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Abstract. In this paper, we study the practical exponential stability of
nonlinear nonautonomous differential equations under nonlinear pertur-
bations. By introducing a new method, we obtain some explicit criteria
for the practical exponential stability of these equations. Furthermore,
several characterizations for the exponential stability of a class of nonlin-
ear differential equations are also presented. The obtained results gen-
eralize some existing results in the literature. Applications to neutral
networks are investigated. Some examples are given to illustrate the
obtained results.
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1. Introduction and Preliminaries

Nonlinear differential equations are models for a variety of phenomena in
the life sciences, physics and technology, chemistry and economics (see, e.g.,
[10,15]). When studying these equations, stability analysis is always a central
issue. In the literature, there are several works on the stability of nonlinear
differential equations, for example some works in [2,7,12,16,17].

As its name indicates, the practical stability concept is motivated by en-
gineering considerations: it is rarely needed for an industrial system to reach
its target exactly (this means, asymptotic stability is a rather constraining
aim), or to behave until a really infinite time (then, it may be possible to re-
quire finite time stability only). These considerations allow to relax some hy-
potheses usually needed in classical Lyapunov’s stability (see, e.g., [1,2,4,25]).
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The traditional approaches to practical stability of nonlinear differential equa-
tions are the Lyapunov’s method and its variants (Razumikhin-type theo-
rems, Lyapunov–Krasovskii functional techniques), (see, e.g., [1,9,11,14,23]).
To the best of our knowledge, there are not many explicit criteria for the
practical exponential stability of these equations.

In this paper, we will develop a new approach to the practical expo-
nential stability of nonlinear differential equations. Our approach is based on
the theory of comparison principle and nonnegative matrices, (see, e.g., [3]).
This theory has been applied successfully to exponential stability and robust
stability of some classes of differential and difference equations (see, e.g.,
[13,17,18,21]). By using this theory, several explicit criteria for the practical
exponential stability of some nonlinear differential equations will be given.
Some applications to neutral networks will be investigated.

Let N be the set of all natural numbers. For given m ∈ N, let m :=
{1, 2, ...,m} and m0 := {0, 1, 2, ...,m}. Let K = C or R, where C and R

denote the sets of all complex and all real numbers, respectively. For positive
integers l, q ≥ 1, Rl denotes the l-dimensional vector space over R and R

l×q

stands for the set of all l × q-matrices with entries in R. Inequalities between
real matrices or vectors will be understood componentwise, i.e., for two real
matrices A = (aij) and B = (bij) in R

l×q, we write A ≥ B iff aij ≥ bij for
i = 1, ..., l, j = 1, ..., q. In particular, if aij > bij for i = 1, ..., l, j = 1, ..., q,
then we write A � B instead of A ≥ B. We denote by R

l×q
+ the set of all

nonnegative matrices A ≥ 0. Similar notations are adopted for vectors.
For x ∈ R

n and P ∈ R
l×q, we define |x| = (|xi|) and |P | = (|pij |). A

norm ‖·‖ on R
n is said to be monotonic if ‖x‖ ≤ ‖y‖ whenever x, y ∈ R

n, |x| ≤
|y|. For example, the p-norm on R

n (‖x‖p = (|x1|p + |x2|p + · · ·+ |xn|p) 1
p , 1 ≤

p < ∞ and ‖x‖∞ = maxi=1,2,...,n|xi|) is monotonic.
For any matrix M ∈ R

n×n, the spectral abscissa of M is denoted by
μ(M) := max{�λ : λ ∈ σ(M)}, where σ(M) := {λ ∈ C : det(λIn − M) = 0}
is the spectrum of M . A matrix M ∈ R

n×n is said to be Hurwitz stable
if μ(M) < 0. For an arbitrary norm ‖ · ‖ on R

n×n, the matrix measure of
M := (mij) ∈ R

n×n is defined by

s(M) := lim
ε→0+

‖In + εM‖ − 1
ε

,

where In ∈ R
n×n is the identity matrix, see [8].

A matrix M ∈ R
n×n is called a Metzler matrix if all off-diagonal ele-

ments of M are nonnegative. We now summarize some properties of Metzler
matrices which will be used in what follows.

Theorem 1. [21] Suppose that M ∈ R
n×n is a Metzler matrix. Then,

(i) (Perron–Frobenius) μ(M) is an eigenvalue of M and there exists a non-
negative eigenvector x 	= 0 such that Mx = μ(M)x.

(ii) Given α ∈ R, there exists a nonzero vector x ≥ 0 such that Mx ≥ αx if
and only if μ(M) ≥ α.

(iii) (tIn − M)−1 exists and is nonnegative if and only if t > μ(M).
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(iv) Given B ∈ R
n×n
+ , C ∈ C

n×n. Then,

|C| ≤ B ⇒ μ(M + C) ≤ μ(M + B).

The following is immediate from Theorem 1 and is used in what follows.

Theorem 2. Let M ∈ R
n×n be a Metzler matrix. Then the following state-

ments are equivalent:
(i) μ(M) < 0;
(ii) Mp � 0 for some p ∈ R

n
+, p � 0;

(iii) M is invertible and M−1 ≤ 0;
(iv) for given b ∈ R

n, b � 0, there exists x ∈ R
n
+, such that Mx + b = 0;

(v) for any x ∈ R
n
+\{0}, the row vector xT M has at least one negative

entry.

With a given matrix A = (aij) ∈ R
n×n, we associate the Metzler matrix

M(A) := (âij) ∈ R
n×n, where

âii := aii, i ∈ n; âij := |aij |, i 	= j, i, j ∈ n.

2. Main Results

Consider a nonlinear nonautonomous differential system of the form

ẋ(t) = f(t, x(t)) + ω(t, x(t)), t ≥ σ, (1)

where f, ω : R × R
n → R

n are continuous and are locally Lipschitz in the
second argument, uniformly in t on compact intervals of R. This system is
seen as a perturbation of the nominal system

ẋ(t) = f(t, x(t)), t ≥ σ. (2)

The perturbation term ω(t, x) could result from modelling errors, aging or
uncertainties and disturbances, which exist in any realistic problem.

It is well known that for fixed σ ∈ R and given x0 ∈ R
n, there exists a

unique local solution of (1), denoted by x(·;σ, x0) satisfying the initial value
condition

x(σ) = x0, (3)

see e.g., [10]. This solution is defined and continuous on [σ, γ) for some γ > σ
and satisfies (1) for every t ∈ [σ, γ), see e.g., [10]. Furthermore, if the in-
terval [σ, γ) is the maximum interval of existence of the solution x(·;σ, x0),
then x(·;σ, x0) is said to be noncontinuable. The existence of a noncontinu-
able solution follows from Zorn’s lemma and the maximum open interval of
existence.

Definition 1. Equation (1) is said to be practicallly exponentially stable
(shortly, PES) if there exist positive numbers K,β and Υ ≥ 0, such that
for each σ ∈ R and each x0 ∈ R

n, the solution of (1)-(3) exists on [σ,∞) and
furthermore satisfies

‖x(t, σ, x0)‖ ≤ Ke−β(t−σ)‖x0‖ + Υ, ∀t ≥ σ.

If Υ = 0, then equation (1) is said to be exponentially stable (shortly, ES).
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Now, we consider
(H1) There exists a continuous function θ(·) : R → R such that

s(J(t;x)) ≤ θ(t),∀t ∈ R,∀x ∈ R
n, (4)

where J(t, x) :=
(

∂fi

∂xj
(t, x)

)
∈ R

n×n, t ∈ R, x ∈ R
n, is the Jacobian matrix

of f(t, ·) at x.
(H2) There exist a continuous function α(·) : R → R+ and a bounded

function h(·; ·) : R × R
n → R+ such that

‖ω(t, u)‖ ≤ α(t)‖u‖ + h(t, u),∀t ∈ R,∀u ∈ R
n. (5)

Theorem 3. Suppose that (H1)-(H2) hold and f(t, 0) is bounded on R. Then,
(1) is PES if there exists δ1 > 0 such that

θ(t) + α(t) < −δ1,∀t ∈ R. (6)

Moreover, if f(t; 0) = 0,∀t ∈ R and h(t, x) = 0,∀t ∈ R,∀x ∈ R
n, then

equation (1) is ES.

Proof. Since (6), there exists Υ ∈ R+ such that(
θ(t) + α(t)

)
Υ ≤ −ξ,∀t ∈ R,∀x ∈ R

n, (7)

where ξ := supt∈R,u∈Rn{‖f(t, 0)‖ + h(t, u)}. Let ζ > 0 be arbitrary, but fixed
and x(t) := x(t;σ, x0), t ∈ [σ, γ), x0 ∈ R

n, where the interval [σ, γ) is the
maximum interval of existence of the solution x(·;σ, x0). Choose a positive
number K ≥ 1 such that ‖x0‖ ≤ K‖x0‖. Define

ṽ(t) := Ke−δ1(t−σ)(‖x0‖ + ζ) + Υ, t ∈ [σ,+∞).

Clearly, ‖x(σ)‖ < ṽ(σ). We claim that ‖x(t)‖ ≤ ṽ(t),∀t ∈ [σ, γ).
Assume on the contrary that there exists t∗ > σ such that ‖x(t∗)‖ >

ṽ(t∗). Set tb := inf{t ∈ (σ, γ) : ‖x(t)‖ > ṽ(t)}. By continuity, tb > σ and

‖x(t)‖ ≤ ṽ(t),∀t ∈ [σ, tb]; ‖x(tb)‖ = ṽ(tb); ‖x(τk)‖ > ṽ(τk), (8)

for some τk ∈ (tb, tb + 1
k ), k ∈ N. Using the mean value theorem (see, e.g.,

[6]), we get the following estimates:

D+‖x(tb)‖ := lim sup
ε→0+

‖x(tb + ε)‖ − ‖x(tb)‖
ε

= lim sup
ε→0+

‖x(tb) + εẋ(tb)‖ − ‖x(tb)‖
ε

= lim sup
ε→0+

‖x(tb) + ε(f(tb, x(tb)) + ω(tb, x(tb)))‖ − ‖x(tb)‖
ε

≤ lim sup
ε→0+

‖x(tb) + ε(f(tb, x(tb)) − f(tb, 0))‖ − ‖x(tb)‖
ε

+‖f(tb, 0)‖ + ‖ω(tb, x(tb))‖
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= lim sup
ε→0+

‖x(tb) + ε

( ∫ 1

0
J(tb, sx(tb))ds

)
x(tb)‖ − ‖x(tb)‖

ε

+‖f(tb, 0)‖ + ‖ω(tb, x(tb))‖

= lim sup
ε→0+

(
‖In + ε

∫ 1

0
J(tb, sx(tb))ds‖ − 1

)
‖x(tb)‖

ε

+‖f(tb, 0)‖ + ‖ω(tb, x(tb))‖

= s

( ∫ 1

0

J(tb, sx(tb))ds

)
‖x(tb)‖ + ‖f(tb, 0)‖ + ‖ω(tb, x(tb))‖.

Note that

s

(∫ 1

0

J(tb, sx(tb))ds

)
≤

∫ 1

0

s

(
J(tb, sx(tb))

)
ds,

(see, e.g., [8]). Then (H1)-(H2), and (6), (7) and (8) imply

D+‖x(tb)‖ ≤
∫ 1

0

s

(
J(tb, sx(tb))

)
ds‖x(tb)‖ + ‖f(tb, 0)‖ + ‖ω(tb, x(tb))‖

(H1),(H2)≤
(

θ(tb) + α(tb)
)

‖x(tb)‖ + ‖f(tb, 0)‖ + h(tb, x(tb))

≤
(

θ(tb) + α(tb)
)

‖x(tb)‖ + ξ

(8)
=

(
θ(tb) + α(tb)

)
ṽ(tb) + ξ =

(
θ(tb) + α(tb)

)

×
(

Ke−δ1(tb−σ)(‖x0‖ + ζ) + Υ

)
+ ξ

(6),(7)
< −δ1Ke−δ1(tb−σ)(‖x0‖ + ζ) = ˙̃v(tb).

On the other hand, (8) implies that

D+‖x(tb)‖ := lim sup
t→t+b

‖x(t)‖ − ‖x(tb)‖
t − tb

≥ limk→+∞
‖x(τk)‖ − ‖x(tb)‖

τk − tb

≥ limk→+∞
ṽ(τk) − ṽ(tb)

τk − tb
= lim

k→+∞
ṽ(τk) − ṽ(tb)

τk − tb
= ˙̃v(tb).

This is a contradiction. Therefore,

‖x(t;σ, x0)‖ ≤ ṽ(t) = Ke−δ1(t−σ)(‖x0‖ + ζ) + Υ, ∀t ∈ [σ, γ), ∀x0 ∈ R
n.

Letting ζ tend to zero, we obtain

‖x(t;σ, x0)‖ ≤ Ke−δ1(t−σ)‖x0‖ + Υ, ∀t ∈ [σ, γ), ∀x0 ∈ R
n. (9)

Now, we claim that γ = ∞ and so equation (1) is PES. Seeking a contra-
diction, we assume that γ < ∞. Then it follows from (9) that x(·;σ, x0) is
bounded on [σ, γ). Furthermore, this together with (1) implies that ẋ(·) is
bounded on [σ, γ). Thus, x(·) is uniformly continuous on [σ, γ). This implies
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that limt→γ− x(t) exists and x(·) can be extended to a continuous differential
function on [σ, γ].

Therefore, one can find a solution of (1) through the point (γ, x(γ))
to the right of γ. This contradicts the noncontinuability hypothesis on x(·).
Thus, γ must be equal to ∞.

Finally, it is easy to see that if f(t, 0) = 0,∀t ∈ R and h(t, x) = 0,∀t ∈
R,∀x ∈ R

n then Υ = 0. Hence, (1) is ES. This completes the proof.

Remark 1. Based on a nonlinear inequality and Lyapunov’s method, Makhlouf–
Hammami [16, Example 2] show that

(
ẋ1(t)
ẋ2(t)

)
=

⎛
⎜⎜⎝

−x1(t) +
x2(t)

1 + (x1(t) + x2(t))2
e−t + sin(x2

1(t) + x2
2(t))

cos t

1 + t2

−x2(t) +
x1(t)

1 + (x1(t) + x2(t))2
e−t + sin(x2

1(t) + x2
2(t))

sin t

1 + t2

⎞
⎟⎟⎠ , t ≥ 0

(10)

is PES. Let R
2 be endowed with 1-norm. It is easy to check that (10) is PES,

by Theorem 3, where

f(t, x) :=
(−x1

−x2

)
,

and

ω(t, x) =

⎛
⎜⎜⎝

x2

1 + (x1 + x2)2
e−t + sin(x2

1 + x2
2)

cos t

1 + t2

x1

1 + (x1 + x2)2
e−t + sin(x2

1 + x2
2)

sin t

1 + t2

⎞
⎟⎟⎠ .

Definition 2. Equation (1) is said to be ultimately practically exponentially
stable (shortly, UPES) if there exist a positive number β and vectors η, v ≥ 0
such that for each σ ∈ R and each x0 ∈ R

n, the solution of (1)-(3) exists on
[σ,∞) and furthermore satisfies

|x(t, σ, x0)| ≤ e−β(t−σ)‖x0‖η + v, ∀t ≥ σ.

If v = 0, then equation (1) is said to be ultimately exponentially stable
(shortly, UES)).

Remark 2. It is easy to see that if equation (1) is UPES (UES, respectively),
then it is PES (ES, respectively).

Now, we consider the assumptions:
(H3) f(t, ·) is continuously differentiable on R

n for any t ∈ R and there
exists a matrix-valued continuous function A(·) : R → R

n×n such that

M(J(t, x)) ≤ A(t),∀t ∈ R,∀x ∈ R
n, (11)

where J(t, x) :=
(

∂fi

∂xj
(t, x)

)
∈ R

n×n, t ∈ R, x ∈ R
n, is the Jacobian matrix

of f(t, ·) at x.
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(H4) There exist a matrix-valued continuous function B(·) : R → R
n×n
+

and a bounded function g(·, ·) : R × R
n → R

n
+ such that

|ω(t, u)| ≤ B(t)|u| + g(t, u),∀t ∈ R,∀u ∈ R
n. (12)

(H5) There exists a matrix-valued continuous function C(·) : R → R
n×n
+

such that

|ω(t, x) − ω(t, y)| ≤ C(t)|x − y|,∀t ∈ R,∀x, y ∈ R
n. (13)

We are now in the position to state the second main result of this paper.

Theorem 4. Assume that (H3) and (H4) hold and f(t, 0) is bounded on R. If
there exist β > 0 and p := (p1, p2, ..., pn)T ∈ R

n
+, p � 0 such that(

A(t) + B(t)
)

p � −βp, ∀t ∈ R, (14)

then equation (1) is UPES.
In addition, if f(t, 0) = 0,∀t ∈ R and g(t, x) = 0,∀t ∈ R,∀x ∈ R

n, then
equation (1) is UES.

Proof. Let w := (w1, w2, ..., wn)T ∈ R
n
+ such that wi := supt∈R,u∈Rn{|fi(t, 0)|

+ gi(t, u)}.
Since (14), there exists v := (v1, v2, ..., vn)T ∈ R

n
+ such that(

A(t) + B(t)
)

v ≤ −w,∀t ∈ R. (15)

Let A(t) := (aij(t)) ∈ R
n×n, t ∈ R; and B(t) := (bij(t)) ∈ R

n×n, t ∈ R.
Let ε > 0 be arbitrary, but fixed. Define x(t) := x(t;σ, x0), t ∈ [σ, γ), x0 ∈
R

n, where the interval [σ, γ) is the maximum interval of existence of the

solution x(·;σ, x0). It follows from (3) that |x(σ)| = |x0| ≤ ‖x0‖
p

λ
, where

λ := mini∈n pi. Define

u(t) := e−β(t−σ)(‖x0‖ + ε)
p

λ
+ v, t ∈ [σ,+∞).

Clearly, |x(σ)| = |x0| � u(σ). We claim that |x(t)| ≤ u(t),∀t ∈ [σ, γ). Assume
on the contrary that there exists t0 > σ such that |x(t0)| � u(t0). Set t1 :=
inf{t ∈ (σ, γ) : |x(t)| � u(t)}. By continuity, t1 > σ and there is i0 ∈ n such
that

|x(t)| ≤ u(t),∀t ∈ [σ, t1); |xi0(t1)| = ui0(t1), |xi0(τk)| > ui0(τk), (16)

for some τk ∈ (t1, t1 + 1
k ), k ∈ N. By the mean value theorem (see, e.g., [6]),

we have for each t ∈ R and for each i ∈ n

ẋi(t) = fi(t, x(t)) + ωi(t, x(t)) = (fi(t, x(t)) − fi(t, 0)) + fi(t, 0) + ωi(t, x(t))

=
n∑

j=1

(∫ 1

0

∂fi

∂xj
(t, sx(t))ds

)
xj(t) + fi(t, 0) + ωi(t, x(t)).
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Taking (H3)-(H4) into account, we obtain

d
dt

|xi(t)| = sgn(xi(t))ẋi(t) = sgn(xi(t))
( n∑

j=1

( ∫ 1

0

∂fi

∂xj
(t, sx(t))ds

)
xj(t)

+fi(t, 0) + ωi(t, x(t))
)

≤
(∫ 1

0

∂fi

∂xi
(t, sx(t))ds

)
|xi(t)| +

n∑
j=1,j �=i

∫ 1

0

| ∂fi

∂xj
(t, sx(t))|ds|xj(t)|

+|fi(t, 0)| + |ωi(t, x(t))|,
(H3),(H4)≤

n∑
j=1

aij(t)|xj(t)| +
n∑

j=1

bij(t)|xj(t)|

+|fi(t, 0)| + gi(t, x(t))

≤
n∑

j=1

aij(t)|xj(t)| +
n∑

j=1

bij(t)|xj(t)| + wi,

for almost any t ∈ [σ, γ). It follows that for any t ∈ [σ, γ),

D+|xi(t)| := lim sup
ε→0+

|xi(t + ε)| − |xi(t)|
ε

= lim sup
ε→0+

1
ε

∫ t+ε

t

d

ds
|xi(s)|ds

≤
n∑

j=1

aij(t)|xj(t)| +
n∑

j=1

bij(t)|xj(t)| + wi,

where D+ denotes the Dini upper-right derivative. In particular, it follows
from (14), (15) and (16) that

D+|xi0(t1)| ≤
n∑

j=1

ai0j(t1)|xj(t1)| +
n∑

j=1

bi0j(t1)|xj(t1)| + wi0 ,

(16)

≤
( n∑

j=1

ai0j(t1)pj +
n∑

j=1

bi0j(t1)pj

)
e−β(t1−σ) ‖x0‖ + ε

λ

+
( n∑

j=1

ai0j(t1)vj +
n∑

j=1

bi0j(t1)vj

)
+ wi0

(14),(15)
< −βe−β(t1−σ)(‖x0‖ + ε)

pi0

λ
= D+ui0(t1).

On the other hand, (16) implies that

D+|xi0(t1)| := lim sup
t→t+1

|xi0(t)| − |xi0(t1)|
t − t1

≥ limk→+∞
|xi0(τk)| − |xi0(t1)|

τk − t1

≥ limk→+∞
ui0(τk) − ui0(t1)

τk − t1
= lim

k→+∞
ui0(τk) − ui0(t1)

τk − t1
= D+ui0(t1).
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This is a contradiction. Therefore,

|x(t;σ, x0)| ≤ u(t) = e−β(t−σ)(‖x0‖ + ε)
p

λ
+ v, ∀t ∈ [σ, γ), ∀x0 ∈ R

n.

Letting ε tend to zero, we obtain

|x(t;σ, x0)| ≤ e−β(t−σ)‖x0‖
p

λ
+ v, ∀t ∈ [σ, γ), ∀x0 ∈ R

n. (17)

Now similar to the final part in the proof of Theorem 3, we imply γ = ∞ and
so equation (1) is UPES. Finally, if f(t, 0) = 0,∀t ∈ R and g(t, x)) = 0,∀t ∈
R,∀x ∈ R

n, then v = 0 and equation (1) is UES. This completes the proof.

Corollary 1. Suppose (H3) and (H4) hold and f(t, 0) is bounded on R. Then
equation (1) is UPES if one of the following conditions is satisfied:
(i) There exists a Hurwitz stable matrix B0 ∈ R

n×n such that

A(t) + B(t) ≤ B0, ∀t ∈ R. (18)

(ii) There exist p, q ∈ R
n
+, p, q � 0 such that(

A(t) + B(t)
)

p ≤ −q, ∀t ∈ R. (19)

In addition, if f(t, 0) = 0,∀t ∈ R and g(t, x) = 0,∀t ∈ R,∀x ∈ R
n, then

(1) is UES.

Proof. (i) Assume that (i) holds. It remains to show that (14) of Theorem 4
holds. Note that B0 is a Metzler matrix. Since B0 is Hurwitz stable, there
exists p ∈ R

n
+, p � 0 so that B0p � 0, by Theorem 2. By continuity, this

implies that

B0p � −βp, (20)

for some sufficiently small β > 0. Therefore,(
A(t) + B(t)

)
p ≤ B0p

(20)� −βp, ∀t ∈ R.

Thus, (14) holds.
(ii) Suppose that (ii) holds. We show that (14) of Theorem (4) holds.

Let p := (p1, p2, ..., pn)T , q := (q1, q2, ..., qn)T ∈ R
n with pi, qi > 0,∀i ∈ n.

Fix i ∈ n and t ∈ R, x ∈ R
n, and consider the function

Fi(β) = βpi +
n∑

j=1

(aij(t) + bij(t))pj ,

with β ∈ R+. Clearly, Fi(β) is continuous in β on R+ and limβ→+∞ Fi(β) =
+∞,

Fi(0) =
n∑

j=1

(aij(t) + bij(t))pj

(19)

≤ −qi < 0,

and
dFi

dβ
= pi > 0.
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Therefore, Fi(β) is strictly increasing on R+. Therefore, there is a unique
positive number, say βi(t), such that

βi(t)pi +
n∑

j=1

(aij(t) + bij(t))pj = 0.

For each i ∈ n, let us define

β∗
i := inf

t∈R

{βi(t) > 0 : F (βi(t)) = 0}.

Obviously, β∗
i ≥ 0. We show that β∗

i > 0. Suppose this is not true. Let
0 < εi < qi

pi
. Then there exists t∗ ∈ R such that βi(t∗) < εi and

βi(t∗)pi +
n∑

j=1

(aij(t∗) + bij(t∗))pj = 0.

Then,

0 = βi(t∗)pi +
n∑

j=1

(aij(t∗) + bij(t∗))pj < εipi +
n∑

j=1

(aij(t∗) + bij(t∗))pj

< qi +
n∑

j=1

(aij(t∗) + bij(t∗))pj

(19)
< qi − qi = 0,

which is a contradiction. Therefore, β∗
i > 0, for all i ∈ n. Let 0 < β <

mini∈n{β∗
i }. It follows that

βpi +
n∑

j=1

(aij(t) + bij(t))pj < 0,

for all t ∈ R, and for all i ∈ n. Hence, (14) holds. This completes the proof.
�

Remark 3. It follows from the condition (i) of Corollary 1 that we can choose
v = −(B0)−1w such that (15) is satisfied.

The following follows from Theorem 4 and Corollary 1.

Theorem 5. Assume that (H3), (H5) hold and f(t, 0), ω(t, 0) are bounded on
R. Then equation (1) is UPES if one of the following conditions is satisfied:
(i) There exist β > 0 and p := (p1, p2, ..., pn)T ∈ R

n
+, p � 0 such that(

A(t) + C(t)
)

p � −βp, ∀t ∈ R. (21)

(ii) There exists a Hurwitz stable matrix B0 ∈ R
n×n such that

A(t) + C(t) ≤ B0, ∀t ∈ R. (22)

(iii) There exist p, q ∈ R
n
+, p, q � 0 such that(

A(t) + C(t)
)

p ≤ −q, ∀t ∈ R. (23)

In addition, if f(t, 0) + ω(t, 0) = 0,∀t ∈ R, then equation (1) is UES.
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Proof. Since (H5), we have

|ω(t, x)| ≤ C(t)|x| + |ω(t, 0)|,∀t ∈ R,∀x ∈ R
n.

Then (H4) holds with g(t, x) := |ω(t, 0)|. Thus, the conclusion of Theorem 5
is straightforward from Theorem 4 and Corollary 1.

Example 1. Consider the differential equation:

ẋ(t) := (−4 − 2 cos2 t)x(t) + 8 sin(t2 + 0.001x(t)). (24)

Clearly, (24) is of the form (1) with f(t, x) := (−4 − 2 cos2 t)x + 8 sin(t2 +
0.001x), t ∈ R. Furthermore, it is easy to see that f(t, x) is local Lipschitz
continuous with respect to x on each compact subset of R × R and

∂f

∂x
(t, x) = −4 − 2 cos2 t + 0.008 cos(0.001x + t2).

Let β1 = 3.991, p = 1. It is clear that(
∂f

∂x
(t, x)

)
p = −4 − 2 cos2 t + 0.008 cos(0.001x + t2)

≤ −3.992 < −3.991 = −β1p, ∀t ∈ R,∀x ∈ R.

Therefore, (24) is PES, by Theorem 4. For a visual simulation, if we
choose x(0) = 10, then the trajectory of system (24) is given in Fig. 1.

In the particular case, if equation (1) is not perturbed (i.e., ω(t, x) ≡ 0),
then the following follows directly from Theorem 5.

Corollary 2. Suppose that ω(t, x) ≡ 0, (H3) holds and f(t; 0) = 0,∀t ∈ R.
Then equation (1) is UES if one of the following conditions is satisfied:

Figure 1. The practical exponential stability
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(i) There exist β > 0 and p := (p1, p2, ..., pn)T ∈ R
n
+, p � 0 such that

A(t)p � −βp, ∀t ∈ R. (25)

(ii) There exists a Hurwitz stable matrix B0 ∈ R
n×n such that

A(t) ≤ B0, ∀t ∈ R. (26)

(iii) There exist p, q ∈ R
n
+, p, q � 0 such that

A(t)p ≤ −q, ∀t ∈ R. (27)

Remark 4. The result in Corollary 2 includes the well-known result in [18,
Theorem 2.2]. Furthermore, in this paper, we have shown that equation (2)
is globally exponentially stable for all x0 ∈ R

n, while Theorem 2.2 in [18]
proved that equation (2) is locally exponentially stable with x0 ∈ Br = {x :∈
R

n, ‖x‖ < r}.

Remark 5. Our approach may be more easy to check UPES and UES in some
cases than other results.

(i) Song–Lib–Wang [22, Example 4.1, page 1309] show that(
ẋ1(t)
ẋ2(t)

)
=

(
sin ln(t + 1) + cos ln(t + 1) − 2 k

k sin ln(t + 1) + cos ln(t + 1) − 2

)

×
(
x1(t)
x2(t)

)
(28)

is ES provided k <
1
2
. It is easy to check that (28) is UES provided k < 2−√

2,
by Corollary 2.

(ii) Errebii–Ellouze–Hammami [7, Example 3.1, page 170] show that the
scalar differential equation with delay

ẋ(t) = −x(t) +
1

1 + x2(t)
e−t, t ≥ 0 (29)

is PES. This is immediate from Theorem 4.
(iii) A similar result has been found in [1, Example 1, page 60]. More

precisely, the differential equation
(

ẋ1(t)
ẋ2(t)

)
=

⎛
⎝−x1(t) +

x1(t)
1 + x2

1(t)
e−x2

1(t) +
1

1 + t2
x2(t)

−x2(t) + e−x2(t)

⎞
⎠ (30)

is UPES. Once again, it is easy to see that this assertion follows from Theorem
4 with x = (x1, x2)T ∈ R

2

f(t, x) :=

⎛
⎝−x1 +

1
1 + t2

x2

−x2 + e−x2

⎞
⎠ ,

and

ω(t, x) =

⎛
⎝ x1

1 + x2
1

e−x2
1

0

⎞
⎠ .
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3. Applications to Neural Networks

Consider the cellular neural network described by

ẋi(t) = −ci(t)xi(t) +
n∑

j=1

aij(t)gj(xj(t)) + Ii(t), i ∈ n, (31)

where n corresponds to the number of units in the neural network, xi(t)
corresponds to the state vector of the ith unit at the time t, ci(t) represents
the rate at which the ith unit will reset its potential to the resting state in
isolation when disconnected from the network and external inputs, gj(xj(t))
denotes the output of the jth unit at the time t, aij(t) denotes the strength
of the jth unit on the ith unit at time t and Ii(t) denotes the external bias
on the ith unit at the time t.

Let gi(·), ci(·), Ii(·), aij(·) be continuous functions. Assume that aij(·) is
bounded.

Suppose that
(A1) For each j ∈ n, there exists Lj ≥ 0 so that |gj(uj) − gj(vj)| ≤

Lj |uj − vj |, ∀uj , vj ∈ R.
(A2) For each j ∈ n, there exists Mj ≥ 0 so that 0 ≤ ġj(uj) ≤ Lj , ∀uj ∈

R.
Define [h(t)]+ = max{h(t), 0}, for every t ∈ R. Let x(t) := x(t, x0) be

the solution of (31).

Corollary 3. Assume that (A1) holds and Ii(·) is bounded. Then equation (31)
is UPES if one of the following conditions holds:
(i) There exist a scalar β > 0 and positive numbers p1, p2, . . . , pn such that

−ci(t)pi +
n∑

j=1

|aij(t)|Ljpj < −βpi,∀t ∈ R,∀i ∈ n.

(ii) There exists a Hurwitz stable matrix B := (bij) ∈ R
n×n such that for

each i, j ∈ n, i 	= j,

−ci(t) + |aii(t)|Li ≤ bii,∀t ∈ R; |aij(t)|Lj ≤ bij ,∀t ∈ R.

(iii) There exist positive numbers p1, p2, . . . , pn, q1, q2, . . . , qn such that

−ci(t)pi +
n∑

j=1

|aij(t)|Ljpj ≤ −qi,∀t ∈ R,∀i ∈ n.

Proof. Let

f(t, x) := (f1(t, x), f2(t, x), ..., fn(t, x))T ,

w(t, x) := (w1(t, x), w2(t, x), ..., wn(t, x))T

with fi(t, x) := −ci(t)xi(t), wi(t, x) :=
∑n

j=1 aij(t)gj(xj(t)) + Ii(t), i ∈ n.
It is not hard to see that the equation (31) is of the form (1). Then, the
conclusions of Corollary 3 are straightforward from Theorem 5.

Corollary 4. Assume that (A2) holds and Ii(·) is bounded. Then equation (31)
is UPES if one of the following conditions holds:



  103 Page 14 of 17 C. T. Tinh et al. MJOM

(i) There exist a scalar β > 0 and positive numbers p1, p2, . . . , pn such that

−ci(t)pi + [aii(t)]+Lipi +
n∑

j=1,j �=i

|aij(t)|Ljpj < −βpi,∀t ∈ R,∀i ∈ n.

(ii) There exists a Hurwitz stable matrix B := (bij) ∈ R
n×n such that for

each i, j ∈ n, i 	= j,

−ci(t) + [aii(t)]+Li ≤ bii,∀t ∈ R; |aij(t)|Lj ≤ bij ,∀t ∈ R, j 	= i.

(iii) There exist positive numbers p1, p2, . . . , pn, q1, q2, . . . , qn such that

−ci(t)pi + [aii(t)]+Lipi +
n∑

j=1,j �=i

|aij(t)|Ljpj ≤ −qi,∀t ∈ R,∀i ∈ n.

Proof. Let

f(t, x) := (f1(t, x), f2(t, x), ..., fn(t, x))T ,

w(t, x) := (w1(t, x), w2(t, x), ..., wn(t, x))T

with fi(t, x) := −ci(t)xi(t) +
∑n

j=1 aij(t)gj(xj(t)) + Ii(t), wi(t, x) := 0, i ∈ n.
Clearly, the conclusions of Corollary 4 are straightforward from Theorem 5.

Corollary 5. Assume that (A2) holds and Ii(·) is bounded. Then equation (31)
is UPES if one of the following conditions holds:
(i) There exists a scalar β1 > 0 such that

−cj(t) + [ajj(t)]+Lj +
n∑

i=1,i �=j

|aij(t)|Li < −β1,∀t ∈ R,∀j ∈ n,

or

−ci(t) + [aii(t) +
n∑

j=1,j �=i

|aij(t)|]+Li < −β1,∀t ∈ R,∀i ∈ n.

(ii) There exists a scalar β2 > 0 such that

−cj(t) + [ajj(t)]+Lj +
1
2

n∑
i=1,i �=j

(|aij(t)|Li + |aji(t)|Lj) < −β2,∀t ∈ R,∀j ∈ n.

Proof. Let

f(t, x) := (f1(t, x), f2(t, x), ..., fn(t, x))T ,

w(t, x) := (w1(t, x), w2(t, x), ..., wn(t, x))T

with fi(t, x) := −ci(t)xi(t) +
∑n

j=1 aij(t)gj(xj(t)) + Ii(t), wi(t, x) := 0, i ∈ n.
It is easy to see that the conclusions of Corollary 5 are straightforward from
Theorem 3.

Assume that x∗ := (x∗
1, x

∗
2, ..., x

∗
n)T ∈ R

n is an equilibrium of (31). It is
obvious that u(·) := x(·) − x∗ satisfies

u̇i(t) = −ci(t)ui(t) +
n∑

j=1

aij(t)sj(uj(t)), i ∈ n,
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where sj(uj) := gj(uj + x∗
j ) − gj(x∗

j ), j ∈ n.
The following is immediate from Corollary 2 and Theorem 3.

Corollary 6. The equilibrium x∗ of (31) is ES if one of the following condi-
tions holds:
(i) (A1) and one of conditions (i), (ii), (iii) of Corollary 3 are satisfied.
(ii) (A2) and either one of conditions (i), (ii), (iii) of Corollary (4) or one

of the conditions (i), (ii) of Corollary (5) are satisfied.

Remark 6. Corollary 6 includes some existing criteria for the exponential
stability of the cellular neural network in the literature as special cases (see,
e.g., [5,8,19,20,24]).
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