜉)
||𝜉||

, for any 𝜉 ∈ ,Γ, yielding the lower bound in (45)

and completing the proof. ▪

Remark 7. We note that the calculation of the lower bound of stability radius in (45) requires solving a sys-
tem on N linear inequalities to form, by (42), the open convex cone ,Γ of all strictly positive solutions and

then solving the optimization problem sup
{
𝛽(𝜉)
||𝜉||

∶ 𝜉 ∈ ,Γ
}

.Moreover, since 𝛽(𝜉)∕||𝜉|| = 𝛽(𝜉∕||𝜉||) the last

problem is obviously reduced to finding the maximum of the function 𝛽(⋅) over the compact set cl,Γ ∩ S1
where S1 = {𝜉 ∈ Rn ∶ ||𝜉|| = 1}, the unit ball of Rn. In this regard, it is an interesting question to find out a
particular class of time-delay switched linear systems for which the estimates (45) yields actually a formula for
calculation of the stability radius (see Reference 38; Corollary 3, for the case of delay-free switched systems).

In the following example, a numerical simulation in R2 is given to illustrate Theorem 4.

Example 3. Consider the time-delay switched positive linear system (10) in R2 with h = 1,N = 2,

A0
1 =

[
− 4.0122 0.1501
1.1102 −4.0215

]

, A0
2 =

[
−5.2102 0.3125
0.2102 −1.2135

]

,
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F I G U R E 1 The solution trajectory of the system a switching 𝜎0 ∈ Σ+.

and, for k = 1, 2,

𝜂k(𝜃) =

{
0 if 𝜃 = −1;
Bk ∈ R2×2 if 𝜃 ∈ (−1, 0],

B1 =

[
0.2312 1.0102
0.1205 0.3112

]

, B2 =

[
0.2123 0.6125
0.4102 0.5213

]

.

Choosing 𝜉0 =
[
1 2

]
⊤

≫ 0, we verify readily that 𝜉0 satisfies (43). Therefore, this time-delay switched linear
system is exponentially stable. For instance, if we choose the switching signal 𝜎0 ∈ Σ+ defined as 𝜎0(t) = 1, for
t in the intervals [0, 2); [5, 7); [10, 13); [15, 16) and 𝜎0(t) = 2, for t in the intervals [2, 5); [7, 10); [13, 15), and the
initial condition given by the function 𝜑(𝜃) = (| sin(𝜃)| | cos(𝜃)|)⊤, 𝜃 ∈ [−1, 0], then the solution’s trajectory
of the time-delay switched linear system converges exponentially to zero, as shown in Figure 1.

Assume that the system’s matrices are subjected to structured perturbations so that the perturbed subsystems take the
form

ẋ(t) = ̃A0
kx(t) + ̃Bkx(t − 1), t ≥ 0, k = 1, 2, (49)

where

̃A0
1 =

[
−4.0122 0.1501

1.1102 + 𝛿1 −4.0215 + 𝛿2

]

,

̃B1 =

[
0.2312 + 𝛾1 1.0102 + 𝛾2

0.1205 0.3112

]

,

̃A0
2 =

[
−5.2102 + 𝛿3 0.3125 + 𝛿4

0.2102 −1.2135

]

,

̃B2 =

[
0.2123 0.6125

0.4102 + 𝛾3 0.5213 + 𝛾4

]

,

and 𝛿k, 𝛾k, k ∈ 4 are unknown disturbances. Then, taking the structuring matrices D0
1 = D1

1 = [0 1]⊤, D0
2 = D1

2 = [1 0]⊤
and E0

1 = E0
2 = E1

1 = E1
2 = I2 (the identity matrix in R2×2) we can represent this perturbation model in the form (21). Since

all subsystems are positive and

A0
1 + 𝜂1(0) = A0

1 + B1 =

[
−3.7810 1.1603
1.2307 −3.7103

]

,

A0
2 + 𝜂2(0) = A0

2 + B2 =

[
−4.9979 0.9250
0.6204 −0.6922

]

,
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F I G U R E 2 All perturbed systems are exponentially stable under switching 𝜎0 ∈ Σ+ if ||𝚫||max < 0.2547.

we can use (29) to compute their real stability radii and get the upper bound in (45) as

min
k∈N

rR(A0
k, 𝜂k) = 2.1984.

By (43) and (44), we get readily 𝛽(𝜉0) = mink∈N,k∈n 𝛽
k
i (𝜉0) = 0.7640. Moreover, clearly, M0 = maxk=1,2{||D0

k||||E
0
k||,

||D1
k||||E

1
k||} = 1. Therefore, by Theorem 4, we obtain the following lower bound for the stability radius of the time-delay

switched linear system under consideration:

rstr
R
(Σ+) ≥

1
M0

sup
𝜉∈,Γ

𝛽(𝜉)
||𝜉||

≥
𝛽(𝜉0)
||𝜉0||

= 0.2547.

It follows, by definition, that the perturbed time-delay switched linear system associated with (73) is exponentially sta-
ble, under arbitrary switching 𝜎 ∈ Σ+, for any disturbance 𝚫 satisfying ||𝚫|| = maxk∈4{|𝛿k| + |𝛾k|} < 0.2547. Thus, if we
choose randomly disturbance parameters 𝛿k, 𝛾k, k ∈ 4 satisfying this condition and the same switching 𝜎0 ∈ Σ+ as above,
then the trajectory of the perturbed switched system (simulated by MATLAB toolbox) decays exponentially to zero as t
tends to the infinity, as shown in Figure 2.

Below we will make use of Lemma 1 and Theorem 1 in Section 2 to get another lower bound of rstr
R
(Σ+), which is

explicitly expressed in terms of the system’s data.

Theorem 5. Assume that the switched linear system (10), (13) is GES over Σ+ and subjected to affine perturba-
tions of the form (21). Assume, moreover, that the condition (16) holds. Then the real structured stability radius
of the switched linear system (10) over Σ+, subject to affine perturbations (21), satisfies the following estimates:

r0 ∶=
[

max
k∈N;i,j∈M

‖
‖
‖
|Ei

k
|
|

(
−
(

(

A0
k

))
+ V(𝜂k

))−1) |
|D

j
k
|
|
‖
‖
‖

]−1
≤ rstr

R
(Σ+) ≤ min

k∈N
rR(A0

k, 𝜂k), (50)

where M ∶= {0, 1}.

Proof. The upper bound in (50) is proved similarly as in Theorem 2. In order to prove the lower bound,
by Definition 3, it suffices to show that, for any switching signal 𝜎 ∈ Σ+ and any perturbation 𝚫 ∶=
{[Δk, 𝛿k(⋅)], k ∈ N} such that

||𝚫||max = max
k∈N

(||Δk|| + ||𝛿k||) < r0, (51)
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the perturbed system ( ̃, ̃Γ, 𝜎) described by (22) is GES, where ̃A0
k = A0

k + D0
kΔkE0

k and 𝜂k = 𝜂k + D1
k𝛿kE1

k. By
using (6) and (9), we have, for all k ∈ N,


(
̃A0

k

)
+ V(𝜂k) ≤

(
A0

k

)
+ ||D

0
kΔkE0

k
|
| + V(𝜂k) + V

(
D1

k𝛿kE1
k
)

≤
(

A0
k

)
+ V(𝜂k) + ||D

0
k
|
| |Δk| ||E

0
k
|
| + ||D

1
k
|
| V(𝛿k) ||E

1
k
|
|. (52)

Further, by the condition (16) there exists 𝜉0 ≫ 0 such that
(
(A0

k) + V(𝜂k)
)
𝜉0 ≪ 0, ∀k ∈ N. (53)

We will show that
(

(̃A0
k) + V(𝜂k)

)

𝜉0 ≪ 0, ∀k ∈ N, (54)

which would imply, by the second part of Theorem 1, that the perturbed system ( ̃, ̃Γ, 𝜎) is GES. Assume, to
the contrary, that (54) does not hold, or, equivalently, there exists k0 ∈ N such that 0 ≤

(

(̃A0
k0
) + V(𝜂k0)

)

𝜉0.

Then, by (52), we have

−
(

(A0
k0
) + V(𝜂k0)

)

𝜉0 ≤ |D0
k0
| |Δk0 | |E

0
k0
|𝜉0 + |D1

k0
| V(𝛿k0) |E

1
k0
| 𝜉0. (55)

By Lemma 1 (iii), it follows from (53) that the matrix (A0
k0
) + V(𝜂k0) has the negative inverse. Therefore,

(55) implies

𝜉0 ≤ −
(

(A0
k0
) + V(𝜂k0)

)−1 (
|D0

k0
| |Δk0 | |E

0
k0
|𝜉0 + |D1

k0
| V(𝛿k0) |E

1
k0
| 𝜉0

)

. (56)

Let p ∈ M ∶= {0, 1} be an index such that |||Ep
k0
| 𝜉0|| = max{|||E0

k0
| 𝜉0||; |||E1

k0
| 𝜉0||} then |||Ep

k0
| 𝜉0|| > 0

because, otherwise, |Ei
k0
| 𝜉0 = 0, i = 0, 1 and (56) would imply 𝜉0 = 0, a contradiction. Left multiplying the

inequality (56) by |Ep
k0
| and taking the norm of the both sides of the resulted inequality we get

0 < || |Ep
k0
|𝜉0|| ≤

‖
‖
‖
‖
‖

|Ep
k0
|

(

−
(

(A0
k0
) + V(𝜂k0)

)−1
)

|D0
k0
| |Δk0 | |E

0
k0
|𝜉0

‖
‖
‖
‖
‖

+

+
‖
‖
‖
‖
‖

|Ep
k0
|

(

−
(

(A0
k0
) + V(𝜂k0)

)−1
)

|D1
k0
| V(𝛿k0) |E

1
k0
| 𝜉0

‖
‖
‖
‖
‖

≤ max
i,j∈M

‖
‖
‖
‖
‖

|Ei
k0
|

(

−
(

(A0
k0
) + V(𝜂k0)

)−1
)

|Dj
k0
|
‖
‖
‖
‖
‖

(
||Δk0 || + ||𝛿k0 ||

)
|||Ep

k0
| 𝜉0||

≤ max
k∈N;i,j∈M

‖
‖
‖
‖
|Ei

k|
(

−
(
(A0

k) + V(𝜂k)
)−1
)

|Dj
k|
‖
‖
‖
‖
||𝚫||max |||Ep

k| 𝜉0||,

which implies ||𝚫||max ≥ r0, conflicting with (51). The proof is completed. ▪

It is worth mentioning that Theorems 4 and 5 can be applied to give the lower bounds for stability radii of switched
linear systems with discrete multi-delays and/or distributed delay of the form (19), as particular cases. For example, we
can formulate the following consequence of Theorem 5, which gives calculable bounds for unstructured stability radius
over Σ+.

Corollary 2. Assume that the positive linear system with delays

ẋ(t) = A0
0x(t) +

m∑

i=1
Ai

0x(t − hi) +
∫

0

−h
B0(𝜃)x(t + 𝜃)d𝜃, t ≥ 0, (57)

(where 0 < h1 < h2 < · · · < hm = h) is GES. Then, for any triples (A0
k,A

i
k,Bk(⋅)) ∈ Rn×n ×Rn×n × C([−h, 0],

Rn×n), i ∈ m, k ∈ N, 𝜃 ∈ [−h, 0] satisfying

(A0
k) ≤ A0

0, |A
i
k| ≤ Ai

0, |Bk(𝜃)| ≤ B0(𝜃), (58)
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the switched linear system with delay

ẋ(t) = A0
𝜎(t)x(t) +

m∑

i=1
Ai
𝜎(t)x(t − hi) +

∫

0

−h
B
𝜎(t)(𝜃)x(t + 𝜃)d𝜃, t ≥ 0, (59)

is GES over Σ+. Moreover, for each of the switched systems (59) satisfying (58), the real unstructured stability
radius over Σ+ subject to perturbations

A0
k →

̃A0
k = A0

k + Δ
0
k; Ai

k →
̃Ai

k = Ai
k + Δ

i
k, i ∈ m ; Bk(𝜃) → ̃Bk(𝜃) = Bk(𝜃) + Ck(𝜃), 𝜃 ∈ [−h, 0], k ∈ N, (60)

(with unknown disturbance matricesΔ0
k,Δ

i
k ∈ Rn×n and unknown disturbance functions Ck(⋅) ∈ C([−h, 0],Rn))

satisfies the following lower bound:

runstr
R

(Σ+) ≥
⎡
⎢
⎢
⎣

‖
‖
‖
‖
‖
‖

( m∑

i=0
Ai

0 + ∫

0

−h
B0(𝜃)d𝜃

)−1‖
‖
‖
‖
‖
‖

⎤
⎥
⎥
⎦

−1

. (61)

If, moreover, A0
k are Metzler, Ai

k ≥ 0 and Bk(𝜃) ≥ 0,∀𝜃 ∈ [−h, 0],∀k ∈ N, i ∈ m, then the following upper bound
estimate holds:

runstr
R

(Σ+) ≤
⎡
⎢
⎢
⎣

max
k∈N

‖
‖
‖
‖
‖
‖

( m∑

i=0
Ai

k + ∫

0

−h
Bk(𝜃)d𝜃

)−1‖
‖
‖
‖
‖
‖

⎤
⎥
⎥
⎦

−1

. (62)

Now we consider the case when the nominal system’s matrices of (10), (13) are subjected to multi-perturbations of the
form

A0
k →

̃A0
k ∶= A0

k +
N0∑

i=1
𝛼

i
kA0,i

k ; 𝜂k(⋅) → 𝜂k(⋅) ∶= 𝜂k(⋅) +
N1∑

j=1
𝛽

j
k𝜂

j
k(⋅), k ∈ N, (63)

where, for each k ∈ N,A0,i
k ∈ Rn×n, and 𝜂j

k ∈ NBV([−h, 0],Rn×n) are given, 𝛼i
k, 𝛽

j
k ∈ R, i ∈ N0, j ∈ N1 are unknown dis-

turbance parameters. In the case of non switched systems, such a class of parameter perturbations was considered in
References 4,6 for delay-free systems and in Reference 12 for FDE systems. To measure the robustness of stability under
this perturbation model, let us denote

𝚫 ∶= {𝛼i
k, 𝛽

j
k, k ∈ N, i ∈ N0, j ∈ N1, }; ||𝚫|| ∶= max{𝛼, 𝛽}; (64)

𝛼 ∶= max{|𝛼i
k|, k ∈ N, i ∈ N0}, 𝛽 ∶= max{|𝛽 j

k|, k ∈ N, j ∈ N1}

and define the following notion of stability radius.

Definition 4. Assume that the time-delay switched linear system (10), (13) is GES over Σ+. Then its
structured stability radius over Σ+ subject to multi-perturbations of the form (63) is defined as

rmstr
R

(Σ+) ∶= inf
{

||𝚫|| ∶ ∃𝜎 ∈ Σ+ s.t. the perturbed system ( ̃, ̃Γ, 𝜎) is not GES
}

. (65)

Theorem 6. Assume that the time-delay switched linear system (10), (13) is GES over Σ+ and is subjected to
multi-perturbations of the form (63). Assume, moreover, that the condition (16) holds or, equivalently, ,Γ ≠ ∅.
Then the real structured stability radius of the switched linear system (10) over Σ+, subject to multi-perturbations
(63), satisfies the following estimates:

r1 ∶=

[

max
k∈N

‖
‖
‖
‖
‖
‖

−
(
(A0

k) + V(𝜂k)
)−1
( N0∑

i=1
|A0,i

k | +
N1∑

j=1
V(𝜂j

k)

)‖
‖
‖
‖
‖
‖

]−1

≤ rmstr
R

(Σ+) ≤ min
k∈N

rR

(
A0

k, 𝜂k
)
. (66)
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Proof. We have to prove only the lower bound in (66). The proof is partly similar to that of Theorem 5.
Assume to the contrary that there exists a perturbation 𝚫 of the form (64) and a switching signal 𝜎 ∈ Σ+
such that

||𝚫|| = max{𝛼, 𝛽} < r1 (67)

and the perturbed system ( ̃, ̃Γ, 𝜎) is not GES, where the matrices of perturbed constituent systems are given
by (63). Then, for all k ∈ N, we have, by (9) and (7),

(̃A0
k) + V(𝜂k) ≤ (A0

k) +
|
|
|
|
|
|

N0∑

i=1
𝛼

i
kA0,i

k

|
|
|
|
|
|

+ V(𝜂k) + V

( N1∑

j=1
𝛽

j
k𝜂

j
k

)

≤ (A0
k) +

N0∑

i=1
|𝛼i

k| |A
0,i
k | + V(𝜂k) +

N1∑

j=1
|𝛽

j
k|V(𝜂

j
k)

≤ (A0
k + V(𝜂k) + ||𝚫||

( N0∑

i=1
|A0,i

k | +
N1∑

j=1
V(𝜂j

k)

)

. (68)

Further, since ,Γ ≠ ∅, there exists 𝜉0 ≫ 0 such that
(
(A0

k + V(𝜂k)
)
𝜉0 ≪ 0. Since the perturbed system

( ̃, ̃Γ, 𝜎) is not GES, we have, by Theorem 1, that there exists k0 ∈ N such that

0 ≤
(

(̃A0
k0
) + V(𝜂k0 )

)

𝜉0

It follows, by (68), that

𝜉0 ≤ −
(

(A0
k0
) + V(𝜂k0)

)−1
||𝚫||

( N0∑

i=1
|A0,i

k0
| +

N1∑

j=1
V(𝜂j

k0
)

)

𝜉0.

Taking the norm of both sides, we get

||𝜉0|| ≤

‖
‖
‖
‖
‖
‖

−
(

(A0
k0
) + V(𝜂k0 )

)−1
( N0∑

i=1
|A0,i

k0
| +

N1∑

j=1
V(𝜂j

k0
)

)‖
‖
‖
‖
‖
‖

||𝚫|| ||𝜉0||,

which implies

||𝚫|| ≥
[

max
k∈N

‖
‖
‖
‖
‖
‖

−
(
(A0

k) + V(𝜂k)
)−1
( N0∑

i=1
|A0,i

k | +
N1∑

j=1
V(𝜂j

k)

)‖
‖
‖
‖
‖
‖

]−1

= r1,

a contradiction to (67). The proof is completed. ▪

As an application of the above result, consider the switched linear system with a single delay

ẋ = A
𝜎(t)x(t) + B

𝜎(t)x(t − h), 𝜎 ∈ Σ+, 𝜎(t) ∈ N, t ≥ 0. (69)

Assume that the switched system (69) is positive (or, equivalently, Ak is Metzler and Bk ≥ 0, for each k ∈ N, by Propo-
sition 1) and is GES over Σ+ (for instance, if (Ak + Bk)𝜉0 ≪ 0, ∀k ∈ N, for some positive vector 𝜉0 ≫ 0, by Corollary 1).
Assume that the constituent systems are subjected to multi-perturbation of the form

Ak → ̃Ak = Ak +
N0∑

i=1
𝛼

i
kAi

k, Bk → ̃Bk = Bk +
N1∑

j=1
𝛽

j
kBj

k, k ∈ N, (70)
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where Ai
k =
(

ai
k,pq

)
≥ 0,Bj

k =
(

bj
k,pq

)
≥ 0, k ∈ N, i ∈ N0, j ∈ N1 are given structuring matrices and 𝛼i

k, 𝛽
j
k, i ∈ N0, j ∈ N1 are

unknown perturbation parameters. Define “upper bounding” (n × n)-matrices A0 = (a0,pq),B0 = (b0,pq) by setting

a0,pq = max{ak,pq, k ∈ N}; b0,pq = max{bk,pq, k ∈ N}. (71)

Then, by Theorem 6, we get the following result.

Corollary 3. Assume that the time-delay switched positive linear system (69) is GES over Σ+ and the
Meztler matrix A0 + B0 defined by (71) is Hurwitz stable. Then the stability radius of system (69), subject to
multi-perturbation (70), satisfies the estimates

[

max
k∈N

‖
‖
‖
‖
‖
‖

(−A0 − B0)−1

( N0∑

i=1
Ai

k +
N1∑

j=1
Bj

k

)‖
‖
‖
‖
‖
‖

]−1

≤ rmstr
R

(Σ+) ≤ min
k∈N

rR

(

Ak,Bk,Ai
k,B

j
k

)

, (72)

where, for each k ∈ N, rR

(

Ak,Bk,Ai
k,B

j
k

)

denotes the stability radius of the constituent system ẋ = Akx(t) +
Bkx(t − h), t ≥ 0 subject to multi-perturbation (70).

Note additionally that, in this case, the upper bound of rmstr
R

(Σ+) in (72) can be calculated explicitly, due to a result in
Reference 12, as

min
k∈N

rR

(

Ak,Bk,Ai
k,B

j
k

)

=

[

max
k∈N

𝜌

[

(−Ak − Bk)−1

( N0∑

i=1
Ai

k +
N1∑

j=1
Bj

k

)]]−1

,

where 𝜌(A) denotes the spectral radius of a nonnegative matrix A ∈ R
n×n
+ .

Example 4. Consider the time-delay switched positive linear system (69) in R2 with h = 1,N = 2,

A1 =

[
− 5 2
0.2 −4

]

, A2 =

[
− 4 1.3
0.1 −3

]

, B1 =

[
1.1 0.2
0.3 1.2

]

, B2 =

[
0.4 1
0.5 0.1

]

.

We have that condition (Ak + Bk)𝜉0 ≪ 0, k = 1, 2 is satisfied with 𝜉0 = [2 1]⊤ and hence, by Corollary 20, the
time-delay switched linear system (69) is GES over Σ+. Assume that the system’s matrices are subjected to
perturbations so that the perturbed subsystems take the form

ẋ(t) = ̃Akx(t) + ̃Bkx(t − 1), t ≥ 0, k = 1, 2, (73)

where

̃A1 =

[
− 5 + 𝛼1 2

0.2 −4 + 𝛼1

]

,

̃B1 =

[
1.1 0.2 + 𝛽1

0.3 + 𝛽1 1.2

]

,

̃A2 =

[
− 4 1.3 + 𝛼2

0.1 + 𝛼2 −3

]

,

̃B2 =

[
0.4 + 𝛽2 1

0.5 0.1 + 𝛽2

]

,

and 𝛼k, 𝛽k ∈ R, k = 1, 2 are unknown disturbances. It is important to mention that the above perturba-
tions cannot be represented in the form of the affine perturbation model (21). Then, defining the structuring
matrices

A1
1 =

[
1 0
0 1

]

, A1
2 =

[
0 1
1 0

]

; B1
1 =

[
0 1
1 0

]

, B1
2 =

[
1 0
0 1

]

,

we can represent the perturbed matrices ̃Ak, ̃Bk in the form of multi-perturbation model (70), namely

Ak → ̃Ak = Ak + 𝛼kA1
k, Bk → ̃Bk = Bk + 𝛽kB1

k, k = 1, 2. (74)
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By using (71) we get

A0 =

[
− 4 2
0.2 −3

]

, B0 =

[
1.1 1
0.5 1.2

]

.

Then, since (A0 + B0)𝜉0 ≪ 0 with 𝜉0 = [2 1]⊤, the Metzler matrix A0 + B0 is Hurwitz stable, by Lemma 1.
Therefore, by Corollary 3, the stability radius of this system, subject to multi-perturbation (74), satisfies the
estimates
[

max
k=1,2
||(−A0 − B0)−1 (A1

k + B1
k
)
||

]−1

= 0.3250 ≤ rmstr
R

(Σ+) ≤
[

max
k∈N

𝜌

[
(−Ak − Bk)−1 (A1

k + B1
k
)]
]−1

= 0.9638.

4 CONCLUDING REMARKS

We have presented a unified approach to study the robustness of exponential stability, under arbitrary switching or ADT
switching, for the class of time-delay switched linear systems, described by linear functional differential equations, by
making use of the notion of the structured stability radius with respect to real affine perturbations of the subsystem’s
matrices. As the main contribution of this paper, we obtained a number of new results on computation and estimation
of this radius, including: (a) the formula for computing the stability radius under the average dwell time switching; (b)
the formulas for estimating the bounds of the system’s stability radius, under arbitrary switching, with respect to affine
perturbations and multi-perturbations, which are expressed explicitly in terms of the constituent subsystems matrices; (c)
the formula for computing the stability radius of two-order delay-free switched linear systems. The results are established
mainly for positive switched systems, but the extension to non-positive systems has also been given, whenever possible.
In the particular case of switched linear systems with multiple discrete delays and/or distributed delays, the obtained
general results yield, as the consequence, easily verifiable formulas for calculating or estimating the system’s stability
radius, without using common quadratic Lyapunov functions as in most of the previous works. Some numerical examples
are given to illustrate the use of the obtained results. To the best of our knowledge, such kinds of results on robustness of
stability for switched systems with time-delays have not been available so far in the literature and are given for the first
time in this paper. We believe that the approach developed in this paper is applicable for addressing similar problems
under less restrictive assumptions and more general types of parameter perturbations or uncertainties. This, in turn,
is expected to yield better and less conservative estimates for the system’s stability radius. Of course, this approach is
also applicable to studying similar problems for discrete-time systems. Moreover, for classes of switched systems where
necessary and sufficient conditions of GES under arbitrary switching/or ADT switching are available, see for example,
References 42,43,45, our approach can be used to establish the formula for computation of the stability radius, as has been
shown in this paper for the case of two-order delay-free switched systems. It is worthy to note additionally that the results
similar to those of the above mentioned works are still lacking in the literature for switched linear systems with delays.
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